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Ammonia is important, both as a fertilizer and as a carrier of clean energy,mainly

produced by the Haber-Bosch process, which consumes hydrogen and emits

large amounts of carbon dioxide. The ENRR (Electronchemical Nitrogen

Reduction Reaction) is considered a promising method for nitrogen fixation

owing to their low energy consumption, green and mild. However, the

ammonia yield and Faraday efficiency of the ENRR catalysts are low due to

the competitive reaction between HER and NRR, the weak adsorption of

N2 andthe strong N≡N triple bond. Oxygen vacancy engineering is the most

important method to improve NRR performance, not only for fast electron

transport but also for effective breaking of the N≡N bond by capturing

metastable electrons in the antibonding orbitals of nitrogen molecules. In

this review, the recent progress of OVs (oxygen vacancies) in ENRR has

been summarized. First, the mechanism of NRR is briefly introduced, and

then the generation methods of OVs and their applicationin NRR are

discussed, including vacuum annealing, hydrothermal method, hydrogen

reduction, wet chemical reduction, plasma treatment and heterogeneous

ion doping. Finally, the development and challenges of OVs in the field of

electrochemical nitrogen fixation are presented. This review shows the

important areas of development of catalysts to achieve industrially viable NRR.
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1 Introduction

The continued rise of the global population and excessive use of fossil fuels has led

to severe environmental issues and an energy crisis. As the main constituent of air,

inert nitrogen gas can be converted into ammonia, which has a large variety of

applications in the industry (Galloway et al., 2008; Zamfirescu and Dincer, 2008).

Nearly 80% of the ammonia produced is utilized for fertilizers, making it a significant

agricultural chemical. Additionally, it can be used as a potential carrier of green fuel

(Galloway et al., 2004; Christensen et al., 2006; Kitano et al., 2012; Chen et al., 2018; Li
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et al., 2022b). Currently, the Haber-Bosch process is used for

the production of ammonia from nitrogen and hydrogen,

which was invented in the early 20th century (Tanabe and

Nishibayashi, 2013; Liu, 2014). However, owing to the high

bond energy, lack of dipole moment, and low polarization of

the molecular structure of N2, leads to the production of

Haber-Bosch process must be carried out at high pressures

(150–300 ATM) and high temperatures (400–600°C), making

it an energy-intensive process that accounts for about 1–2% of

the world’s yearly energy supplies (Chirik, 2009; van der Ham

et al., 2014; Singh et al., 2017; Sun et al., 2017; Guo et al., 2018;

Chen et al., 2019; Song et al., 2019). There is an urgent need for

researchers to find a viable and novel method of nitrogen

fixation.

Recently, many methods have been proposed for nitrogen

fixation in ambient circumstances, such as biochemical

catalysis, photocatalysis, and electrocatalysis (Brown et al.,

2016; Milton et al., 2016; Kyriakou et al., 2017; Cao and Zheng,

2018; Cui et al., 2018; Guo W et al., 2019). Among that the

ENRR has been singled out as a promising method, because of

their environment friendly, low pressure and moderate

temperature (Zhang et al., 2019a; Zhang et al., 2019b; Li

et al., 2019; Yu et al., 2019; Lazouski et al., 2020; Yang

et al., 2020). However, the completion of NRR and

hydrogen evolution reaction (HER) leads to the low

Faraday efficiency and low ammonia yield, which limits its

application (Hao et al., 2019; Qiu et al., 2019; Zhao et al.,

2019). It is well-known that high Faraday efficiency and

ammonia yield are requisite conditions for industrial

applications of electrocatalytic reactions. Therefore,

designing and producing environmentally friendly catalysts

by an efficient process with low energy consumption and

minimal pollution is crucial.

Oxygen vacancies engineering strategies as an effective

method to improve NRR performance can tune the electronic

structure and ensure successful reaction between

intermediates, resulting in excellent chemical and physical

properties as well as higher activity and selectivity (Yan et al.,

2017; Xu et al., 2021; Gao et al., 2022; Ji et al., 2022). In recent

studies, the design of catalyst materials with OVs for

electrochemical NRR has drawn significant research

attention (Zhang et al., 2018; Liu et al., 2019; Yan D. F

et al., 2019; Zhang S et al., 2019; He et al., 2021).

Moreover, the introduction of OVs in electrocatalysts has

been extensively employed in NRR because a large number

of stable metal oxide catalysts provide a variety of carriers for

OVs enriched with different structures (Hirakawa et al., 2017;

Xu et al., 2019; Li P. S et al., 2020; Liu et al., 2021b). For

instance, Han et al. thoroughly investigated the ENRR

performance and catalysis mechanism of titanium dioxide

with various OVs concentrations by theoretical calculations

and experiments, including strict control of the annealing

temperature during the preparation process (Han et al., 2019).

Accordingly, In-depth exploration of the effect of OVs on

ENRR is essential to guide the design of catalysts with better

catalytic performance.

In this review, we provide an overview of the most recent

developments in utilizing OVs for developing catalysts for

electrocatalytic nitrogen fixation. First, we briefly introduce

the mechanism of electrocatalytic nitrogen fixation. We

additionally summarize OVs generating methods and their

applications for ENRR. Finally, the future development and

possible challenges of OVs in the field of ENRR are discussed.

2 NRR mechanism

The complexity of the ENRR process and the catalyst’s shape,

microstructure, electronic structure, and density of active sites

influence the effectiveness of the catalyst. Moreover, inefficient

reactions also occur since most electrons unite with protons to

generate hydrogen, which is the largest competitive reaction in

ENRR. Therefore, it is essential to have an in-depth

understanding of the NRR process.

Adsorption and activation of N2 on the catalyst surface, along

with the associated electron conversion and proton adsorption,

are the first steps in the electrochemical reduction of N2 to NH3.

This reaction is quite difficult for the following reasons: 1) the

robust triple bond of the inert N2 molecule (Singh et al., 2017), 2)

no permanent dipole, 3) a huge energy gap 10.82 eV between the

highest occupied and lowest unoccupied molecular orbitals (Yan

X et al., 2019), and 4) high ionization potential (15.58 eV) and

low electron affinity (−1.9 eV) of the N2 molecule (Jia and

Quadrelli, 2014; van der Ham et al., 2014). Consequently, A

viable NRR catalyst requires modest binding to intermediate

species and a high activation capacity relative to N2 (Wang et al.,

2017).

According to the intermediates involved and energy

consumption, the NRR mechanism can be theoretically

separated into dissociative and associative mechanisms

(Figure 1A) (Shipman and Symes, 2017). The N≡N bond is

first broken by the dissociative mechanisms before

hydrogenation, and then individual N atoms are adsorbed

onto the catalyst surface and hydrogenated to form NH3. The

Haber-Bosch process follows the dissociative mechanism

(Wan et al., 2019). The dissociative mechanism involves

overcoming the high cleavage energy of the thermodynamic

N≡N bond, making NRR unfavorable under ambient

conditions.

In contrast to the dissociative pathway, the N≡N triple bond

partially breaks in the associative mechanism, before the

hydrogenation of N atoms takes place. The associative

mechanism can be further classified into the distal path and

the alternating path based on the sequence in which H atoms are

added to the two distinct N atoms (Shipman and Symes, 2017).

The distal N atom in the distal pathway first adsorbs the H atom,
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and subsequently hydrogenates until forming and releasing the

ammonia molecule. Then another N atom is hydrogenated to

release ammonia. The alternating path uses the alternating

addition of H atoms to two different N atoms until one of

them converts to NH3 and the N≡N bond is broken (Guo X

et al., 2019).

In comparison to conventional catalysts, the

introduction of OVs into a catalyst can increase the

number of active sites for NRR by altering the electronic

structure and surface properties. For example, Density

functional theory (DFT) computations were carried out by

Fu et al. on facets of Ta2O5 (001) with OVs (Fu et al., 2019).

The localized electrons made the Ta ions reduce, leading to

an increase in the Bader charge of the two connected Ta

atoms, from 2.45 e to 2.92 and 3.00 e, as shown in Figure 1B.

Meanwhile, the two partly reduced Ta atoms near the OVs

swapped electrons and absorbed N2. Their accessible d

orbitals were used by the N-N π antibonding orbital to

acquire electrons, which contributed to activating and

adsorbing the N2 molecule. The bond length of the

successfully activated N2 molecule increased (to 1.381 Å)

due to the transfer of electrons from the Ta atom to the

adsorbed N2, which contrasts with 1.098 Å in free N2.

Moreover, the OV-containing Ta2O5 adsorbed N2 more

easily as shown in Figure 1C. Additionally, the

hydrogenation of defect-free Ta2O5 had a large energy

barrier. Therefore, OVs could enhance the catalyst’s NRR

catalytic performance.

3 Methods to generate OVs and
applications in ENRR

3.1 Thermal annealing in an oxygen-
deficient environment

A widely used method to generate OVs is annealing

oxygen-containing compounds at high temperatures under

anoxic conditions (e.g., He, N2 and Ar) or vacuum. In the

annealing process, the relative concentration of VOs can be

adjusted by controlling the inert gas flow rate, final

temperature, heating rate, annealing time and cooling rate

FIGURE 1
(A) Possible reaction mechanisms for the NRR to form NH3. (Shipman and Symes, 2017) with permission from Copyright 2016 Elsevier B.V. (B)
Model of the (001) surface of Ta2O5with anO-vacancy site, the adsorption geometry of N2 on theO-vacancy site of the Ta2O5 (001) surface, Side and
top view of charge density difference of the N2 adsorbed (001) surface. (C) DFT-calculated NRR reaction pathways and the corresponding energy
changes on defect Ta2O5 and defect-free Ta2O5. (Fu et al., 2019) with permission from Copyright 2019 American Chemical Society.
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FIGURE 2
(A) The schematic diagram of the catalyst preparation and the illustration of the NRR on VO rich In2O3-x/CeO2-y. (Wang et al., 2020) with
permission from 2020 Royal Society of Chemistry. (B) Schematic illustration of the preparation of BiVO4 by hydrothermal method. (Yao et al., 2019)
with permission from 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (C) Schematic of the preparation of MoO2 nanosheets. (Zhang G
et al., 2019) with permission from Copyright 2019 Elsevier Ltd. (D) Schematic illustration of the synthesis process of P–NiO/CC. (Wang Y. et al.,
2019) with permission from Copyright 2020 Royal Society of Chemistry. (E) The proposed NRR pathway for the NH3 synthesis on the Cu-CeO2-
3.9 catalyst. (Zhang S et al., 2019) with permission from Copyright 2019 Royal Society of Chemistry. (F)NRR performance of P-KNO after electrolysis
at different potentials. (Fan et al., 2022) with permission from Copyright 2022 Royal Society of Chemistry.
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(Sarkar and Khan, 2019; Wang L. et al., 2019; Zhu et al.,

2019).

Wang et al. obtained In2O3-x/CeO2-y nanotubes rich in OVs

by electrostatic spinning followed by vacuum annealing

(Figure 2A) (Wang et al., 2020). According to the XPS

spectra, the sample In1-Ce1, with a raw material ratio of 1:1,

showed the highest concentration of OVs. With the formation of

OVs, the electrochemical properties were effectively optimized,

and the kinetics of NRR and electron conduction capacity were

significantly enhanced, leading to a Faraday efficiency of 16.1%

and NH3 yield of 26.1 μg h
−1 mgcat

−1. Luo et al. synthesizedMOF-

derived N-doped carbon/Co3O4 nanocomposites (Co3O4@NCs)

containing OVs by vacuum annealing (Luo et al., 2019). Co3O4@

NC-10 also showed superior NRR performance with a

remarkably high NH3 yield of 42.58 μg h−1 mgcat
−1 and a

Faraday efficiency of 8.5% in 0.05 M H2SO4, which was

attributed to the synergistic interaction between the N-doped

carbon and the introduced OVs.

3.2 Hydrothermal methods

Hydrothermal methods involve chemical reactions in a

sealed vessel, where the temperature of the solvent is much

higher than its boiling point due to the increase in

autogenous pressure caused by heating. The ratio of the raw

materials can be adjusted to generate OVs during the

hydrothermal process. In recent years this method has been

widely used since the powder does not require high-temperature

calcination, thus, preventing re-agglomeration of nanoparticles

and contamination.

BiVO4, containing different concentrations of OVs, was

synthesized by Yao et al. by a hydrothermal reaction with

adjusted pH values (Figure 2B) (Yao et al., 2019). At pH = 7,

BiVO4 had the highest concentration of OVs. It showed excellent

NRR performance, including NH3 yields up to 8.60 μg h−1

mgcat
−1, Faraday efficiency of 10.04% at −0.5 V vs RHE. Liu

et al. prepared BiVO4/TiO2 nanotube (BiVO4/TNT)

heterojunction composites rich in OVs by a hydrothermal

method (Liu et al., 2021a). With an NH3 yield of 8.54 μg h−1

cm−2 as well as Faraday efficiency of 7.70% at −0.8 V vs RHE in

0.1 M Na2SO4, BiVO4/TNT exhibited a remarkable performance

and showed superior selectivity and high electrochemical

stability.

3.3 Hydrogen reduction

Hydrogen is a strong reducing agent and is commonly used

to reduce metal oxides under high temperature or high pressure

to introduce OVs. The concentration of OVs in metal oxides can

be controlled effectively by adjusting parameters such as

pressure, temperature and gas ratios.

Zhang et al. used MoO3 powder as the precursor and

employed hydrogen reduction at 900°C for 1 h with different

H2 proportions (from 5% to 20%) in an Ar-H2 atmosphere to

obtain MoO2 nanosheets with different OVs concentrations

(Figure 2C) (Zhang G et al., 2019). DFT calculations showed

that appropriately limiting OVs in the MoO2 layer benefits the

proton transfer step by selectively stabilizing N2H* and

destabilizing N2H2* through the distal/alternate mixing path.

Consequently, in comparison to MnO2 with free OVs, the

activation barrier was lowered from 1.49 eV to 0.36 eV. Fang

et al. successfully prepared two-dimensional OV-TiO2

nanosheets by annealing TiO2 nanocrystals in H2/Ar at

different temperatures (Fang C. H et al., 2019). The OV-TiO2-

400 nanosheets remained highly stable after 12 cycles and

achieved NH3 yields of 35.6 μg h
−1 mg−1, which was 2.83 times

higher than that of TiO2 without OVs.

3.4 Wet chemical reduction

Wet chemical reduction of oxides by chemical reagents such

as NaBH4 can produce OVs at temperatures lower than those

required for hydrogen reduction. The reduction molecule first

adsorbs on the metal oxide surface and then grabs the O atom to

the surface oxygen by electron transfer, thus generating OVs.

Carbon-encapsulated MoO2 nanoparticles (MoO2@C) with

abundant OVs have been synthesized via a pectin-assisted

hydrothermal method, followed by calcination and treatment

with NaBH4 solution (Du et al., 2021). MoO2@C showed a low

NH3 yield of 2.12 μg h−1 mg−1 at −0.7 V vs RHE without

treatment with NaBH4 solution. However, OV-containing

MoO2@C showed a higher NH3 yield 9.75 μg h−1 mg−1 at 0.5 V

vs RHE and Faraday efficiency of 3.24% and inhibited the HER.

Fang et al. synthesized OV-rich TiO2 nanoparticles (NPs) grown

in situ on TiO2/Ti3C2Tx using an ethanol-based thermal

technique (Fang Y. H et al., 2019). Due to the high electrical

conductivity of the Ti3C2Tx nanosheets, electron transport was

promoted and self-aggregation of TiO2 nanoparticles was

inhibited. Thus, the TiO2 nanoparticles increased the surface

specificity (SSA) of Ti3C2Tx. Moreover OVs can serve as NRR

reactive sites, the TiO2/Ti3C2Tx exhibited an excellent NRR

capability with NH3 yields of 32.17 μg h−1 mg−1 at −0.55 V vs

RHE and Faraday efficiency of 16.07% at −0.45 V vs RHE in

0.1 M HCl. DFT calculations demonstrate that the N≡N triple

bond at the TiO2 (101)/Ti3C2Tx surface was highly activated and

showed the lowest NRR energy barrier (0.40 eV) compared to

untreated Ti3C2Tx or TiO2 (101).

3.5 Plasma treatment

Efficient and rapid generation of OVs can be achieved by

plasma treatment, which involves surface etching and can be
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carried out at lower temperatures (Wang et al., 2018).

Energetic particles, such as various kinds of plasma and

high-energy protons, interact with the metal oxide surface

during the plasma activation process, the surface structure is

damaged, leading to the creation of OVs. The concentration

of OVs can be precisely controlled by adjusting the plasma’s

power, pressure, gas flow, and irradiation period.

Li et al. used plasma technology to introduce OVs in NiO

(Figure 2D) (Li Y. B et al., 2020). DFT calculations show that the

electronic structure of NiO was modified due to the introduction

of OVs, further improving its electron conduction during NRR,

lowering the reaction potential barrier and suppressing side

reactions. In contrast to the majority of the reported NRR

catalysts, the NiO nanosheets enriched with OVs showed an

excellent NH3 yield of 29.1 μg h−1 mg−1 and Faraday efficiency of

10.8% −0.5 V vs. RHE.

3.6 Heterogeneous ion doping strategy

Heterogeneous ion doping is based on the difference in

the electronegativities of intrinsic atoms, and is used to

introduce defects into crystal structures and adjust the

physicochemical properties of materials (Li W et al.,

2020; Li et al., 2022a). For pure oxygen-containing

compounds, both metallic and nonmetallic doping can

create an imbalanced charge atmosphere that tends to

break the long-term periodicity of the lattice oxygen in

the oxide; thus, OVs are formed to maintain

thermodynamic stability.

3.6.1 Metal-doping
Chu et al. tuned the NRR properties of CeO2 by Fe

doping (Fe-CeO2) (Chu et al., 2020a). Fe doping

transformed the morphology of CeO2 from crystalline

nanoparticles to partly amorphous nanosheets and

significantly increased the concentrations of OVs. As a

result of the abundant active sites, considerable specific

surface area and high electrical conductivity, Fe-CeO2

exhibited good catalytic activity, with an excellent NH3

yield of 26.2 μg h−1 mg−1 (−0.5 V vs. RHE) and Faraday

efficiency of up to 14.7% (−0.4 V vs. RHE).

Zhang et al. successfully prepared Cu-doped CeO2

nanorods by a facile hydrothermal method, followed by

annealing in H2/Ar (Zhang S et al., 2019). The synthetic

Cu-doped CeO2 nanorods were designated as Cu-CeO2-x,

where x denotes the amount of Cu dopant. Cu-CeO2-

3.9 exhibited excellent electrocatalytic performance due to

its large surface area of 95.2 m2 g−1 and mesoporous structure,

with NH3 yields of 5.3 × 10–10 mol s−1 cm−2 and Faraday

efficiencies of 19.1% at −0.45 V vs. RHE in 0.1 M Na2SO4,

which is far beyond that of pure CeO2 nanorods. It was found

that the Ce3+ site in Cu-doped CeO2 was more easily replaced

by Cu2+ with the increase in Cu dopant concentration. As a

result, the OVs around the Ce3+ sites decreased; conversely,

the OVs surrounding the Ce2+ sites increased. The OVs

formed around the Ce2+ sites promoted N2 adsorption and

activation and improved NRR performance (Figure 2E).

3.6.2 Nonmetal-doping
Chu et al. used a straightforward hydrothermal method to

synthesize B-doped MnO2 (Chu et al., 2020b). DFT calculations

demonstrated that the asymmetric charge distribution brought

on by the interaction between OVs and the B dopant enhanced

the stability of the crucial intermediate *N2H on MnO2; thus,

lowering the reaction energy barrier and increasing reactivity. the

B-MnO2/Carbon cloth in 0.5 M LiClO4 outperformed most

currently known Mn-based catalysts with an NH3 yield of

54.2 μg h−1 mg−1 (−0.4 V vs. RHE) and Faraday efficiency of

16.8% (−0.2 V vs. RHE).

Fan et al. synthesized OV-rich P-doped potassium

peroxynitrite (KNb3O8, abbreviated as P-KNO) by a simple

solid-phase method followed by phosphorylation (Fan et al.,

2022). The NH3 yield of P-KNO was 23.01 μg h−1 mg−1

(at −0.45 V vs. RHE) and the FE was 39.77% (at −0.4 V vs.

RHE) in 0.1 MNa2SO4 electrolyte (Figure 2F), which is twice that

of unphosphorylated KNO. Additionally, due to their

complementary effects, P-doping and VOs modified the

electronic structure of the catalyst surface, hastening the

adsorption and activation of N2 and thus enhancing catalytic

performance.

4 Summary and prospects

Ammonia is one of the most widely manufactured chemicals

and has the potential for clean energy applications. However the

conventional Haber-Bosch method requires significant amounts

of energy and releases a considerable of greenhouse emissions.

The efficient, cost-effective, and emission-free ammonia

synthesis achieved from N2 by ENRR under room

temperature has attracted significant research attention. In

order to substantially improve the NRR activity, developing

and constructing novel effective NRR catalysts is vital.

Oxygen vacancies engineering is an effectively implemented

strategy to enhance catalytic activity and selectivity of catalysts by

altering the electronic state and creating additional active sites for

NRR. In ENRR, OVs can alter the electron density and charge

distribution of the catalyst and serve as reaction sites by

adsorbing the reactants. By lowering the activation energy

barrier, OVs inhibit the HER and increase the efficiency of

the NRR.

Although introducing OVs to the catalyst has

significantly advanced the development of NRR

electrocatalysts, it is still difficult to accurately regulate

OVs concentrations and the relationship between OVs
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and NRR performance is not well understood. In addition,

OVs may introduce transition layers in the electrocatalyst

during the NRR process, notably in highly acidic and alkaline

electrolytes. The reaction pathways are correlated with the

properties of the electrolyte and the transition layer, thus,

affecting the adsorption of the intermediates and the rate-

determining steps. Therefore, it is necessary to consider in

situ characterization approaches that provide

straightforward evidence and in-depth insight into the

reaction mechanism. For example, in situ FTIR, in situ

Raman spectroscopy and in situ XAFS. The performance

of reported catalyst materials is unsuitable for industrial

applications and needs to be further improved. We expect

that improved, durable and affordable electrocatalysts for

NRR can be produced by integrating experiment and theory.
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