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Oxytocin (OT) is a nonapeptide mainly produced in the supraoptic and paraventricular
nuclei. OT in the brain and blood has extensive functions in both mental and physical
activities. These functions are mediated by OT receptors (OTRs) that are distributed in a
broad spectrum of tissues with dramatic sexual dimorphism. In both sexes, OT generally
facilitates social cognition and behaviors, facilitates parental behavior and sexual activity and
inhibits feeding and pain perception. However, there are significant differences in OT levels
and distribution of OTRs in men from women. Thus, many OT functions in men are different
from women, particularly in the reproduction. In men, the reproductive functions are
relatively simple. In women, the reproductive functions involve menstrual cycle,
pregnancy, parturition, lactation, and menopause. These functions make OT regulation of
women’s health and disease a unique topic of physiological and pathological studies. In
menstruation, pre-ovulatory increase in OT secretion in the hypothalamus and the ovary can
promote the secretion of gonadotropin-releasing hormone and facilitate ovulation. During
pregnancy, increased OT synthesis and preterm release endow OT system the ability to
promote maternal behavior and lactation. In parturition, cervix expansion-elicited pulse OT
secretion and uterine OT release accelerate the expelling of fetus and reduce postpartum
hemorrhage. During lactation, intermittent pulsatile OT secretion is necessary for the milk-
ejection reflex and maternal behavior. Disorders in OT secretion can account for maternal
depression and hypogalactia. In menopause, the reduction of OT secretion accounts for
many menopausal symptoms and diseases. These issues are reviewed in this work.

Keywords: lactation, menstruation, parturition, pregnancy, menopause
1 INTRODUCTION

Why should we concern women’s health and diseases? Women exhibit menstrual cycle, pregnancy,
parturition, lactation, menopause and other unique physiological activities, such as maternal
behaviors. Correspondingly, women have some unique reproduction-associated diseases, such as
postpartum depression and menopausal syndromes. Women’s biological activities are regulated not
only by the hypothalamic-pituitary-gonad (HPG) axis, but also by oxytocin (OT). While OT
commonly influences sexual behaviors, production of sex steroids and the maturation of gemmates
n.org February 2022 | Volume 13 | Article 7862711
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of both sexes (1), it differently influences women’s health and
disease at different reproductive stages. In this work, we review
the roles of OT in women’s health and disease.
2 GENERAL VIEW OF THE OT SYSTEM

OT, a classical neuropeptide, is mainly produced in hypothalamic
OT neurons. Changes in OT neuronal activity can modulate
cognitive, endocrine and physical activities as well as autonomic
and visceral neural activities. In addition, scattered OT cells are also
present in extrahypothalamic brain regions and peripheral sites,
exerting autocrine and paracrine functions at local levels.

2.1 Histological Features of the OT System
OT neurons in the brain are largely aggregated in several
neuroendocrine nuclei, typically the supraoptic nucleus (SON)
and paraventricular nucleus (PVN). In the SON and PVN, most
OT neurons send axons to the posterior pituitary and are
magnocellular neuroendocrine cells. These OT neurons can
release OT into the blood from OTergic terminals in the
posterior pituitary and into the forebrain from OTergic axon
collaterals (2). Another type of OT neurons in the CNS is
parvocellular OT neurons. They are mainly present in the
parvocellular division of the PVN and project to the brainstem
and spinal cord but not the posterior pituitary (3). Alongside the
hypothalamic OT neurons, some OT cells are also present in
extrahypothalamic regions in the CNS and peripheral sites, such
as amygdala, the median preoptic nucleus, uterus, placenta,
amnion, corpus luteum, testis, heart and colon (4–6). Notably,
OT gene expression in chorio-decidual tissues can increase
three- to fourfold around the time of labor onset (7–10),
supporting OT functional role in parturition. These
Frontiers in Endocrinology | www.frontiersin.org 2
histological features allow OT to modulate body functions at
multiple levels and patterns including neuromodulation,
neurosecretion, endocrine, autocrine and paracrine effects.

2.2 Features of OT Neuronal Secretion
and Its Regulation
OT release from OT neurons is microdomain-specific (11). In
response to changes in the neurochemical environment around
OT neurons, changes in cytosolic Ca2+ level and/or firing activity
occur. Increased firing rate causes OT release at the axonal
terminals via excitation-secretion coupling. Increased cytosolic
Ca2+ level triggers OT release from somata and dendrites. The
somatodendritic OT release can be in synchrony with the firing
activity under physiological conditions, such as suckling
stimulation (12). It can be independent of the firing activity
under some pathological conditions, such as maternal depression
following offspring deprivation (13) and cesarean delivery (14).

The electrical activity, cytosolic Ca2+ level and the resultant OT
secretion are under the regulation of extracellular and intracellular
factors (Figure 1). These factors include changes in neurochemical
environment (15), tonic and clustered synaptic inputs (16, 17),
intercellular junctional coupling such as connexin 36 (18), and
astrocytic plasticity (19, 20). Moreover, autoregulation of OT
neuronal activity is a key regulator of OT neuronal activity (21).
By activation of OT receptors (OTRs), OT causes activation of a
series of intracellular signaling events, such as increased
cyclooxygenase-2 (21), extracellular signal-regulated protein
kinases 1 and 2 (22), and protein kinase A (13). These signals
can activate hyperpolarization-activated cyclic nucleotide-gated
channel 3 (13, 23), which can promote OT secretion (24, 25).
Under the regulation of these extracellular and intracellular
factors, OT neuronal activity and OT secretion can meet the
demands of body activity in response to environmental changes.
FIGURE 1 | Neurochemical regulation of oxytocin (OT) neuronal activity. CNS, the central nervous system; NT/NP/H/Ion, neurotransmitters, neuropeptide, hormone
and ions.
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2.3 Expression of OTRs and Its Regulation
OTRs are the protein product encoded by OTR gene that is
localized at 3p25-3p26.2 in the human chromosome (4). OTR
belongs to the G-protein-coupled receptor superfamily and its
activation is regulated by cholesterol as an allosteric modulator
(26). The expression profile of OTRs is a tissue- and stage-specific,
such as upregulation of the nuclear fractions in term myometrium
and down-regulation in non-pregnant myometrium. The OTR
gene appears to be highly methylated. Methylation around intron
1 and in intron 3 might contribute to tissue-specific suppression of
the gene. OTRs are also regulated by the mechanisms of
desensitization, which causes the loss of ligand-binding activity
of the protein as well as suppression of OTR mRNA transcription.
OTR mRNAs are present in different sizes, for instance 3.6 kb in
human breast and 4.4 kb in ovary, endometrium, and
myometrium. In posttranslational modifications, OTRs are
further palmitoylated and glycosylated (27, 28). In addition,
species differences are present and may be due to the existence
of different clones of OTR genes of the myometrium and the
hypothalamus at different reproductive stages (29, 30). Thus, the
phenotype of OTRs from different species and different tissues of
the same species could appear in different sizes.

In mammals, OTRs have been identified in a broad spectrum of
tissues, including the kidney, heart, thymus, pancreas, adipocytes
and other sites in addition to the CNS (4). Expressions of OTRs in
the hypothalamus, uterus, and mammary glands are stimulated by
estrogen (31). In females, OTRs are specifically localized in the
myoepithelial cells of the mammary glands, and in themyometrium
and endometrium of the uterus. Peripheral actions of OT are
commonly associated with smooth muscle contraction,
particularly within the female and male reproductive tracts (32).

OT expression during pregnancy and parturition in females has
some unique features unseen in males. Changes in brain OT
binding sites during pregnancy may influence the sudden onset of
maternal behavior in female rats at parturition. Transcriptional
regulation of OTR gene expression mediates changes in receptor
density in the brain in a region-specific manner during pregnancy,
such as the uterus (33), the PVN, SON, the bed nucleus of stria
terminalis (BNST) and the medial preoptic area (mPOA) (34).
Moreover, peakOTRmRNA expression was observed at parturition
in the SON, brainstem regions, mPOA, BNST, and olfactory bulbs.
Postpartum OTR expression in all brain regions returned to levels
observed in virgin rats (35). These features of OTR expression are in
agreement with the demands of establishing maternal behaviors
and parturition.

Correspondingly, the uterus transitions from a quiescent
non-contractile state to an active contractile state at the end of
pregnancy. This is in association with increased OT/OTR signals
(10, 36). Uterine quiescence requires prevention of excessive
Ca2+ influx through voltage-dependent Ca2+channels at the
human myometrial smooth muscle cells. Through most time of
pregnancy, the K+ leak current is dominant and maintains the
cell at a sufficiently negative membrane potential to prevent
premature uterine contraction. However, increased myometrial
OT/OTR expression near the term (10, 36) significantly increases
OTR-associated Gaq-protein activation of protein kinase C (33),
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which then inhibits the activity of sodium-activated, high-
conductance, K+ leak channel. This results in depolarization of
the uterine smooth muscle cells and calcium entry that causes
uterine contraction (37). This effect is associated with the
induction of cyclooxygenase 2, production of prostaglandin
F2a and connexin 43 of the uterus (38, 39).
3 OT FUNCTIONS AND SEXUAL
DIMORPHISM

3.1 General Functions
The functions of OT depend on the distribution of OTRs and
relative change in OT levels. In the brain and spinal cord,
activation of OTRs is associated with a variety mental
activities, such as social memory, pair-bonding, maternal
behavior, and aggression and instinctive behaviors such as
sexual activity, anxiety, feeding and pain perception (40–42).
In the circulation, OT can facilitate parturition and the milk-
ejection reflex and regulate activities of other organ systems (43,
44). Locally-produced OT can promote the differentiation of
thymic cells, inhibit inflammation (45), protect the heart from
ischemic injury (46), and suppress metastasis of colorectal cancer
(5) among many other functions (1, 4).

In the CNS sites, OT can regulate social activity, instinctive
behaviors, and visceral functions. For example, by activation of
inhibitory neurotransmission in the medial frontal cortex, the
amygdala and hippocampus, OT can promote social recognition
and pro-social behaviors while reducing stress and fear (47–49).
Released from parvocellular OT neurons in the PVN, OT can act
on the ventral tegmental area (VTA) to activate rewarding process.
OT can suppress nociception ad pain by acting on the
periaqueductal gray and spinal cord. By acting on the dorsal
vagal complex, OT can regulate visceral activities via vagus. By
innervating median eminence and median preoptic area, OT can
increase gonadotropin-releasing hormone (GnRH) release and the
activity of HPG axis (1, 50). In addition, intrahypothalamic OT
can inhibit corticotrophin-releasing hormone neurons and social
stress via acting on the parvocellular division of the PVN (51).

By contrast, circulating and locally-produced OT can
influence body functions at cellular, tissue, organ and system
levels. For instance, OT can promote insulin secretion (52) and
immunological homeostasis (53), protects cardiovascular system
(46), suppresses colorectal cancer migration (5), and potentially
antagonizes COVID-19 pathogenesis (54). In addition, OT is a
natriuretic hormone that acts directly on the kidneys (55). On
the other hand, its synthesis and secretion are regulated by
changes in plasma osmolality and blood volume (56, 57). This
process proceeds in an estrogen-dependent manner in females
(58, 59). Thus, OT extensively modulates body functions.

3.2 Sexual Dimorphism of OT Functions
In studies on OT functions, significant difference between males
and females emerges, which is particularly significant in
psychological and reproductive functions.
February 2022 | Volume 13 | Article 786271

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Liu et al. OT and Women
3.2.1 OT/OTR Signaling
Sexual dimorphism of OT functions is based on expression levels
of OT and OTRs. For instance, serum OT levels are significantly
higher among women than men (60), which makes women more
sensitive to OT level reduction and likely accounts for menstrual
pain (61) and higher incidence of depression in women (62). By
contrast, OT binding sites in the VMH and dorsal horns are
significantly high in males relative to females (63), which may
contribute to the central regulatory actions of OT on feeding,
reproduction via VMH (64) and nociception via the spinal cord
(65). Males also exhibit higher OTR levels in the medial
amygdala irrelevant to the reproductive status (66), which
likely makes men less fearful facing stressful challenges because
OT acing on the medial amygdala inhibits fear. Higher OTR
levels in the nucleus accumbens are present at breeding males but
not breeding females (66), which makes paternal behaviors
conditional (67) and more rewarding (68). The sex
dimorphism in the distribution OT and OTRs sets a
histological basis for gender-specific functions and behaviors.

3.2.2 Psychological Functions
The most relevant OT-associated sexual dimorphism is present in
empathy, social skills and other higher brain functions. OT
facilitates familiar-partner preference with females being more
significant and it increases trust in others and reduces anxious
emotion, especially for males (69). Autism spectrum disorder is
relatively low in the female gender. This is related to the higher
levels of OT and better pragmatic language in girls than boys (70).
In nulliparous women, OT enhances attention to the baby schema
andmorphological characteristics of an infant’s face (71). In animal
studies, the sexual dimorphisms of OT psychological functions are
also identified. For example, in prairie vole, compared to females,
males with less OTR expression perform better than females in a
spatial memory and spatial learning test (72). Intranasal
administration of OT (IAO) before the acquisition or recall
sessions enhances conditioned safety memory in female rats
while OT has no effects in male rats (73). In male prairie voles
exposure to IAO during the peri-adolescent period impairs adult
pair bonding in a dose-dependent fashion while IAO appears to
facilitate pair bonding in females. This is associated with that IAO
in females but not in males increases OTR binding in the nucleus
accumbens shell (74). Thus, differences in the OT/OTR signaling
determine sex dimorphisms between males and females.

3.2.3 Peripheral OT Effects
In association with hypothalamic OT neuronal activity and OT
secretion, OT can extensively modulate body activities at
peripheral sites. In the rat with left ventricle infarction, OTR is
down-regulated in females while up-regulated in males. Thus,
OTR signaling and OT protection are suppressed stronger in
ischemic myocardium in females than males. It also accounts for
why females have higher risk of heart failure and death following
myocardial infarction relative to males (75). Moreover, OT is
involved in bone formation in both sexes during development;
however, OT treatment has no effect on male osteoporosis because
estrogen amplifies OT local autocrine and paracrine secretion (76).
Decreased OT and increased OTR occur in male but not female
Frontiers in Endocrinology | www.frontiersin.org 4
alcohol- dependent rats and patients (77). Thus, differences in OT/
OTR signaling also exist in the sex dimorphism of circulation and
peripheral OT functions.

3.2.4 Male Reproductive Functions
Among all OT functions, the most dramatic sexual dimorphism is
reproductive functions. Relative to the periodic changes in females’
reproductive physiology, males do not have dramatic monthly
periodic alteration in reproductive endocrine activity and
reproductive functions. It is known that plasma OT levels
increase during sexual arousal and are significantly higher during
orgasm/ejaculation in both women andmen (78). In the CNS levels,
OT from the PVN in the VTA of rats induces penile erection by
activating OT neurons-spinal cord pathway (79). This pathway
involves activation of dopamine, glutamate and other neurons in the
VTA that project to nucleus accumbens, prefrontal cortex,
amygdala, and other forebrain regions (80). Moreover, this OT-
PVN-VTA-forebrain pathways play a role in the motivational and
rewarding aspects of sexual behavior (81). At peripheral sites, OT
directly targets the erectile tissues including corpus spongiosum and
corpus cavernosum, and promotes ejaculation by increasing sperm
number and contracting ejaculatory tissues (82). Thus, OT is a
pivotal regulator of male reproductive functions.

3.3 Maternal Behavior
Maternal behavior begins before breastfeeding near the term and
is clearly associated with the actions of OT. For example, in OT
knockout mice, maternal behavior is disrupted (83) and maternal
behavior is reduced significantly when OTR signaling is blocked
(84). By contrast, IAO rapidly increases maternal care in mice
(85). It is believed that OT neurons in the PVN are sensitive for
the smell of offspring in lactating and multiple-parturient rats
(86). OT neurons in the PVN and SON project to the
hippocampus, amygdala, ventral striatum, hypothalamus,
nucleus accumbens and brainstem nuclei; they can extensively
modulate maternal behaviors (2, 3). By modulation of the
maternal behaviors, OT convincingly promotes human
development as recently reviewed (87, 88).

Notably, women with peripartum exposure to synthetic OT
have a higher relative risk of depressive or anxiety disorder
diagnosis or antidepressant/anxiolytic prescription within the
first year postpartum than women without synthetic OT
exposure (89). This is likely due to the suppression of excessive
OT on OT neuronal activity via a mechanism of post-excitation
inhibition of OT neuronal activity (14, 23, 90).

3.4 OT and Diseases
Under pathological conditions, reduced OT release or disorders
in OTR signaling can cause many diseases, such as social stress
(51), schizophrenia and depression (91), obesity (92), lactation
failure, postpartum depression (13, 13) and even mammary
tumor (93). For instance, schizophrenia is a form of mental
disorders and involves dysregulation of the OT system. From
animal models to human studies, observations have revealed that
OT can improve the psychopathology of patients with
schizophrenia by regulating social cognition and behavior (94).
Postpartum depression is associated with disorders on maternal
February 2022 | Volume 13 | Article 786271
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OT system. As reported in rats, lack of suckling stimulation and
bolus OT release during lactation can decrease maternal blood
OT levels and cause milk insufficiency and maternal depression
in lactating mothers deprived of offspring (13, 95) or following
cesarean delivery (14). However, disrupted maternal behavior
and lactation performance can be largely improved by IAO
during offspring deprivation (13) or following cesarean
delivery (14). Obviously, disorder in OT system activity
contributes to disorders in mental activity while IAO has the
potential to correct abnormal social behaviors such as those in
schizophrenia and postpartum depression.

Notably, in mediating OT actions, the efficiency of OTRs
depends on their gene polymorphisms, expression levels and
posttranslational modification (96–98). For example, the GG
homozygotes of OTR rs2254298 are associated with childhood
adversity (99); DNA methylation in the 1st intron of the OTR
gene causes common learning and behavioral impairments (100).
Thus, OT-associated diseases are not only associated with disorders
in OT secretion but also with abnormality of OT/OTR signaling.
4 OT FUNCTIONS AT DIFFERENT
REPRODUCTIVE STAGES OF WOMEN

4.1 Menstrual Cycle
It is well established that a menstrual cycle is regulated by HPG axis.
However, studies also highlight a pivotal role of OT in menstrual
cycle. For instance, increased brain OT level can increase GnRH
secretion, specifically at pre-ovulation stage (101, 102). Consistently,
Frontiers in Endocrinology | www.frontiersin.org 5
plasma OT is significantly higher during ovulatory phases than the
luteal phase in ovulating women (103). In rats, c-Fos expression in
the SON is significantly higher and OT neurons-associated
astrocytic processes retract significantly during the proestrus (104,
105). These findings support functional activation of OT neurons
and increased OT release before ovulation. Thus, the stimulatory
effect of OT on GnRH secretion can promote luteinizing hormone
(LH) secretion, facilitate ovulation and prepare uterus environment
for pregnancy.

By contrast, exogenous OT can shorten postpartum estrous
interval but triggering a delay in ovulation while a higher dose of
OT could stimulate the growth of small, medium, and total
follicles in postpartum buffaloes (106). Estradiol level increase is
correlated with OT release from the pituitary and causes more
luteal OT secretion (107). Thus, OT secretion and estrogen
release before luteal phase can form a positive feedback loop
and they together facilitate ovulation (Figure 2A).

During pregnancy, persistent release of uterine progesterone
and estrogen interrupts the periodical activity of the HPG axis.
Moreover, increased progesterone also inhibits OT release (108).
They together cause the cessation of menstrual cycles. Following
parturition, breastfeeding delays the resumption of normal
ovarian cycles by disrupting the pattern of pulsatile release of
GnRH from the hypothalamus. Intermittent bolus release of OT
during suckling, its disruption of normal interaction of OT with
the HPG axis and inhibition of energy intake also play a key role
in lactation-associated amenorrhea (92). When suckling
stimulus declines near weanling, preovulatory LH surge
restores and ovulation takes place with the formation of a
corpus luteum of variable normality.
A B

DC

FIGURE 2 | OT functions at different reproductive stages of women. (A–D) Panels show levels and functions of OT and associated reproductive hormones during
Menstruation (A), Pregnancy and parturition (B), Lactation (C) and Peri-menopausal stage (D), respectively. E2, estradiol; FSH, follicle-stimulating hormone; GnRH,
gonadotropin-releasing hormone; HCG, Human Chorionic Gonadotropin; LH, Luteinizing hormone; MER, the milk-ejection reflex; P4, progesterone.
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By contrast, women with a history of primary or secondary
dysmenorrhea have lower blood OT concentrations during menses,
which is associated with worse menstrual pain and pain-related
behavior (61). In women with early life sexual abuse, OT can
positively modulate menstruation-related mood disorders (109). In
addition, OT can enhance conditioned safety memory (73), elicit
maternal behavior towards alien pups in virgin females (110),
alleviate chronic pelvic pain (111) and rehabilitate anorexia
nervosa (112). Thus, OT extensively modulates mental and
physical activities and menstruation-associated diseases.

4.2 Pregnancy and Parturition
4.2.1 OT and Pregnancy
During pregnancy as marked by the production of human
chorionic gonadotropin, OT production increases gradually
and prepares for the demands of parturition and breastfeeding
(Figure 2B). As reported, gestation gradually increases OT
synthesis and OTR expressions in magnocellular OT neurons
in the SON and PVN and in forebrain neurons, such as the
mPOA (34). However, OT release from OT neurons does not
increase during pregnancy until the time shortly before
parturition. This is clearly beneficial for avoiding abortion
during pregnancy. By contrast, blockade of OTR during mid-
late gestation delays OT release and causes hypogalactia during
lactation (113). Thus, the development of OT/OTR signaling is
an adaptive response for maintaining the safety of pregnancy.
However, increased OT synthesis and preterm OT release in the
hypothalamus are necessary for the maturation of hypothalamic
machinery that allows OT to be released in bolus intermittently
during parturition and lactation (113). Thus, OT actions during
pregnancy highly match peri-partum physiological demands.

4.2.2 OT and Parturition
Shortly before the parturition, progesterone inhibition of OT
neuronal excitability via endogenous opioids and GABA is
weakened (108), which allows OT release in bolus in response to
extension of cervix. The mechanical stretch of the cervix can
activate magnocellular OT neurons in burst-like firing activity,
which determines a bolus release of OT from the posterior
pituitary (114). OT further initiates a self-sustaining cycle of
uterine contractions until fetus is expelled. In this process,
uterine OT release is also increased, which intensifies circulating
OT-evoked uterine contraction by increasing prostaglandin F
production. As a result, parturition is accelerated (115) and
postpartum hemorrhage is reduced (116). Thus, OT is an
essential factor for natural delivery.

Notably, nocturnal and pulsatile OT release often occurs at
the end of parturition. For example, plasma OT and nocturnal
uterine activity in the dams increase progressively during late
pregnancy and delivery in rhesus monkeys (117). This is
associated with the effect of light/darkness on the pulsatile OT
release (118), which determines the high incidence of parturition
during night.

4.3 Lactation
In all mammals, OT is a hormone necessary for mothers to nurse
their offspring through the milk-ejection reflex. Clearly, in OT-
Frontiers in Endocrinology | www.frontiersin.org 6
knockout mice, the pups cannot obtain milk from the mother
because the dams fail to eject milk for the offspring to obtain
through suckling the nipples (119). Consistently, conditioned
OTR knockout dams experience high rate of pup mortality (120).

Successful breastfeeding depends on coordinated activities of
numerous humoral factors. For instance, the increased
hypothalamic OT release during suckling promotes prolactin
secretion from the anterior pituitary. They together make milk
production and ejection available for the baby during
breastfeeding (121). This effect is different from the increased
prolactin during pregnancy that acts to maintain the corpus
luteum of the ovary and helps to sustain pregnancy but has no
direct association with OT release (122). Under physiological
condition and normal nutrition, breastfeeding in normally
developed women relies on the milk-ejection reflex. In this
reflex, suckling stimulation at the nipples activates OT
neurons, causes OT release in a bolus into the blood, and
results in the ejection of milk from the teat (Figure 2C). The
activation of OT neurons appears as intermittently recurrent and
simultaneous increase in the firing rate in a large pool of OT
neurons over several seconds, which causes the bolus release of
OT at OTergic neural terminals in the posterior pituitary (44).
Without this synchronized burst firing of OT neurons, OT
release from one or a few of OT neurons or only one side of
the hypothalamus cannot trigger full milk ejections (123, 124). In
the synchronized activation of OT neurons, simultaneous
retraction of astrocytic processes from OT neurons, shared
synapses, increased gap junctional coupling and cellular
apposition are logically important contributors (44). However,
for coordinated inter-nuclear burst synchrony among OT
neurons, a synchronized signal from the mammillary body
complex in the ventroposterior hypothalamus is the most
important event. This is because disruption of it but not other
brain regions disrupts inter-nuclear burst synchrony (125, 126).

Under the drive of exogenous factors including synaptic
input, astrocytic plasticity and interneuronal interactions
(Figure 1), a series of OTR-associated signaling events are
activated during suckling. These events include mobilization of
bɣ subunits (16), induction of cyclooxygenase 2 and
prostaglandin production (21), phosphorylation of extracellular
signal-regulated protein kinase 1 and 2 (22), activation of protein
kinase A (13, 127), and filamentous actin reorganization (21, 22)
among many others (44). These factors express in a different
spatiotemporal order to modulate ion channel activity on the
membrane (128), such as hyperpolarization-activated cyclic
nucleotide-gated channel 3 (13, 23), and thus trigger burst
firing in OT neurons and OT release. Nevertheless, detailed
neural circuit between OT neurons and their regulatory
network and the cellular mechanisms underlying burst firing
remain to be explored.

About lactation-associated health issue, it has been extensively
accepted that normal breastfeeding can reduce the incidence of
postpartum depression, maternal obesity, diabetes, and even breast
cancer. OT is necessary for these benefits of breastfeeding. As
revealed in animal study, maternal behavior in OT knockout mice
is incomplete (83). Lack of suckling stimulation and bolus OT
release during lactation can decrease maternal blood OT levels and
February 2022 | Volume 13 | Article 786271
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cause hypogalactia and maternal depression (13, 95). By contrast,
IAO can largely restore maternal behavior and lactation
performance as stated above. Importantly, OT can also suppress
breast cancer. This is because OT can reduce the oxidative stress of
the mammary glands and the occurrence of pre-cancer lesions in
the mammary glands (129). Moreover, OT can down-regulate the
NF-kB and up-regulation of miR-195. These molecules can
promote cell apoptosis, inhibit cell proliferation and consequently,
decrease the mammary tumor volume and weight (130). Thus, OT
is not only essential for normal breastfeeding but also for the long-
term health benefits of women.

4.4 Menopause
Menopause is the end of women’s menstrual cycles following
decrease of reproductive hormones. From the middle age, blood
OT levels decrease gradually (131). Decreased levels of OT can
largely account for diminished sexual ability and vagal activity
and reduced estrogen levels (Figure 2D).

4.4.1 Sex Organs and Bone Metabolism
Menopausal atrophy of accessory reproductive organs is a common
sign of reduced ovary functions. However, topical OT application
can reverse vaginal atrophy (132, 133). Similarly, a high proportion
of women develop osteoporosis after menopause, which increases
the incidence of bone fractures. In animals, ovariectomy elicits bone
loss and increased bone marrow adiposity (134). Administration of
OT can normalize ovariectomy-induced osteopenia in mice by
restoring osteoblast/osteoclast cross talk via the receptor activator
of nuclear factor-kB ligand/osteoprotegerin axis (135). Thus, OT is a
potential treatment of menopausal osteoporosis.

4.4.2 Body Mass
Weight gain in menopausal women has been frequently reported
(136). Obesity and menopause are independent negative predictors
of plasma OT levels (131). Daily administration of OT can
normalize body weight and intraabdominal fat depots in
ovariectomized mice. This effect is mediated by inhibition of
adipocyte precursor’s differentiation with a tendency to lower
adipocyte size by shifting fuel utilization favoring lipid oxidation
(135). In peri- and postmenopausal female rats, intraperitoneally
administering OT also reduces serum triglyceride and low-density
lipoprotein-cholesterol levels in naturally premenopausal or
menopausal rats (137). Thus, OT can be a preventive factor of
postmenopausal obesity, diabetes and the associated cardiovascular
diseases (46).
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4.4.3 Cardiovascular Effects
Cardiovascular diseases increase dramatically in postmenopausal
women. This is also associated with reduction of ovary functions
and its influence on OT secretion. When estrogen production
decreases, its activation of estrogen receptors on preautonomic
PVNOT neurons is also weakened. Resultantly, OT regulation of
HPG axis and baroreflex is weakened. This has been shown in
ovariectomized rats (138). By contrast, OT can protect the
cardiovascular system by maintaining cardiovascular integrity,
suppressing atherosclerotic alterations and coronary artery
disease, inhibiting metabolic disorders, inflammation and
apoptosis and promoting regeneration and repair injuries (46).

As a whole, reduced OT secretion during aging can causes
cardiovascular disease, osteoporosis, urinary incontinence,
sexual malfunction, obesity, low metabolism after menopause.
Thus, improvement of OT secretion can be an important strategy
of anti-aging in women.
5 CONCLUSION

OT system can extensively modulate women’s physiology,
particularly the cognitive and reproductive functions. While
OT has common effects on the mental and physical activities
of both men and women, different OT levels and OTR
expressions at different reproductive stages regulate women’s
reproductive activities differently. The influence of OT on
women’s health mainly manifests as its modulation of
menstrual cycle, pregnancy, production, lactation and
menopause. Under pathological conditions, abnormality in OT
secretion and/or OTR expressions can cause a series of female-
specific diseases. Thus, further study on OT involvement in
women’s health and disease is warranted. These studies should
focus on women-specific mental and physical effects of OT and
the underlying mechanisms, particularly during different stages
of reproduction.
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