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Abstract

Background: Overactivated microglia is involved in various kinds of neurodegenerative diseases. Suppression of

microglial overactivation has emerged as a novel strategy for treatment of neuroinflammation-based

neurodegeneration. In the current study, anti-inflammatory effects of oxytocin (OT), which is a highly conserved

nonapeptide with hormone and neurotransmitter properties, were investigated in vitro and in vivo.

Methods: BV-2 cells and primary microglia were pre-treated with OT (0.1, 1, and 10 μM) for 2 h followed by LPS

treatment (500 ng/ml); microglial activation and pro-inflammatory mediators were measured by Western blot,

RT-PCR, and immunofluorescence. The MAPK and NF-κB pathway proteins were assessed by Western blot. The

intracellular calcium concentration ([Ca2+]i) was determined using Fluo2-/AM assay. Intranasal application of OT was

pre-treated in BALB/C mice (adult male) followed by injected intraperitoneally with LPS (5 mg/kg). The effect of OT

on LPS-induced microglial activation and pro-inflammatory mediators was measured by Western blot, RT-PCR, and

immunofluorescence in vivo.

Results: Using the BV-2 microglial cell line and primary microglia, we found that OT pre-treatment significantly

inhibited LPS-induced microglial activation and reduced subsequent release of pro-inflammatory factors. In addition,

OT inhibited phosphorylation of ERK and p38 but not JNK MAPK in LPS-induced microglia. OT remarkably reduced

the elevation of [Ca2+]i in LPS-stimulated BV-2 cells. Furthermore, a systemic LPS-treated acute inflammation murine

brain model was used to study the suppressive effects of OT against neuroinflammation in vivo. We found that

pre-treatment with OT showed marked attenuation of microglial activation and pro-inflammatory factor levels.

Conclusions: Taken together, the present study demonstrated that OT possesses anti-neuroinflammatory activity

and might serve as a potential therapeutic agent for treating neuroinflammatory diseases.
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Background

Neuroinflammation mediated by glial activation is

identified as a common character during progression

of many neurodegenerative diseases, including Alzhei-

mer’s disease (AD) and Parkinson’s disease (PD) [1, 2].

Microglia, the resident immune cells of the central

nervous system (CNS), is considered to play a key role

in regulating neurotoxicity mediated by inflammatory

response. Microglial activation can be induced by lipo-

polysaccharide (LPS), interferon (IFN)-γ, or β-amyloid

and results in overproduction of inflammatory cyto-

kines. These inflammatory mediators, such as tumor

necrosis factor-α (TNF-α), interleukin (IL) -6, IL-1β,

glutamate, nitric oxide, and reactive oxygen species,

can collectively lead to neuronal damage, resulting in

the progress of neurodegenerative diseases [3]. During

this process, ramified resting microglia undergo mor-

phological transformations including deramification,

process shortening and thickening, and finally develop-

ment into its activated amoeboid form [4]. Therefore,

anti-inflammatory treatment via inhibition of micro-

glial activation is regarded as a promising strategy for

preventing neurodegenerative diseases in the clinic.

Oxytocin (OT), a nonapeptide produced in the para-

ventricular and supraoptic nuclei of the hypothalamus,

has a wide range of effects in the body. OT exerts its

effects via G-protein-coupled receptors, which are

expressed abundantly in the central and peripheral

nervous systems [5]. OT plays a role in the endocrine

and paracrine activities such as various sexual and ma-

ternal behaviors, social recognition, neuromodulation,

cognition, aggression, and tolerance development [6].

Recent data indicate that OT may also have anti-

inflammatory and anti-oxidant properties and regulate

the immune and anti-inflammatory response [7, 8]. Ex-

ogenous OT administration alleviates tissue damage in

a variety of animal models of injury [9–11]. Further-

more, co-administration of an OT receptor antagonist

blocks the protective effects of OT during cardiac

ischemia [10] or cerebral ischemia in rats [9]. The

protective actions of OT in these models may be

associated with decreased levels of circulating pro-

inflammatory cytokines [12, 13] and decreased neutro-

phil infiltration to the site of injury [14, 15]. Moreover,

OT inhibits LPS-stimulated pro-inflammatory cyto-

kine secretion from macrophages and endothelial

cells [16].

However, little information is available about the ef-

fects of OT on neuroinflammation and its underlying

molecular mechanisms. Therefore, we aimed to investi-

gate the anti-inflammatory effects of OT on LPS-

stimulated microglial activation, and its therapeutic ef-

fects on the early stage of neuroinflammation induced

by systemic LPS treatment in mice.

Methods

Cell culture

BV-2 cells retain many morphological and functional

properties of primary microglia [17]. Cells in a 5 % CO2

incubator were maintained in Dulbecco’s modified Eagle

medium (DMEM; Hyclone Co., Logan, UT, USA) with

10 % fetal bovine serum (FBS; Hyclone Co.), 2 mM L-glu-

tamine, 100 U/ml penicillin, and 100 μg/ml streptomycin

(Sigma-Aldrich, St Louis, MO, USA). For all experiments,

BV-2 cells were used at 75–80 % confluency.

Primary microglia were prepared as described previously

[18]. Briefly, the cerebral cortices of mice, aged 1–2 days,

devoid of meninges and blood vessels, were dissociated by

mild mechanical trituration. The isolated cells were cul-

tured for 14 days in DMEM/F12 (Hyclone Co.) supple-

mented with 10 % FBS (Hyclone Co.). Then the mixed

glial cultures were shaken on an orbital shaker at 250 rpm

for 2 h to dislodge microglial cells. Cells were cultured for

7 days before treatment. The experimental protocol was

approved by the National Institutes of Health Guide

for Care and Use of Laboratory Animals (Publication

No. 85-23, revised 1985), and efforts were engaged to

minimize the number of animal usage and suffering.

Prior to use in the experiment, plated cells were incu-

bated with serum-free DMEM for 1 h, and then the

medium was replaced with serum-free DMEM contain-

ing either LPS (from Escherichia coli, serotype 0127:B8,

Sigma-Aldrich) or OT (Sigma-Aldrich) for the various

time intervals and concentrations as indicated below.

OT was initially dissolved in normal saline. For most ex-

periments, BV-2 cells and primary microglia were added

2 h before LPS (500 ng/ml) stimulation, while controls

were treated with the vehicle (normal saline) except

where indicated differently. This time point was chosen

to minimize the possibility of any direct interactions be-

tween OT and LPS [9].

Cell viability assay

BV-2 cells were seeded in 96-well culture plates at a

density of 5 × 104 cells/well. Cell proliferation was ana-

lyzed at 24 h after LPS pre-treated with or without dif-

fering concentration of OT, using the MTT assay. A

volume of 20 μl MTT solution (5 mg/ml) was added to

each well, and the cells were incubated for another 4 h

in a humidified incubator at 37 °C. Then, after removing

the supernatant, 200 μl of dimethylsulfoxide was added

to each well and mixed thoroughly for 10 min. The op-

tical density (OD) was measured at 490 nm. Cell viability

was expressed as a percentage of viable cells obtained

relative to that of controls.

Immunofluorescence imaging

BV-2 cells and primary microglia were fixed in 4 % para-

formaldehyde (PFA) for 20 min and blocked with 10 %
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goat serum in PBS. The glass slides with cells were incu-

bated overnight in a humidified chamber at 4 °C with the

following primary antibodies: ionized calcium-binding

adapter molecule-1(Iba-1), 1:200, rabbit polyclonal (Wako);

OT receptor (OTR), 1:500, goat polyclonal (Abcam,

Cambridge, MA, USA). After primary antibody incubation,

slides were washed and incubated with the appropriate

fluorescent-conjugated secondary antibody (1:500 dilution,

Sigma-Aldrich) for 1 h. Images were captured using a

Nikon TE2000U microscope. The intensity of Iba-1 signal

of each nucleus was counted at least six separate experi-

ments by using Image-Pro Plus 6.0 software.

Intracellular Ca2+ measurement

BV-2 cells grown on glass coverslips were washed three

times with extracellular solution containing 150 mM NaCl,

5 mM KCl, 1 mM MgCl2 · 6H2O, 2 mM CaCl2, 1 mM glu-

cose, and 10 mM HEPES (pH 7.4) and incubated with

1 μM Fura-2/AM for 40 min at 37 °C. Coverslips with

Fura-2/AM-loaded cells were then mounted on a chamber

positioned on the movable stage of an inverted microscope

(Olympus IX70, Tokyo, Japan), which is equipped with a

calcium imaging system (TILL Photonics). Fluorescence

was excited at wavelengths of 340 nm for 150 ms and

380 nm for 50 ms at 1-s intervals by a monochromator

(Polychrome IV), and the emitted light was imaged at

510 nm by an intensified cooled charge coupled device

(TILL Photonics Image) through an X-70 fluor oil

immersion lens (Olympus, Tokyo, Japan) and a 460-nm

long-pass barrier filter. F340/F380 fluorescence ratio was

recorded and analyzed with TILLVISION 4.0 software,

which was used as an indicator of [Ca2+]i independent

of intracellular Fura-2 concentration. The amplitude of

[Ca2+]i response was defined as the peak of F/F0,

where F0 is the average baseline fluorescence before

the application of LPS (500 ng) and OT (1 μM), and F

represents the fluorescence after the application of LPS

and OT.

Animals

BALB/C mice (adult male) weighing 22–25 g were ob-

tained from Shandong University Animal Centre. All

mice were housed in a 12-h dark/light cycle,

temperature (20 ± 2 °C), and humidity-controlled envir-

onment with unlimited access to water and food. In the

handling and care of all animals, the International Guid-

ing Principles for Animal Research and Animal

Research: Reporting In Vivo Experiments (ARRIVE)

guidelines, as stipulated by the World Health

Organization and as adopted by the Laboratory Animal

Center at Shandong University, were followed. All ef-

forts were made to reduce the number of animals used

and their suffering.

Nasal application of OT

Nasal application of OT was found to completely mimic

the behavioral effects of OT seen after its intracerebro-

ventricular administration [18, 19]. For nasal administra-

tion, mice received either OT (12 μg/2 × 6 μl) or vehicle

(sterile Ringer solution, 2 × 6 μl) as previously described

[19, 20]. Briefly, the amount of 12 μl was distributed

with the tip of the pipette and allowed to diffuse into the

squamous epithelium of both the left and right rhinar-

ium, these area referred to as the glabrous skin around

the nostrils which was highly innervated by free nerve

endings [19, 20]. At the same time, to avoid direct con-

tact of the tip of the pipette with the rhinarium, or direct

application into one of the nostrils or in proximity of the

philtrum, each of the applications to the left and right

rhinarium, respectively, lasted about 1 min. To minimize

non-specific stress responses, the experimental animals

had 1 week of habituation to the holding position, as

well as training to the procedure.

Animal experimental protocol

A peripheral injection of LPS was administered to evoke

neuroinflammation in mice as previously described [4].

LPS was freshly dissolved in sterile-endotoxin-free 0.9 %

saline vehicle prior to injection. The LPS group (LPS)

was intraperitoneally (i.p.) injected with a single dose of

saline (5 mg/kg). In the control group, mice were

injected i.p. with equivolume vehicle (0.9 % saline).

In group 1 (sham-operated group), equivolume vehicle

(sterile Ringer solution) was nasal administered once 1 h

prior to i.p. saline. In group 2 (sham +OT group), OT

(2 × 6 μl) was nasal administered once 1 h prior to i.p.

saline. In group 3 (LPS group), sterile Ringer solution

was nasal administered once 1 h prior to LPS (5 mg/kg)

injection. In group 4 (LPS +OT group), OT (2 × 6 μl)

was nasal administered once 1 h prior to LPS (5 mg/kg)

injection.

Measurement of pro-inflammatory mediators

The prefrontal cortex of brain was removed from mice

at 4 h after LPS injection (n = 5 at each group) for meas-

ure TNF-α and IL-1β messenger RNA (mRNA) levels by

RT-PCR as described above.

The prefrontal cortex was removed from mice at 24 h

after LPS injection (n = 10 each group) and homogenized

with tissue protein extraction reagent (Pierce Biotech-

nology, Inc., IL, Rockford, USA) containing protease in-

hibitors, centrifuged at 12,000g for 10 min and the

supernatant was collected to measure TNF-α and IL-1β

content by Western blot analysis as described above.

Tissue processing and immunofluorescence

Microglia activation in the brain tissue was observed with

immunofluorescence. At 24 h after the LPS injection, the
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mice were deeply anesthetized, and the brains were fixed

through cardiac perfusion with 4 % PFA, then dissected

and post-fixed at 4 °C in 4 % PFA. The tissue sections

(12 μm) were fixed in 4 % PFA for 10 min and blocked

with 10 % goat serum in PBS. Slides were incubated over-

night in a humidified chamber at 4 °C with the following

primary antibodies: Iba-1(1:200, Abcam); TNF-α (mouse

monoclonal, 1:200, Santa Cruz Biotechnology, CA, USA)

and glial fibrillary acidic protein (GFAP)(rabbit polyclonal,

1:200, Abcam). After primary antibody incubation, sam-

ples were washed and incubated in the appropriate

fluorescent-conjugated secondary antibody (1:600 dilution,

Sigma-Aldrich) for 1 h. The slides were counterstained

with DAPI for total nuclei counting. Images were captured

with a Nikon TE2000U microscope. The microscope fields

(×200) of Iba-1 positive cells or TNF-α/Iba-1, TNF-α/

GFAP double positive cells in the prefrontal cortex from

three different animals were randomly chosen and imaged.

The frontal cortex was defined as the frontal region of the

isocortex from the Bregma 5.5 to 1.0 mm, and it contained

the primary and secondary motor cortices (analyzed at lat-

erals 2.0 and 2.5) and the prefrontal cortex (analyzed at

laterals 0.5 and 1.0; including orbitofrontal, cingulate, pre-

limbic and infralimbic cortices) [21]. The numbers of Iba-

1 positive cells or TNF-α/Iba-1, TNF-α/GFAP double

positive cells per field were calculated as the mean of the

numbers obtained from the six pictures per mouse. The

final data were reported relative to sham controls. Count-

ing was performed in a blinded manner.

Reverse transcription–polymerase chain reaction

Total RNA was extracted from cells and the prefrontal cor-

tex using the Trizol reagent (Gibco, Invitrogen) according

to the manufacturer’s instructions. RNA concentration was

determined using a spectrophotometer (Bio-Rad. Labs) at

260 nm. Identical amounts of RNA (2 μg) were reversely

transcribed into complementary DNA (cDNA) using a

commercial reverse transcription–polymerase chain reac-

tion (RT-PCR) kit (Fermentas, Vilnius, Lithuania) according

to the manufacturer’s instructions. cDNA was subsequently

amplified by PCR with specific primers. PCR products, sep-

arated on a 1.2 % agarose/TAE gel, were visualized by stain-

ing with ethidium bromide. The densitometric calculations

of these values were normalized to β-actin. The intensity of

bands was determined using Image-Pro Plus 6.0 software.

The primers: TNF-α: Forward (5′- CGT CAG CCG ATT

TGC TAT CT -3′), Reverse (5′- CGG ACT CCG CAA

AGT CTA AG -3′); IL-1β: Forward (5′- AAG ATG AAG

GGC TGC TTC CAA ACC -3′), Reverse (5′- ATA CTG

CCT GCC TGA AGC TCT TGT -3′); iNOS: Forward (5′-

CCT CCT CCA CCC TAC CAA GT-3′); Reverse (5′-CAC

CCA AAG TGC TTC AGT CA-3′); COX-2: Forward (5′-

TGG GTG TGA AAG GAA ATA AGG A-3′); Reverse (5′-

GAA GTG CTG GGC AAA GAA TG-3′); OTR: Reverse

(5′- TGG CCT TCA TCG TG TGC TGG A–3′), Reverse

(5′- AGA GGA AGC GCT GCA CGA GTT–3′), β-actin:

Forward (5′-TGG AAT CCT GTG GCA TCC ATG AAA

C-3′, Reverse (5′- TAA AAC GCA GCT CAG TAA CAG

TCC G-3′).

Western blot analysis

Protein concentration of cells and the prefrontal cortex

were determined using a BCA protein assay kit (Pierce

Biotechnology, Inc.). A quantity of 20–40 μg of total pro-

teins was loaded onto a 10–12 % gradient polyacrylamide

gel, electrophoretically transferred to a polyvinylidene

difluoride membrane, and probed with the following pri-

mary antibodies: TNF-α (1:1000, Santa Cruz), IL-1β

(1:1000, Santa Cruz), phospho-NF-κB p65(S536) antibody

(1:500, Cell Signaling Tech. MA, USA), NF-κB (1:1000,

Cell Signaling), phospho-p38 antibody (1:1000, Cell

Signaling), p38 antibody (1:1000, Cell Signaling), phospho-

JNK antibody (1:1000, Santa Cruz Biotechnology, CA,

USA), JNK antibody (1:1000, Santa Cruz Biotechnology),

phospho-extracellular signal-regulated kinase (ERK)1/2

(1:2000, Cell Signaling), ERK1/2 (1:2000; Cell Signaling),

OTR (1:2000, Abcam), inducible nitric oxide synthase

(iNOS) (1:500, Cell Signaling), cyclooxygenase-2 (COX-2,

1:1000, Proteintech Group, Inc., CA, USA). β-actin

(1:2000; Sigma-Aldrich) was used as an internal con-

trol. Secondary antibodies were horseradish peroxidase

conjugated to goat/mouse anti-rabbit IgG (1:8000,

Sigma-Aldrich). The membranes were developed using

an enhanced chemiluminescence detection system

(Pierce, Rockford, IL).

Statistical analysis

Quantitative data were presented as the mean ± S.D. and

statistical analysis of data was performed with a one-way

ANOVA using the post hoc Tukey test for multiple

comparisons of means. Differences were considered sta-

tistically significant if the p value was <0.05.

Results

OTR expression in BV-2 cells and primary microglia

OTR expression was examined in BV-2 cells and pri-

mary microglia by immunofluorescence staining (Fig. 1a).

OTR mRNA expressions were increased at 15 min after

LPS challenge, reached the peak point at 30 min, and

remained elevated at 8 h in BV-2 cells (Fig. 1b). OTR

protein expressions measured by Western blot analysis

were also increased at 60 min after LPS administration,

reached the peak point at 2 h, and remained elevated at

24 h in BV-2 cells (Fig. 1c). Similar findings were ob-

tained in primary microglia. The result showed that

mRNA and protein expressions of OTR were increased

after LPS treatment for 2 h in primary microglia

(Fig. 1d).
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To test the cytotoxicity of OT, various concentrations of

OT were applied alone or together with LPS (500 ng/ml)

to BV-2 cells for 24 h. Cell viability was determined by

MTT assay. Normal untreated cells were considered as

control. Cell viability following treatment with OT at

0.1 μM (106.12 ± 14.40 %), 1 μM (101.82 ± 13.24 %), and

10 μM (90.18 ± 8.98 %) was not significantly different from

the control group (100 ± 11.99 %). LPS at 500 ng/ml cause

a slight decrease in cell viability, but in comparison to

control group the differences were not statistically signifi-

cant (89.92 ± 13.80 % vs 100 ± 11.99 %, p > 0.05). And OT

pre-treatment at 0.1 μM (88.17 ± 14.53 %), 1 μM (87.89 ±

13.90 %), and 10 μM (88.89 ± 13.03 %) was not signifi-

cantly different from the LPS group (89.92 ± 13.80 %).

Similar findings were obtained in primary microglia (data

no shown).

Fig. 1 Oxytocin receptor (OTR) expression in BV-2 cells and primary microglia. a Immunostaining with anti-OTR (red) in BV-2 cells and primary

microglia. Nuclei were counterstained with DAPI (blue). Scale bar = 50 μm. b OTR mRNA expression in BV-2 cells after LPS challenged were analyzed by

RT-PCR, β-actin was used to evaluate loading. c OTR protein expression in BV-2 cells after LPS challenged was analyzed by Western blotting, and β-actin

was used to evaluate protein loading. d OTR mRNA expression in primary microglia after LPS challenged were analyzed by RT-PCR, β-actin was used to

evaluate loading. e OTR protein expression in primary microglia after LPS challenged was analyzed by Western blotting, and β-actin was used to evaluate

protein loading
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OT inhibits LPS-induced microglial activation

Microglial cells are activated in response to different

stimuli, which lead to morphological and functional

changes. Therefore, to investigate whether the effect of

OT on the morphology of microglia, cells were incu-

bated for 2 h in the presence or absence of OT, followed

by a 24-h LPS challenge. As shown in Fig. 2a, control

cells are mostly round with bright refringency and small

dark nuclei, whereas LPS treatment (500 ng/ml) induced

an activated state presenting a rod-like bipolar or multi-

polar morphology with elongated cell bodies, and also

showed ameboid. While pre-treatment of 1 μM OT in

some extent helped to prevent this cellular transform-

ation (Fig. 2). OT alone also had no significant effect on

microglial cell morphology. Similar findings were ob-

tained in primary microglia (Fig. 2).

It had been reported previously that microglial activa-

tion was associated with a marked increase in Iba-1 ex-

pression. In our experiments, immunofluorescence

analysis showed that at 24 h after LPS, the expression of

Iba-1 was clearly increased in BV-2 cells (3.17 ± 1.02 vs

1.00 ± 0.83, p < 0.01) and primary microglia (3.92 ± 1.67 vs

1.00 ± 0.29, p < 0.005). Pre-treatment with OT (1 μM) at-

tenuated this LPS-induced upregulation of Iba-1 in BV-2

cells (1.64 ± 0.65 vs 3.17 ± 1.02, p < 0.05) and primary

microglia 1.82 ± 0.68 vs 3.92 ± 1.67, p < 0.01) (Fig. 3).

OT suppresses TNF-α and IL-1β production in

LPS-stimulated microglial cells

To assess whether OT could inhibit production of LPS-

induced pro-inflammatory cytokines including TNF-α

and IL-1β, BV-2 cells were pre-treated with OT for 2 h

and then subjected to LPS for 24 h. As shown in Fig. 4a,

LPS markedly increased TNF-α and IL-1β levels at 24 h

post-stimulated with LPS. OT pre-treatment decreased

LPS-stimulated TNF-α and IL-1β production showing a

significant inhibitory effect at 1 and 10 μM, while OT

(1 μM) alone had no effect on the production of TNF-α

and IL-1β.

To elucidate the mechanisms responsible for the in-

hibitory effect of OT on TNF-α and IL-1β production,

we next examined the levels of cytokine mRNA by RT-

PCR. Consistent with the results obtained from the cyto-

kine production data, the LPS-induced mRNA levels of

TNF-α and IL-1β were reduced by OT (0.1, 1, and

10 μM) following 4-h treatment, suggesting that OT

negatively regulated the production of TNF-α and IL-1β

at the transcriptional level in these LPS-stimulated BV-2

cells (Fig. 4b).

The anti-inflammatory effects of OT were also observed

in primary microglia. The results showed that OT (1 μM)

pre-treatment significantly attenuated LPS-stimulated

TNF-α and IL-1β protein and gene expression (Fig. 4c, d).

Effects of OT on the expression of COX-2 and iNOS in

microglial cells

We measured the changes of COX-2 and iNOS, which

are key mediators in neuroinflammatory regulations.

Western blot showed LPS stimulation significantly in-

creased the expression of COX-2 and iNOS in BV-2 cells

at 24 h post-stimulated with LPS. However, pre-

treatment of OT could inhibit the protein expression of

Fig. 2 Effects of OT pre-treatment on LPS-induced morphological changes in BV-2 cells and primary microglia. Morphological changes of BV-2

cells and primary microglia per-treated with or without OT (1 μM) for 2 h followed by LPS (500 ng/ml) for 24 h. Note the change in external

morphology of microglia bearing long extending and stout processes after LPS insult. Scale bar = 50 μm
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COX-2 and iNOS (Fig. 5a). Moreover, as shown in

Fig. 5b, LPS significantly improved the mRNA levels of

COX-2 and iNOS at 4 h post-stimulated with LPS and

OT markedly reduced LPS-induced mRNA levels of

COX-2 and iNOS in BV-2 cells.

Similar findings were obtained in primary microglia.

The results showed that OT (1 μM) pre-treatment signifi-

cantly attenuated LPS-stimulated COX-2 and iNOS pro-

tein and gene expression in primary microglia (Fig. 5c, d).

OT reduced the increase in [Ca2+]i in LPS-stimulated

BV-2 cells

Previous studies showed that LPS could induce inflam-

matory responses and upregulate pro-inflammatory mol-

ecules through the action of calcium-independent

mechanisms [22]. The intracellular calcium concentra-

tion ([Ca2+]i) was determined in all treatment groups

using Fluo2-/AM assay. As shown in Fig. 6, the increase

in [Ca2+]i in BV-2 cells was remarkably reduced by OT

(1 μM) (p < 0.001) treatment compared to LPS alone.

Effect of OT on LPS-induced MAPK activation in BV-2 cells

We investigated the effect of OT on LPS-induced activa-

tion of mitogen-activated protein kinases (MAPKs), which

are crucial in regulating the pro-inflammatory substances.

LPS-treated BV-2 cells in the presence or absence of OT

for 60 min were subjected to Western blot analysis. As

shown in Fig. 7, pre-treatment OT (0.1, 1, 10 μM) signifi-

cantly suppressed LPS-induced phosphorylation levels of

ERK1/2 and p38 MAPK, while activation of JNK MAPK

induced by LPS was not affected by OT.

Effect of OT on LPS-induced NF-κB activation in BV-2 cells

We then assessed whether anti-inflammatory effects of

OT on activated BV-2 cells were mediated via blockade

of NF-κB signaling pathway. So we examined the influ-

ence of OT on the NF-κB phosphorylation by Western

blot. Figure 8 illustrates that stimulation with LPS for

60 min induced significant NF-κB phosphorylation.

However, this effect was not affected by OT (0.1, 1,

10 μM) (p > 0.05).

Fig. 3 Effects of OT pre-treatment on LPS-induced microglial activation. a BV-2 cells and primary microglia were pre-treated with or without OT

(1 μM) for 2 h followed by LPS (500 ng/ml) for 24 h, then stained with anti-Iba-1 (red), and counterstained with DAPI (blue). Quantification of the

Iba-1 in BV-2 (b) and primary microglia (c) was determined by Image-Pro Plus 6.0. Scale bar = 50 μm. Images are representative of triplicate sets.

Values were expressed relative to the fluorescence signal of respective controls. Values represent the mean ± S.D. **p < 0.01, ***p < 0.001 LPS VS

Con; #p < 0.05, ##p < 0.01 LPS+ OT VS LPS
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OT treatment is associated with a decrease of microglial

activation in vivo

Systemic LPS treatment in mice is suggested to be able

to cause microglial activation and neuroinflammation

[4]. Next, we used the systemic LPS treatment acute in-

flammation murine brain model to study the suppressive

effects of OT against neuroinflammation in vivo. The

microglia exhibited enlarged cytoplasm and cell bodies,

irregular shapes, and intensified Iba-1 staining, consist-

ent with the morphological characteristics of activated

microglia in the prefrontal cortex at 24 h after LPS treat-

ment (Fig. 9). These effects were significantly reduced by

OT pre-treatment. During this same developmental

stage, OT did not influence microglial activity in the

prefrontal cortex of sham controls.

Effect of OT on TNF-α and IL-1β production in vivo

Results from the Western blot assay showed that protein

levels of TNF-α were increased significantly at 24 h after

LPS exposure as compared with the sham group (p < 0.001;

Fig. 4 Effects of OT on LPS-induced pro-inflammatory cytokine mRNA expression and secretion in microglia. a BV-2 cells were pre-treated with or without

OT (0.1–10 μM) for 2 h followed by LPS (500 ng/ml) for 24 h. The levels of pro-inflammatory cytokines were analyzed by Western blotting, and β-actin was

used to evaluate protein loading. b BV-2 cells were pre-treated with or without OT (0.1–10 μM) for 2 h followed by LPS (500 ng/ml) for 4 h. The relative

expression levels of TNF-α and IL-1β gene were analyzed by RT-PCR. c Primary microglia were pre-treated with or without OT (1 μM) for 2 h followed by

LPS (500 ng/ml) for 24 h. The levels of TNF-α and IL-1β were analyzed by Western blotting, and β-actin was used to evaluate protein loading. d Primary

microglia were per-treated with or without OT (1 μM) for 2 h followed by LPS (500 ng/ml) for 24 h. The levels of TNF-α and IL-1β mRNA were analyzed by

RT-PCR, and β-actin was used to evaluate protein loading. Each value was normalized to β-actin. Values represent the mean ± S.D. of three independent

experiments. *p< 0.05, *** p< 0.001 LPS VS Con; #p< 0.05, ##p< 0.01, ###p< 0.001, LPS + OT VS LPS
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Fig. 10a). IL-1β protein levels were also increased signifi-

cantly (p < 0.01) at 24 h after LPS exposure as compared

with the sham group. These increases in TNF-α and IL-1β

were reduced significantly with OT treatment when com-

pared with LPS-treated mice that had not received OT

(Fig. 10a). There were no significant differences in TNF-α

and IL-1β production between sham and sham+OT mice.

The expressions of TNF-α and IL-1β mRNA in the

prefrontal cortex were also detected by RT-PCR analysis

at 4 h after LPS exposure. TNF-α mRNA expression was

significantly increased in the prefrontal cortex after LPS

challenged as compared with the sham group (p < 0.001;

Fig. 10b). Similarly, increases in IL-1β mRNA expres-

sion, that paralleled TNF-α mRNA at 4 h post-LPS ex-

posure, were observed as compared with that of the

matching controls (p < 0.001; Fig. 10b). Pre-treatments

with OT significantly decreased the mRNA expression of

these selected genes (p < 0.01; Fig. 10b). However, OT by

itself did not affect the expression of TNF-α and IL-1β

mRNA in the sham group.

Fig. 5 Effects of OT on LPS-induced COX-2 and iNOS mRNA and protein expression in microglia. a BV-2 cells were pre-treated with or without OT

(0.1–10 μM) for 2 h followed by LPS (500 ng/ml) for 24 h. The levels of COX-2 and iNOS were analyzed by Western blotting, and β-actin was used

to evaluate protein loading. b BV-2 cells were pre-treated with or without OT (0.1–10 μM) for 2 h followed by LPS (500 ng/ml) for 4 h. The relative

expression levels of COX-2 and iNOS gene were analyzed by RT-PCR. c Primary microglia were pre-treated with or without OT (1 μM) for 2 h

followed by LPS (500 ng/ml) for 24 h. The levels of COX-2 and iNOS were analyzed by Western blotting, and β-actin was used to evaluate protein

loading. d Primary microglia were pre-treated with or without OT (1 μM) for 2 h followed by LPS (500 ng/ml) for 24 h. The levels of COX-2 and

iNOS mRNA were analyzed by RT-PCR, and β-actin was used to evaluate protein loading. Each value was normalized to β-actin. Values represent

the mean ± S.D. of three independent experiments. ***p < 0.001 LPS VS Con; #p < 0.05, ##p < 0.01, LPS+ OT VS LPS
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In the prefrontal cortex of the sham group, TNF-α ex-

pression was specifically detected in sporadic cells, con-

firmed to be the microglia by double labeling with Iba-1

staining (Fig. 11a). At 24 h following LPS exposure, im-

munoreactivity for TNF-α/Iba-1 was detected and en-

hanced in large numbers of microglia when compared

with the sham (Fig. 11). The statistical analysis showed

that the percentages of TNF-α/Iba-1 double positive

cells in the prefrontal cortex at 24 h following LPS

exposure were significantly higher than those in the cor-

responding controls (p < 0.001, Fig. 11b). Moreover,

these increases in TNF-α expression in microglia were

reduced significantly with OT pre-treatment (p < 0.05,

Fig. 11b).

The present results showed that the immunoreaction

for TNF-α/GFAP was extremely weak in the prefrontal

cortex of the sham group. While in the LPS challenge

group, TNF-α/GFAP double positive cells showed strong
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Fig. 6 OT reduces the increase in [Ca2+]i in LPS-stimulated BV-2 cells. a Representative 340/380 nm ratio of BV-2 cells showing the change of [Ca2+]i in

BV-2 cells as induced by LPS (500 ng/ml) in the absence or presence of OT (1 μM). b Summary data (F/F0) of LPS-induced [Ca2+]i elevation, where F0 is

the average baseline fluorescence before the application of LPS or OT, and F represents the fluorescence after the application of LPS or OT. n = 20 for

LPS group; n = 20 for LPS and OT-co-treated group, ###p < 0.001 LPS + OT VS LPS. All data were shown as mean ± S.D.

Fig. 7 Effects of OT on LPS-induced phosphorylation of MAPK in BV-2 cells. BV-2 cells were pre-treated with or without OT (0.1–10 μM) for 2 h

followed by LPS (500 ng/ml) for 60 min and total protein was subjected to Western blot analysis using antibodies against phospho-, or total forms

of three MAPKs. Bar graphs showing quantification of expression levels of phosphor-MAPKs/MAPKs was determined by the Image-Pro Plus 6.0.

Values represent the mean ± S.D. of four independent experiments. **p < 0.01 LPS VS Con; #p < 0.05, ##p < 0.01 LPS + OT VS LPS
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hypertrophic and proliferative changes. The statistical

analysis showed that the percentages of TNF-α/GFAP

double positive cells in the prefrontal cortex at 24 h fol-

lowing LPS exposure were significantly higher than those

in the corresponding controls (p < 0.001, Fig. 11b). And

OT pre-treatment slightly decreased TNF-α/GFAP immu-

noreaction, but in comparison to LPS group, the differ-

ences were not statistically significant (p > 0.05, Fig. 11b).

Effect of OT on COX-2 and iNOS expression in vivo

Western blot showed systemic LPS treatment significantly

increased the expression of COX-2 (p < 0.001) and iNOS

(p < 0.01) in mice at 24 h post-stimulated with LPS. How-

ever, pre-treatment of OT was able to inhibit the protein

expression of COX-2 (p < 0.05) and iNOS (p < 0.05)

(Fig. 12a). As Fig. 12b shows, systemic LPS significantly

improved the mRNA levels of COX-2 (p < 0.001) and

iNOS (p < 0.001) at 4 h post-stimulated with LPS, and OT

markedly reduced LPS-induced mRNA levels of COX-2

(p < 0.01) and iNOS (p < 0.01).

Discussion

The present study demonstrated that OT suppressed the

expression of TNF-α, IL-1β, COX-2, and iNOS at the

mRNA and proteins levels and reduced the elevation of

[Ca2+]i in LPS-stimulated microglia cells. The activation

of ERK and p38 MAPK by LPS was also suppressed by

OT in vitro. Moreover, OT exhibited suppressive effects

against neuroinflammation induced by systemic LPS

treatment in vivo. These data suggested that OT would

be a potential therapeutic agent for alleviating neuroin-

flammatory processes in neurodegenerative diseases.

Microglia-mediated neurotoxicity is a hallmark of the

pathogenesis of various neurodegenerative diseases [23].

High levels of pro-inflammatory cytokines and chemo-

kines released by excessive activated microglia are impli-

cated in the process of neuronal injury [3]. Thus,

therapeutic approaches targeting activated microglia may

be a promising treatment of these diseases. Many recent

studies have reported that anti-inflammatory agents exert

their neuroprotective effects through inhibition of produc-

tion of pro-inflammatory mediators [24, 25]. OT exhibited

anti-inflammatory functions in rodents by reducing the

secretion of TNF-α, IL-6, and IL-8 in vitro [16] and in vivo

[26, 27]. In addition, OT regulated the immune response

by dampening anti-inflammatory cytokines, such as IL-1ra

and IL-4 [26]. Importantly, OT attenuated LPS-induced

MHC Class II expression in cultured microglia [9]. In the

current study, OT pre-treatment suppressed the LPS-

induced gene and protein of TNF-α, IL-1β, COX-2, and

iNOS levels in vitro and in vivo, showing a potential anti-

inflammatory capacity in microglia.

Microglia are able to undergo a variety of morpho-

logical and functional changes in response to various im-

munological stimuli. Quiescent microglia exhibit a

ramified cell morphology with relatively small size and

numerous thin processes, whereas activated microglia

become progressively less ramified and quickly develop

an enlarged cell body with several short, thickened pro-

cesses, resulting in a rounded ameboid-like appearance

[4, 28]. In the present in vitro and in vivo study, we

found that activated microglia were shown by increased

cell size, irregular shape, shortened and thickened pro-

cesses, and intensified Iba-1 staining in LPS-treated

microglial cells and mouse brains, while OT lessened the

microglia morphological changes according to immuno-

histochemical analysis. Moreover, OT significantly re-

duced Iba-1 protein expression in the brain compared to

that of LPS group. Iba-1 is specifically and highly

expressed in macrophage and microglia [29, 30]. Previ-

ous studies showed that anti-Iba-1 antibody was found

to specifically recognize ramified microglia in normal

rodent brain, and the expression of Iba-1 was strongly up-

regulated in activated microglia [31]. Therefore, Iba-1 may

play significant roles in the regulation of some immuno-

logical and pathophysiological functions of microglia and

serve as a novel marker of detecting the activation of

microglia. Moreover, double immunofluorescence staining

Fig. 8 Effects of OT on LPS-induced NF-κB activation in BV-2 cells. BV-2

cells were pre-treated with or without OT (0.1–10 μM) for 2 h followed

by LPS (500 ng/ml) for 60 min and total protein was subjected to

Western blot analysis using antibodies against IκB-α, phospho-, or

total forms of NF-κB p65. Levels of β-actin were used to evaluate

protein loading. Bar graphs showing quantification of expression

levels of phosphor-NF-κB (p-NF-κB)/NF-κB were determined by

the Image-Pro Plus 6.0. Values represent the mean ± S.D. of three

independent experiments. ***p < 0.001 LPS VS Con
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has shown that expression of TNF-α was detected in acti-

vated mciroglia as verified by their colocalization with Iba-

1. In the current study, OT pre-treatment attenuated LPS-

induced TNF-α/Iba-1 expression, indicating considerable

inhibitory effects of OT on overactivated microglia via

suppressing pro-inflammatory cytokine productions. In

this study, we also saw LPS-induced neuroinflammation

as evidenced by increases in TNF-α/GFAP immunostain-

ing. However, OT had no effect on the LPS-induced in-

crease in TNF-α/GFAP immunostaining, suggesting that

anti-inflammatory effect of OT may be independent of the

inhibition of astrocytic activation.

Fig. 9 OT pre-treatment is associated with a decrease of microglial activation in vivo. Immunostaining with anti-Iba-1 (red) in the prefrontal cortex

at 24 h after LPS treatment. Nuclei were counterstained with DAPI (blue). Scale bar = 50 μm. Values were expressed relative to the fluorescence

signal of respective controls. Values represent the mean ± S.D., ***p < 0.01 LPS VS sham; ###p < 0.05 LPS + OT VS LPS
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COX-2 and iNOS are the important inflammatory me-

diators during the inflammation process. COX-2, a key

rate-limiting enzyme in arachidonic acid metabolism, is

mainly induced in microglia by pro-inflammatory stimuli

and plays important roles in inflammatory and immune

responses [32, 33]. Several studies have demonstrated

that COX-2 is markedly upregulated in primary brain

microglia and in BV-2 microglial cells after LPS treat-

ment [34, 35]. iNOS is expressed in some pathophysio-

logical conditions and can produce abundant NO in

response to inflammatory signals, such as LPS and

cytokines [35]. Therefore, attenuating the induction of

COX-2 and iNOS in activated microglia could inhibit

neuroinflammation. In our study, LPS induced an in-

creasing expression of COX-2 and iNOS in microglia.

However, pre-treatment with OT showed an inhibition

of COX-2 and iNOS protein and mRNA expression

levels following LPS stimulation in vivo and in vitro.

Microglial cells express several receptors such as puri-

nergic P2Y, adrenergic α1, thrombin, endothelin, platelet-

activating factor, and cytokine/chemokine receptors,

coupled to the second messenger inositol 1,4,5-trisphos-

phate IP3, and mediate release of Ca2+ from intracellular

stores [36]. Ca2+ release often is followed by a prolonged

secondary phase that is due to store-operated (capacita-

tive) Ca2+ entry (SOCE). The intracellular calcium con-

centration ([Ca2+]i) influences multiple cellular functions,

including enzyme or release activities. Microglia respond

to CNS damage by upregulating functions that involve

Ca2+ signaling, e.g., proliferation, migration, phagocytosis,

and production of NO, IL, cytokines, and chemokines.

Several factors have been identified to regulate the Ca2+

level in microglial cells. Cytokines, such as TNF-α, IL-

1β, and interferon gamma (IFN-γ), induce an increase

in [Ca2+]i in microglia [37], and LPS also increases the

prolonged component of [Ca2+]i and this Ca2+ increase

is a prerequisite for the release of NO and cytokines

[38]. In the present study, in good agreement with these

previous studies, we demonstrated that LPS exposure sig-

nificantly induced Ca2+ transients in microglial cells, while

OT could abolish LPS-induced increases in [Ca2+]i. and cy-

tokines levels, indicating OT effects on [Ca2+]i from micro-

glia activation may contribute to its anti-inflammatory

actions. However, the direct correlation between the change

in intracellular Ca2+ and anti-inflammatory actions of OT

has not been documented.

LPS, an important structural component of the outer

membrane of Gram-negative bacteria, binds to Toll-like

receptor 4 and evokes intracellular inflammatory signaling

cascades including NF-κB, MAPKs, and IL-1 receptor-

associated kinase activation [39]. NF-κB is known to up-

regulate the expressions of cytokines, chemokines, adhe-

sion molecules, acute phase proteins, and inducible

effector enzymes. NF-κB is composed of several protein

subunits, among which p65 has been extensively studied

[40]. As the expression of these pro-inflammatory

Fig. 10 (a) The levels of TNF-α and IL-1β production in the prefrontal cortex at 24 h after LPS injection were measured by western blotting,

and β-actin was used to evaluate protein loading. Data were obtained from three separate experiments. (b) The relative expression levels of

pro-inflammatory cytokines in the prefrontal cortex at 4 h after LPS injection were analyzed by RT-PCR. Each value was normalized to β-actin.

Quantification of mRNA levels of the various cytokines as determined by Image-Pro Plus 6·0. Data were obtained from three separate experiments,

Values represent the mean ± S.D., ** p < 0.01, *** p < 0.001 LPS VS Sham; # p < 0.05, ## p < 0.01 LPS+OT VS LPS
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mediators is modulated by NF-κB, blocking NF-κB tran-

scriptional activity may be an important target for treating

inflammatory diseases. In line with these findings, the data

of our study showed that inflammatory cytokine produc-

tion and NF-κB activation were increased in LPS-

stimulated microglia. However, the NF-κB activation by

LPS was not suppressed by OT pre-treatment, suggesting

that inhibition of pro-inflammatory factors by OT was not

mediated through blockade of NF-κB activation.

MAP kinases are also crucial in regulating the pro-

inflammatory substances such as TNF-α, IL-1β, IL-6, iNOS,

and monocyte chemoattractant protein-1 expression in

Fig. 11 (a) Immunostaining with anti- Iba-1 (red) and TNF-α (green) in the prefrontal cortex at 24 h after LPS treatment. (b) Immunostaining with GFAP

(red) and TNF-α (green) in the prefrontal cortex at 24 h after LPS treatment. Nuclei were counterstained with DAPI (blue). Scale bar = 50 μm. Values were

expressed relative to the fluorescence signal of respective controls. Values represent the mean ± S.D., *** p< 0.001 LPS VS Sham; # p< 0.05 LPS+ OT VS LPS
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LPS-stimulated microglia cells [41, 42]. Corroborating these

findings, the present results showed that increased concen-

trations of pro-inflammatory cytokines resulting from LPS

treatment were accompanied by phosphorylation of ERK,

p38, and JNK MAPK in microglial cells. Of particular sig-

nificance to the present report were the findings that OT

pre-treatment prevented phosphorylation of ERK and p38

MAPK, but not JNK and, in this way, reduced the upregu-

lation of pro-inflammatory cytokines. However, Rimoldi et

al. reported that stimulation of OTR with OT is associated

with EGFR transactivation and ERK activation in HEK293

cells, resulting in opposite effects on cell growth [43]. And

treatment with OT prevented the lethal reperfusion injury

of H9c2 cardiomyoblasts and increased ERK phosphoryl-

ation [44]. It is important to mention that administration of

OT in vivo effectively improved autism spectrum disorder-

like symptoms, associated with inhibited phosphorylation

of ERK in lesioned medial amygdalae [45]. One of the rea-

sons for these inconsistencies could be due to the different

cells used as well as the stimulating condition.

In the past decade, the structure and function of the

OTR system have been detected and investigated in

CNS [5]. For example, experiments with primary cell

cultures showed that OTR are localized both on hypo-

thalamic neurons and astrocytes [46]. It has been re-

ported that OT concentration was increased in the

temporal cortex and hippocampus of Alzheimer brains,

but was normal in all other regions examined [47]. The

higher level of OTR methylation was associated with

decreased functional coupling of amygdala, which in-

volved in affect appraisal and emotion regulation [48].

The OT mRNA level was increased after acute

immobilization stress exposed to rats [49]. In this study,

we found that OTR was expressed in microglial cells,

and the mRNA and protein levels of OTR were in-

creased after LPS stimulation.

In this regard, it is important to note that two recent

studies indicated that OT did not attenuate inflammatory

cytokine production following LPS stimulation in healthy

human monocytes or macrophages in vitro [26, 50]. How-

ever, Clodi et al. reported that OT attenuated the endocrine

and cytokine activation following LPS administration in

healthy humans in vivo [26]. Similar results were also re-

ported by other authors, for example, Szeto et al. demon-

strated that OT inhibited LPS-stimulated pro-inflammatory

cytokines secretion from human cancer cell line in vitro

[16]. In addition, in our study, OT can abrogate LPS-

induced microglial activation and reduce subsequent re-

lease of pro-inflammatory factors in murine cell line and

primary cell. There are a number of reasons for the incon-

sistencies in anti-inflammatory effects of OT. For example,

the healthy human cells behave differently from human

cancer cell line, perhaps being less sensitive to OT than hu-

man cancer cells, or due to differences in how OTR is

expressed. Thus, it may limit OT as a human therapeutic

agent. Another reason for the inconsistencies is dependent

on specific micro-environmental conditions which could be

not replicated in vivo. There are also different functions

Fig. 12 (a) The expression of COX-2 and iNOS in the prefrontal cortex at 24 h after LPS injection were measured by western blotting, and β-actin

was used to evaluate protein loading. Data were obtained from three separate experiments. (b) The relative expression levels of COX-2 and iNOS

in the prefrontal cortex at 4 h after LPS injection were analyzed by RT-PCR. Each value was normalized to β-actin. Quantification of mRNA levels

of the various cytokines as determined by Image-Pro Plus 6·0. Data were obtained from three separate experiments, Values represent the mean ±

S.D., ** p < 0.01, *** p < 0.001 LPS VS Sham; # p < 0.05, ## p < 0.01 LPS+OT VS LPS

Yuan et al. Journal of Neuroinflammation  (2016) 13:77 Page 15 of 17



between microglia and macrophage. At last, different

stimulating condition used in these studies is also the rea-

son for these inconsistencies, such as the time of LPS and

OT incubation, the concentration of LPS and OT.

There are several limitations to our study. First, this is

preliminary evidence found in a mouse model. More-

over, the studies of OT’s anti-inflammatory properties

mainly based on animal models and human cancer cell

lines [16, 51]. As mentioned above, few studies have in-

vestigated healthy humans and/or their cells and the re-

sults were inconsistent with animal models and human

cancer cell lines [26, 50]. Thus, additional research in

healthy humans’ microglia is needed in the future work.

Second, the direct correlation between the change in

OTR and LPS actions in microglia has not been docu-

mented. Finally, the route, timing, and dosage of OT

treatment need to be further elucidated.

Conclusions

In conclusion, out study demonstrates that OT signifi-

cantly attenuates overactivation of microglial cells and

reduces expression levels of pro-inflammatory mediators

and cytokines via inactivation of ERK/p38 MAPK signal-

ing pathways. These data suggests that OT would be a

potential therapeutic agent for alleviating neuroinflam-

matory diseases accompanied by activated microglia.
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