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Journal of Shellfish Research, Vol. 20, No. 3, 951-959, 2001. 

OYSTER REEFS AS FISH HABITAT: OPPORTUNISTIC USE OF RESTORED REEFS BY 

TRANSIENT FISHES 

JULIANA M. HARDING* AND ROGER MANN 

Department of Fisheries Science, Virginia Institute of Marine Science, College of William and Mary, 

P.O. Box 1346, Gloucester Point, Virginia 23063 

ABSTRACT Under the Magnuson-Stevenson Fisheries Management Act of 1996, current fisheries management practice is focused 

on the conce_pt of Essential Fish Habitat (EFH). Application of the EFH concept to estuarine habitats relates directly to ongoing oyster 

reef restorat10n efforts. Oyster reef restoration typically creates complex habitat in regions where such habitat is limited or absent. 

While healthy oyster reefs provide structurally and ecologically complex habitat for many other species from all trophic levels 

including recreationally and commercially valuable transient finfishes, additional data is required to evaluate oyster reef habitats in the 

context of essential fish habitat. Patterns of transient fish species richness,. abundance, and size-specific habitat use were examined 

along an estuarine habitat gradient from complex reef habitat through simple sand bottom in the Piankatank River, Virginia. There was 

no clear delineation of habitat use by transient fishes along this cline of estuarine habitat types (oyster reef to sand bar). Atlantic croaker 

(Micropogonias undulatus), Atlantic menhaden (Brevoortia tyramws), bluefish (Pomatomus saltatrix), silver perch (Bairdiel/a chi)•­

soura), spot (Leiostomus xanthurus), spotted seatrout (Cynoscion regalis), striped bass (Marone saxatilis), and weakfish (Cynoscion 

nebulosus) were found in all habitat types examined. In general, the smallest fish were found on the sand bar, the site with the least 

habitat heterogeneity. As habitat complexity increased along the gradient from oyster shell bar through oyster reef, transient fish size 

and abundance increased. Opportunistic habitat use by this suite of generalists relates variations in habitat quality as related to 

habitat-specific productivity and suggests that oyster reefs may be important but not essential habitat for these fishes. 

KEY WORDS: habitat use, essential fish habitat, oyster reef, transient fish, Chesapeake Bay 

INTRODUCTION 

There is growing recognition by government and management 

agencies of the importance of habitat to maintenance and suste­

nance of marine fishery species. The Magnuson-Stevens Fishery 

Conservation and Management Act of 1996 (Public Law 94-265) 

as amended by the Sustainable Fisheries Act established the con­

cept of Essential Fish Habitat and provided for the management 

and protection of such habitat under the auspices of the National 

Marine Fisheries Service (Benaka 1999). Essential Fish Habitat 

(EFH) was defined as "those waters and substrate necessary for 

fish for spawning, feeding or growth to maturity". Under the law, 

"finfish, molluscs, crustaceans, and all other forms of marine ani­

mal and plant life other than marine mammals and birds" are 

protected. While protection of marine habitats is certainly needed, 

the scale of the Magnuson-Stevens Act, as established by its ter­

minology, renders application of the law on a practical level next 

to impossible. The Magnuson-Stevens Act provides a means to 

classify fish habitats as essential (absolutely necessary per Web­

ster's Dictionary 1983) but offers no opportunities to distinguish 

gradations in fish habitat quality. Functionally, the only habitat 

absolutely necessary for fish is reasonably clean water. 

As restoration efforts in Chesapeake Bay and other estuaries 

continue to focus on oyster reef reconstruction and rehabilitation, 

the nature and importance of oyster reefs as habitat (the place 

where an animal lives sensu Odum 1971) bears further investiga­

tion. Oyster reefs, three dimensional structures created and main­

tained by living oysters (Crassostrea virginica), were historically 

a principal habitat type in shallow portions of estuaries such as 

Chesapeake Bay. The chronic decline of oyster populations in the 

20th century due to a combination of overfishing, disease, and 

habitat degradation has reduced oyster populations and virtually 

eliminated natural oyster reef structures in Chesapeake Bay (Har­

gis 1999). Oyster reefs are ecologically valuable as habitat for 

*Corresponding author. E-mail: jharding@vims.edu 

oysters as well as a diverse suite of resident benthic fauna (e.g., 

oysters, barnacles, mussels, polychaetes, crabs, naked gobies (Go­

biosoma base); Wells 1961, Bahr & Lanier 1981, Meyer & 

Townsend 2000) and recreationally and commercially valuable 

transient fishes. (e.g., striped bass (Marone saxatilis), bluefish 

(Pomatomus saltatrix), Atlantic croaker (Micropogonias undula­

tus), spot (Leiostomus xanthurus); Breitburg 1999, Coen et al. 

1999, Harding & Mann 1999, Posey et al. 1999). 

The ecological function of oyster reef habitats is dependent 

upon both structural and ecological features inherent in living reef 

communities, namely the oyster's benthic-pelagic coupling capa­

bilities and the resulting production of hard shell substrate (Coen 

et al. 1999, Mann 2000, Coen & Luckenbach 2000). Restored 

oyster reef communities should follow an ecological progression 

towards climax or stability in numbers and species (Sale 1980) 

over time. Various measures of reef community development have 

been proposed including abundance of adult oysters in relation to 

local (within 1 km) natural (not restored) oyster populations 

(Harding & Mann 1999) and larval production in relation to adult 

abundances for primary and secondary trophic levels of reef resi­

dents (Harding & Mann 2000). 

There is merit in examining the use of restored oyster reef 

habitat by transient finfish particularly in relation to local non-reef 

habitats. Burchmore et al. (1985), Breitburg (1999), and Harding 

and Mann (1999) describe transient reef fishes as mobile schooling 

species that are found over a wide range of habitats including reefs. 

Descriptions of fish species richness in relation to oyster reefs have 

been made by Wenner et al. (1996), Nestlerode et al. (1998), Coen 

et al. (1999), Harding and Mann (1999), Minello (1999) and Posey 

et al. (1999) with the continuing observation that oyster reefs are 

home to diverse assemblages of transient fishes. 

National Marine Fisheries Service guidelines (62 FR 66531, 

1997) suggest delineation of EFH in light of four hierarchical 

information levels (Minello 1999): presence/absence data (Level 

1), distribution and abundance (density) information (Level 2), 

functional relationships between species and habitats: reproduc-
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952 HARDING AND MANN 

tion, growth, and survival (Level 3), and habitat-specific fish pro- Ryan-Joiner test for normality were used prior to parametric analy­

duction (Level 4). CmTent designations of habitat as EFH rely on ses. When appropriate, Tukey's tests were used for post-hoc mul-

---basic-information-as-provided-by-Level-l-and-2-in-the-absence-of-tiple-comparisons .. ------------------------­

comprehensive data sets addressing information Levels 3 and 4 

(Able 1999, Minella 1999). The objectives of this paper are to 

compare the transient finfish assemblages associated with a gra­

dient of habitats ranging from hard sand bottom to oyster reef 

within the same estuary and relate the observed patterns of species 

richness (Level 1 ), abundance (Level 2), and size-specific habitat 

use (Level 3) to habitat classifications sensu EFH. 

Study Site 

Field work was conducted in the Piankatank River, Virginia at 

three sites (Fig. 1): Palace Bar oyster reef, an oyster shell bar 

(Ginney Point), and a sand bar (Roane Point). Palace Bar reef is an 

intertidal oyster reef (210 x 30 m, reef depth range of 0.5 m above 

mean low water (ML W) to 3 m below ML W) adjacent to the 

historic Palace Bar oyster grounds. Palace Bar reef was built in 

1993 by the Virginia Marine Resources Commission (VMRC) 

Shellfish Replenishment program as a series of 18 shell mounds 

centered on and around an east-west centerline 300 m long (Mann 

et al. 1996). Approximately 70% of the reef (0.63 ha) is composed 

of oyster shell, while the remaining area (0.27 ha) is crushed clam 

shell. Palace Bar reef has supported oyster densities similar to 

those observed on natural (i.e., not constructed) oyster bars in the 

Piankatank River since 1997 (Harding & Mann 1999, R. Mann, 

unpublished data). The Ginney Point site is a flat oyster shell bar 

with a depth range of 2.5-3 m below MLW (Fig. 1). The 

Roane Point site includes a sand bar (depth range 1.5-2 m below 

MLW) south and inshore of Palace Bar reef (Fig. 1). Mean tidal 

range in the Piankatank River is approximately 0.4 m and maxi­

mum tidal current at these sites is approximately 0.12 m-s (Chen 

et al. 1977). 

MATERIALS AND METHODS 

Transient fishes were sampled using multi-panel experimental 

gill nets (one 30.5 m x 1.8 m and two 30.5 m x 3.0 m nets all with 

one 7.6 m panel each of stretch square mesh monofilament of 57.2, 

63.5, 73.0, and 76.2 mm) deployed such that the entire water 

column was sampled (e.g., the smallest net at Roane Point, the 

shallowest site). Nets were deployed in a straight line parallel to 

tidal flow at each site. All fishes were removed from the gill nets 

identified, sacrificed, and measured (total length to the nearest 

mm) resulting in species-specific presence/absence, abundance, 

and size estimates across a gradient of habitat types (oyster reef to 

sand bar). 

Transient fishes were collected during 8 thirty-six hour sam­

pling events completed from May through September on the new 

and full moon (May 22-23, June 5-6, June 19-20, July 2-3, July 

17-18, August 4-5, August 18-19, and September 2-3, 1997). 

Sampling periodicity incorporated complete diurnal and tidal 

cycles as well as seasonal progression. During each sampling se­

quence, reef and non-reef sites were sampled at three-hour inter­

vals corresponding to changes in tidal stage for thirty-six consecu­

tive hours. Water temperature and salinity were recorded weekly 

from May through September 1997 at Ginney Point and Palace Bar 

reef (Fig. 2). 

Data Analyses 

Significance levels for all statistical tests were established at p 

= 0.05 a priori. Bartlett's test for homogeneity of variance and the 

Piankatank River Temperature and Salinity Data 

Water temperature and salinity data for Ginney Point and Pal­

ace Bar reef were transformed (natural logarithm) to meet the 

assumptions of homogeneity of variance and normality prior to 

analyses with ANOV A. 

Species-specific Abundance Data 

Only the six species that were numerically dominant (n > 5 

individuals per station for each of the three sites) were used in 

these analyses. For each species, the number offish caught per gill 

net deployment were compared with an ANOV A using site, day of 

the year, and time of day as factors. Data for bluefish, striped bass, 

and weakfish met both the assumptions of homogeneity of vari­

ance and normality after transformation with the reciprocal trans­

formation (Zar 1996). Data for croaker and spot satisfied the as­

sumptions of homogeneity of variance and normality after loga­

rithmic transformation. Counts for Atlantic menhaden satisfied the 

assumption of homogeneity of variance with the reciprocal trans­

formation but not normality regardless of the transformation (log + 
l, In + 1, sqrt + 1, reciprocal). 

Fish Assemblage-Habitat Relationships 

Transient fish species abundance associations were compared 

across sites using detrended correspondence analysis (DCA). DCA 

was used as a descriptive tool to characterize the fish assemblages 

observed at each site on the basis of abundance. DCA ordinations 

spatially aggregate similar samples and separate dissimilar ones on 

the basis of species abundances within a sample. All DCA analyses 

(CANOCO for Windows version 4.0 1998) were detrended with 

second order polynomials (perter Braak 1995) to avoid potential 

loss of gradient information during the detrending procedure 

(Minchin 1987). Species-samples biplots were made using CANO­

DRAW software (version 3.1, Similauer 1998). 

Species-specific Length Data 

Total lengths (mm) for the six numerically dominant species 

were compared with species-specific one-way ANOV As using site 

as a factor. 

RESULTS 

Analyses 

Piankatank River Temperature and Salinity Data 

Neither water temperatures nor salinity values were signifi­

cantly different among sampling sites in 1997 (ANOVA, p < 0.05). 

Water temperature and salinity conditions observed in the Pianka­

tank River during 1997 were similar to those observed during 

1993-96 (Fig. 2, R. Mann, unpublished data). 

Species-specific Abundance Data 

Fourteen different transient fish species were observed in gill 

net collections from Palace Bar reef (Table 1). Ten of these four­

teen species were observed at Ginney Point (oyster shell bar) and 

nine were observed at Roane Point (sand bar). Atlantic croaker, 

Atlantic menhaden, bluefish, spot, striped bass, and weakfish were 

the most abundant fish species at all three sites (Table 1 ). 
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Figure 1. Map of the Piankatank River in relation to the Chesapeake Bay showing sampling locations after Harding and Mann (1999). Palace 

Bar reef (C), Ginney Point (an oyster shell bar, A) and Roane Point (a sand bar, B) were sampled to provide data for reef vs. non-reef habitat 

comparisons. 

Abundances of Atlantic croaker, Atlantic menhaden, and 

striped bass were significantly greater at sites with oyster shell 

substrate (Palace Bar reef and Ginney Point) than at the sand bar 

site (Roane Point) but there was no significant difference in abun­

dance of these three species between the oyster reef and the oyster 

bar (Table 2; ANOV A, Tukey test, p < 0.05; Figs. 3, 4, and 7). 

Bluefish were significantly more abundant at the oyster reef than 

at any other site (Table 2; ANOV A, Tukey test, p < 0.05). Spot 

were significantly more abundant at the oyster bar than at either 

the oyster reef or the sand bar (Table 2; ANOV A, Tukey test, p < 

0.05). Weakfish abundance was low relative to the other species 

and similar across all three sites (Table 2; ANOVA, Tukey's test, 

p < 0.05). 

In general, fish abundance increased at night across all sites. 

Atlantic croaker, bluefish, and spot were significantly more abun­

dant from dusk to dawn (2000-0800) than during the day (Figs. 3, 

5, 6; ANOVA, Tukey's test, p < 0.05). Striped bass were signifi­

cantly more abundant from dusk to dawn than at mid-day (1200-

1600; Fig. 7, ANOV A, Tukey test, p < 0.05). Atlantic menhaden 

and weakfish were significantly more abundant during darkness 

(2000-0800); abundances observed between midnight and 0400 

were higher than at any other time for both menhaden and weak­

fish (Figs. 4 and 8; ANOVA, Tukey's test, p < 0.05). 

Fish abundances varied seasonally. Bluefish were significantly 

more abundant in May and September than from June to August 

(Fig. 5, ANOVA, Tukey's test, p < 0.05). Striped bass and Atlantic 

menhaden were significantly more abundant in May than at any 

other time during the year and more abundant in late June than 

during late July and August (Figs. 4 and 7; ANOVA, Tukey's test, 

p < 0.05). Weakfish were significantly more abundant in late July 

(Fig. 8, ANOVA, Tukey's test, p < 0.05). Atlantic croaker abun­

dance was significantly greater during July and early August while 
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Figure 2. a-Mean salinity (ppt) and b-water temperature (°C) values 

(±standard error) for Ginney Point and Palace Bar reef, Piankatank 

River, Virginia from May through September 1997 after Harding and 

Mann (2001). Data from these two sites were averaged since there was 

no significant difference in temperature or salinity between sites 

(ANOVA, p < 0.05). Reference mean values for temperature and sa­

linity data from 1993-1996 are plotted with a solid line (± standard 

error), 1997 data are indicated by lines with symbols (± standard 

error). 
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TABLE I. 

Total number of transient fish species collected with gill nets at Palace Bar oyster reef, Ginney Point (oyster bar), and Roane Point (sand 

bar)-;Fianlral:aiilfRiver, Virgiiiiaouring s-t1iffty-six-fiour stations conductecnrom l\ilay2Z-toSeptemlier 3,1:997-. -----------1 

Common Name 

Atlantic croaker 

Atlantic menhaden 

Bluefish 

Spot 

Striped bass 

Weakfish 

Blueback herring 

Butterfish 

Cownose ray 

Gizzard shad 

Hog choker 

Silver perch 

Spotted seatrout 

Summer flounder 

Scientific Name 

Micropogonias undulatus 

Brevoortia tyramzus 

Pomatomus saltatrix 

Leiostomus xanthurus 

Marone saxatilis 

Cynoscion regalis 

Alosa aestivalis 

Peprilus triacanthus 

Rhinoptera bonasus 

Dorosoma cepedianum 

Trinectes maculatus 

Bairdiella chyrsoura 

Cynoscion nebulosus 

Paraliclzthyes dentatus 

spot were significantly less abundant in August (Figs. 3 and 6; 

ANOVA, Tukey's test, p < 0.05). 

Fish Assemblage-Habitat Relationships 

A detrended correspondence analysis (DCA) using all samples 

and all species (Fig. 9) aggregated all but one of fourteen species 

(summer flounder) and all but two of 231 samples (the two 

samples containing flounder) from all three sites along a single 

axis virtually on top of each other. This cohesive spatial grouping 

indicates strong similarity of most species and samples across all 

sites. Axis I describes a gradient in diurnal light levels moving 

from left (dark) to right (light). Axis 11 represents a seasonal gra­

dient in water temperatures moving from bottom (lower water 

temperatures) to top (warmest water temperatures). The variance 

explained by the axes was 21.6% (Axis I) and 38.2% (Axis 11). 

If rare species or species where the total number of fish ob­

served across all three sites was less than fifteen are removed from 

the analysis, eight species remain (Table 1). A second DCA using 

only these eight species in the gill net samples (Fig. 10) shows a 

lack of spatial aggregation of samples by site in ordination space 

as would be expected by site-specific fish assemblages. Thus, the 

samples from all three sites show a ubiquitous distribution. Axis I 

represents a gradient in diurnal light levels moving from left (dark) 

to right (light). Axis 11 represents a seasonal gradient in water 

temperatures moving from bottom (lower water temperatures) to 

top (warmest water temperatures). Fishes that were more abundant 

from dusk to dawn during late May, June, and early September 

(spot, bluefish) are grouped toward the middle of the plot to the left 

of fishes that were more abundant from dusk to dawn in July 
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(silver perch, weakfish; Fig. 10). Primarily nocturnal species 

(Atlantic menhaden and spotted seatrout) are grouped to the left 

(dark) side of Axis I. Striped bass were most abundant in May and 

early June during daylight hours as indicated by their position in 

the lower right corner of the plot (Fig. 10). Atlantic croaker were 

frequently caught between dawn and dusk during the warmer 

months as indicated by their position in the upper right corner of 

the plot (Fig. 10). The variance explained by the axes was 28.5% 

(Axis I) and 48.8% (Axis 11). 

Species-specific Length Data 

Atlantic croaker, Atlantic menhaden, and striped bass observed 

at Palace Bar reef are significantly larger than fishes of these 

species observed from either the oyster bar or the sand bar (Table 

3; ANOVA, Tukey's test, p < 0.05). Spot from the oyster bar are 

larger than spot from any other site (Table 3; ANOVA, Tukey's 

test, p < 0.05). Bluefish from the reef are slightly but not signifi­

cantly larger than fish from other sites and weakfish from all sites 

are of similar length (Table 3: ANOVA, Tukey's test, p > 0.05). 

DISCUSSION 

There was no clear delineation of habitat use by transient fishes 

along a gradient of estuarine habitat types ( oyster reef to sand bar). 

Atlantic croaker, Atlantic menhaden, bluefish, silver perch, spot, 

spotted seatrout, striped bass, and weakfish were found in all habi­

tat types examined. The ubiquitous distribution of these common 

species indicates a lack of site-specific fish assemblages in these 

habitats. It is unreasonable to expect site-specific groupings of 

TABLE 2. 

Summary of ANOV A results (p-values) for species-specific abundance (number of a species collected per gill net deployment) of the six most 

abundant transient fish species observed in the Piankatank River in relation to site, day of the year, and time of day. Asterisks indicate 

results that were significant at the p < 0.05 level. 

Factor df Atlantic Croaker Atlantic Menhaden Bluefish Spot Striped Bass Weakfish 

Site 2 0.01* 0.01* 0.02* <0.01* <0.01* 0.12 

Day of the year 7 0.01* <0.01* 0.02*" <0.01 * <0.01* <0.01* 

Time of day 5 <0.01* <0.01* <0.01* <0.01* 0.01* <0.01* 

,. 
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D Roane Point ~ Ginney Point Ill Palace Bar reef 
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Figure 3. Species-specific abundance for Atlantic croaker in relation 

to time of day and day of the year for A.) May 22-23, B.) June 5-6, C.) 

June 19-20, D.) July 2-3, E.) July 17-18, F.) August 4-5, G.) August 

18-19, and H.) September 2-3, 1997. 

generalist species such as these that are opportunistically using 

available habitat. It is more likely that habitat use by these eight 

fish species relates to variations in habitat quality indicated by 

habitat-specific productivity. 

In general, the smallest fish are found on the sand bar, the site 

with the least habitat heterogeneity. As habitat complexity in­

creases along the gradient from oyster shell bar through oyster 

reef, transient fish size and abundance increases. The oyster reef 

may have relatively higher food availability, a wider diversity of 

food types because of increased habitat heterogeneity, or greater 

abundance of high quality food relative to other habitat types. 

Dietary analyses on bluefish (Harding & Mann 2000) and striped 

bass (Harding & Mann, unpublished data) from these sites cor­

roborate these functional relationships between reef habitats and 
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Figure 4. Species-specific abundance for Atlantic menhaden in rela­

tion to time of day and day of the year for A.) May 22-23, B.) June 5-6, 

C.) June 19-20, D.) July 2-3, E.) July 17-18, F.) August 4-5, G.) 

August 18-19, and H.) September 2-3, 1997. 

transient fishes. Bluefish from sites with oyster shell substrate 

consume more teleosts than bluefish from the sand bar (Harding & 

Mann 2001). Bluefish from Palace Bar reef consume a wider di­

versity of prey items than fish from other sites (Harding & Mann 

2001) while reef striped bass consumed more teleosts in general 

and nalced gobies in particular than fish from other sites (Harding 

& Mann, unpublished data). In other words, the observed differ­

ences in fish abundance and size across habitat types may relate to 

habitat productivity as enhanced by ecological and structural com­

plexity. 

Presence/absence and abundance data from this study demon­

strate that these transient finfish employ generalist lifestyle strat­

egies (Sale 1980) and are opportunistically using the range of 

available habitat on a local scale. The habitats of interest herein 
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D Roane Point ~ Ginney Point 11111 Palace Bar reef 
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Figure 5. Species-specific abundance for bluefish in relation to time of 

day and day of the year for A.) May 22-23, B.) June 5-6, C.) June 

19-20, D.) July 2-3, E.) July 17-18, F.) August 4-5, G.) August 18-19, 

and H.) September 2-3, 1997. 

represent a gradient or cline of habitat complexity commonly ob­

served in temperate estuaries; namely a cline moving from simple, 

unstructured hard sand bottom habitats through hard bottom shell 

habitats with little vertical relief culminating in complex, three­

dimensional reef structures created and maintained by oysters. 

These biogenic reef structures naturally ranged in size from acres 

to hectares and historically were dominant habitat types in Chesa­

peake Bay. 

This gradient of habitat types is a temperate analog to tropical 

coral reef systems ranging in scale from patch reefs through much 

larger reef systems (e.g., the Great Barrier Reef). The transient fish 

communities associated with temperate and tropical reef habitats 

are composed primarily of generalists that will opportunistically 

use available habitat (Sale 1980, Ebling & Hixon 1993, Roberts 
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Figure 6. Species-specific abundance for spot in relation to time of day 

and day of the year for A.) May 22-23, B.) June 5-6, C.) June 19-20, 

D.) July 2-3, E.) July 17-18, F.) August 4-5, G.) August 18-19, and H.) 

September 2-3, 1997. 

1993). The structural and ecological complexity of reef habitats 

makes them attractive foraging habitat for transient finfish as well 

as aggregation sites. Historically, shallow portions of Chesapeake 

Bay were characterized by a mosaic of habitat types including 

biogenic structure ranging from seagrass beds to oyster reefs ex­

tending across spatial scales ranging from kilometers to 1 Os of 

kilometers. The development of large biogenic reef structures was 

facilitated by the evolution of the Chesapeake Bay estuary (Hargis 

1999). The parallel development of the Bay's fish fauna favored 

transient fishes with broad habitat and dietary requirements (gen­

eralists) that were able to opportunistically use the dynamic estuarine 

habitat. These fishes successfully use the modem Chesapeake habitat 

in spite of relatively recent habitat alterations, namely the decline of 

both seagrass beds and oyster reefs during the late 20th century. 
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Figure 7. Species-specific abundance for striped bass in relation to 

time of day and day of the year for A.) May 22--23, B.) June 5-6, C.) 

June 19-20, D.) July 2--3, E.) July 17-18, F.) August 4-5, G.) August 

18-19, and H.) September 2--3, 1997. 

Previous discussions of oyster reef habitats as essential fish 

habitat for transient finfish (Breitburg & Miller 1998, Coen et al. 

1999) have examined fish species richness data from a geographic 

range of oyster reef habitats including both natural and restored 

reefs of varying ages. Coen et al. (1999) suggest that the use of 

oyster reef habitats by transient fish species "portends the reef 

habitats' importance as essential fish habitat, but many functional 

relationships remain to be evaluated". This study presents a unique 

comparison of transient fish use of oyster reefs in relation to other 

locally available habitat types and is the first to provide data to 

describe fish habitat use at Level 1 (presence/absence), Level 2 

(abundance) and Level 3 (size) levels of EFH designation. These 

data clearly show that these transient generalist fishes do not rely 

exclusively on oyster reef habitats. From a local historical per-
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Figure 8. Species-specific abundance for weakfish in relation to time 

of day and day of the year for A.) May 22-23, B.) June 5-6, C.) June 

19-20, D.) July 2--3, E.) July 17-18, F.) August 4-5, G.) August 18-19, 

and H.) September 2--3, 1997. 

spective, the continued presence of these species in the lower 

Chesapeake in the absence of natural oyster reefs for the past 20+ 

years (Hargis 1999) is an obvious indicator that oyster reef habitat 

is not essential for these opportunistic fishes. 

The habitat value of oyster reefs to transient fishes is much 

more complicated than a binary distinction (essential or not essen­

tial). Evaluations of oyster reefs as fish habitat must consider reefs 

in the context of locally available habitat types (per Minello 1999; 

this study) if accurate descriptions of habitat importance are to be 

made, particularly for transient finfish species. Continued exami­

nation of the functional ecological relationships between oyster 

reefs and the trophic communities that they support will provide 

data on which to base habitat distinctions at all four levels of EFH 

description and related resource management decisions. Gradients 
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across a gradient of habitat types ranging from sand bar through three dimensional oyster reef. Fourteen species from two hundred and 
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(lower water temperatures) to top (warmest water temperatures). 

+ 2.5 ,---------.----::::a--==---------, 

1 

3 

1CD1 CD 
@ ~1,1,1,2 

3,3,3,3 

i CD 

CD i® 1~ ® s&® 
Seatrout ® @ ! @ "?CD 

3 ~~@ : 
@ 2tl®: 

\
3{3 J; . ··@·1~3;,& ....... . 

1 ~ i@ 2@\~ 
Atlantic 2 ! Spot "' 
menhaden i w 

@i 

CD 

Atlantic 
croaker 

CD 

@ 

CD 

@ 
@ 
G) 

• 
Striped bass 

-3.0+---~-------~---~--~----< 
-1.0 Axis I +2.0 

Figure 10. Species-sample biplot for detrended correspondence analy­

ses (DCA) of common fish species across a gradient of habitat types 

ranging from sand bar through three dimensional oyster reef. Eight 

species from 201 samples collected at Palace Bar reef (1), Roane Point 

(2), and Ginney Point (3) with gill nets are presented. Axis I represents 

a gradient in diurnal light levels moving from left (dark) to right 

(light). Axis II represents a seasonal gradient in water temperatures 

moving from bottom (lower water temperatures) to top (warmest wa­

ter temperatures). 

TABLE 3. 

Average total length (mm) of the most common transient fish 

species (standard error) collected with gill nets at Palace Bar ·Oyster 

reef, Ginney Point, and Roane Point, Piankatank River, Virginia. 

Site-specific species total lengths were compared with 

species-specific ANOVAs. Horizontal lines under site-specific species 

average lengths values indicate sites where statistically similar sizes 

of a particular species were observed (ANOV A, Fisher's test; 

p < 0.05). 

Palace 

Fish Bar Reef Ginney Point Roane Point 

Atlantic coaker 311.6 (3.3) 295.1 (2.8) 290.2 (3.9) 

Atlantic menhaden 262.1 (1.9) 246.8 (1.6) 239.7 (1.0) 

Bluefish 307.1 (5.7) 298.3 (5.8) 297.1 (6.1) 

Spot 199.1 (1.6) 205.1 (1.4) 198.5 (1.7) 

Striped bass 294.5 (5.1) 261.7 (3.3) 278.6 (10.7) 

Weakfish 286.4 (8.9) 312.4 (20.8) 302 (20.7) 

in physical habitat complexity relate to gradients in habitat pro­

ductivity and thus habitat value or importance. A gradient of terms 

to describe habitat value that reflects the ecological value of a 

habitat would be a more realistic tool for habitat distinction. Given 

their physical and trophic complexity, oyster reefs are important 

habitat for transient estuarine finfish, however, on the basis of 

these data, we question the use of term "essential" with regard to 

oyster reef habitats given the generalist nature of the transient fish 

species that use these habitats. We suggest that oyster reef habitats 

are not essential for these fishes but that oyster reef habitats are of 

higher quality than other locally available estuarine habitat types 

and thus are better or perhaps even optimal for these fish in terms 

of growth, reproductive success, and survival. 
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