1	Global change and human action: Causes and consequences of interactive	
2	changes in stratospheric ozone, solar ultraviolet radiation and climate	
3	or	
4	Global change and human action: Interactive effects of changes in stratospheric	
5	ozone, solar ultraviolet radiation and climate on Earth's environment	
6		
7		
8	Paul W. Barnes ^{1*} , Craig E. Williamson ² , Robyn M. Lucas ³ , Sharon A. Robinson ⁴ , Sasha	
9	Madronich ⁵ , Nigel D. Paul ⁶ [Lead Authors], Janet F. Bornman ⁷ , Alkiviadis F. Bais ⁸ , Barbara	
10	Sulzberger ⁹ , Stephen R. Wilson ¹⁰ , Anthony L. Andrady ¹¹ , Richard L. McKenzie ¹² , Patrick J.	
11	Neale ¹³ , Amy T. Austin ¹⁴ , Germar H. Bernhard ¹⁵ , Keith R. Solomon ¹⁶ , Rachel E. Neale ¹⁷ , Paul J.	
12	Young ¹⁸ , Mary Norval ¹⁹ , Lesley E. Rhodes ²⁰ , Samuel Hylander ²¹ , Kevin C. Rose ²² , Janice	
13	Longstreth ²³ , Pieter J. Aucamp ²⁴ , Carlos L. Ballaré ²⁵ , Rose M. Cory ²⁶ , Stephan D. Flint ²⁷ , Frank	
14	R. de Gruijl ²⁸ , Donat-P. Häder ²⁹ , Anu M. Heikkilä ³⁰ , Marcel A.K. Jansen ³¹ , Krishna K. Pandey ³² ,	
15	T. Matthew Robson ³³ , Craig A. Sinclair ³⁴ , Sten-Åke Wängberg ³⁵ , Robert C. Worrest ³⁶ , Seyhan	
16	Yazar ³⁷ , Antony R. Young ³⁸ , and Richard G. Zepp ³⁹	
17		
18		
19		
20	¹ Department of Biological Sciences and Environment Program, Loyola University New Orleans,	
21	New Orleans, Louisiana, 70118, USA; ² Department of Biology, Miami University, Oxford, Ohio,	
22	45056, USA; ³ National Centre for Epidemiology and Population Health, The Australian National	
23	University, Canberra, Australia; ⁴ Centre for Sustainable Ecosystem Solutions, School of Earth,	
24	Atmosphere and Life Sciences & Global Challenges Program, University of Wollongong,	
25	Wollongong, NSW 2522, Australia; ⁵ National Center for Atmospheric Research, Boulder,	
26	Colorado, 80307, USA; ⁶ Lancaster Environment Centre, Lancaster University, Lancaster LA1	
27	4YQ, UK; ⁷ College of Science, Health, Engineering and Education, Murdoch University, Perth,	
28	WA, Australia; ⁸ Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, 54124	
29	Thessaloniki, Greece; ⁹ Swiss Federal Institute of Aquatic Science and Technology (Eawag),	
30	CH-8600 Dübendorf, Switzerland; ¹⁰ Centre for Atmospheric Chemistry, School of Earth,	
31	Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia;	
32	¹¹ Department of Chemical and Biomolecular Engineering, North Carolina State University,	
33	Raleigh, NC 27695-7901, USA; ¹² National Institute of Water & Atmospheric Research, NIWA,	

Central Otago 9352, New Zealand; ¹³Smithsonian Environmental Research Center, Edgewater, 34 35 MD 21037, USA; ¹⁴University of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina; ¹⁵Biospherical Instruments Inc., San Diego, CA 92110-2621, USA; 36 ¹⁶School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1 Canada; 37 ¹⁷QIMR Berghofer Medical Research Institute, Herston, Queensland, 4006, Australia; 38 39 ¹⁸Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK; ¹⁹Biomedical Sciences, University of Edinburgh Medical School, Edinburgh EH8 9AG, UK; ²⁰Centre for 40 Dermatology Research, The University of Manchester and Salford Royal NHS Foundation Trust, 41 42 Manchester M6 8HD, UK; ²¹Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-39182 Kalmar, Sweden; ²²Department of Biological Sciences, 43 Rensselaer Polytechnic Institute, Troy, New York, 12180, USA; ²³The Institute for Global Risk 44 45 Research, Bethesda, Maryland 20817, USA; ²⁴Ptersa Environmental Consultants, Faerie Glen, 0043, South Africa; ²⁵IFEVA, Faculty of Agronomy and CONICET, University of Buenos Aires, 46 47 C1417DSE Buenos Aires, Argentina; ²⁶Department of Earth and Environmental Sciences, 48 University of Michigan, Ann Arbor, Michigan, 48109, USA; ²⁷Department of Forest, Rangeland, 49 and Fire Sciences, University of Idaho, Moscow, Idaho, 83844-1135, USA; ²⁸Department of Dermatology, Leiden University Medical Centre, NL-2300 RC Leiden, The Netherlands; 50 51 ²⁹Friedrich-Alexander University, Erlangen-Nürnberg, Germany; ³⁰Finnish Meteorological Institute R&D/Climate Research, 00101 Helsinki, Finland; ³¹School of Biological, Earth and 52 Environmental Sciences, University College Cork, Cork, Ireland; ³²Institute of Wood Science 53 and Technology, Bengaluru-560003, India; ³³Organismal and Evolutionary Biology, Vikki Plant 54 Science Centre, 00014 University of Helsinki, Finland; ³⁴Cancer Council Victoria, Melbourne, 55 Australia; ³⁵Department of Marine Sciences, University of Gothenburg, SE-405 30 Göteborg, 56 57 Sweden; ³⁶CIESIN, Columbia University, New Hartford, Connecticut, 06057-4139; USA; 58 ³⁷Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, 59 6009, Australia; ³⁸St. John's Institute of Dermatology, King's College London, London SE1 9RT, UK; ³⁹United States Environmental Protection Agency, Athens, Georgia, 30605-2700, USA. 60 61 62 Author for correspondence: Email: pwbarnes@loyno.edu; ORCID: 0000-0002-5715-3679 63 64 65 66 Author contributions: All authors helped in the development and review of this paper. P.W.B,

67 C.E.W., R.M.L., S.A.R., S.M., and N.D.P. played major roles in conceptualizing and writing the

- 68 document; P.W.B. organized and coordinated the paper and integrated comments and revisions
- 69 on all the drafts. C.E.W., R.M.L., J.F.B., A.F.B., B.S., S.R.W., and A.L.A. provided content with
- 70 the assistance of S.M., S.A.R., G.H.B., R.L.M., P.J.A., A.M.H., P.J.Y. (stratospheric ozone
- 71 effects on UV and ozone-driven climate change), R.E.N., F.R.G., M.N., L.E.R., C.A.S., S.Y.,
- 72 A.R.Y. (human health), P.W.B., S.A.R., C.L.B., S.D.F., M.A.K.J., T.M.R. (agriculture and
- terrestrial ecosystems), P.J.N., S.H., K.C.R., R.M.C., D.P.H., S-Å.W., R.C.W. (fisheries and
- 74 aquatic ecosystems), A.T.A., R.G.Z. (biogeochemistry and contaminants), K.R.S., J.L. (air
- 75 quality and toxicology), and K.K.P. (materials). R.L.M. conducted the UV simulation modelling.

76 1. Summary

77 Changes in stratospheric ozone and climate over the past 40+ years have altered the 78 solar ultraviolet (UV) radiation conditions at Earth's surface. Ozone depletion has also 79 contributed to regional climate change in the Southern Hemisphere. These changes are 80 interacting in complex ways to affect human health, food and water security, and assorted 81 ecosystem services. Nonetheless, many adverse effects of exposure to high UV radiation have 82 been avoided because of the Montreal Protocol with its Amendments and Adjustments. This 83 international treaty has also played a significant role in mitigating global climate change. 84 Climate change is currently influencing UV radiation exposure and modulating how organisms, 85 ecosystems and people respond to UV radiation; these effects will likely become more 86 pronounced in the future. The interactions between stratospheric ozone, climate, and UV 87 radiation will therefore shift over time; however, the Montreal Protocol will continue to have farreaching benefits for human well-being and environmental sustainability. 88 89

90 2. Stratospheric ozone depletion, the Montreal Protocol, and the UNEP Environmental

91 Effects Assessment Panel

92 Warnings that Earth's stratospheric ozone layer could be at risk from chlorofluorocarbons (CFCs) and other anthropogenic substances were first issued by scientists 93 94 in the early 1970's^{1,2}. Soon thereafter (1985), large losses of stratospheric ozone were reported 95 over Antarctica³ with smaller, but more widespread erosion of stratospheric ozone found over 96 much of the rest of the planet⁴. Subsequent studies clearly linked these ozone losses to the 97 emissions of CFCs and other ozone-depleting substances⁵ and, at least over Antarctica, unique 98 atmospheric conditions during winter that facilitate ozone depletion^{6,7}.

99 In response to the initial concerns about the potentially deleterious effects of elevated 100 surface solar ultraviolet-B radiation (UV-B; 280-315 nm) resulting from ozone depletion, the 101 international community began mobilizing in 1977 to recognize the fundamental importance of 102 stratospheric ozone to life on Earth and to develop and implement policies to preserve the integrity of the ozone layer⁸. Of particular concern was the possibility that exposure to high 103 104 levels of UV-B would increase the incidence of skin cancer and cataracts in humans, weaken 105 people's immune systems, decrease agricultural productivity, and negatively affect sensitive 106 aquatic organisms and ecosystems. The policy solution that emerged to address ozone 107 depletion was the 1985 Vienna Convention for the Protection of the Ozone Layer. This 108 convention was followed by the 1987 Montreal Protocol on Substances that Deplete the Ozone 109 Layer, which was negotiated to control the consumption and production of anthropogenic

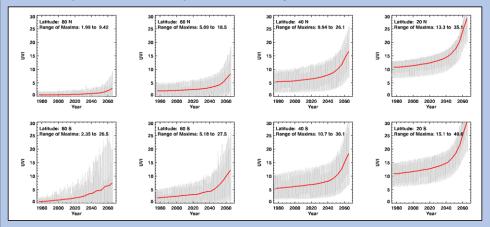
110 ozone-depleting substances.

111 The Montreal Protocol was the first multilateral environmental agreement by the United

- 112 Nations to ever achieve universal ratification (197 parties by 2008). Since its inception, this
- 113 international accord has been amended and adjusted a number of times by the member Parties
- 114 to the Montreal Protocol. The Parties base their decisions on scientific, environmental, technical,
- 115 and economic information provided by three assessment Panels (Box 1). All three panels
- 116 provide full assessment reports to the Parties every four years (quadrennial reports) and
- 117 shorter, periodic updates in the intervening years as needed.

BOX 1. The three assessment panels supporting the Montreal Protocol.

There are three panels established by the Montreal Protocol to assess various aspects of stratospheric ozone depletion. These three Panels have complementary charges. The Scientific Assessment Panel (SAP) assesses the status of the depletion of the ozone layer and relevant atmospheric science issues. The Technology and Economic Assessment Panel (TEAP) provides technical and economic information to the Parties on alternative technologies to replace ozone depleting substances. The Environmental Effects Assessment Panel (EEAP) considers the full range of potential effects of stratospheric ozone depletion, UV radiation and the interactive effects of climate change on human health, aquatic and terrestrial ecosystems, biogeochemical cycles, air quality, and materials for construction and other uses. Additional information on these panels, including their most recent reports, can be found on the United Nations Environment Programme (UNEP) Ozone Secretariat website (https://ozone.unep.org/science/overview).


118

- 119 The implementation of the Montreal Protocol has successfully prevented the
- 120 uncontrolled global depletion of the stratospheric ozone layer and associated large increases in
- 121 surface UV-B radiation⁹⁻¹² (Box 2). Concentrations of chlorine and bromine from long-lived
- 122 ozone-depleting substances have been declining in the stratosphere since the late 1990s¹².
- 123 While significant seasonal ozone depletion over Antarctica has occurred annually since the
- 124 1980s (the "ozone hole"), there have been small, but significant, positive trends in total column
- 125 ozone in Antarctica in spring over the period 2001-2013¹². Global mean total ozone is projected
- 126 to recover to pre-1980 levels by the middle of the 21st century, assuming full compliance with
- 127 the Montreal Protocol¹². ¹³

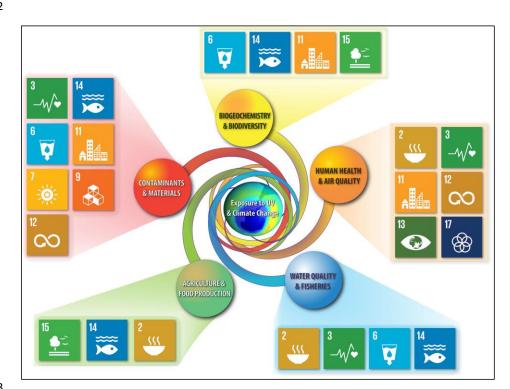
Commented [PWB1]: Remove this number in unformatted document—its there so the reference appears in Box 2.

BOX 2. Environmental effects in the 'World Avoided'

There are a number of published models addressing the implications and potential outcomes of a 'World Avoided' without the Montreal Protocol¹⁹. All point to progressive loss of stratospheric ozone that would have accelerated over time and extended to affect the entire planet by the second half of this century. For example, the GEOS-CCM world avoided simulation¹¹ used here assumes that ozone-depleting substances continue to increase by 3% per year, beginning in 1974. This collapse in the total global ozone column would have resulted in clear sky UV Index (UVI) values increasing sharply after 2050 at most latitudes (see graphs below) with extreme values of 20 becoming common-place by 2065 over almost all inhabited areas of the planet, and as high as 41 in the tropics¹¹, more than four times the UVI that is currently considered 'extreme' by the World Health Organization.

The graphs show calculated surface monthly (grey lines) and annual mean (red line) UVI values for clear skies at different latitudes without the Montreal Protocol, based on the model in Newman and McKenzie¹¹. Range of maxima given show pre-1980 *vs.* 2065 data.

Combining these models of ozone and UV radiation with the understanding of the links between exposure to excessive UV radiation and the risk of skin cancers has allowed some estimates of the incidence of skin cancer in the 'World Avoided'. Different studies have considered different time-scales and/or different geographical regions, but all conclude that the successful implementation of the Montreal Protocol will have prevented many millions of cases of skin cancers. For example, a report by the United States Environmental Protection Agency¹³ showed that when compared with a situation of no policy controls, full implementation of the Montreal Protocol and its Amendments is expected to avoid more than 280 million cases of skin cancer, ca. 1.6 million skin cancer deaths, and more than 45 million cases of cataract in the USA for people born between 1890 and 2100.

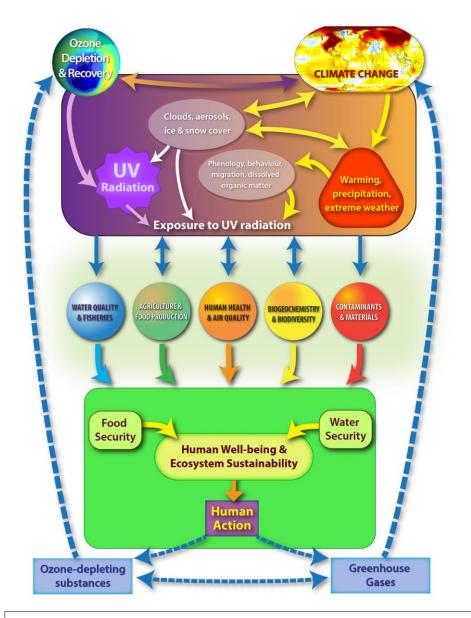

128

129 While carbon dioxide, methane, and nitrous oxide are the dominant greenhouse gases

- 130 emitted by humans, most of the ozone-depleting substances controlled by the Montreal Protocol
- 131 (CFCs and others) are also potent greenhouse gases that contribute to global warming¹⁴.
- 132 Modeling studies indicate that in the absence of the Montreal Protocol, global mean
- 133 temperatures would have risen more than 2°C by 2070 due to the warming effects from ozone-
- 134 depleting substances alone¹⁵. The adoption of the Kigali Amendment to the Montreal Protocol in

2016 limits the production and consumption of hydrofluorocarbons (HFCs), which are nonozone depleting substitutes for CFCs¹⁶. However, HFCs are potent greenhouse gases and
limiting emissions of these compounds could further reduce global temperatures as much as 0.5
°C by the end of this century¹⁷. This Amendment has thus further broadened and strengthened
the scope of the Montreal Protocol, adding to an effective international treaty that not only
addresses stratospheric ozone depletion, but is doing more to mitigate global climate change
than any other human action to date¹⁸⁻²⁰.

142 Here, we highlight key findings from the most recent EEAP Quadrennial Report, which 143 assesses the state of the science on the environmental effects of stratospheric ozone depletion 144 and consequent changes in UV radiation at Earth's surface, and the interactive effects of 145 climate change. We specifically consider the significant policy and societal implications of these 146 environmental effects, and address the multiple ways by which the Montreal Protocol is contributing to environmental sustainability and human health and well-being. Given the 147 accelerating pace of climate change²¹, we also consider the increasing role that climate change 148 is playing in influencing exposure of humans and other organisms to UV radiation, how 149 stratospheric ozone depletion is itself contributing to climate change, and the various ways that 150 151 climate change is affecting how plants, animals, and ecosystems respond to UV radiation. 152 Thus, as mandated by the Parties of the Montreal Protocol, we consider a wide range of the 153 environmental effects that are linked to changes in stratospheric ozone, climate, and solar UV 154 radiation. Our findings address many of the United Nations Sustainable Development Goals (Fig. 1). More in-depth information on the environmental effects of ozone depletion can be found 155 elsewhere²²⁻²⁸. By focusing on the interactions between stratospheric ozone, UV radiation, and 156 climate, the collated EEAP Assessment complements those of the SAP¹² and the UN 157 Intergovernmental Panel on Climate Change²⁹ to provide a comprehensive assessment on the 158 causes and consequences of global changes in Earth's atmosphere. 159 160


Figure 1. The United Nations Sustainable Development Goals (SDGs) addressed by the UNEP Environmental Effects Assessment Panel 2018 Quadrennial Report. The findings from this report are summarized in this paper according to five major topics (in circles). These address 11 of the 17 UN SDGs (in numbered squares): **2**. Zero hunger, **3**. Good health and well-being, **6**. Clean water and sanitation, **7**. Affordable and clean energy, **9**. Industry, innovation and infrastructure, **11**. Sustainable cities and communities, **12**. Responsible consumption and production, **13**. Climate action, **14**. Life below water, **15**. Life on land and **17**. Partnerships for the goals. More information on these SDGs can be found at: https://www.un.org/sustainabledevelopment/sustainable-development-goals/

164 3. Key findings and highlights

165 3.1 Stratospheric ozone, climate change and UV radiation at Earth's surface Stratospheric ozone depletion and climate change interact via several direct and indirect 166 pathways that can have consequences for food and water security, human well-being, and 167 168 ecosystem sustainability (Figs. 1, 2). Climate change can modify depletion of stratospheric 169 ozone by perturbing temperature, moisture, and wind speed and direction in the stratosphere 170 and troposphere³⁰; and certain greenhouse gases (e.g., N_2O and CH_4) also modify the chemistry regulating ozone levels.¹² Conversely, it is now clear that ozone depletion is directly 171 172 contributing to climate change in some regions of the southern hemisphere by altering atmospheric circulation patterns in this part of the globe³¹ which affects weather conditions, sea 173 surface temperatures, ocean currents, and the frequency of wildfires in certain locations³²⁻³⁶. 174 175 These ozone-driven changes in climate are in turn exerting significant impacts on the terrestrial and aquatic ecosystems in this region^{24,25,37,38} (Box 3). In the northern hemisphere similar, but 176 177 smaller effects of ozone depletion on climate may exist²⁷, but year-to-year variability in the 178 meteorology is greater than in the southern hemisphere, and there are no reports as yet linking 179 these changes to environmental impacts. 180 Depletion of stratospheric ozone leads to increased UV-B radiation at Earth's surface²⁷

that can then directly affect organisms and their environment. Because of the success of the
Montreal Protocol, present-day increases in UV-B (quantified as clear sky UV Index) due to
stratospheric ozone depletion have been negligible in the tropics, small (5-10%) at mid-latitudes,
and large only in Antarctica. As stratospheric ozone recovers over the next several decades¹²,
the clear-sky noon-time UV Index is expected to decrease (e.g., by 2-8% at mid-latitudes
depending on season and precise location, and by 35% during the Antarctic October ozone
'hole'^{27,38}).

Independent of stratospheric ozone variations, climate change is increasingly
contributing to changes in incident surface UV-B radiation^{27,40} (Fig. 2). Unlike stratospheric
ozone depletion, these climate change-driven effects influence the amount of surface solar
radiation not just in the UV-B but also in the ultraviolet-A (UV-A; 315-400 nm) and visible (400700 nm) parts of the spectrum. These changes are important as many of the environmental and
health effects caused by UV-B can be either ameliorated or accentuated, to varying degrees, by
UV-A and visible radiation²³⁻²⁵.

Figure 2. Links between stratospheric ozone depletion, UV radiation, and climate change, including environmental effects and potential consequences for food and water security, human well-being and the sustainability of ecosystems. Direct effects are shown as solid lines with feedback effects indicated by double arrows. Important effects driven by human action are shown as dashed lines.

Future changes in incident surface solar UV radiation (UV-B and UV-A) will depend 198 199 strongly on changes in aerosols, clouds, and surface reflectivity (e.g., snow and ice cover). 200 Climate change is altering cloud cover with some regions becoming cloudier and others less 201 $cloudy^{41}$. Increased cloud cover generally tends to reduce UV radiation at Earth's surface, but 202 effects vary with type of clouds⁴² and their position relative to that of the sun⁴³. Aerosols (solid and liquid particles suspended in the atmosphere²⁸) reduce and scatter UV radiation; the type 203 204 and amounts of aerosols in the atmosphere are affected by volcanic activity, the emissions of air pollutants, the frequency and extent of wildfires and dust storms, and other factors, many of 205 which are affected by climate change^{26,27,44}. In heavily polluted areas (e.g., southern and 206 207 eastern Asia), improvements in air quality resulting from measures to control the emissions of 208 air pollutants are expected to increase levels of UV radiation to near pre-industrial levels (i.e., 209 before extensive aerosol pollution); the extent of these changes is contingent on the degree to which emissions of air pollutants in the future are curtailed. High surface reflectance from snow 210 211 or ice cover can enhance incident UV radiation because some of the reflected UV radiation is 212 scattered back to the surface by aerosols and clouds in the atmosphere. Consequently, climate 213 change-driven reductions in ice or snow cover, which is occurring in polar regions and 214 mountains, will likely decrease surface UV radiation in these areas²⁷. At the same time, this will increase the UV exposure of soils and waters that are no longer covered by snow or ice. 215 216

217 3.2 UV radiation exposure and climate change

The direct effects of UV radiation on organisms, including humans, and materials, depend on levels of exposure to UV radiation. This is determined by a number of factors, including many that are influenced by climate change (Fig. 2). Importantly, these climate change-driven effects can result in either increases <u>or</u> decreases in exposures to solar UV radiation, depending on location, time of year, and other circumstances. Some of the most important regulators of exposure to UV radiation include:

224 • Behavior: The exposure of humans to UV radiation ranges from one-tenth to ten 225 times the average for the population⁴⁵, depending on the time people spend indoors 226 vs outdoors and under shade structures. The exposure of the skin or eyes to UV 227 radiation further depends on the use of sun protection such as clothing or sunglasses; the UV radiation dose received by cells and tissues within the skin is 228 influenced by pigmentation of the skin and use of sunscreens²³. Warmer 229 230 temperatures and changing precipitation patterns resulting from climate change will alter patterns of exposure to the sun⁴⁶, but the direction and magnitude of this effect 231

will vary globally. Many animals, such as insects, fish and birds, can sense UV
 radiation and use this 'visual' information to avoid exposure to prolonged periods of
 high UV radiation^{47,48}.

- In response to climate change, many animals and plants are migrating or shifting
 their ranges to higher latitudes and elevations^{49,50}, while increases in exposure to UV
 radiation leads zooplankton to migrate into deeper waters⁵¹⁻⁵⁴. Because of the
 natural gradients in solar UV radiation that exist with latitude, altitude, and water
 depth^{25,27}, these shifts in distributions will expose organisms to conditions of UV
 radiation to which they are unaccustomed.
- Climate change is altering phenology, including plant flowering, spring bud-burst in trees, and emergence and breeding of animals^{49,55}. As solar UV radiation varies naturally with seasons, such alterations in the timing of critical life-cycle events will affect UV exposures.
- Modifications in vegetation cover (e.g., drought, fire, pest-induced die-back of forest canopies or invasion of grasslands by shrubs) driven by changes in climate and land use alter the amount of sunlight and UV radiation reaching many ground-dwelling terrestrial organisms⁵⁶.
- 249 Reductions in snow and ice cover and the timing of melt driven by climate change is modifying surface UV reflectance and increasing the penetration of UV radiation into 250 251 rivers, lakes, oceans, and wetlands in temperate, alpine, and polar regions⁵⁷. 252 Additionally, increases in extreme weather events (e.g., heavy rainfall and floods) 253 increase the input of dissolved organic matter and sediments into coastal and inland 254 waters that can reduce the clarity of water and exposure of aquatic organisms to UV radiation^{25,58}. In contrast, in some lakes and oceans where climate warming is 255 leading to shallower mixing depths, exposure to UV radiation in the surface mixed 256 257 layer is increasing²⁵.

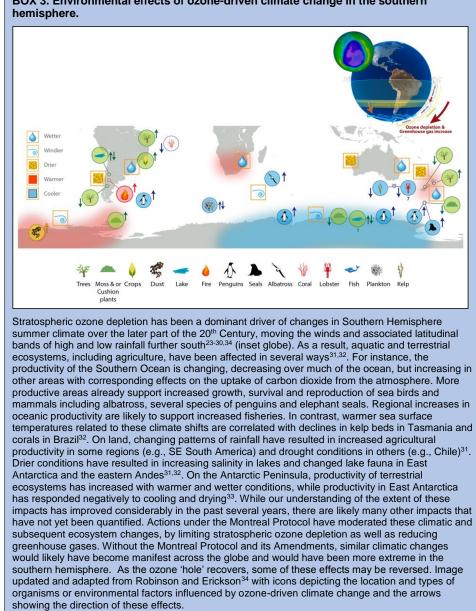
258

259 3.3. Environmental effects of changing exposure to UV radiation

Changes in exposure to solar UV radiation have the potential to affect materials,
humans, and many other organisms in ways that have consequences for the health and wellbeing of people and sustainability of ecosystems (Fig. 1). Below we highlight some of these
effects as identified in the recent UNEP EEAP Quadrennial Assessment.

264

265 <u>3.3.1. Impacts on human health and air quality</u>


Higher exposure to solar UV radiation increases the incidence of skin cancers and other 266 UV-induced human diseases such as cataracts²³. While increases in the incidence of skin 267 cancer over the last century appear largely attributable to changes in behavior that increase 268 269 exposure to UV radiation, these changes highlight how susceptible some human populations would have been to uncontrolled depletion of stratospheric ozone. Skin cancer is the most 270 271 common cancer in many developed countries with predominantly light-skinned populations²³. 272 Melanoma accounts for less than 5% of skin cancers, but has a much higher mortality than 273 other skin cancers and accounts for approximately 60,000 deaths worldwide each year. 274 Exposure to UV radiation accounts for 60-96% of the risk of developing cutaneous malignant 275 melanoma in light-skinned populations; globally, ca.168,000 new melanomas in 2012 were 276 attributable to 'excess' exposure to UV radiation (above that of a historical population with 277 minimal exposure) corresponding to 76% of all new melanoma cases⁵⁹. Stratospheric ozone depletion is expected to increase these numbers by a few percent⁶⁰ when integrated over a 278 279 lifetime. Much larger increases in skin cancer incidence would already be occurring in the 280 absence of the Montreal Protocol^{11,13} (Box 2).

Exposure to UV radiation contributes to the development of cataract, the leading cause of impaired vision worldwide (12.6 million blind and 52.6 million visually impaired due to cataract in 2015)⁶¹. This is a major health concern particularly in low income countries with often high ambient UV radiation and limited access to cataract surgery. The role of exposure to UV radiation for age-related macular degeneration, another major cause of visual impairment globally, remains unclear²³.

287 Concern about high levels of UV-B radiation as a consequence of stratospheric ozone depletion was an important driver for the development of programs for sun protection in many 288 289 countries. These programs focus on promoting changes in behavior through structural and 290 policy-level interventions⁶², and have been highly cost effective in preventing skin cancers⁶³. 291 Behavioral strategies need to be informed by the real-time level of ambient UV radiation 292 (provided by the UV Index) and include controlling time outdoors and the use of clothing, hats, sunscreen and sunglasses to reduce exposure. These changes can be facilitated by providing 293 294 shade in public spaces such as parks, swimming pools, sports fields and playgrounds, and access to sunscreen⁶². 295

Changes in UV radiation and climate can further impact human health by influencing air
quality²⁸. A number of recent international assessments have concluded that poor air quality is
the largest cause of deaths globally due to environmental factors²⁸. Together with nitrogen
oxides and volatile organic compounds, UV radiation is a key factor in the formation and

300 destruction of ground-level ozone and some particulate pollutants. Future recovery of 301 stratospheric ozone and changes in climate may alter ground-level ozone via decreases in UV radiation and increases in downward transport of stratospheric ozone²⁸. Modelling studies for 302 303 the USA indicate that reductions in UV radiation due to stratospheric ozone recovery will lead to 304 somewhat lower ground-level ozone in some urban areas but slight increases elsewhere⁶⁴. 305 Although these changes in ground-level ozone are estimated to be small (ca. 1% of current 306 ground-level amounts), large populations are already affected by poor air quality, such that even small relative changes in air quality could have significant consequences for public health. 307 308 Exposure to UV radiation also has benefits for human health, the most important being 309 its role in vitamin D synthesis which is critical to healthy bones, particularly during infancy and 310 childhood. There is also growing evidence of a range of other benefits of exposure to UV and 311 visible radiation in systemic autoimmune diseases (such as multiple sclerosis), non-cancer mortality, and in the prevention of myopia²³. The dose of UV radiation necessary to balance the 312 313 risks with benefits varies according to age, sex, skin type, and location. Climate change will also 314 likely alter the balance of risks vs. benefits for human populations living in different regions^{23,27}. 315 For example, lower ambient UV-B at high latitudes will increase the risk of vitamin D deficiency 316 where this risk is already substantial. Conversely, warmer temperatures may encourage people in cooler regions to spend more time outdoors, increasing exposure to UV-B. Reductions in 317 318 snow and ice cover could reduce the exposure of the eyes to UV radiation, possibly decreasing 319 the risk of damage to the eyes.

BOX 3. Environmental effects of ozone-driven climate change in the southern

324 <u>3.3.2 Impacts on agriculture and food production</u>

325 There is little evidence to suggest that a modest increase in solar UV radiation by itself has had any substantial negative effect on crop yield and plant productivity²⁴. It is unclear how 326 327 food production would have been impacted by the large increases in solar UV radiation in the absence of the Montreal Protocol. One analysis, based on data from a number of field studies 328 329 conducted in regions where stratospheric ozone depletion is most pronounced (i.e., high 330 latitudes), concluded that a 20% increase in UV radiation equivalent to about a 10% reduction in stratospheric ozone has only reduced plant production by ca. 6%65. To what extent this 331 332 relationship would hold for levels of UV radiation >2-fold higher than present (i.e., the 'World 333 Avoided' scenario; Box 2¹¹) is uncertain, but would be an obvious major concern.

334 It is likely that by contributing to the mitigation of climate change, the Montreal Protocol 335 and its Amendments have reduced the vulnerability of agricultural crops to rising temperatures, drought, and extreme weather events. In some regions of the southern hemisphere, changes in 336 337 rainfall caused by the combined effects of rising greenhouse gases and ozone depletion have 338 been linked to both increases and decreases in plant productivity (Box 3) and these effects may 339 reverse somewhat as the ozone 'hole' recovers. Exposure to UV radiation can also modify how 340 climate change factors, including drought, high temperatures, and rising carbon dioxide levels, 341 influence plants, but effects are complex and often contingent on growth conditions. For 342 example, in some cases increased UV radiation can reduce the stimulatory effects of elevated carbon dioxide on plant growth⁶⁶. In other cases, exposure to UV radiation can increase 343 344 tolerance of plants to drought⁶⁷. Increases in ground-level ozone due to reduced UV radiation resulting from the recovery of stratospheric ozone could also negatively affect crop yields²⁸. 345 Understanding these, and other UV-climate change interactions can inform growers and 346 347 breeders about agricultural practices that could aid in maintaining crop yields in the face of 348 evolving environmental change.

UV radiation can also have beneficial effects on plants as mediated by specific 349 photoreceptors that regulate plant growth and development⁶⁸. These non-damaging effects 350 include alterations in plant chemistry, that can alter the nutritional quality of food⁶⁹ as well as 351 352 plant defenses against pests and pathogens⁷⁰. Consequently, conditions that decrease the 353 exposure of crop plants to UV radiation (e.g., climate change, ozone recovery, shifting planting 354 dates or increased sowing densities), could reduce plant defenses and thereby affect food 355 security in ways other than just the direct effects on yield⁷¹. For certain vegetable crops grown in 356 greenhouses and other controlled-environments, UV radiation from lamps is increasingly being 357 used to manipulate plant hardiness, food quality and, in certain cases, resistance to pests⁷².

359 <u>3.3.3 Impacts on water quality and fisheries</u>

360 Climate change is altering the mixing patterns in the water column of lakes and oceans, 361 with deeper mixed layers in some regions and shallower mixed layers in others. These changes are altering the UV exposure and fundamental structure of aquatic ecosystems and 362 363 consequently their ecosystem services (e.g., water quality, productivity of fisheries) in regionally 364 specific ways²⁵. The sensitivity to damage induced by UV radiation for the transparent larvae of many commercially important fish species, combined with the distribution of these larvae in high 365 UV surface waters, have the potential to reduce juvenile survival and subsequent fisheries 366 harvest⁷³. In contrast, reductions in the transparency of clear-water lakes to UV radiation may 367 increase the potential for invasions of UV-sensitive warm-water species that can negatively 368 369 affect native species74.

370 Climate change-related increases in heavy precipitation and melting of glaciers and 371 permafrost are increasing the concentration and color of UV-absorbing dissolved organic matter 372 and particulates^{25,26}. This is causing the "browning" of many inland and coastal waters, with 373 consequent loss of the valuable ecosystem service in which solar UV radiation disinfects surface waters of parasites and pathogens⁵⁸. Region-specific increases in the frequency and 374 duration of droughts have the opposite effect, increasing water clarity and enhancing solar 375 376 disinfection, as well as altering the depth distribution of plankton that provide critical food resources for fish^{44,51}. 377

378

379 <u>3.3.4 Impacts on biogeochemical cycles, climate system feedbacks and biodiversity</u>

380 Solar UV radiation inhibits primary production in the surface waters of the oceans by as 381 much as 20%, reducing carbon fixation rates in one of the most important biogeochemical 382 cycles on Earth^{75,76}. Exposure to solar UV and visible radiation can also accelerate the 383 decomposition of natural organic matter (e.g., terrestrial plant litter, aquatic detritus, and 384 dissolved organic matter) through the process of photodegradation, resulting in the emission of greenhouse gases including carbon dioxide and nitrous oxide^{77,78}. Climate change-driven 385 386 increases in droughts, wildfires, and thawing of permafrost soils have the potential to increase photodegradation^{26,79}, thereby fueling a positive feedback on global warming; however, the 387 388 scale of this effect remains an important knowledge gap.

Species of aquatic and terrestrial organisms differ in their tolerances to UV radiation and
 these differences can lead to alterations in the composition and diversity of ecological
 communities under conditions of elevated UV radiation^{24,25}. UV radiation also modifies herbivory

and predator-prey interactions, which then alters trophic interactions, energy transfer, and the 392 food webs in ecosystems⁸⁰. Presently, changes in regional climate caused in part by ozone 393 394 depletion, are threatening the habitat and survival of a number of species found only in the 395 southern hemisphere. These include plants growing in the unique high-elevation woodlands of the South American Altiplano⁸¹ and moss and other plant communities in Antarctica³⁷. At the 396 397 same time, the ozone-driven changes in climate are enhancing reproductive success of some marine birds and mammals^{24,25}(Box 3). To what extent the Montreal Protocol has specifically 398 contributed to the maintenance of biodiversity in ecosystems is unknown, but losses in species 399 400 diversity in aquatic ecosystems are known to be linked to high exposure to UV radiation which 401 can then lead to a decline in the health and stability of these systems⁴⁴.

403 <u>3.3.5 Impacts on contaminants and materials</u>

402

Solar UV radiation plays a critical role in altering the toxicity of contaminants^{25,26}. 404 405 Exposure to UV radiation increases the toxicity of contaminants such as pesticides and 406 polycyclic aromatic hydrocarbons to aquatic organisms but, more commonly, results in the 407 formation of less toxic breakdown products. For example, UV-B radiation transforms the most 408 toxic form of methyl mercury to forms that are less toxic, reducing the accumulation of mercury in fish⁸². Although the degradation of many pollutants and water-borne pathogens by solar UV 409 410 radiation is affected by changes in stratospheric ozone, other factors such as dissolved organic 411 matter are more important in regulating penetration of UV radiation into water, and hence 412 photodegradation of these pollutants²⁶. Advances in modeling are allowing improved 413 quantification of the effects of global changes on the fate of aquatic pollutants. 414 Sunscreens are in widespread use, including in cosmetics, as part of the suite of

approaches to UV protection for humans. Sunscreens wash into coastal and inland waters, with
potential effects on these aquatic ecosystems. The toxicity of artificial sunscreens to corals⁸³,
sea urchins⁸⁴, fish⁸⁵, and other aquatic organisms, has led Palau, the State of Hawaii, USA, and
the city of Key West in Florida, USA, to ban the use of some sunscreens. Similar legislation is
under consideration by the European Union⁸⁶.

420 Microplastics (defined as plastic particles < 5mm) are now ubiquitous in the world's
421 oceans and pose an emerging serious threat to marine ecosystems with many organisms now
422 known to ingest them⁸⁷. Microplastics are formed by the UV-induced degradation and
423 breakdown of plastics exposed to sunlight. Microplastics occur in up to 20% or more of fish
424 marketed globally for human consumption⁸⁸. Although the toxicity of microplastics is unknown,

higher temperatures and increased exposure to UV radiation accelerate the fragmentation ofplastics, potentially threatening food and water security.

427 Until very recently, plastics used in packaging and building materials were selected and optimized on the basis of durability and performance²². However, the present focus on 428 increased sustainability with the trend towards 'green' buildings, now requires such choices to 429 430 be environmentally acceptable as well. This includes the increased use of wood, which can be 431 renewable, carbon-neutral, and low in embodied energy compared to plastics. Many of these 432 materials are vulnerable to accelerated aging when exposed to UV radiation. At present, 433 industrial activities are aimed at identifying and developing novel, safer, effective, and 'greener' 434 additives (colorants, plasticizers, and stabilizers) for plastic materials and wood coatings, but 435 continued research and development is required to further combat harsher weathering resulting 436 from climate change. 437 Some compounds being used as substitutes for CFCs, such as

438 hydrochlorofluorocarbons (HCFCs), HFCs, and hydrofluoroolefins (HFOs), are known to 439 degrade to trifluoroacetic acid (TFA) in the atmosphere. TFA is a strong acid, and in sufficiently 440 large concentrations could produce damage to organisms. Because no sinks in the atmosphere 441 or in surface soils and waters have been identified, concern has been raised about its potential 442 accumulation over time in sensitive environments (e.g., salt lakes, wetlands, vernal pools). 443 Large natural sources of TFA have been invoked to explain high TFA concentrations in deep oceanic waters⁸⁹ that have had no contact with atmospheric gases for several millennia. 444 445 Anthropogenic sources include pesticides, pharmaceuticals, and industrial reagents. Current 446 estimates indicate that any incremental TFA burden from the CFC substitutes would be minor compared to the other natural and anthropogenic sources, and the overall TFA concentrations 447 448 (from all sources) are expected to remain well below levels harmful to the environment⁹⁰. 449

450 4. Conclusions and Knowledge Gaps

451 The Montreal Protocol has prevented the global depletion of stratospheric ozone and 452 consequently large-scale increases in solar UV-B radiation. Changes in the ozone layer over the 453 next few decades are expected to be variable, with increases (recovery) likely at polar and midlatitudes and decreases possible in the tropics.¹² The return of column ozone to 1980 levels is 454 expected to occur in the 2030s and 2050s respectively over northern- and southern-hemisphere 455 mid-latitudes and around the 2060s in Antarctica.^{12,91,92} Tropical column ozone is not expected 456 457 to recover to 1980 levels by 2100, with some models predicting declining ozone levels 458 beginning in 2050 at these latitudes.¹² However, these negative ozone deviations are projected

to be small (<2%) and would, in the worst-case scenario, result in increases in surface UV-B of 459 less than 2.5%.²⁷ Thus, because of the Montreal Protocol, we have averted a "worst-case" 460 scenario of stratospheric ozone destruction, prevented the resultant high levels of UV-B at 461 Earth's surface, and so avoided major environmental and health impacts (Box 2). 462 463 We are confident in our qualitative predictions of the environmental effects that have 464 been avoided as a result of the implementation of the Montreal Protocol. However, 465 guantification of many of the environmental benefits resulting from the success of the Montreal 466 Protocol remains a challenge. The same knowledge gaps that constrain modelling of most 467 environmental effects in the 'World Avoided' scenario also constrain quantification of the 468 potential impacts of any current or future threats to the ozone layer. At present, no quantitative 469 estimates are available on the effects of the recently reported unexpected increases in 470 emissions of CFC-11⁹³ on stratospheric ozone, UV radiation, or the environment. However, were such unexpected emissions to persist and increase in the future, or new threats emerge, 471 472 environmental and health impacts could be substantial. New threats to the integrity of the 473 stratospheric ozone layer include 'geoengineering' activities proposed for combating warming 474 caused by greenhouse gases, which could have consequences for UV radiation. In particular, 475 proposals to inject sulfate aerosols into the stratosphere to reduce solar radiation at Earth's 476 surface94 would likely reduce stratospheric ozone at most latitudes. The combined effect of 477 increased scattering by the aerosols and reduced absorption by ozone would then lead to complex net changes in surface UV-B radiation^{27,95-97}. 478 479 Meeting the challenge of improving quantification of the environmental effects of future 480 changes in stratospheric ozone requires addressing several significant gaps in current knowledge. First, we need a better understanding of the fundamental responses of humans and 481 482 other species to UV radiation, particularly how organisms respond to the different wavelengths 483 of UV radiation. Second, we need to better understand the full scope of not only the adverse

484 (e.g., skin cancer, impaired vision and unfavorable ecosystem changes), but the beneficial 485 effects (e.g., vitamin D, defense against plant pests and purification of surface waters) of UV 486 radiation on humans and other organisms. Third, we need long-term, large-scale field studies to better understand how changes in UV radiation, together with other climate change factors, 487 including extreme events, affect intact ecosystems⁹⁸. Taken together, all three would increase 488 489 our ability to develop models that could be used to quantify effects of UV radiation on living 490 organisms and materials on scales ranging from individuals to ecosystems and the planet. 491 As a consequence of rapid climate change, many organisms, including humans, are

492 being exposed to novel and interactive combinations of UV radiation and other environmental

factors. These environmental changes will continue into the future and will result in alterations in the structure and composition of ecological communities⁹⁹, which will then indirectly affect the growth, reproduction, and survival of many species. How humans and ecosystems respond to changes in UV radiation against this backdrop of simultaneous, multi-factor environmental change remains a major knowledge gap. Quantifying these effects is extremely challenging, where many of the outcomes are contingent upon human behavior and societal responses that are difficult to predict or measure (Fig. 2).

500 The focus of concern regarding increased exposure to UV radiation has historically been 501 on human health. However, terrestrial and aquatic ecosystems provide essential services on 502 which human health and well-being ultimately depend. In addition to being critical for human 503 health and well-being, environmental sustainability and the maintenance of biodiversity are also 504 important at a higher level if we are to maintain a healthy planet¹⁰⁰. The topics covered by the UNEP EEAP Quadrennial Assessment Report embrace the full complexity and inter-relatedness 505 506 of our living planet, and the outcomes of the Montreal Protocol (and Amendments and 507 Adjustments) demonstrate that globally united and successful actions on complex environmental issues are possible. 508

509

510 5. Acknowledgements

511 This work has been supported by the UNEP Ozone Secretariat and we are grateful to T. 512 Birmpili and S. Mylona for their guidance and assistance. Additional support was provided by 513 the U.S. Global Change Research Program (P.W.B., C.E.W., and S.M.), the J.H. Mullahy Endowment for Environmental Biology (P.W.B.), The U.S. National Science Foundation (Grants 514 DEB 1360066 and DEB 1754276 to C.E.W.), The Australian Research Council (DP180100113 515 516 to S.A.R.) and the University of Wollongong's Global Challenges Program (S.A.R.). We 517 appreciate the contributions from other UNEP EEAP members and co-authors of the EEAP 518 Quadrennial Report, including: M. Ilyas, Y. Takizawa, F.L. Figueroa, H.H. Redhwi, and A. 519 Torikai. Special thanks to A. Netherwood for his assistance in drafting and improving figures. 520 This paper has been reviewed in accordance with the U.S. Environmental Protection Agency's (U.S. EPA) peer and administrative review policies and approved for publication. Mention of 521 522 trade names or commercial products does not constitute an endorsement or recommendation 523 for use by the U.S. EPA.

524 525

527		
528	6. Re	eferences
529		
530	1	Crutzen, P.J. The influence of nitrogen oxides on the atmospheric ozone content.
531		Quarterly Journal of the Royal Meteorological Society 96, 320-325 (1970).
532	2	Molina, M.J. & Rowland, F.S. Stratospheric sink for chlorofluoromethanes: chlorine
533		atomic-catalysed destruction of ozone. Nature 249, 810-812 (1974).
534	3	Farman, J.C., Gardiner, B.G. & Shanklin, J.D. Large losses of ozone in Antarctica reveal
535		seasonal CIO _x /NO _x interaction. <i>Nature</i> 315 , 207-210 (1985).
536	4	Watson, R.T., Prather, M.J. & Kurylo, M.J. Present state of knowledge of the upper
537		atmosphere 1988: An assessment report. Report No. NASA Reference Publication
538		1208, (NASA Office of Space Science and Applications, Washington, D.C., 1988).
539	5	OEWG. Synthesis Report: Integration of the Four Assessment Panels Reports by the
540		Open-Ended Working Group of the Parties to the Montreal Protocol. (Nairobi, 1989).
541	6	Solomon, S., Garcia, R.R., Rowland, F.S. & Wuebbles, D.J. On the depletion of Antarctic
542		ozone. Nature 321 , 755-758 (1986).
543	7	Solomon, S. Progress towards a quantitative understanding of Antarctic ozone depletion.
544		Nature 347 , 347-354 (1990).
545	8	Andersen, S.O. & Sarma, K.M. Protecting the ozone layer: the United Nations history.
546		(Earthscan Publications, Ltd, 2012).
547	9	Newman, P.A. et al. What would have happened to the ozone layer if
548		chlorofluorocarbons (CFCs) had not been regulated? Atmos. Chem. Phys. 9, 2113-2128
549		(2009).
550	10	Mäder, J.A. et al. Evidence for the effectiveness of the Montreal Protocol to protect the
551		ozone layer. Atmos. Chem. Phys. 10, 12161-12171 (2010).
552	11	Newman, P.A. & McKenzie, R. UV impacts avoided by the Montreal Protocol.
553		Photochemical & Photobiological Sciences 10, 1152-1160 (2011).
554	12	WMO. Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and
555		Monitoring Project-Report No. 58. 88 (Geneva, Switzerland, 2018).
556	13	USEPA. Updating ozone calculations and emissions profiles for use in the atmospheric
557		and health effects framework model. (Washington, D.C., 2015).
558	14	Myhre, G. et al. Climate change 2013: the physical science basis. Contribution of
559		Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
560		Climate Change. K., Tignor, M., Allen, SK, Boschung, J., Nauels, A., Xia, Y., Bex, V.,

561		and Midgley, PM, Cambridge University Press Cambridge, United Kingdom and New
562		York, NY, USA (2013).
563	15	Garcia, R.R., Kinnison, D.E. & Marsh, D.R. "World avoided" simulations with the Whole
564		Atmosphere Community Climate Model. J. Geophys. Res.: Atmos. 117 (2012).
565	16	Ripley, K. & Verkuijl, C. "Ozone family" delivers landmark deal for the climate. Environ.
566		<i>Policy Law</i> 46 , 371 (2016).
567	17	Xu, Y., Zaelke, D., Velders, G.J.M. & Ramanathan, V. The role of HFCs in mitigating
568		21st century climate change. Atmos. Chem. Phys. 13, 6083-6089 (2013).
569	18	Chipperfield, M.P. et al. Quantifying the ozone and ultraviolet benefits already achieved
570		by the Montreal Protocol. Nature Comm. 6 (2015).
571	19	Velders, G.J., Andersen, S.O., Daniel, J.S., Fahey, D.W. & McFarland, M. The
572		importance of the Montreal Protocol in protecting climate. Proc Natl Acad Sci US A 104,
573		4814-4819 (2007).
574	20	Papanastasiou, D.K., Beltrone, A., Marshall, P. & Burkholder, J.B. Global warming
575		potential estimates for the C_1 - C_3 hydrochlorofluorocarbons (HCFCs) included in the
576		Kigali Amendment to the Montreal Protocol. Atmos. Chem. Phys. 18, 6317-6330 (2018).
577	21	IPCC. Summary for policymakers. In: Global Warming of 1.5°C. An IPCC Special Report
578		on the impacts of global warming of 1.5°C above pre-industrial levels and related global
579		greenhouse gas emission pathways, in the context of strengthening the global response
580		to the threat of climate change, sustainable development, and efforts to eradicate
581		poverty. 32 (Geneva, Switzerland, 2018).
582	22	Andrady, A.L., Pandey, K.K., Heikkilä, A.M., Redhwi, H.H. & Torikai, A. Interactive
583		effects of solar UV radiation and climate change on material damage Photochemical &
584		Photobiological Sciences 18, 804-825 (2019).
585	23	Lucas, R.M. et al. Human health in relation to exposure to solar ultraviolet radiation
586		under changing stratospheric ozone and climate. Photochemical & Photobiological
587		Sciences 18, 641-680 (2019).
588	24	Bornman, J.F. et al. Linkages between stratospheric ozone, UV radiation and climate
589		change and their implications for terrestrial ecosystems. Photochemical &
590		Photobiological Sciences 18, 681-716 (2019).
591	25	Williamson, C.E. et al. The interactive effects of stratospheric ozone depletion, UV
592		radiation, and climate change on aquatic ecosystems. Photochemical & Photobiological
593		Sciences 18, 717-746 (2019).

594	26	Sulzberger, B., Austin, A.T., Cory, R.M., Zepp, R.G. & Paul, N.D. Solar UV radiation in a
595		changing world: Roles of cryosphere-land-water-atmosphere interfaces in global
596		biogeochemical cycles. Photochemical & Photobiological Sciences 18, 747-774 (2019).
597	27	Bais, A.F. et al. Ozone-climate interactions and effects on solar ultraviolet radiation.
598		Photochemical & Photobiological Sciences 18, 602-640 (2019).
599	28	Wilson, S.R., Madronich, S., Longstreth, J.D. & Solomon, K.R. Interactive effects of
600		changing stratospheric ozone and climate on troposheric composition and air quality,
601		and the consequences for human and ecosystem health. Photochemical &
602		Photobiological Sciences 18 (2019).
603	29	Pachauri, R.K. et al. Climate change 2014: synthesis report. Contribution of Working
604		Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on
605		Climate Change. (IPCC, 2014).
606	30	Arblaster, J. et al. Stratospheric ozone changes and climate, Chapter 4 in Scientific
607		Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project-
608		Report No. 55. World Meteorological Organization, Geneva, Switzerland (2014).
609	31	Langematz, U. et al. Polar stratospheric ozone: past, present and future, Chapter 4 in
610		Scientific Assessment of Ozone Depletion: 2018. Global Ozone Research and
611		Monitoring Project – Report No. 58. (Geneva, Switzerland, 2018).
612	32	Clem, K.R., Renwick, J.A. & McGregor, J. Relationship between eastern tropical Pacific
613		cooling and recent trends in the Southern Hemisphere zonal-mean circulation. Clim.
614		<i>Dyn.</i> 49 , 113-129 (2017).
615	33	Lim, E.P. et al. The impact of the Southern Annular Mode on future changes in Southern
616		Hemisphere rainfall. Geophys. Res. Lett. 43, 7160-7167 (2016).
617	34	Holz, A. et al. Southern Annular Mode drives multicentury wildfire activity in southern
618		South America. Proc Natl Acad Sci U S A 114, 9552-9557 (2017).
619	35	Kostov, Y. et al. Fast and slow responses of Southern Ocean sea surface temperature to
620		SAM in coupled climate models. Clim. Dyn. 48, 1595-1609 (2017).
621	36	Oliveira, F.N.M. & Ambrizzi, T. The effects of ENSO-types and SAM on the large-scale
622		southern blockings. International Journal of Climatology 37, 3067-3081 (2017).
623	37	Robinson, S.A. et al. Rapid change in East Antarctic terrestrial vegetation in response to
624		regional drying. Nature Clim. Change 8, 879-884 (2018).
625	38	Robinson, S.A. & Erickson III, D.J. Not just about sunburnthe ozone hole's profound
626		effect on climate has significant implications for Southern Hemisphere ecosystems.
627		Global Change Biology 21 , 515-527 (2015),

627 Global Change Biology **21**, 515-527 (2015).

628	39	Morgenstern, O. et al. Review of the global models used within phase 1 of the
629		Chemistry-Climate Model Initiative (CCMI). Geosci. Model Dev. 10, 639-671 (2017).
630	40	Williamson, C.E. et al. Solar ultraviolet radiation in a changing climate. Nature Clim.
631		Change 4, 434-441 (2014).
632	41	Stocker, T. et al. IPCC, 2013: Climate Change 2013: The Physical Science Basis.
633		Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental
634		Panel on Climate Change, 1535 pp. (Cambridge Univ. Press, Cambridge, UK, and New
635		York, 2013).
636	42	López, M.L., Palancar, G.G. & Toselli, B.M. Effects of stratocumulus, cumulus, and
637		cirrus clouds on the UV-B diffuse to global ratio: Experimental and modeling results. J.
638		Quant. Spectrosc. Rad. Transf. 113, 461-469 (2012).
639	43	Feister, U., Cabrol, N. & Häder, D. UV irradiance enhancements by scattering of solar
640		radiation from clouds. Atmos. 6, 1211-1228 (2015).
641	44	Williamson, C.E. et al. Sentinel responses to droughts, wildfires, and floods: effects of
642		UV radiation on lakes and their ecosystem services. Front. Ecol. Environ. 14, 102-109
643		(2016).
644	45	Gies, P., Roy, C., Toomey, S. & Tomlinson, D. Ambient solar UVR, personal exposure
645		and protection. J. Epidemiol. 9, S115-122 (1999).
646	46	Xiang, F. et al. Weekend personal ultraviolet radiation exposure in four cities in Australia:
647		influence of temperature, humidity and ambient ultraviolet radiation. J. Photochem.
648		Photobiol. B 143, 74-81 (2015).
649	47	Cuthill, I.C. et al. The biology of color. Science 357, eaan0221 (2017).
650	48	Mazza, C.A., Izaguirre, M.M., Curiale, J. & Ballaré, C.L. A look into the invisible.
651		Ultraviolet-B sensitivity in an insect (Caliothrips phaseoli) revealed through a behavioural
652		action spectrum. Proc. Royal Soc. B-Biol. Sci. 277, 367-373 (2010).
653	49	Field, C.B. et al. IPCC, 2014: Climate change 2014: Impacts, adaptation, and
654		vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the
655		fifth assessment report of the intergovernmental panel on climate change. (Cambridge
656		University Press, Cambridge, United Kingdom and New York, NY, USA, 2014).
657	50	Steinbauer, M.J. et al. Accelerated increase in plant species richness on mountain
658		summits is linked to warming. Nature 556, 231-234 (2018).
659	51	Urmy, S.S. et al. Vertical redistribution of zooplankton in an oligotrophic lake associated
660		with reduction in ultraviolet radiation by wildfire smoke. Geophys. Res. Lett. 43, 3746-
661		3753 (2016).

662	52	Ma, Z., Li, W., Shen, A. & Gao, K. Behavioral responses of zooplankton to solar
663		radiation changes: in situ evidence. Hydrobiologia 711, 155-163 (2013).
664	53	Leach, T.H., Williamson, C.E., Theodore, N., Fischer, J.M. & Olson, M.H. The role of
665		ultraviolet radiation in the diel vertical migration of zooplankton: an experimental test of
666		the transparency-regulator hypothesis. Journal of Plankton Research 37, 886-896
667		(2015).
668	54	Fischer, J.M. et al. Diel vertical migration of copepods in mountain lakes: The changing
669		role of ultraviolet radiation across a transparency gradient. Limnology and
670		Oceanography 60 , 252-262 (2015).
671	55	Cohen, J.M., Lajeunesse, M.J. & Rohr, J.R. A global synthesis of animal phenological
672		responses to climate change. Nature Clim. Change 8, 224-228 (2018).
673	56	Predick, K.I. et al. UV-B radiation and shrub canopy effects on surface litter
674		decomposition in a shrub-invaded dry grassland. J. Arid Environ. 157, 13-21 (2018).
675	57	Kauko, H.M. et al. Windows in Arctic sea ice: light transmission and ice algae in a
676		refrozen lead. J. Geophys. Res. Biosci. 122, 1486-1505 (2017).
677	58	Williamson, C.E. et al. Climate change-induced increases in precipitation are reducing
678		the potential for solar ultraviolet radiation to inactivate pathogens in surface waters. Sci.
679		<i>Rep.</i> 7 , 13033 (2017).
680	59	Arnold, M. et al. Global burden of cutaneous melanoma attributable to ultraviolet
681		radiation in 2012. Int J Cancer 143, 1305-1314 (2018).
682	60	van Dijk, A. et al. Skin cancer risks avoided by the Montreal Protocolworldwide
683		modeling integrating coupled climate-chemistry models with a risk model for UV.
684		Photochem. Photobiol. 89, 234-246 (2013).
685	61	Flaxman, S.R. et al. Global causes of blindness and distance vision impairment 1990-
686		2020: a systematic review and meta-analysis. Lancet Glob. Health 5, e1221-e1234
687		(2017).
688	62	Sandhu, P.K. et al. Community-wide interventions to prevent skin cancer: Two
689		community guide systematic reviews. Am J Prev Med 51, 531-539 (2016).
690	63	Gordon, L.G. & Rowell, D. Health system costs of skin cancer and cost-effectiveness of
691		skin cancer prevention and screening: a systematic review. Eur. J. Cancer Prev. 24,
692		141-149 (2015).
693	64	Hodzic, A. & Madronich, S. Response of surface ozone over the continental United
694		States to UV radiation. Nature Clim. Atmos. Sci. (2018).

695	65	Ballaré, C.L., Caldwell, M.M., Flint, S.D., Robinson, S.A. & Bornman, J.F. Effects of solar
696		ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions
697		with climate change. Photochemical & Photobiological Sciences 10, 226-241 (2011).
698	66	Uchytilova, T. et al. Ultraviolet radiation modulates C:N stoichiometry and biomass
699		allocation in Fagus sylvatica saplings cultivated under elevated CO2 concentration. Plant
700		Physiol Biochem (2018).
701	67	Robson, T.M., Hartikainen, S.M. & Aphalo, P.J. How does solar ultraviolet-B radiation
702		improve drought tolerance of silver birch (Betula pendula Roth.) seedlings? Plant Cell
703		Environ. 38, 953-967 (2015).
704	68	Jenkins, G.I. Photomorphogenic responses to ultraviolet-B light. Plant Cell Environ. 40,
705		2544-2557 (2017).
706	69	Šuklje, K. et al. Effect of leaf removal and ultraviolet radiation on the composition and
707		sensory perception of Vitis viniferaL. cv. Sauvignon Blanc wine. Aust. J. Grape Wine
708		Res. 20, 223-233 (2014).
709	70	Escobar-Bravo, R., Klinkhamer, P.G.L. & Leiss, K.A. Interactive effects of UV-B light with
710		abiotic factors on plant growth and chemistry, and their consequences for defense
711		against arthropod herbivores. Front. Plant Sci. 8, 278 (2017).
712	71	Ballaré, C.L., Mazza, C.A., Austin, A.T. & Pierik, R. Canopy light and plant health. Plant
713		Physiol. 160, 145-155 (2012).
714	72	Wargent, J.J. in The role of UV-B radiation in plant growth and development (ed B.R.
715		Jordan) (CABI Press, 2017).
716	73	Zagarese, H.E. & Williamson, C.E. The implications of solar UV radiation exposure for
717		fish and fisheries. Fish Fisher. 2, 250-260 (2001).
718	74	Tucker, A.J. & Williamson, C.E. The invasion window for warmwater fish in clearwater
719		lakes: the role of ultraviolet radiation and temperature. Div. Distrib. 20, 181-192 (2014).
720	75	Neale, P.J. & Thomas, B.C. Inhibition by ultraviolet and photosynthetically available
721		radiation lowers model estimates of depth-integrated picophytoplankton photosynthesis:
722		global predictions for Prochlorococcus and Synechococcus. Global Change Biology 23,
723		293-306 (2017).
724	76	Garcia-Corral, L.S. et al. Effects of UVB radiation on net community production in the
725		upper global ocean. Global Ecology and Biogeography 26, 54-64 (2017).
726	77	Cory, R.M., Ward, C.P., Crump, B.C. & Kling, G.W. Sunlight controls water column
727		processing of carbon in arctic fresh waters. Science 345, 925-928 (2014).

728	78	Austin, A.T., Méndez, M.S. & Ballaré, C.L. Photodegradation alleviates the lignin
729		bottleneck for carbon turnover in terrestrial ecosystems. Proc Natl Acad Sci U S A 113,
730		4392-4397 (2016).
731	79	Almagro, M., Maestre, F.T., Martínez-López, J., Valencia, E. & Rey, A. Climate change
732		may reduce litter decomposition while enhancing the contribution of photodegradation in
733		dry perennial Mediterranean grasslands. Soil Biol. Biochem. 90, 214-223 (2015).
734	80	Lindholm, M., Wolf, R., Finstad, A. & Hessen, D.O. Water browning mediates predatory
735		decimation of the Arctic fairy shrimp Branchinecta paludosa. Freshw. Biol. 61, 340-347
736		(2016).
737	81	Cuyckens, G.A.E., Christie, D.A., Domic, A.I., Malizia, L.R. & Renison, D. Climate
738		change and the distribution and conservation of the world's highest elevation woodlands
739		in the South American Altiplano. Glob. Planet. Change 137, 79-87 (2016).
740	82	Poste, A.E., Braaten, H.F.V., de Wit, H.A., Sørensen, K. & Larssen, T. Effects of
741		photodemethylation on the methylmercury budget of boreal Norwegian lakes. Environ.
742		Tox. Chem. 34 , 1213-1223 (2015).
743	83	Tsui, M.M. et al. Occurrence, distribution, and fate of organic UV filters in coral
744		communities. Environ. Sci. Technol. 51, 4182-4190 (2017).
745	84	Corinaldesi, C. et al. Sunscreen products impair the early developmental stages of the
746		sea urchin Paracentrotus lividus. Sci. Rep. 7, 7815 (2017).
747	85	Fong, H.C., Ho, J.C., Cheung, A.H., Lai, K. & William, K. Developmental toxicity of the
748		common UV filter, benophenone-2, in zebrafish embryos. Chemosphere 164, 413-420
749		(2016).
750	86	Willenbrink, T.J., Barker, V. & Diven, D. The effects of sunscreen on marine
751		environments. <i>Cutis</i> 100 , 369 (2017).
752	87	Clark, J.R. et al. Marine microplastic debris: a targeted plan for understanding and
753		quantifying interactions with marine life. Front. Ecol. Environ. 14, 317-324 (2016).
754	88	UNEP. UNEP Frontiers 2016 Report: Emerging issues of environmental concern.
755		(Nairobi, 2016).
756	89	Frank, H., Christoph, E.H., Holm-Hansen, O. & Bullister, J.L. Trifluoroacetate in ocean
757		waters. Environ. Sci. Technol. 36, 12-15 (2002).
758	90	Solomon, K.R. et al. Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts:
759		Relevance to substances regulated under the Montreal and Kyoto Protocols. J. Toxicol.
760		Environ. Health B. 19, 289-304 (2016).

761	91	Fleming, E.L., Jackman, C.H., Stolarski, R.S. & Douglass, A.R. A model study of the	
762		impact of source gas changes on the stratosphere for 1850–2100. Atmos. Chem. Phys.	
763		11 , 8515-8541 (2011).	
764	92	Eyring, V. et al. Long-term ozone changes and associated climate impacts in CMIP5	
765		simulations. J. Geophys. Res.: Atmos. 118, 5029-5060 (2013).	
766	93	Montzka, S.A. et al. An unexpected and persistent increase in global emissions of	
767		ozone-depleting CFC-11. Nature 557, 413-417 (2018).	
768	94	Crutzen, P.J. Albedo enhancement by stratospheric sulfur injections: A contribution to	
769		resolve a policy dilemma? Clim. Change 77, 211-220 (2006).	
770	95	Tilmes, S. et al. Impact of very short-lived halogens on stratospheric ozone abundance	
771		and UV radiation in a geo-engineered atmosphere. Atmos. Chem. Phys. 12, 10945-	
772		10955 (2012).	
773	96	Nowack, P.J., Abraham, N.L., Braesicke, P. & Pyle, J.A. Stratospheric ozone changes	
774		under solar geoengineering: implications for UV exposure and air quality. Atmos. Chem.	
775		Phys. 16, 4191-4203 (2016).	
776	97	Madronich, S., Tilmes, S., Kravitz, B., MacMartin, D. & Richter, J. Response of surface	
777		ultraviolet and visible radiation to stratospheric SO ₂ injections. Atmos. 9 (2018).	
778	98	Kayler, Z.E. et al. Experiments to confront the environmental extremes of climate	
779		change. Front. Ecol. Environ. 13, 219-225 (2015).	
780	99	Pecl, G.T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems	
781		and human well-being. Science 355, eaai9214 (2017).	
782	100	Assessment, M.E. Ecosystems and human well-being: Our human planet; summary for	
783		decision-makers, Vol.5. (Island Press, Washington, D.C., 2005).	
784			