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Key message The study focuses on the responsiveness of in vitro-cultivated Melissa officinalis L. shoots subjected 20 

to ozone in order to define a new experimental tool for improving the yield of secondary metabolites 21 

22 
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Abstract The effects of ozone treatment (200 ppb, 3 h) on the accumulation of main secondary metabolites have been 23 

investigated in Melissa officinalis (lemon balm) aseptic shoot cultures in order to evaluate the biotechnological 24 

application of this gas for improving the yield of secondary metabolites of medicinal plants. During the treatment, we 25 

found (i) an activation of enzymes involved in phenolic metabolism [as confirmed by the increase of shikimate 26 

dehydrogenase, phenylalanine ammonia-lyase and cinnamyl alcohol dehydrogenase activities (about twofold higher 27 

than controls)], (ii) a development of cellular barriers with a higher degree of polymerization of monolignols [as 28 

indicated by the increase of lignin (+23% compared to controls)], (iii) an accumulation of phenolic compounds, in 29 

particular rosmarinic acid (about fourfold compared to control plants cultivated in filtered air) and (iv) an increase of 30 

antioxidant capacity [as documented by the improved 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging 31 

activity]. The effect of ozone as elicitor of the production of secondary metabolites in lemon balm shoot cultures was 32 

dependent on the specific regime, the time of exposure and the concentration of the stressor. After the end of the 33 

treatment, we found cell death and hydrogen peroxide (H2O2) deposition concomitant with a prolonged superoxide 34 

anion-generation suggesting that a transient oxidative burst had occurred.  35 

 36 

Keywords: Elicitors, Lemon balm, Shoot cultures, Oxidative stress, Phenylpropanoid pathway, ROS 37 

 38 

Introduction 39 

Lemon balm (Melissa officinalis L.), a member of the family Lamiaceae, is a perennial herb native to southern parts of 40 

Europe, Western Asia and North America. In Italy, it grows spontaneously along hedges and shady areas, but it is also 41 

found in ornamental gardens for its fragrance (Zargari 1990). M. officinalis is used as aromatic culinary herb in different 42 

food and beverage products and it is still an old important medicinal plant. Dried leaves are used as herbal tea for their 43 

scent and for other beneficial effects, such as anti-bacterial (Mencherini et al. 2007), sedative, spasmolytic or memory 44 

improving (Perry et al. 1999; Dastmalchi et al. 2008). Moreover, lemon balm is reported to reduce stress, 45 

gastrointestinal disorders, excitability, anxiety and sleep disturbance. Aqueous lemon balm extracts are used for the 46 

treatment of Herpes simplex infections (Wölbling and Leonhardt 1994; Mazzanti et al. 2008; Astani et al. 2012). In past 47 

years, the attention was focused on the ingestion of natural phenolic antioxidants and essential oils that may decrease 48 

the risk of cardiovascular disease, cancer, and inflammation (Arts and Hollman 2005) and, in general, exhibit good 49 

antioxidant activities (Marongiu et al. 2004; Kamdem et al. 2013). Lemon balm oil furthermore is very effective against 50 

various human cancer cell lines and a mouse cell line (de Sousa et al. 2004). 51 

Some of the beneficial activities of lemon balm are ascribed to the phenolic compounds present in its extracts, 52 
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such as rosmarinic acid (RA), tannins and flavonoids (Szollosi and Szollosi Varga 2002; Patora et al. 2003; Petersen 53 

and Simmonds 2003). Phenols are natural antioxidants, widely distributed in most of the organs of higher plants, that 54 

show good activity to scavenge reactive oxygen species (ROS) (Lin et al. 2012). RA, a caffeic acid derivative, is the 55 

main antioxidant compound of the sub-family Nepetoideae of the Lamiaceae family. It is constitutively accumulated in 56 

field-grown plants as antimicrobial compound and as protection against herbivores (Szabo et al. 1999; Petersen 2013). 57 

RA can be found in all organs of M. officinalis with a level of about 6% of the dry weight in leaves (Parnham and 58 

Kesselring 1985). 59 

RA production can be enhanced by the use of biotechnological approaches, such as in vitro solid or liquid cultures 60 

(Barberini et al. 2013; Petersen 2013). In in vitro cultures of several Salvia spp. (i.e. callus, cell suspension and root 61 

cultures), the yield of RA was up to tenfold higher than the yield found in organs of field-grown plants (Hippolyte et al. 62 

1992; Karam et al. 2003). In the last years, many reports documented the use of plants as cell factories (Oksman-63 

Caldentey and Inzé 2004) with the aim to increase the production of secondary metabolites in medicinal plants, e.g. as 64 

nutraceutical compounds (Pistelli et al. 2012; Jacobo-Velázquez and Cisneros-Zevallos 2012) or for other industrial 65 

purposes. However, the in vitro cultures require the optimization of growth and production conditions to maximize the 66 

yield of metabolites (Ruffoni et al. 2010). Appropriate culture media guarantee good results, but the generation of stress 67 

conditions often induces the plants to further increase the synthesis of their secondary metabolites. The attention has 68 

been focused on the stimulation by biotic elicitors. RA was accumulated to a higher yield in Mentha piperita after the 69 

treatment with methyl jasmonate (MeJa) or jasmonic acid (Krzyzanowska et al. 2012), in Coleus blumei after 70 

supplementation with MeJa or sterile fungal preparations (Pythium aphanidermatum, Szabo et al. 1999) and in 71 

Lithospermum erythrorhizon after exposure to yeast extract or MeJa (Ogata et al. 2004).  72 

Abiotic stresses such as drought, salinity, UV radiation and ozone (O3) are known to change the normal 73 

environmental conditions and therefore can modify the production of secondary metabolites. From an ecological point 74 

of view, these compounds are antioxidants and chemical signals. During the last years, we have learned that plants have 75 

an enormous self-defense potential and this would allow a natural disease control with positive effects on environmental 76 

safeguard and human health. In the open field, abiotic stress is the most common condition for e.g. the increase of the 77 

production of essential oils and antioxidants. Salt stress was shown to trigger the stimulation of essential oil production 78 

in field grown lemon balm (Ozturk et al. 2004) and other plants such as Ocimum basilicum (El-Shafy et al. 1991), 79 

Salvia officinalis (Hendawy and Khalid 2005; Taarit et al. 2010), Rosmarinus officinalis (Salinas and Deiana 1996) and 80 

Matricaria chamomilla (Razmjoo et al. 2008). Drought stress in Thymus vulgaris (Letchamo et al. 1995) or UV-B 81 
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irradiation in Nepeta cataria, M. officinalis and S. officinalis grown in controlled conditions (greenhouses) resulted in 82 

similar effects (Manukyan 2013). 83 

O3 is well-known as tropospheric pollutant (EEA 2013) and its adverse effects on the vegetation are of 84 

considerable concern (van Goethem et al. 2013). Because of its strong oxidative potential, it causes negative effects on 85 

plant metabolism, physiology and growth. For the same reason, O3 has a large spectrum of biocidal activities and is 86 

used in various forms in (i) agriculture for food decontamination (Guzel-Seydim et al. 2004), (ii) odontology 87 

(Gopalakrishnan and Parthiban 2012), (iii) beverage industry (Nishijima et al. 2014) and (iv) clinical settings (e.g. in the 88 

treatment of infected wounds, Fontes et al. 2012). O3 has been found to resemble fungal elicitors (Sandermann et al. 89 

1998). Consequently, it can induce plant signal molecules that can mediate the stimulation of secondary answers, that 90 

are associated with antioxidant and pathogen defense pathways, at genetic, metabolic and hormonal level. Our 91 

knowledge on the biochemical mechanisms which are involved is still limited. Recently, Pellegrini et al. (2013) 92 

reported that single square O3 exposure (200 ppb, 5 h) results in the activation of programmed cell death (PCD) in 93 

leaves of M. officinalis that resembles the hypersensitive response observed in plant-pathogen interactions. Xu et al. 94 

(2011) found that several doses of O3 (60-180 ppb, 3 h) stimulated hypericin synthesis in Hypericum perforatum 95 

suspension cultures. Similarly, Sun et al. (2012) reported that O3 can be considered an efficient elicitor of puerarin 96 

production in a plant cell culture of Pueraria thomsnii. 97 

Since the major role of plant secondary metabolites is to protect plants from biotic and abiotic stress some 98 

strategies based on this principle have been developed to improve their production in in vitro culture. These include 99 

treatment with various elicitors, signal compounds and abiotic stress. Some reports documented the application of 100 

abiotic stress in in vitro cultures, such as salt stress for Myrtus communis (Di Cori et al. 2013), UV treatment for 101 

elicitation of purple basil (Bertoli et al. 2013) and acetylsalicylic acid and UV-B in hairy root cultures of Anisodus 102 

luridus (Qin et al. 2014).  103 

In the present work, we studied the responsiveness of M. officinalis shoot cultures to O3 treatment in order to 104 

define a new method for increasing the synthesis of secondary metabolites, in particular RA. To verify the functionality 105 

of in vitro shoots exposed to O3 stress, in vivo cellular vitality and H2O2 determination have been performed. 106 

Chlorophyll (chl) a fluorescence, a reliable methodology for assessing the in vitro photosynthetic performance (Costa et 107 

al. 2014) was also measured. 108 

 109 

Material and methods 110 

Plant material, culture conditions and ozone treatment 111 
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Cuttings of M. officinalis, growing in plastic pots in a mixture of steam-sterilized soil and peat (1:1), have been kept for 112 

4 months in a greenhouse in air filtered through active charcoal. Afterwards, apical portions, 10 mm length, were 113 

submerged in 2% (v/v) Tween-20® for 10 min, then in 70% (v/v) ethanol for 30 s, subsequently sterilised with a 15% 114 

(v/v) sodium hypochlorite solution for 10 min and then rinsed 5 times (10 min) in sterile distilled water. The explants 115 

were placed on MS (Murashige and Skoog 1962) medium supplemented with 0.5 mg l-1 6-benzylaminopurine (BAP), 116 

3% (w/v) sucrose and 0.8% (w/v) agar. Shoot proliferation was rapidly obtained and successive subcultures performed 117 

at 4-weekly intervals. Before the O3 treatment, 3 week-old shoots were placed on MS medium deprived of BAP for one 118 

week to avoid any interaction of phytoregulators. Cultures were maintained in a growth chamber at 22±1 °C under 16 h 119 

photoperiod provided by cool white fluorescent tubes (Philips TLM 40W/33RS) with 80 μmol m-2 s-1 photosynthetic 120 

active radiation (PAR). Cultures were monitored regularly for shoot production. 121 

Uniformly sized shoots (one month old) were placed in a controlled environment fumigation facility (Nali et al. 122 

2005) under the same climatic conditions as in the growth chamber. O3 fumigation was performed in Perspex mini 123 

chambers, measuring 23 x 18 x 19 cm, continuously ventilated with charcoal-filtered air (two complete air 124 

changes/min). Adequate mixing of incoming air was assured. O3 was generated by electrical discharge using a Fisher 125 

500 air-cooled apparatus (Zurich, Switzerland) supplied with pure oxygen, and mixed with the inlet air entering the 126 

fumigation chambers. Its concentration at plant height was continuously monitored with a photometric analyzer 127 

(Monitor Labs, mod. 8810, San Diego, CA, USA) connected to a computer. Plants were exposed for 3 h to a target O3 128 

concentration of 200 ppb in form of a square wave (for O3 1 ppb = 1.96 µg m-3, at 20 °C and 101.325 kPa) from to the 129 

2nd to the 5th hour of the light period. After the end of fumigation, plants were left in the growth chamber under O3-free 130 

air to recover. Shoot samples were taken at 0, 2, 3, 8 and 24 h from the beginning of exposure (FBE). Control shoots 131 

were exposed only to charcoal-filtered air in Perspex chambers identical to those mentioned above. The material was 132 

stored at -80 °C until the time of analysis. 133 

 134 

In vivo markers of ozone stress 135 

For visualization of dead cells, Evans Blue staining was used according to the method of Keogh et al. (1980) with slight 136 

modifications. Leaves were boiled for 1 min in a mixture of phenol, lactic acid, glycerol and distilled water containing 137 

20 mg l-1 Evans Blue (1:1:1:1), prepared immediately before use. Tissues were then clarified overnight in a solution of 138 

2.5 g l-1 chloral hydrate in water.  139 

For determination of H2O2, fresh leaf samples were stained with 3,3-diaminobenzidine (DAB) using a modification of 140 

the procedure described by Thordal-Christensen et al. (1997). Fresh samples were submerged for 8 h in a DAB solution 141 
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(1 mg ml-1, pH 5.6) prepared in distilled water. After that, the samples were soaked in boiling 70% ethanol and clarified 142 

overnight in a solution of 2.5 g l-1 chloral hydrate in water. Observations were performed under a light microscope (DM 143 

4000 B, Leica, Wetzlar, Germany). 144 

Measurements of the modulated chl a fluorescence and of the status of the electron transport of PSII were carried 145 

out with a PAM-2000 fluorometer (Walz) on leaves that were dark-adapted for 15 min essentially as described by 146 

Döring et al. (2014a). Minimal fluorescence (F0, all PSII reaction centers open) was determined using the measuring 147 

modulated light which was sufficiently low (<1 μmol m-2 s-1) without inducing any significant variable fluorescence. 148 

The maximal fluorescence level (Fm, all PSII reaction centers closed) was determined by applying a saturating light 149 

pulse (0.8 s) at 8000 μmol m-2 s-1 in dark-adapted leaves. Fluorescence induction was started with actinic light (about 150 

400 μmol m-2 s-1) and superimposed with 800 ms saturating pulses (10,000 mol m-2 s-1 PFD) at 20 s intervals to 151 

determine maximal fluorescence in the light-adapted state (Fm). The value of Fv/Fm, that is an estimation of the 152 

efficiency of excitation energy transfer to open PSII traps, was computed Fv/Fm = [(Fm – F0) / Fm] (where Fm is the 153 

maximal fluorescence, F0 is the minimal one and Fv is the difference between Fm and F0 in the light-adapted state).  154 

 155 

Spectrophotometric assays  156 

Peroxidation was determined by the TBARS (thiobarbituric acid reactive substances) method (Heath and Packer 1968). 157 

Shoots collected at each time point were pulverized in liquid N2 and 400 mg suspended in 1 ml 0.1% trichloroacetic 158 

acid and centrifuged at 12,000 g for 10 min at 4 °C. The supernatant was collected and 400 µl was mixed with 1600 µl 159 

20% trichloroacetic acid with 0.5% thiobarbituric acid. The mixture was heated at 95 °C (25 min), cooled quickly and 160 

centrifuged at 12,000 g for 10 min at 4 °C. The supernatant was used to determine the malondialdehyde (MDA) 161 

concentration at 532 nm corrected for nonspecific turbidity by subtracting the absorbance at 600 nm using a 162 

spectrophotometer (6505 UV-Vis, Jenway, UK). The amount of MDA was calculated by using an extinction coefficient 163 

of 155 mM-1 cm-1. 164 

Superoxide radical production was measured according to the method of Able et al. (1998). This assay is based on 165 

the reduction of a tetrazolium dye (sodium 3’-(1-[phenylamino-carbonyl]-3,4-tetrazolium)-bis(4-methoxy-6-nitro) 166 

benzene-sulfonic acid hydrate, XTT) by O2 to a soluble XTT formazan that can be readily quantified in solution by 167 

recording the absorbance at 470 nm. Shoots collected at each time point were frozen in liquid N2, ground with mortar 168 

and pestle and 100 mg immediately added to 1500 µl 50 mM Tris-HCl buffer (pH 7.5) and centrifuged (12,000 g for 15 169 

min at 4 °C). 50 µl of the supernatant were incubated in a reaction mixture of 0.5 mM XTT in 50 mM Tris-HCl buffer 170 

(pH 7.5) at room temperature for 15 min. The XTT formazan was quantified spectrophotometrically and the 171 
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background absorbance due to the buffer and the assay reagents subtracted. The quantity of O2˙ˉ produced was 172 

calculated using the molar extinction coefficient 2.16 x 104 M-1 cm-1.  173 

For extraction of soluble phenolics and analysis of total phenolics samples were ground in liquid N2 and 100 mg 174 

extracted with 5 ml methanol acidified with 1% HCl (v/v) for 12 h in the dark at 4 °C. Extracts were centrifuged for 15 175 

min at 12000 g at 4 °C and the supernatants were filtered through 0.2 μm Minisart SRT 15 filters and stored in test 176 

tubes at -20 °C. Supernatants were used for phenolic, flavonoid, tannin and anthocyanin analyses, and the resulting 177 

pellet from the above centrifugation was dried at 35 °C for 24 h and was used for lignin analyses. The content of total 178 

phenolics was determined by the method described by Waterhouse (2002) with slight modifications. 25 μl diluted (1:10) 179 

extract was mixed with 1.225 µl deionized water and 125 μl Folin-Ciocalteu’s reagent. After incubation at room 180 

temperature for 6 min, 375 μl 7.5% (w/v) sodium carbonate and 250 μl deionized water were added and mixed. After 181 

incubation at room temperature for 120 min, the absorbance was measured at 760 nm. The content of total phenolics 182 

was determined using a standard curve of gallic acid (0-1 mg ml-1).  183 

Condensed tannins were determined by a modification of the vanillin method of Morrison et al. (1995). 200 μl 184 

diluted (1:4) methanolic extract were pipetted into a test tube and 1 ml vanillin reagent (2% vanillin (w/v) and 4% 185 

concentrated HCl (v/v) in methanol) were added and the tubes incubated in a water bath for 20 min at 20-22 °C. The 186 

absorbance was read at 500 nm. Absorbances were used to calculate catechin equivalents with help of a five point 187 

catechin standard curve (0-1 mg ml-1).  188 

The analysis of total anthocyanins was adapted from Cevallos-Casals and Cisneros-Zevallos (2003) measuring 189 

directly the absorbance of a diluted (1:5) methanolic extract. The absorbance was read at 535 nm. The anthocyanin 190 

content was expressed as mg cyanidin 3-glucoside equivalents g-1 fresh weight, using a molar extinction coefficient of 191 

25.956 M-1 cm-1 and a molecular weight of 449 g mol-1.  192 

The lignin amount was determined by the acetylbromide method adapted from Brinkmann et al. (2002). Aliquots 193 

of about 5 mg of dry pellet (3 replicates), previously obtained from the supernatants used for phenolic, flavonoid, tannin 194 

and anthocyanin analyses, were mixed with 500 μl 25% acetylbromide (v/v in glacial acetic acid) and incubated for 30 195 

min at 70 °C. Samples were rapidly cooled on ice, mixed with 500 μl 2 N NaOH and centrifuged for 5 min at 12,000 g 196 

at 4 °C. 125 μl supernatant were mixed with 2.5 μl 15 N NH4OH and 1247.5 μl glacial acetic acid. The absorbance of 197 

the solution was measured at 280 nm. Calibration curves were generated by subjecting 0-4.1 mg of commercial lignin 198 

(alkaline spruce lignin, Sigma, USA) to the same procedure.  199 

 For the DPPH (1,1-diphenyl-2-picrylhydrazyl radical) assay, the method reported by Hanato et al. (1988) was 200 

followed. 100, 150 and 200 µl extract were adjusted to 500 µl with 70% ethanol and added to 500 µl of an ethanolic 0.2 201 
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mmol l-1 DPPH solution. The mixture was left at room temperature for 30 min in the dark. The absorbance of the 202 

resulting solution was then measured at 517 nm. The antiradical activity was expressed as EC50 (mg ml-1), the efficient 203 

concentration required to cause a 50% DPPH inhibition. The ability to scavenge the DPPH radical was calculated using 204 

the following equation: DPPH scavenging effect (%) = (A0-A1)/A0x100, where A0 is the absorbance of the DPPH, and 205 

A1 is the absorbance of the sample at 30 min.  206 

 207 

Enzyme assays 208 

For the shikimate dehydrogenase (SKDH) assay, the method reported by Diaz et al. (1997) was followed. Samples 209 

(100 mg) were homogenized in the presence of 0.1 M potassium phosphate buffer (pH 7.4) containing 0.5 mM 210 

dithiotreitol (DTT), 2 mM L-cysteine, 2 mM EDTA, 8 mM 2-mercaptoethanol and 100 mg polyvinylpolypyrrolidone 211 

(PVPP) and centrifuged for 5 min at 12,000 g at 4 °C. The spectrophotometric assay for SKDH was performed at 25 °C 212 

in a reaction medium containing 4 mM shikimic acid and 2 mM NADP+ in 0.1 M Tris-HCl buffer (pH 9). The reaction 213 

was initiated by adding the protein extract (50 µl), and the NADP reduction was followed at 340 nm for 5 min.  214 

The phenylalanine ammonia-lyase (PAL) activity was assayed in samples (100 mg) ground in a pre-chilled mortar 215 

with liquid N2. The powder was immediately added to 1 ml 100 mM potassium phosphate buffer (pH 8.0) containing 2 216 

mM EDTA, 1.4 mM 2-mercaptoethanol and 0.1% PVPP. The homogenate was then centrifuged at 12,000 g for 30 min 217 

at 4 °C, and the supernatant was used as enzyme extract. The PAL assay was performed using a reaction mixture 218 

containing 2% (w/v) L-phenylalanine in 50 mM Tris-HCl at pH 8.8 and enzyme extract. The reaction was incubated at 219 

37 °C for 120 min. The cinnamic acid produced was measured at 290 nm and the PAL activity calculated using the 220 

molar extinction coefficient for t-cinnamic acid 17,400 M-1 cm-1 (Gadzovska et al. 2007).  221 

Cinnamyl alcohol dehydrogenase (CAD) activity was determined by measuring the increase in absorbance at 400 222 

nm when coniferyl alcohol was oxidized to coniferaldehyde (Wyrambik and Grisebach 1975). The assay was performed 223 

for 30 min at 30 °C in a total volume of 500 µl containing 100 mM Tris-HCl (pH 8.8), 0.5 mM coniferyl alcohol, 1 mM 224 

NADP and 100 µl enzyme extract. 225 

Protein concentration was determined by the method of Bradford (1976) using the dye-binding reagent (Bio-Rad). 226 

 227 

Spectrofluorimetric assay of hydrogen peroxide 228 

Hydrogen peroxide (H2O2) production was measured using the Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit 229 

(Molecular Probes, Invitrogen, USA) according to Shin et al. (2005). This assay is based on the reaction of 10-acetyl-230 

3,7-dihydrophenoxazine (Amplex Red reagent) with H2O2 in a 1:1 stoichiometry to produce the red-fluorescent 231 
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oxidation product resorufin (Mohanty et al. 1997). Shoots were frozen in liquid N2, ground with mortar and pestle and 232 

10 mg frozen powder added to 400 µl 20 mM potassium phosphate buffer pH 6.5. After centrifugation (12,000 g for 20 233 

min at 4 °C), 50 µl of the supernatant were incubated with 50 µl of the mixture of 0.5 µl 10-acetyl-3,7-234 

dihydrophenoxazine (10 mM), 1 µl horseradish peroxidase (10 U ml-1) and 48.5 µl buffer at 25 °C for 30 min in the 235 

dark. The resorufin fluorescence (Ex/Em = 530/590 nm) was quantified with a fluorescence/absorbance microplate 236 

reader (Victor3 1420 Multilabel Counter, Perkin Elmer, USA), after subtracting the background fluorescence of blank 237 

reactions without plant extract. Results were calculated with help of a H2O2-standard curve (0-100 µM). 238 

 239 

Extraction and HPLC analysis of rosmarinic acid 240 

Frozen plant material was pulverized in liquid N2 and 10 mg suspended in 1 ml 70% ethanol and mixed vigorously. 241 

Extraction was conducted by sonicating the samples at 70 °C for 10 min twice with vigorous mixing in between. After 242 

centrifugation for 10 min at 6,000 g at 4 °C the supernatant was diluted 1:10 with 40% methanol acidified with 0.01% 243 

H3PO4, followed by another centrifugation (5 min) before HPLC analysis. The HPLC analysis was performed at room 244 

temperature with a reverse-phase column (Dionex Acclaim 120, C18, 5 µm particle size, 4.6 mm internal diameter × 245 

150 mm length). The eluent was 40% methanol/0.01% H3PO4 at a flow rate of 1 ml min-1 with detection at 333 nm. 246 

 247 

Statistical analysis 248 

A minimum of 20 plants per treatment were used in each of the three repeated experiments. Following performance of 249 

the Shapiro-Wilk W test, data were analyzed using two-way analysis of variance (ANOVA) and comparison among 250 

means was determined by Fisher’s LSD Multiple-Comparison Test. Where no significant variation was found, data 251 

were then analyzed by Student’s t-test to highlight the differences due to O3 application. Linear correlations were 252 

applied to DPPH vs phenolic compounds or RA data. All analyses were performed by the NCSS 2000 Statistical 253 

Analysis System Software. 254 

 255 

Results 256 

At the end of the O3 treatment, shoots appeared symptomless, by microscopic observation, however, the O3-treated 257 

leaves showed (after Evan’s blue staining) some blue stained areas, identifying cell damage and dead cells. Blue stained 258 

cells were absent in control plants maintained in filtered air (Fig 1a-b). Histological staining for H2O2 showed local 259 

accumulation of this molecule evidenced by dark zones only in treated material and not in control leaves (Fig. 1c-d). At 260 

1 h FBE, a significant peroxidation was detected, confirmed by the marked increase of TBARS levels (+19% in 261 
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comparison to controls). At the end of fumigation the percentage rose to 26%. The content of MDA decreased to values 262 

below the constitutive levels during the recovery time (Fig. 2).  263 

The decrease of Fv/Fm (providing an estimate of the maximum quantum efficiency of PSII photochemistry, 264 

Bussotti et al. 2011) was 7% 1 h FBE. At the end of the treatment, the ratio Fv/Fm decreased about 20%, indicating that 265 

O3 partially impaired the efficiency of PSII. However, at 8 and 24 h FBE no significant differences between treated and 266 

control plants were measurable (Fig. 3). 267 

Analysis of the ROS content indicated a high H2O2 production in response to O3 (Fig. 4a): H2O2 levels showed a 268 

peak in the first three hours during the fumigation (about twofold in comparison to untreated plants) and then declined 269 

to control level. O3 induced a first increase of O2˙- levels at 1 h FBE (+34%) and a slight decline at 2 h FBE (Fig. 4b). 270 

Then, values of O2˙- showed a rise at 3 h FBE (59% more than filtered-air controls) and remained high during the 271 

recovery period (+53 and 57% at 8 and 24 h FBE). 272 

Changes in the concentration of phenolic compounds are shown in Fig. 5. Total phenol levels showed a massive 273 

accumulation that peaked at 2 h FBE (+82%, Fig. 5a). They were always significantly higher in treated individuals than 274 

in untreated control plants. Anthocyanin and tannin levels increased at 1 h FBE (+81 and +110%, respectively), 275 

reaching a maximum value at 3 h FBE. At that time-point anthocyanin and tannin accumulation was more than twofold 276 

compared to the control (Fig. 5b-c). In treated leaves, levels of lignin significantly increased at 1, 3 and 24 h FBE (+27, 277 

+23 and +27%, respectively) in comparison to controls (Fig. 5d). 278 

Changes in the activity of two key enzymes for the formation of phenolic compounds, SKDH and PAL, and of a 279 

key enzyme in lignin biosynthesis, CAD, are shown in Fig. 6. SKDH displayed a high peak at 1 h FBE (+165% in 280 

comparison to control material) (Fig. 6a). This enzyme maintained a higher activity in protein extracts from O3-treated 281 

compared to control plants until the end of fumigation (+110%) and during the recovery period (+35%). At 3 h FBE, 282 

there also was a strong increase in PAL activity (+152%), that dropped back to control level at 8 h FBE (Fig. 6b). CAD 283 

showed a maximum of activity at 2 h FBE (+76%); as reported for SKDH, levels remained higher than the control at the 284 

end of fumigation (+71%) and during the recovery period (+53 and +74% at 8 and 24 h FBE, respectively) (Fig. 6c). 285 

RA amounts increased with a peak at 2 h FBE (fourfold higher than filtered-air controls). They remained higher 286 

throughout the recovery period (+71 and 76% at 8 and 24 h FBE, respectively) (Fig. 7).  287 

O3-treated plants showed a prominent increase in antioxidant capacity as indicated by a very significant drop in the 288 

DPPH content at 2 h FBE (about threefold). At 1, 3 and 24 h FBE the respective levels were lower by 15, 16 and 33%, 289 

respectively (Fig. 8). In fumigated material, the antioxidant capacity was correlated to the concentration of phenolic 290 

compounds (y = -0.020x + 0.434, R2 = 0.49) and to the RA level (y = -0.007x + 0.351, R2 = 0.69). 291 
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Discussion 292 

The importance of lemon balm for traditional and modern medicine has promoted the long-lasting research interest on 293 

its antioxidant activity in infusions and various kinds of other extracts. This plant is reported as one of the most 294 

interesting sources of antioxidant compounds (Döring et al. 2014b). Some of the bioactive compounds in M. officinalis 295 

belong to the secondary metabolites which can be stimulated by biotic and abiotic elicitors. In the recent past, there has 296 

been a growing interest in the degree of sensitivity/resistance of this species to oxidative stress. Lemon balm has been 297 

proposed as (i) a model O3-bioindicator candidate for different regimes of this pollutant [such as changes in background 298 

concentrations (Döring et al. 2014a) and peak episodes (Pellegrini et al. 2011] and (ii) one of the most O3-sensitive 299 

species belonging to the Lamiaceae family (Asensi-Fabado et al. 2013).  300 

Plant tissue cultures can be considered a useful and convenient experimental system for examining various factors 301 

influencing the biosynthesis of desired products and for exploring effective measures to enhance their production 302 

without interference with pathogens and other microbes. Nevertheless, there are few reports on in vitro cultured lemon 303 

balm (Weitzel and Petersen 2010, 2011; Dias et al. 2012). The treatment of plant tissue cultures with elicitors are an 304 

effective strategy for improving the yield of secondary metabolites. In previous studies, the most common elicitors used 305 

include the components of microbial cells, especially poly- and oligosaccharides, heavy metal ions, hyperosmotic stress, 306 

UV radiation and signalling compounds in plant defence response (Campbell et al. 1992; Baque et al. 2010; Cai et al. 307 

2012; Jacobo-Velázquez and Cisneros-Zevallos 2012; Bertoli et al. 2013). It is well established that, upon the challenge 308 

by biotic elicitors and certain signal molecules (for example salicylic and jasmonic acid), cultured cells can trigger an 309 

array of defence or stress responses (Gadzovska et al. 2007; Dogo et al. 2010; Zhao et al. 2010; Krzyzanowska et al. 310 

2012). However, until now, very few reports focused on the effects of O3 on the growth and accumulation of bioactive 311 

compounds in in vitro cultures (Sudhakar et al. 2007; Kadono et al. 2010; Sun et al. 2012). Well-known markers 312 

characterize this kind of response: e.g. (i) activation of the phenylpropanoid pathway and (ii) induction of cellular 313 

barriers (Pandey and Pandey-Rai 2014). 314 

The current paper represents the first attempt to assess O3 as elicitor of antioxidant compounds in in vitro-cultured 315 

shoots of M. officinalis. We document here that O3 treatment induces an activation of some enzymes involved in 316 

phenolic metabolism, as confirmed by the large, but transient rise of SKDH and PAL activities. SKDH catalyses the 317 

conversion of dehydroshikimate to shikimate in the shikimate pathway that converts carbohydrates to aromatic amino 318 

acids, such as phenylalanine, which is the starting material for the phenylpropanoid pathway. Phenylalanine is required 319 

for the synthesis of phenolic secondary metabolites with a broad spectrum of antioxidant activities, and it’s activity 320 

often induced in whole leaves (Francini et al. 2008, Döring et al. 2014b) and cultured cells (Sgarbi et al. 2003; Dogo et 321 
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al. 2010) after biotic and abiotic stress. Ali et al. (2006) documented that copper stress induced an evident increase of 322 

SKDH and PAL activities in root cultures of Panax ginseng. Dogo et al. (2010) observed that the treatment with 323 

salicylic acid (3.125-25.0 mg l-1) induced an accumulation of phenolic compounds and a stimulation of PAL activity in 324 

Salvia miltiorrhiza cell cultures. Similar findings have been reported by Sgarbi et al. (2003) in two differentially O3-325 

sensitive Vitis vinifera cell lines exposed to a single O3 treatment (300 ppb for 2 h). In our study, the time course of 326 

PAL was similar to typical PAL stimulation by plant pathogens or wounding with a maximum activity in the first hours 327 

(Sudha and Ravishankar 2002). For this reason, these data suggest that the induction of PAL by O3 may be 328 

mechanistically similar to pathogen defense responses (Kangasjärvi et al. 1994). Under oxidative stress, M. officinalis 329 

shoots exhibited a stimulation of CAD activity associated with lignin biosynthesis. Usually lignification occurs upon 330 

wounding and fungal infection. Campbell and Ellis (1992) documented that lignin-like polymers were induced in pine 331 

and spruce cell cultures upon treatment with fungal elicitors, and CAD activity has been found to increase upon this 332 

challenge. Our results support the hypothesis that O3 might stimulate the development of cellular barriers with a higher 333 

polymerization of cinnamyl alcohols. Similar findings have been reported by Sudhakar et al. (2007) in in vitro 334 

propagated Rhinacanthus nasutus plants exposed to a single square O3 treatment (100 ppb for 30 min day-1 for 7 335 

consecutive days). O3 treatment induced not only an activation of enzymes controlling the phenylpropanoid pathway, 336 

but also an accumulation of metabolites derived from this pathway. We documented an increase of tannins, 337 

anthocyanins and phenols during the entire period of the treatment; in particular a massive increase was observed at 2-3 338 

h after the onset of O3 fumigation. These phenolic compounds are known to be effective antioxidants (Gill and Tuteja 339 

2010) and play a variety of roles, e.g. defense against herbivores and pathogens and absorption of high energy radiation 340 

(Taiz and Zeiger 2002). They have protective properties against ROS and it has been found that there is a considerable 341 

increase in their levels in whole leaves (Kováčik et al. 2010; Saviranta et al. 2010) and in cultured cells (El-Beltagi et al. 342 

2011) following biotic and abiotic stress. For this reason, our results suggest that the active phenol defense system 343 

induced by O3 may be mechanistically similar to the responses against pathogens or herbivores. Oxidative stress affects 344 

not only the total phenolic content, but also the amount of single phenols. In particular, the level of RA significantly 345 

increased during and post fumigation. In cultured plant cells, the biosynthesis and the production of this metabolite have 346 

been extensively studied (Petersen 2013). The stimulation of RA by biotic (such as yeast elicitor and methyl jasmonate) 347 

and abiotic elicitors (e.g. silver ions) has been observed in cell cultures of e.g. Lithospermum erythrorhizon (Ogata et al. 348 

2004), Coleus blumei (Petersen et al. 1994; Szabo et al. 1999) and Salvia miltiorrhiza (Yan et al. 2006, Zhao et al. 349 

2010). Recently, the accumulation of RA in M. officinalis cell cultures was investigated (Weitzel and Petersen 2011), 350 

but the responsiveness of this species to abiotic or biotic elicitors was not reported. We observed a massive formation of 351 
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RA at 2 h after the onset of O3 fumigation, which is concomitant with the maximum activity of free radical scavenging, 352 

as confirmed by the analysis of the DPPH radical scavenging activity of the extract from M. officinalis shoot cultures. In 353 

this assay, antioxidant activity mainly depends on the dissociation of hydrogen radicals from phenolic substances to 354 

form a stable compound with DPPH radicals. Some phenolic compounds can act as antioxidants by retarding protein 355 

oxidation or by binding to the proteins. The antiradical mechanism in phenol-protein aggregates may be due to ability of 356 

phenolic compounds to transfer oxidative damage from one phenolic site to another, protecting proteins from oxidation. 357 

According to other results, high salt strength enhanced DPPH radical scavenging activity in adventitious roots of 358 

Morinda citrifolia and a positive correlation was observed between DPPH radical scavenging activity and accumulation 359 

of phenolic compounds (Baque et al. 2010). In root cultures of Hypericum perforatum, elevated levels of phenolics in 360 

the roots grown in a sucrose-rich medium correlate with improved DPPH radical scavenging activity (Cui et al. 2010). 361 

Recently, Cai et al. (2012) reported similar findings in cell suspension cultures of Vitis vinifera. Our results indicate a 362 

close relationship between the concentration of phenolic compounds, the RA level in particular, and their free radical 363 

scavenging capacity. 364 

A peak episode of O3 (200 ppb, 3 h) was effective for stimulating a variety of secondary metabolites in M. 365 

officinalis shoot cultures. Previous investigations reported that O3 can be considered as a major factor in the 366 

vulnerability of lemon balm whole leaves (Pellegrini et al. 2011). For this reason, we analyzed physiological and 367 

biochemical biomarkers that may help in better understanding the mechanisms involved in the response of M. officinalis 368 

shoots to O3 regimes. Chlorophyll fluorescence is an intriguing indicator to assess photochemical efficiency and 369 

photoinhibition. It has been widely used in monitoring plant responses to environmental stress (Mohammed et al. 1995; 370 

Maxwell and Johnson 2000). A decline in photochemical efficiency is easily induced even by mild stress conditions. 371 

The Fv/Fm ratio is therefore a sensitive and early indicator of a change in photosynthesis and the physiological status of 372 

the plant in general. In dark-adapted untreated M. officinalis shoots, the mean value of this ratio was 0.789. This value is 373 

lower than that reported by Björkman and Demming (1987) for healthy plants (0.800≤Fv/Fm≤0.860). Often low rates of 374 

photosynthetic activity of in vitro shoots were observed, as expected from the culture conditions, such as low light 375 

intensity and CO2 concentration in the headspace (During and Harst 1996; Dǔrkovič et al. 2010) and the feeding of 376 

sugar in the culture medium. Under oxidative stress, the overall quantum yield of primary photochemistry was slightly 377 

reduced and at the end of the recovery time, the Fv/Fm ratio reached constitutive values. 378 

According to previous investigations conducted on whole leaves of naturally grown lemon balm (Döring et al. 379 

2014a), O3 slightly impaired the efficiency of PSII and, in particular, this damage was reversible. In the absence of 380 

visible injury, DAB staining and Evan’s blue incorporation indicated that H2O2 deposition and cell death occurred only 381 
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at the end of exposure. Similar findings have been obtained with membrane denaturation measurements. In treated M. 382 

officinalis shoots, the content of malondialdehyde [its production can be considered a signal of peroxidation of 383 

polyunsaturated fatty acids (Del Rio et al. 2005)] raised to constitutive values during the recovery period, suggesting 384 

that a partial control of ROS production was observed at the end of the O3 treatment. The missing migration of these 385 

secondary oxidation products from injured to relatively healthy neighboring cells showed that an early response of M. 386 

officinalis shoots to short-term O3 exposure is a transient oxidative burst leading to an endogenous, active and self-387 

propagating ROS generation. H2O2 exhibited a peak only during the treatment although a prolonged O2
·- generation 388 

occurred during and post fumigation. 389 

In conclusion, we found (i) an activation of enzymes involved in phenolic metabolism; (ii) a development of 390 

cellular barriers with a greater polymerization of cinnamyl alcohols; (iii) an accumulation of phenolic compounds, in 391 

particular rosmarinic acid and (iv) an increase of antioxidant ability. As previously observed by Beauchamp et al. 392 

(2005), O3 is a good plant stress ‘model’ agent for several reasons: (i) exposure can be conducted under well-defined 393 

conditions; (ii) experiments may be easily repeated mimicking the same conditions; (iii) doses of O3 can be varied over 394 

a wide range. Furthermore, O3 has a great advantage compared to other biotic/abiotic elicitors, because it can be 395 

degraded to oxygen during the treatment without toxic traces (Nishijima et al. 2014). Biotechnological applications of 396 

O3 in the field of medicinal plants for improving the secondary metabolites production deserve attention. 397 
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FIGURE CAPTIONS 619 

 620 

Fig. 1 Localization of dead cells visualized with Evans blue staining (a, b) and of hydrogen peroxide (H2O2) visualized 621 

with the 3,3’-6 diaminobenzidine (DAB) uptake method (c, d) in in vitro Melissa officinalis shoots: a, c maintained in 622 

filtered air; b, d exposed to ozone (200 ppb, 3 h). Bars = 50 μm. 623 

 624 

Fig. 2 Time course of the content of thiobarbituric acid reactive substances (TBARS) in in vitro Melissa officinalis 625 

shoots maintained in filtered air (open circle) or exposed to ozone (200 ppb, 3 h, closed circle). Data are shown as mean 626 

± standard deviation. The measurements were carried out 0, 1, 2, 3, 8 and 24 hours from the beginning of exposure to 627 

ozone. Different letters indicate significant differences (P≤0.05). Boxes show the results of two-way ANOVA, asterisks 628 

show the significance of factors/interaction for: *** = P≤0.001; ns = P>0.05. The hatched bar indicates the time (3 h) of 629 

ozone exposure. 630 

 631 

Fig. 3 Time course of variable and maximal fluorescence ratio (Fv/Fm) in in vitro Melissa officinalis shoots maintained 632 

in filtered air (open circle) or exposed to ozone (200 ppb, 3 h, closed circle). Data are shown as mean ± standard 633 

deviation. The measurements were carried out 1, 2, 3, 8 and 24 hours from the beginning of exposure to ozone. 634 

Different letters indicate significant differences (P≤0.05). Boxes show the results of two-way ANOVA, asterisks show 635 

the significance of factors/interaction for: *** = P≤0.001. The hatched bar indicates the time (3 h) of ozone exposure. 636 

 637 

Fig. 4 Time course of hydrogen peroxide (H2O2, a) content and rate of superoxide anion (O2
-, b) generation in in vitro 638 

Melissa officinalis shoots maintained in filtered air (open circle) or exposed to ozone (200 ppb, 3 h, closed circle). Data 639 

are shown as mean ± standard deviation. The measurements were carried out 1, 2, 3, 8 and 24 hours from the beginning 640 

of exposure. Different letters indicate significant differences (P≤0.05). Boxes show the results of two-way ANOVA, 641 

asterisks show the significance of factors/interaction for: *** = P≤0.001; ** = P≤0.01. The hatched bar indicates the 642 

time (3 h) of ozone exposure. 643 

 644 

Fig. 5 Time course of contents of total phenols (a), anthocyanins (b) and tannins (c) in in vitro Melissa officinalis shoots 645 

maintained in filtered air (open circle) or exposed to ozone (200 ppb, 3 h, closed circle). Data are shown as mean ± 646 

standard deviation. The measurements were carried out 1, 2, 3, 8 and 24 hours from the beginning of exposure. Boxes 647 

show the results of two-way ANOVA, asterisks show the significance of factors/interaction for: *** = P≤0.001. 648 
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Different letters indicate significant differences (P≤0.05) (a, b, c); for each time, significant differences are for *** = 649 

P≤0.001 and * = P≤0.05 (d). The hatched bar indicates the time (3 h) of ozone exposure. 650 

 651 

Fig. 6 Time course of specific activities of shikimate dehydrogenase (SKDH, a), phenylalanine ammonia-lyase (PAL, 652 

b) and cinnamyl alcohol dehydrogenase (CAD, c) in protein extracts from in vitro Melissa officinalis shoots maintained 653 

in filtered air (open circle) or exposed to ozone (200 ppb, 3 h, closed circle). Data are shown as mean ± standard 654 

deviation. The measurements were carried out 1, 2, 3, 8 and 24 hours from the beginning of exposure. Different letters 655 

indicate significant differences (P≤0.05). Boxes show the results of two-way ANOVA, asterisks show the significance 656 

of factors/interaction for: *** = P≤0.001. The hatched bar indicates the time (3 h) of ozone exposure. 657 

 658 

Fig. 7 Time course of rosmarinic acid (RA) content in in vitro Melissa officinalis shoots maintained in filtered air (open 659 

circle) or exposed to ozone (200 ppb, 3 h, closed circle). Data are shown as mean ± standard deviation. The 660 

measurements were carried out 1, 2, 3, 8 and 24 hours from the beginning of exposure. Different letters indicate 661 

significant differences (P≤0.05). Boxes show the results of two-way ANOVA, asterisks show the significance of 662 

factors/interaction for: *** = P≤0.001. The hatched bar indicates the time (3 h) of ozone exposure. 663 

 664 

Fig. 8 Time course of antioxidant capacity calculated as EC50 (efficient concentration required to cause a 50% DPPH 665 

inhibition) values in extracts from in vitro Melissa officinalis shoots maintained in filtered air (open circle) or exposed 666 

to ozone (200 ppb, 3 h, closed circle). Data are shown as mean ± standard deviation. The measurements were carried 667 

out 1, 2, 3, 8 and 24 hours from the beginning of exposure. Different letters indicate significant differences (P≤0.05). 668 

Boxes show the results of two-way ANOVA, asterisks show the significance of factors/interaction for: *** = P≤0.001. 669 

The hatched bar indicates the time (3 h) of ozone exposure. 670 

 671 

 672 

673 
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Figure 1 674 
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Figure 2   680 
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Figure 3 683 
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Figure 4 687 
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Figure 6
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