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Oxides of nitrogen (NOx) and volatile organic compounds (VOCs) released into the

atmosphere can react in the presence of solar irradiation, leading to ozone formation

in the troposphere. Historically, before clean air regulations were implemented to control

NOx and VOCs, ozone concentrations were high enough to exert acute effects such as

eye and nose irritation, respiratory disease emergencies, and lung function impairment.

At or above current regulatory standards, day-to-day variations in ozone concentrations

have been positively associated with asthma incidence and daily non-accidental mortality

rate. Emerging evidence has shown that both short-term and long-term exposures to

ozone, at concentrations below the current regulatory standards, were associated with

increased mortality due to respiratory and cardiovascular diseases. The pathophysiology

to support the epidemiologic associations between mortality and morbidity and ozone

centers at the chemical and toxicological property of ozone as a strong oxidant, being

able to induce oxidative damages to cells and the lining fluids of the airways, and

immune-inflammatory responses within and beyond the lung. These new findings add

substantially to the existing challenges in controlling ozone pollution. For example, in

the United States in 2016, 90% of non-compliance to the national ambient air quality

standards was due to ozone whereas only 10% was due to particulate matter and other

regulated pollutants. Climate change, through creating atmospheric conditions favoring

ozone formation, has been and will continue to increase ozone concentrations in many

parts of world. Worldwide, ozone is responsible for several hundreds of thousands of

premature deaths and tens of millions of asthma-related emergency room visits annually.

To combat ozone pollution globally, more aggressive reductions in fossil fuel consumption

are needed to cut NOx and VOCs as well as greenhouse gas emissions. Meanwhile,

preventive and therapeutic strategies are needed to alleviate the detrimental effects

of ozone especially in more susceptible individuals. Interventional trials in humans are

needed to evaluate the efficacy of antioxidants and ozone-scavenging compounds that

have shown promising results in animal studies.

Keywords: ozone, climate change, air quality standards, cardiovascular health effects, respiratory health effects,
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SOURCES AND CHEMISTRY

Ozone, the triplet oxygen (O3), is formed from the reaction
between dioxygen (O2, the normal oxygen molecule) and a
singlet oxygen (O, oxygen atom) in the presence of a third-body
molecule able to absorb the heat of the reaction. The highly
reactive and short-lived singlet oxygen (O) can be generated
via the photolysis of nitrogen dioxide (NO2) or ionization of
O2. Background ozone is present in both the stratosphere and
the troposphere. Stratospheric ozone is concentrated in the
tropopause (∼between 8 and 15 km above the ground), a region
that is called ozone layer. Stratospheric ozone is nicknamed
“good” ozone, because the ozone layer plays a vital role in
absorbing ultraviolet (UV-B) rays that are harmful to living
beings on the earth. Since direct contact with ozone at the
ground level can cause damages to living cells, organs, and
species including humans, animals, and plants, tropospheric or
ground-level ozone is nicknamed “bad” ozone.

There is a natural influx of ozone from the stratosphere to
the troposphere, peaking normally in the spring months when
the vertical air movement reaches its maximum in the northern
hemisphere. This influx contributes to background levels of
ground-level ozone. The predominant source of tropospheric
ozone, however, is the photochemical reactions involving volatile
organic compounds (VOCs) and oxides of nitrogen (NOx),
mainly comprised of NO2 and nitric oxide (NO). In the absence
of or at very low concentrations of VOCs or carbon monoxide
(CO), ozone reaches a steady-state concentration depending
on solar intensity, ambient temperature, and the ratio of NO2

concentration to NO concentration. Under this condition, one
NO2 molecule is converted via photolysis into one O3 molecule
and one NO molecule; and ozone is, in turn, consumed by
NO to regenerate a NO2 molecule. This cycle results in zero
accumulation of ozone concentration. However, VOCs or CO
participate in a series of complex photochemical reactions to
produce free radicals that compete with ozone to react with
NO. The net effects include the accumulation of ozone, the
oxidation of VOCs into oxygenated organic compounds, and the
formation of nitrogen-containing compound, and the oxidation
of CO into CO2. Because many of the oxygenated and nitrogen-
containing organic compounds are present in the condensed
phase due to their low volatility, they are called secondary organic
aerosols (SOAs). The whole mixture composed of ozone, SOAs,
and their gaseous precursors is called photochemical smog. The
production of ozone in the troposphere is depicted in Figure 1.

This ozone formation mechanism (Figure 1) explains why
elevated ozone concentrations are found in an increasing number
of places around the world where anthropogenic emissions of
NOx, VOCs, and CO have been increasing. The combustion
of fossil fuels occurs at a high temperature favorable for
NOx formation, and worldwide increases in fossil-fuel derived
energy (for electricity generation, transportation, and household
cooking and heating) are responsible for increasing emissions of
NOx. Major anthropogenic sources of VOCs include vehicular
exhaust, fugitive evaporation of gasoline and other gaseous
fuels (e.g., natural gas and propane), biomass and fossil fuel
combustion, and industrial solvent use. A recent study found

FIGURE 1 | Ozone in the stratosphere can move downward to the

troposphere, contributing to the “background” level of ground-level ozone.

However, high levels of ozone in the troposphere are due to photochemical

reactions involving volatile organic compounds (VOCs) and oxides of nitrogen

(NOx: NO, and NO2). Anthropogenic emissions (e.g., fossil fuel combustion)

are responsible for NOx and mainly responsible for VOCs and CO. Trees also

emit certain VOCs (e.g., isoprene). PM2.5 from primary emission sources can

react with (consume) free radicals (e.g., HO2) responsible for ozone formation,

which partly explains the observations in certain areas where ozone level

increased while PM2.5 level decreased. hv, photon; VOCs, volatile organic

compounds; CO, carbon monoxide; NO, nitric oxide; NO2, nitrogen dioxide;

NOx, NO and NO2; HO, the hydroxyl radical; HO2, The hydroperoxy radical;

PM2.5, Particulate matter with a diameter of 2.5µm or less.

that volatile chemicals released from consumer products (e.g.,
pesticides, coatings, printing inks, adhesives, cleaning agents, and
personal care products) have emerged as a large urban source of
VOCs (1). Natural vegetation emissions of certain VOCs (e.g.,
isoprene) also contribute to ozone formation especially at the
regional scale (2–5).

Ozone formation depends on solar intensity that is directly
associated with atmospheric temperature. Ironically, with a
decrease in ambient concentrations of carbonaceous aerosols
(e.g., soot), emitted from combustion of coal, diesel, and
biomass, atmospheric visibility increases, and consequently solar
intensity increases, favoring ozone formation. More importantly,
particulate matter (e.g., particles with an aerodynamic diameter
equal to or smaller than 2.5µm, noted as PM2.5) can serve as a
sink of free radicals responsible for ozone formation. A recent
study showed that a 40% reduction in PM2.5 from 2013 to 2017
in the North China Plain was partly responsible for an increasing
ozone trend (at 1–3 ppb per year) during the period of 2013–2017
observed in megacity clusters of eastern China (6).

IMPACT OF CLIMATE CHANGE ON
GROUND-LEVEL OZONE

Ozone itself is a greenhouse gas in the atmosphere. Hence,
increasing ground-level ozone contributes to global warming.
On the other hand, a warming climate favors the formation
and accumulation of ozone in the atmosphere mainly through
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two physicochemical mechanisms. First, in certain parts of the
world, a warming climate changes humidity and wind conditions,
leading to decreases in the frequency of surface cyclones. The
resulting more stagnant atmospheric condition decreases the
dispersion of NOx and VOCs and prolongs the time for the
reactions to produce ozone. Second, ozone-forming reactions
are typically enhanced by increased atmospheric temperatures.
Based on these climate-induced changes in the atmospheric
stability (air stagnation) and temperature, it is predicted that by
the year 2050, warming alonemay increase by 68% the number of
ozone-standard exceedance days across the eastern United States
(7). Another study predicted that changes in regional climate and
globally enhanced ozone would increase ground-level ozone over
most of the United States. More specially, it is predicted that
the 95th percentile for daily 8-h maximum ozone would increase
from 79 ppb in 2012 to 87 ppb in 2050 (8). Similarly, another
predictive analysis, through integrating data from climate model
outputs and historical meteorology and ozone observations
across 19 urban communities in southeastern United States,
estimated an increase of 0.43 ppb (95% CI: 0.14–0.75) in average
ozone concentration during the 2040s compared to 2000 due to
climate change alone (9).

Climate change can also prolong the ozone season. For
example, high ozone concentrations usually occur in the summer
in the United States. However, ozone during the fall reached the
summer level in several Octobers in the 2000s and in 2010 over
the southeastern United States. This was attributed to enhanced
emissions of biogenic isoprene (a VOC precursor of ozone) from
water-stressed plants under a drying andwarming condition (10).
This finding suggests that occurrences of a drying and warming
fall in the future may lead to an extension of the ozone season
from summer to fall in the regions with significant biogenic
VOC emissions.

AMBIENT CONCENTRATIONS IN
REFERENCE OF AIR QUALITY
STANDARDS

Ozone is in gas phase under typical atmospheric conditions
(temperature and pressure) and is commonly measured as
mixing ratio, i.e., parts per million (ppm) or parts per billion
(ppb). At the standard conditions for temperature (25◦C) and
pressure (1 atmosphere), 1 ppb ozone equals 1.97 µg/m3. Based
on its commonly recognized health effects, including causing
breathing problems, triggering asthma attacks, reducing lung
function, and increasing incidence of respiratory diseases, ozone
is one of the regulated air pollutants in many countries and
has a recommended limit by the World Health Organization
(WHO). The current WHO Air Quality Guidelines for ambient
(outdoor) ozone is 100 µg/m3 (∼50 ppb) measured as 8-h
maximum moving average within a day1. In the United States,
the current National Ambient Air Quality Standards (NAAQS)
for ozone include a 1-h standard (1-h maximum within a day)

1https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-

quality-and-health

at 120 ppb and an 8-h standard (8-h daily max) at 70 ppb. The
rationales for having two standards with different averaging times
are as follows.

Historically, the NAAQS only had a 1-h standard, as a sharp
peak of ozone concentration typically lasted for 1 h or a bit
longer during the afternoon and evening hours in Los Angeles,
California, and other large cities. This peak concentration was
high enough to cause acute effects such as irritation to the eyes
and the respiratory tract, lung function reduction, difficulty to
breathe, and increased emergency room visits. However, this
feature does not occur in most areas of the United States, because
the regional transport of ozone precursors prolonged the hours
of elevated ozone concentrations. Epidemiological studies have
found that ozone concentrations averaged over a longer period
(such as 8 h instead of 1 h) within a day are amore health-relevant
indicator of ozone exposure. In fact, as of June 15, 2005, the 1-
h ozone standard is no longer applied to areas designated with
respect to the 8-h ozone standard, which includes most of the
United States, except for portions of 10 states2.

Since the enaction of the U.S. Clean Air Act Amendment
in 1970, remarkable efforts were made to control the emissions
of the two ozone precursors (and other criteria pollutants).
From 1980 to 2017, total national emissions of NOX and VOCs
were reduced by 61 and 54%, respectively. Consequently, there
was a 32% decrease in national average of daily maximum 8-
h averages of ozone measured at 200 monitoring sites across
the United States3. Despite this nationwide decrease and more
drastic decrease in some ozone “hot spots” such as Los Angeles
and Atlanta, Georgia4,5, 100.6 million people nationwide (or
nearly one in every three people) lived in U.S. counties where
ozone levels exceeded the NAAQS standard of 70 ppb in 2017 (In
contrast, much fewer people, 58 million in total lived in counties
where PM2.5, PM10, SO2, or lead exceeded the NAAQS)3. If the
WHO-recommended 8-h limit of 50 ppb is used, there would
be even more people living in places with ozone exceeding the
health-based limit.

Although ambient ozone concentrations have showed a
declining trend in the United States and similarly in Western
Europe and Japan in the past decades6, evidence suggests
that global average ozone concentrations are increasing. For
example, ozone measured at Mt Waliguan Observatory (a global
“background” site) on the Tibetan Plateau over the period of
1994–2013 has shown an increasing trend at 0.2–0.3 ppb per
year during spring and autumn (11). The springtime ozone
increase was partly (∼60%) attributed to increased stratosphere-
to-troposphere transport, whereas rising Asian anthropogenic
emissions of ozone precursors were the key driver of increasing
autumnal ozone at this site. This finding is alarming, because
ozone is generally considered too reactive to be transported afar.
However, this demonstrates that NOx and VOCs emitted in more

2https://www.epa.gov/criteria-air-pollutants/naaqs-table
3https://www.epa.gov/air-trends/ozone-trends
4https://calepa.ca.gov/
5https://www.epa.gov/ga
6http://www.futureearth.org/blog/2018-feb-5/powerful-new-dataset-reveals-

patterns-global-ozone-pollution
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populous regions can undergo long-range transport and affect
“background” ozone level. More importantly, this finding also
suggests an increasing ozone trend not only in places where
NOx and VOCs were originally emitted but also along the air
trajectories from precursor sources to the background site.

Although the air quality focus has been on particulate
matter, especially PM2.5, in rapidly developing economies
such as China and India in the recent years, the “invisible”
ozone pollution is increasingly recognized as a major health
hazard. While annual PM2.5 average concentrations showed a
decreasing trend in many cities of China (12), ground-level
ozone concentrations measured in some monitoring sites in
China showed an increasing trend in the past several years.
For example, observations made at a rural site (Dadianzi)
100 km northeast Beijing showed a steady increase in annual
averages of the 8-h daily max ozone concentrations from 2004 to
2015 (13). Consistently, a recent analysis of ground-level ozone
concentrations measured at nearly 1,000 sites across China also
found an increasing trend of summertime ozone in northeastern
China from 2013 to 2017 (6). This increase was attributed
to changes in anthropogenic emissions of ozone precursors as
well as reductions in PM2.5 concentrations as described earlier.
Due to the strong governmental efforts to primarily control
PM2.5 in China, anthropogenic emissions of NOx have decreased
substantially in most urban areas of China (a 21% nationwide
reduction) from 2013 to 2017 (6). However, VOC emissions
have remained relatively unchanged. Typically decreasing NOx

would increase ozone under VOC-limited conditions, which has
been the case for many urban areas of China. All these explain
that in summer months, daily air quality reports released to
the public in recent years have often shown more days when
the ozone standard was exceeded than when PM2.5 or other
regulated pollutants exceeded the standards in many cities of
China. This trend in China appears to follow the pattern of the
United States where non-compliance to ozone standard has been
more frequently observed in more places than that to PM2.5 or
other pollutants.

HUMAN EXPOSURE AND DOSIMETRY

It is the fundamental principle of toxicology that “dose
makes poison.” It is common in air pollution epidemiologic
studies to use ambient concentrations as a proxy for exposure
or, more strictly speaking, dose. This approach omits inter-
and intra-person differences in breathing rate and does not
consider concentration differences between indoor and outdoor
environments. Among common or the criteria pollutants defined
by the US EPA, ozone has unique characteristics that can lead
to substantial errors for using ambient ozone concentration as a
proxy for dose.

First, ozone is chemically reactive and can be more effectively
scavenged by building surfaces. In airtight buildings with
doors and windows closed, indoor ozone levels are typically
smaller than 20% of outdoor levels. In contrast, for leaky
buildings and for building with windows frequently open, indoor
concentrations can reach>70% outdoor concentrations. Because
typically people spend the majority of time indoors, using
outdoor concentration as a surrogate for ozone exposure would

lead to greater overestimation of exposure for people living or
working in more airtight buildings than for those living in less
airtight buildings. This systematic exposure assessment error was
used to explain a difference in ozone effect estimates in U.S
populations living in buildings with different indoor–outdoor
air exchange rates1. Recent advancement in small and low-cost
ozone sensors makes personal monitoring or indoor monitoring
more affordable and feasible. More accurate ozone monitoring
can be used in future studies of ozone epidemiology and can also
aid data-based personal prevention actions.

Second, outdoor ozone concentrations exhibit a substantial
seasonal variation in most of the places. This adds challenges to
assess the health effect of long-term exposure in epidemiological
studies. Unlike using annual averages for other pollutants
such as PM2.5, warm-season averages have often been used
(14, 15), assuming that the health risk associated with lower-
level ozone in cold months is negligible. Accordingly, certain
ozone control policies have been implemented only during
photochemical smog months. In the United States, for example,
gasoline is formulated with higher oxygen content (typically
with increased fraction of ethanol) in warmer months to reduce
VOC emissions that contribute to ozone formation. However,
accumulating evidence suggests that there may not exist a
threshold ozone concentration below which the risk is “zero.”
Therefore, completely ignoring cold months in ozone control
strategy may need to be revisited.

Third, outdoor ozone typically exhibits a distinct diurnal
pattern with high concentrations during afternoon and early
evening hours. Hourly concentrations of ozone are usually
reported at ambient monitoring stations. For regulatory
purposes, these hourly data are computed as moving averages
to identify maximum 1- and 8-h concentrations (based on
moving averages) within a day. In epidemiological studies,
using concentrations with different averaging times has different
toxicological assumptions. Using 1-h max concentration is to
assess the acute effect of peak exposure, whereas using 8-h daily
max concentration assumes that lower concentrations during the
rest of 16 h do not contribute to an adverse effect. It is also
possible that either 1- or 8-h max concentrations were simply
used due to the data availability in previous epidemiologic studies
of short-term ozone effects (16–20). In addressing exposure
to low-level concentrations (such as concentrations below the
current air quality standard), however, 24-h average may be
another relevant measure of daily exposure, at least for certain
outcomes (21–24).

HEALTH EFFECTS EVIDENCE TO
SUPPORT OZONE REGULATIONS

Following a formal process of an extensive literature review
and a critical analysis, the US EPA summarized its evaluation
of available evidence in the 2013 US EPA Integrated Science
Assessment for Ozone7. Based on this assessment, the national
ambient air quality standard for 8-h daily max ozone was revised
from 75 to 70 ppb in 2015. The health effects evidence used to

7https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=247492
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support these revisions include mainly the following, which has
been well-demonstrated in recent reviews (25, 26).

• Ozone can cause adverse respiratory effects such as difficulty
of breathing (e.g., shortness of breath and pain when taking
a deep breath) and inflammation of the airways in the
general population. These effects can aggravate lung diseases
such as asthma, emphysema, and chronic bronchitis [chronic
obstructive pulmonary disease (COPD)].

• Long-term exposure to ozone is likely to be one of many causes
of asthma development.

• Ozone exposure is likely to cause premature deaths, and the
evidence is stronger for mortality due to respiratory illnesses
than for that due to other diseases.

• Children are at increased risk from ozone exposure, as children
have a relatively higher dose per body mass and children’s lung
is still developing.

Does this revised standard imply that the effects listed above
would not occur when 8-h daily max ozone concentrations are
below 70 ppb? Although from a regulatory standard point, the
public may be informed that it is “safe” to breathe the air when air
quality meets the standards, it is easy to see that the standards are
set somewhat arbitrary. For example, the WHO guideline for 8-h
daily max ozone of 100 µg/m3 (∼50 ppb) is lower than the EPA
standard, but the evidence to support this lower limit is similar to
that in supporting a higher limit by the US EPA, with additional
effects presented by the WHO as follows1:

• Ozone can cause coughing and sore or scratchy throat.
• Ozone exposuremakes the lungsmore susceptible to infection.
• Ozone continues to damage the lungs even when the

symptoms have disappeared.

Although WHO also considers that ozone is a cause of COPD,
this evidence was not strong enough in the 2013 EPA integrated
science assessment. Other effects of ozone reported include
the following. On high ozone days, there have been increased
school absences, increased visits to emergency rooms, and
increased hospital admissions (27–30). Long-term exposures
to ozone have been associated with lower lung function and
deteriorated or abnormal lung development in children (31,
32). In both the WHO guideline and the EPA ozone standard,
more susceptible populations are considered. In addition to
people with preexisting respiratory diseases such as asthma
and COPD, children, older adults, and people who are active
outdoors (especially outdoor workers) are more vulnerable to
ozone exposure.

IMMUNE-INFLAMMATORY RESPONSES
AND EMERGING EFFECTS

As a potent oxidizing gas, ambient ozone is well-known to cause
oxidative damages to the cells and the lining fluids of the airways,
thereby inducing immune-inflammatory responses in the lung.
Recent findings have shown that innate immunity is implicated
in ozone-induced airway inflammation, such as the involvement
of innate lymphoid cells (ILCs) in mice (33, 34). Ozone exposure

contributes to the increased expression of mRNA of tumor
necrosis factor-α (TNF-α), interleukin-1β (IL-lβ), interleukin-6
(IL-6), and interleukin-8 (IL-8) in human alveolar macrophages
(35) and increased concentrations of IL-6, IL-8, and fibrinogenic
proteins in human airway epithelial cells (36). A seminal work by
Koren et al. demonstrated that an acute exposure to ozone (0.4
ppm for 2 h) resulted in 8.2-fold increase of polymorphonuclear
leukocytes (PMN) in bronchial alveolar lavage (BAL) fluid
and enhanced level of inflammatory mediators in the lower
airways of humans (37). Krishna et al. further confirmed that
ozone-induced neutrophil influx in human peripheral airways
was partly mediated by IL-8 (38). Ozone exposure resulted in
significant neutrophilic inflammation, reflected with increased
levels of myeloperoxidase (MPO) in the supernatant of induced
sputum samples from healthy subjects (39, 40).

These immune-inflammatory responses to ozone may “spill
over” to the circulatory system, which may help explain emerging
evidence on the cardiovascular and neuronal effects of ozone.
Since the 2013 EPA assessment was released, several studies
conducted in North America further confirmed significant
positive associations, robust to controlling for co-pollutants,
between short-term ozone exposure and one or more of the
following mortality classifications: cardiovascular, dysrhythmia,
cardiometabolic, and ischemic heart disease. A meta-analysis of
53 studies showed a weak but significant association between
ozone and hospital admission and mortality from stroke (41).
Significant associations of ozone were found with ischemic stroke
occurrence in Seoul (42) and with non-myocardial infarction
out-of-hospital cardiac arrests in Helsinki (43). Although Jerrett
et al. (44) in the original analysis of an American Cancer
Society cohort found that ozone exposure was associated with
respiratory but not cardiovascular mortality, in the follow-
up study using the same cohort, Turner et al. (14) found a
significant association of long-term exposure to ozone with
cardiovascular mortality. A recent cohort study by Lim et al.
further confirmed this association between long-term exposure
to ozone and increased cardiovascular mortality (45). However,
there have also been epidemiological studies reporting null
findings between long-term ozone exposure and cardiovascular
mortality in Europe (46, 47).

Initiated in the lung, the immune-inflammatory responses
to ozone may ultimately contribute to increased cardiovascular
mortality and morbidity via two major pathways affecting
hemostasis and autonomic tone. Increased exposure to ambient
ozone has been associated with increased levels of hemostatic
markers, including fibrinogen (48–50), von Willebrand factor
(49), and plasminogen activator inhibitor-1 (48). Xia et al.
revealed that short-term exposure to ambient ozone can elevate
serum levels of ACE and ET-1, decrease their DNA methylation,
and alter the lipid metabolism, which may be partly responsible
for increased blood pressure and vascular endothelial disfunction
(51). Day et al. found that an increase in 24-h or 2-week average
exposure to ozone was associated with increased p-selectin (a
soluble plasma marker of platelet activation), suggesting that
ozone exposure increases the risk of thrombosis (21). Wang et al.
found that increased ambient ozone exposure was associated with
increased rate of carotid wall thickness progression and risk of
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new plaque formation in healthy adults (52). Jia et al. showed
that ambient ozone exposure within several minutes can decrease
heart rate variability in the healthy elderly subjects, suggesting
that a dysfunction of cardiac autonomic nervous system may
be involved (53). In controlled human exposure studies, a few
hours of ozone exposure resulted in changes in markers of
inflammation and fibrinolysis at 300 ppb and changes in cardiac
autonomic function at 110–300 ppb (54, 55). Although one study
found a blunting of exercise-induced blood pressure increases
(56) and another found increased systolic blood pressure in
response to ozone exposure (57), other such studies found
increases in diastolic blood pressure to a co-exposure of ozone
and concentrated ambient PM but not to ozone alone (58,
59). In contrast, animal studies with high ozone exposures
have generated more consistent findings on cardiovascular
effects of ozone through altering vascular tone (60–62),
mRNA for genes encoding thrombogenic factors (63), and
atherogenesis (60).

Additionally, deleterious effects of ozone exposure on
the central nervous system (CNS) are emerging (64, 65).
Neurodegenerative disorders, such as Alzheimer’s disease (AD)
and Parkinson’s disease, have been linked to ozone exposures in
recent epidemiologic studies (66, 67). The following toxicological
studies in rodents have demonstrated the CNS effects of
ozone, shedding light on biological mechanisms to support the
link between ozone exposure and outcomes related to CNS.
Rodríguez et al. showed that ozone exposure resulted in the
activation of apoptotic death in rat hippocampus mediated
by endoplasmic reticulum stress (68). Bello-Medina et al.
found that rats chronically exposed to ozone exhibited deficits
in learning and memory loss associated with deafferentation
in hippocampus-related neurons (69). Chronic exposure to
low-dose ozone, on the other hand, could enhance systemic
and hippocampal Th17/IL-17A immune responses, which
may be partly responsible for neurodegenerative effects in
rats (70).

DISCUSSION AND CONCLUSIONS

Ozone pollution is a worldwide health hazard. In many parts
of the world, as described above, ozone concentrations are
projected to increase, leading to increases in ozone-associated
mortalities and morbidities. A study reported a 6% increase in
premature deaths attributable to ozone globally from 1990 to
2010 (71), although the estimates (143,000 deaths in 1990 and
152,000 deaths in 2010) seem to be substantially lower than the
estimated reported in other studies. In one study, for example,
anthropogenic ozone was associated with an estimated 700,000
± 300,000 respiratory mortalities in 2000 (72). In another study,
exposure to ozone was responsible for 254,000 deaths from
COPD alone in 2015 (73). Other ozone-associated mortality
estimates include 316,000 respiratory deaths in China (15) and
∼23,500 in the European Union8. The relatively large gap in the
estimates across studies is due to uncertainties associated with
and inconsistence in concentration–effect relationship and ozone
exposure assessment. These estimates were based on respiratory

8http://ec.europa.eu/environment/air/pdf/TSAP%20CBA.pdf

effects alone, due to uncertainties associated with the current
evidence on the cardiovascular effects. It is expected that the
impact would be larger when other ozone effects were considered.

Ozone exposure was associated with large morbidity
estimates. An estimated 9–23 million (8–20% of total) asthma-
related emergency room visits globally were attributable to
ozone (74). A large multicity study in China showed that short-
term exposure to ambient ozone was associated with higher
non-accidental and cardiovascular mortality (20). In addition,
an estimated 23.0–40.3 million respiratory-related deaths were
attributable to long-term O3 exposure in 2016 (15). In the
European Union, ozone in 2010 was responsible for 19,200 cases
of respiratory hospital admissions, 86,000 cases of cardiovascular
hospital admissions, and over 109,000,000 minor restricted
activity days7. Disability adjust life years (DALY) lost attributable
to ozone were estimated to be 6.3 ± 3.0 million years in 2000
(58) and 4.1 (95% CI: 1·6–6·8) million years from COPD alone
in 2015 (73).

Disease burden attributable to ozone is expected to continue
to rise in the future for two reasons. The first is the fact that
ozone concentration is on the rise in many parts of the world
as described earlier. For example, an estimated increase of 0.43
ppb in average ozone concentration, during the 2040s compared
to 2000 due to climate change alone, would correspond to a
0.01% increase in mortality rate in 19 urban communities in
southeastern United States (9). Relative to that in 2000, there
will be a 14% increase in global ozone-related mortality (75).
The second is anticipated improvement in our understanding of
the ozone effects beyond the lung and improved characterization
of the chronic effects of long-term exposure. The improved
knowledge will likely add to ozone-associated disease burden that
is currently uncounted for.

There remain significant challenges in ascertaining chronic
ozone exposure and effects that are currently inconclusive.
Epidemiological evidence is limited to support a causal
relationship between the chronic exposure and mortality or
morbidity, although progresses have been made in recent
years by using large datasets. For example, an analysis of
national databases found a positive association between increase
in long-term ozone concentrations and an increased risk of
respiratory diseases and death (44). Di et al. (76) analyzed
the entire US Medicare population of 60 million older adults
from the years 2000 through 2012 and found a positive
association between annual averages of ozone and all-cause
mortality rate. Using large hospital records, increased chronic
ozone exposure was associated with increased asthma hospital
admissions in children (27). Long-term ozone exposure (3-
year averages) has been associated with development of acute
respiratory distress syndrome (ARDS) in at-risk critically ill
patients, particularly in trauma patients and current smokers
(77). By examining life expectancy at birth in 3,109 counties
of the conterminous U.S. during 2002 to 2008 in relation
to county-specific mean levels and rates of change in ozone
concentrations, a study found that a 5 ppb (10 µg/m3)
increase in long-term ozone concentration was associated with
0.25 year (95% CI: −0.30 to −0.19) lower life expectancy
in males and 0.21 year (95% CI: −0.25 to −0.17) in
females (78).

Frontiers in Immunology | www.frontiersin.org 6 October 2019 | Volume 10 | Article 2518

http://ec.europa.eu/environment/air/pdf/TSAP%20CBA.pdf
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Ozone as a Global Health Hazard

One of the challenges is to determine what is the best
measure for long-term ozone exposure, given that ozone has
distinct diurnal, and seasonal variations. A relevant question is
whether repeated episodes of short-term high-level exposures can
result in lasting health effects beyond the observed acute effects.
Answering this question is not easy as some of the acute ozone
effects are known to be reversible.What remains unknown is how
much of the acute effects can be repaired or reversed between
the episodes. At the meantime, people are constantly exposed to
other air pollutants such as PM2.5. The co-exposure may affect
the ability to repair the damage caused by acute ozone exposures.
The natural fluctuation in ambient ozone concentration hence
makes it challenging to examine chronic effects of short-term and
long-term exposures. However, it is imperative to address such
challenges in future studies of novel study design incorporating
promising technologies in monitoring and computing ozone
exposures with unprecedented accuracy and precision.

The large disease burden resulting from ozone pollution
warrants persistent calls for control polices worldwide, but this
is more urgent in developing countries where most of the
attention is paid toward PM2.5 reductions. Based on the history
of ozone control in the United States, aggregative regulatory
actions to cut down anthropogenic emissions of NOx and VOCs
have not necessarily resulted in sufficient reductions in ozone
concentrations in certain areas of the United States. Part of the
challenges is the “non-linear” relationship of ozone production
with its precursors, as reducing one of the precursors may not
necessarily lead to ozone reduction. Even within a metropolitan
area, the optimal ratio of NOx to VOCs associated with minimal
ozone formation changes from day to day (even hour to hour)
and from upwind to downwind. Sources of VOCs can be
numerous and hard to characterize. Some known sources, such
as household use of consumer chemicals and biogenic emissions,
are difficult to control through regulatory actions. Although
the fundamental chemistry of ozone formation is clear, ozone
concentrations, and spatiotemporal distributions are specific to
local meteorological conditions, local sources of NOx and VOCs,
and long-range transport of ozone and associated chemical
species. For all these challenges, ozone pollution in developing
countries is expected to be a long-term problem, and local
and national polices should be developed or strengthened to
persistently combat ozone pollution.

In the United States and developed countries with relatively
better air quality, following decades of controls for NOx and
VOCs emissions, further controls of anthropogenic emissions
via policy, and technological tools are becoming increasingly
limited. Meanwhile, predictions of ozone levels in response
to changing NOx and VOC concentrations get harder with
ozone concentrations approaching their “background” level. Yet,
emerging evidence does not support a threshold for adverse
effects of ozone (79, 80). Or if a threshold exists, it would have
to be substantially lower than the current health-based regulatory
standards or guidelines.

Considering all these challenges, it is imperative to use other
means to reduce the health impact of ozone. During high ozone

hours, the public, especially children and those with preexisting
health problems, is advised to avoid outdoor activities. Schools
may be advised to cancel outdoor sports activities. Because
indoor ozone levels are a small fraction of outdoor levels in
airtight buildings with door/windows closed, this strategy can
effectively reduce individuals’ exposure to ozone. To further
reduce outdoor exposure, individuals may consider wearing a
face mask that can effectively scavenge ozone. Face masks rated
N95 or higher can filter out PM2.5 effectively and are widely
available in the market worldwide. However, few models of face
masks are designed to remove ozone. Making ozone forecasting
available to the general public will enhance the effectiveness
of such personal protection methods to reduce ozone
exposure (81).

A wealth of data from animal studies and human studies are
available in the literature to help understand pathophysiologic
mechanisms by which ozone affects the lung. Relatively less
is known to understand how ozone affects the cardiovascular
health outcomes, although the immune-inflammatory responses
initiated in the lung are thought to be the key in more
downstream systemic effects. The mechanistic understanding
appears to be sufficient to support the use of antioxidants or
ozone scavenger to alleviate the ozone effects. For example,
rodent studies confirmed that the use of N-acetylcysteine and
sulfide salt can help prevent or recover the lung impairment
caused by ozone (82, 83). Limited studies in humans have
shown promising results. A randomized trial found that a daily
supplement of vitamins C and E might provide some protection
against acute nasal inflammatory response to ozone in asthmatic
children (84). In a control human exposure study (2-h exposure
to 400 ppb ozone vs. filtered air), healthy adults who had
received a dietary antioxidant supplementation of a mixture of
vitamin C, alpha-tocopherol, and vegetable cocktail exhibited
a significantly smaller ozone-induced reduction in pulmonary
function (85). Cohort and population-based interventional
trials should be conducted in real-world settings to develop
more targeted preventive or therapeutic strategies especially
in vulnerable populations and individuals. This should be
part of the overall strategy, along with air pollution control
polices, to combat ozone pollution, a lasting worldwide
health hazard.
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