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Abstract Ozone is the most important regional-scale air
pollutant causing risks for vegetation and human health in
many parts of the world. Ozone impacts on yield and
quality of crops and pastures depend on precursor emis-
sions, atmospheric transport and leaf uptake and on the
plant’s biochemical defence capacity, all of which are
influenced by changing climatic conditions, increasing
atmospheric CO2 and altered emission patterns. In this
article, recent findings about ozone effects under current
conditions and trends in regional ozone levels and in
climatic factors affecting the plant’s sensitivity to ozone are
reviewed in order to assess implications of these develop-
ments for future regional ozone risks. Based on pessimistic
IPCC emission scenarios for many cropland regions
elevated mean ozone levels in surface air are projected for
2050 and beyond as a result of both increasing emissions
and positive effects of climate change on ozone formation
and higher cumulative ozone exposure during an extended
growing season resulting from increasing length and
frequency of ozone episodes. At the same time, crop
sensitivity may decline in areas where warming is accom-
panied by drying, such as southern and central Europe, in
contrast to areas at higher latitudes where rapid warming is
projected to occur in the absence of declining air and soil
moisture. In regions with rapid industrialisation and
population growth and with little regulatory action, ozone
risks are projected to increase most dramatically, thus
causing negative impacts major staple crops such as rice

and wheat and, consequently, on food security. Crop
improvement may be a way to increase crop cross-tolerance
to co-occurring stresses from heat, drought and ozone.
However, the review reveals that besides uncertainties in
climate projections, parameters in models for ozone risk
assessment are also uncertain and model improvements are
necessary to better define specific targets for crop improve-
ments, to identify regions most at risk from ozone in a future
climate and to set robust effect-based ozone standards.
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Introduction

Increasing food demand for a growing world population
combined with changing consumption patterns causes
concern about the future availability of food and animal
feed (Schmidhuber and Tubiello 2007). Many environmen-
tal factors, including climate change and air pollution,
which influence crop productivity both directly and
indirectly, are additional threats. Increasing temperatures,
altered rainfall and more frequent extreme weather events
will change production potentials with some regions
benefiting and others being affected negatively (Parry et
al. 2004; Tubiello et al. 2007). Among air pollutants, ozone
is most important because of the widespread occurrence of
this secondary pollutant and its known risk for effects on
vegetation and human health (Akimoto 2003). Current
levels in surface air are often sufficiently high to reduce
yields of major staple crops such as rice (Oryza sativa),
wheat (Triticum aestivum), corn (Zea mays) and potato
(Solanum tuberosum), which is a priority issue for food
insecure regions (Ashmore 2005; Ashmore et al. 2006).
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Moreover, ozone is a potent greenhouse gas and contributes
to the greenhouse effect (Denman et al. 2007).

Global climate change and ozone pollution share some
of the anthropogenic causes, but because of the differences
in their properties, the timeframe for impacts differs. Due to
the long-lived nature of the major greenhouse gases CO2,
N2O or CH4, climate change impacts are typically studied
over 50–100 years. In contrast, ozone and its reactive
precursors such as oxidised nitrogen and volatile organic
compounds (VOCs) are short-lived and, therefore, ozone
has more immediate impacts on crops and pastures. These
impacts will persist, but they could be influenced by
changing climatic conditions due to altered characteristics
of the receptors and changes in atmospheric reactions and
transport characteristics. Hence, assessments of future
ozone risks should not depend exclusively on information
obtained under the current climate. But, given the com-
plexity of the interactions between vegetation, climate and
ozone (Fig. 1), more comprehensive assessments are still
lacking. Moreover, as a result of agro-technological devel-
opments with the introduction of new crops and varieties,
partly in response to climate change, future agroecosystems
will likely differ in terms of their sensitivity to ozone and
other stresses thus making realistic projections difficult.

This review addresses the question of ozone risks for
crops and pastures today and how such risks could be
influenced by the changing climate. A simple conceptual
framework is used that links (1) ozone production, distribu-
tion and ozone exposure; (2) ozone transfer and plant uptake
and (3) vegetation responses to the amount of absorbed
ozone, including detoxification and repair and cellular
damage (Fig. 2).

Observed effects of ozone

Crops

Yield loss and shifts in crop quality are key aspects of this
review. Many years of research in Europe and North
America using the open-top chamber (OTC) technique with
charcoal-filtered air, non-filtered ambient air and ozone-
enriched air have produced a wealth of data and exposure-
yield relationships (Ashmore 2002), which were used as
input to economic crop loss assessments (Mauzerall and
Wang 2001). Depending on crop and genotype, yield
responds differently. Mills et al. (2007) classified wheat,
watermelon, pulses, cotton, turnip, tomato, onion, soybean
and lettuce as the most ozone-sensitive crops; sugar beet,
potato, oilseed rape, tobacco, rice, maize, grape and broccoli
as moderately ozone-sensitive and barley and fruit repre-
sented by plum and strawberry as ozone-tolerant.

Ozone affects many determinants of yield including
photosynthesis, biomass, leaf area index (LAI), grain number
and grain mass, as shown for rice (Ainsworth et al. 2008). In
earlier reviews by Fuhrer and Booker (2003), Fiscus et al.
(2005) and others, mechanisms behind the effect of long-
term ozone exposure on yield have been presented and
discussed. In essence, ozone penetrates leaves through the
stomata. Via the production of reactive oxygen species
(ROS), it impairs photosynthetic CO2 fixation by impairing
rubisco activity or stomatal functioning, and/or indirectly via
acceleration of leaf senescence and thus protein (rubisco) and
chlorophyll degradation, particularly in leaves formed during
flowering (Morgan et al. 2004). This latter effect can be
measured as reduced light interception and light-to-biomass
conversion efficiency (Dermody et al. 2008). Ozone can
inhibit reproduction by affecting pollen germination and tube
growth, fertilisation and abscission or abortion of flowers,
pods and individual ovules or seeds (Black et al. 2000).
Finally, ozone impairs phloem loading and assimilate
partitioning to roots and grain is often reduced while
carbohydrates are retained in leaves (cf. Fuhrer and Booker
2003). In turn, this contributes to (1) higher shoot/root
biomass ratio, (2) lower harvest index (together with the
effect of a reduced length of grain filling period) and (3)
altered leaf chemistry. According to Grantz et al. (2006)
inhibition of allocation to roots can occur in the absence of
changes in growth rate and McKee and Long (2001)
suggested that ozone effects on allocation and development
are more important for reductions in final yield than effects
on photosynthesis and biomass accumulation. Decreased
allocation below ground alters the carbon (C) flux to soils,
leading to effects on soil processes (Andersen 2003) and the
long-term system C balance (Felzer et al. 2005) (see below).

When elevated ozone is combined with elevated CO2,
yield loss is typically considerably less than with ozone

Fig. 1 Scheme of interactions between vegetation, climate and ozone
pollution. Anthropogenic and natural emissions of reactive gases and
greenhouse gases are the cause of both ozone formation in the
troposphere and climate change, which interact through the radiative
forcing caused by ozone, and the effect of climate parameters on
ozone formation and destruction. Climate change and ozone further
interact as they both affect vegetation and land surface properties. The
outcome of this interaction determines vegetation responses to ozone
in a future climate

174 Naturwissenschaften (2009) 96:173–194



alone. For instance, a meta-analysis of data from a range of
experiments revealed that in soybean (Glycine max) seed
yield decreased in elevated ozone and elevated CO2 by only
half on the average, as compared to the decrease observed in
ambient CO2 and elevated ozone (Morgan et al. 2003).
Mechanisms involved in this protective effect of CO2,
including reduced stomatal conductance, were discussed
before (Fuhrer and Booker 2003) and are addressed in the
section “Ozone risk determinants and their response to
climate change”. Conversely, ozone can also diminish the
stimulating effect on yield of elevated CO2 (Fiscus et al.
2002). Similarly, fertilisation benefits are largely cancelled
out by yield losses caused by increased temperature in most
C3 plants such as wheat (Amthor 2001) and rice (Ainsworth
2008). This negative effect of warming is mainly due to the
acceleration of development in determined crops which
reduces the post-flowering period. Thus it can be assumed
that CO2 protection from ozone effects also becomes less
effective with increasing temperature (cf. Fuhrer 2003), but
further studies on the interactive effects of ozone, elevated
CO2 and temperature for the most important crops are
needed in order to project future yields in regions with
different rates of warming (Ainsworth 2008).

The response of crop quality to increasing ozone is not
straightforward. An analysis by Pleijel et al. (1999) for
wheat revealed that the loss in grain yield is accompanied
by increased grain quality. A more comprehensive analysis
for wheat by Piikki et al. (2008) confirmed that ozone
increases grain protein concentration while decreasing
protein yield and that the effect of elevated CO2 on grain
quality is opposite to that of ozone. In potato, reducing
sugar and starch content of tubers decreased significantly
with increased ozone, while at the same time ascorbic acid
concentrations increased (Vorne et al. 2002). Vandermeiren
et al. (2005) suggested that any increase in ozone would
likely reduce potato tuber yield, but that season-long
exposure to elevated ozone could have both beneficial and

detrimental effects on tuber quality. No effect of increasing
ozone on seed composition and quality was observed in
peanut (Arachis hypogaea) (Burkey et al. (2007).

Increasing attention is being paid to impacts of ozone on
crops in regions characterised by rapid urbanisation and
industrialisation (Emberson et al. 2001b). For China,
Chameides et al. (1999), Aunan et al. (2000) and others
suggested that crop yields may already be affected today
and that further reductions are expected in the future.
Wheat, soybean and corn were identified as especially
sensitive to ozone due to the likely co-occurrence of peak
levels of ozone and the growing season of these crops
(Emberson et al. 2003). Using an integrated assessment
approach, Wang and Mauzerall (2004) calculated that in
China, Japan and South Korea 1–9% of wheat, rice and
corn yields and 23–27% of soybean yield were lost due to
1990 levels of ozone and that losses may exceed 30% by
2020. In the Yangtze River Delta, one of leading regions in
economic growth in China, declining grain yield were
observed with increasing ozone in an OTC study with
winter wheat and rice suggesting that observed 1999 levels
of ozone caused significant crop loss (Feng et al. 2003).
Exposure–response relationships from studies in the United
States and Europe suggested that crop loss in wheat was
20% to 30% in 1999/2000 (Huixiang et al. 2005) and Chen
et al. (2008) confirmed reduced grain yield relative to the
filtered-air control at concentrations above current ambient
levels (i.e., in treatments with ozone added to non-filtered
air). Wang et al. (2008) reported that effects on oilseed rape
(Brassica napus) were largest when treatments were
characterised by diurnal variations in ozone instead of
constant exposure. Using foliar application of an ozone-
protectant (ethylenediurea, EDU), Wang et al. (2007a, b)
comparing EDU-treated with untreated plants concluded
that local ambient levels of ozone with an annual mean
concentrations of 74 ppb mainly affect wheat but not rice.
However, from effects of ozone observed in experimental

Fig. 2 Elements of ozone a simplified risk assessment approach.
Ozone effects on plants are dependent on leaf uptake through stomata,
which is influenced by the concentration in the air near the leaf surface
(exposure), and leaf conductance to gas diffusion. Exposure concen-
tration results from ozone formation, atmospheric transport and

turbulent diffusion in the boundary layer, and is influenced by surface
destruction. The effective dose, which causes damage to cellular
components and may feed back to the functioning of stomata, finally
depends on the rate of reactions with biomolecules. (ROS reactive
oxygen species)
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exposure–response studies, it could be expected that rice
yield would decrease significantly at this level of ozone
(Ainsworth 2008).

Near Varansi city in India, Agrawal et al. (2003)
observed negative effects of ambient air pollution contain-
ing ozone in a mixture with other pollutants on yield of
mung bean (Vigna radiata) and palak (Beta vulgaris)
during summer and of wheat (Triticum aestivum) and
mustard (Brassica campestris) during winter. Later,
Agrawal et al. (2006) showed that also seed quality in
mung bean declined due to the combined effect of ozone
and other pollutants, with potential consequences for the
nutrition of the urban population. Yield of tropical wheat in
a suburban area in the eastern Gangetic Plain was strongly
reduced in non-filtered ambient air with a mean ozone
concentration of 40 ppb as compared to charcoal-filtered air
with 90% less ozone (Rai et al. 2007). The authors
suggested that the combination of ozone and NO2 was
mainly responsible for the effect at sub-urban sites and
ozone alone at rural sites. Significant combined pollutant
impacts on wheat varieties were found in Lahore, Pakistan
(Wahid 2006).

Less attention has been paid so far to potential ozone
risks to crops in Africa. Yet, there is evidence of ozone
effects based on the yield ratio in EDU-treated vs. non-
treated plants in rural areas of the Nile Delta for potato
(Hassan 2006) and for soybean (Ali and Abdel-Fattah
2006). From measured and modelled ozone levels, in
combination with exposure–response information derived
for wheat in Europe, Van Tienhoven et al. (2006) concluded
that agricultural production in southern Africa could be at
risk, particularly in Zimbabwe.

Many estimates of crop losses involved exposure–
response functions from OTC studies. Their direct applica-
tion in yield loss and economic studies has caused
considerable debate because of possible confounding effects
of the chamber environment, which could lead to an
overestimation of impacts (Musselman et al. 2006). But in
a free-air ozone enrichment system (SoyFACE) significant
yield loss in soybean at a mean ozone level as projected for
2050 in many world regions, was comparable—or even
larger—to that expected from results obtained in earlier OTC
experiments (Morgan et al. 2006), thus confirming the threat
of increasing ozone levels for the yield of major crops.

Pastures

Compared to arable crops, pasture responses to ozone are
arguably more complex. Bassin et al. (2007a) concluded
that results for simple, young mixtures are not directly
comparable with those for established communities and that
results from OTC studies differ systematically from those in
free-air fumigation experiments. Pastures are typically

mixtures of species ranging from monocultures to bi-
species mixtures and to multi-species communities and
ranging from low to high productivity depending on site
conditions and management. Results from several experi-
ments with productive grass/clover mixtures showed that
the high-protein legume fraction declined with increasing
ozone, with negative effects for forage quality, because
clover (Trifolium spp.) as the most important legume in
temperate pastures appeared in most cases to be less
tolerant to ozone than the grasses (cf. Fuhrer 1997).
Nussbaum et al. (1995) found that the white clover fraction
(Trifolium repens) declined in response to long-term treat-
ments with low peak concentrations, whereas the compan-
ion grass Lolium perenne was affected in treatments
characterised by episodic peak concentrations. Early-season
ozone exposure decreased relative food value of Poa
pratensis (Bender et al. 2006) and possibly in alfalfa
(Medicago sativa) (Muntifering et al. 2006) leading to
nutritional implications for its utilisation by herbivores.

More recently, interest has shifted towards less produc-
tive, multi-species communities with a high conservation
value. But changes in yield and species composition in
temperate old grasslands (Volk et al. 2006), calcareous
grassland (Thwaites et al. 2006) or alpine grasslands (Bassin
et al. 2007b) were difficult to detect against a background of
natural variability. In temperate and alpine grassland, subtle
changes in C-assimilation and water economy were inferred
from shifts in stable C and O isotopic signatures (Jäggi and
Fuhrer 2007; Bassin et al. 2008) and reduced leaf longevity
from normalised difference vegetation index (NDVI) meas-
urements (Bassin et al. 2007b). Thus, in the longer run lower
productivity and altered species dominance may appear.
After 5 years of exposure to elevated ozone, Kölliker et al.
(2008) reported small shifts at the genetic level in Plantago
major, a key species in temperate semi-natural grasslands.
Clearly, more experiments using free-air ozone enrichment
as described by Volk et al. (2003) will be needed across
different habitats, climates and productivity levels before
generalisations about the sensitivity of pastures to ozone can
be made.

Current ozone exposure, trends and projections

In risk assessments, ozone exposure is typically summar-
ised by suitable statistical indices based on measured
concentrations. These can be characteristics of the frequen-
cy distribution of hourly concentrations measured near the
surface in ppm (parts-per-million by volume) or ppb (parts-
per-billion by volume) such as mean, median, maximum or
percentiles. To be more receptor-specific, calculations are
limited to the relevant time of the year, i.e. the growing
season, and specified periods during the day, e.g. daylight
hours. Results from OTC studies suggested that indices that
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give greater weight to peak concentrations and those
accumulating exposure were best related to yield changes
(Musselman et al. 1994). Examples of cumulative indices in
units of ppm h (or ppb h, using hourly means) are:

AOT40 ¼ P
O3½ � � 40ð Þ for O3½ � > 40 ppb during daylight hoursÞ

SUM06 ¼
X

O3½ � for O3½ � � 60 ppb:

An index involving a continuous weighting function is:

W126 ¼
X

O3½ �W ;ð
With the sigmoidal weighting function W=1/(1+4403(exp
(−0.126 [O3]))). While SUM06 and W126, which were not
used later in this review, are mostly used in the USA
(USEPA 2006), AOT40 has been adopted by the UNECE
Convention on Long-Range Transboundary Air Pollution
(CLRTAP, www.unece.org, last accessed Oct 2008) (UNECE
2004). For wheat under non-limiting conditions yield loss
was directly related to AOT40 (Fuhrer et al. 1997) and,
consequently, the index was used for spatial and temporal
ozone risk assessments in Europe (UNECE 2004). However,
the discussion about pros and cons of different concentra-
tion-based indices to predict vegetation effects is ongoing
(Musselman et al. 2006) and indices based on stomatal
ozone flux are now being developed and used (see the
following section).

Current levels of ozone

Ozone is photo-chemically produced from natural and
anthropogenic precursors, mainly nitrogen oxides (NOx),
volatile organic compounds (VOCs), methane (CH4) and
carbon monoxide (CO) (cf. Staehelin 2001). Levels mea-
sured in surface air depend on the balance between formation
and destruction of ozone and are influenced by physical
factors such as radiation, temperature and humidity and on
air mixing. In the northern hemisphere ozone is also
influenced by the influx from the stratosphere (Lefohn et
al. 2001; Grewe 2007). In the course of the year, concen-
trations vary strongly with episodic peak concentrations in
the most polluted regions during the warmest months in
summer and maxima during spring prevailing at background
sites (Vingarzan 2004; Jonson et al. 2006). In regions such as
East Asia exposed to summer monsoon which transports
oceanic air with less ozone, ozone seasonal patterns show a
peak during pre- and post-monsoon periods (He et al. 2008).
Similarly, ozone depletion during the specific monsoon
season was observed in other regions.

During the day, ozone concentration pattern depends on
elevation and shows strong diurnal variations at lowland
sites where ozone destruction dominates during the night
and vertical mixing together with photo-chemical activity
causes highest levels in the afternoon. At higher elevation

sites, diurnal profiles of ozone are less variable and
concentrations remain high during the night due to mixing
and coupling to the free troposphere. A similar damped
diurnal cycle can be observed at coastal sites (e.g., Parrish
et al. 2008).

From spring to summer, mean concentrations in rural
areas of Europe reach 40 to 50 ppb, and average (1997–
2001) levels of AOT40 calculated for May, June and July
range from less than 3 ppm h in northern Scandinavia to
values >10 ppm h in southern Europe (EMEP 2004). At
individual sites, maximum values of around 30 ppm
h (2003) were recorded in southern Switzerland and around
20 ppm h at sites in Italy (ICP Vegetation 2007). Similar
AOT40 levels were reported to occur frequently in other
densely populated regions such as the northeast of India
with the Indo-Gangetic plain (Mittal et al. 2007; Engardt
2008). In rural agricultural areas of the USA, mean ozone
concentrations reach between 50 and 60 ppb (90th
percentile) (USEPA 2006).

Observed trends in ozone

During the last century, annual mean surface concentrations
of ozone at mid to high latitudes have more than doubled
(Hough and Derwent 1990). Concentrations over the mid-
and high-latitude of the Eurasian and North American
continents were 15–25 ppb in 1860 but increased to between
40 and 50 ppb even in remote areas and from 10–15 ppb to
20–30 ppb over the mid- and high-latitude Pacific Ocean
(Lelieveld and Dentener 2000). Due to efforts to reduce
precursor emissions, ozone levels in many rural and urban
areas of Europe, North America and Japan have been
changing recently such that the frequency of the highest
values shows a declining trend, while minima are increasing
(Jonson et al. 2006; Oltmans et al. 2006; Jenkin 2008).
Trends at more than 300 sites in Germany between 1990 and
2000 showed a decline in the 99 percentile by ca. 1.6 ppb
year−1 (Beilke and Walasch 2000). An important contribu-
tion to the upward trend in the low percentiles mainly during
winter is a reduction in the titration by the ozone–NO
reaction due to regionally reduced NOx emissions (Jonson et
al. 2006). In other regions such as Southeast Asia trends
differ. For instance, in the Yangtze Delta region of China, Xu
et al. (2008) observed a decrease in the average concentra-
tion, but an increase in the daily amplitude of the diurnal
variation due to increasing frequencies at both high and low
ends of the ozone distribution, and the most likely cause was
believed to be an increase in NOx concentrations.

Opposite to trends in more polluted areas, annual mean
concentrations at background sites at mid-latitudes of the
northern hemisphere have been increasing at about 0.5–2%
per year, presumably due to rising NOx emissions on a
global scale, and by intercontinental transport of pollutants
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(Auvray and Bey 2005; Derwent et al. 2006; Derwent 2008).
From 1987–2003, the increase in mean ozone concentration
measured at an Atlantic costal station (Mace Head) in Ireland
has increased by 0.49 ppb year−1 (Simmonds et al. 2004) and
by 0.31 ppb year−1 from 1987 to 2007 (Derwent et al. 2007).
A similar average trend in mean annual ozone concentration
of 0.34 ppb year−1 was determined for the North American
west coast, although at a 7 ppb lower mean concentration
level (Parrish et al. 2008). At seven out of nine rural and
remote sites in the western USA, there was a significant
increase in ozone with a mean trend of 0.26 ppb year−1,
corresponding to an average increase of 5 ppb between 1987
and 2004 (Jaffe and Ray 2007). Current levels at background
sites range between 20–45 ppb, depending on location,
elevation and distance to emission sources (Vingarzan 2004).
The comparison between recent ozone concentrations and
those of the last decade at Pic du Midi (2,877 m), as well as
trends calculated over 14-year data series at three high-
altitude sites in the Alps (Jungfraujoch, Sonnblick and
Zugspitze) revealed that background ozone is still increasing
but at a slower rate than in the 1980s and 1990s (Chevalier et
al. 2007). Regional studies suggested that the influence of an
increasing background concentration in Europe differs
between seasons; for instance in Switzerland, where summer
peak concentrations declined from 1992 to 2002 while the
seasonal median remained stable, median concentrations
increased by 0.69 and 0.58 ppb year−1 in winter and autumn,
but only by 0.35 and 0.11 ppb year−1 in spring an summer,
respectively (Ordóñez et al. 2005).

Projections of future ozone levels

Future trends in ozone will depend on the anthropogenic
emission path of precursors and on trends in temperature,
humidity and solar radiation. By 2030, average ozone in
surface air over much of the northern hemisphere could
increase by 2 to 7 ppb across the range of IPCC SRES
emission scenarios described in Nakicenovic and Swart
(2000). By 2100 the two more extreme scenarios projected
baseline ozone increases of >20 ppb, while the other four
scenarios yielded changes of −4 to +10 ppb (Prather et al.
2003). More recently, multi-model simulations for 2030
projected that with current air quality legislation imple-
mented worldwide global surface ozone would increase by
1.5±1.2 ppb on average, but by 4.3±2.2 ppb for the IPCC
SRES A2 scenario (Dentener et al. 2006), with the
strongest increase in South Asia, Southeast Asia and the
Middle East (Gauss et al. 2007). Using 26 different models,
projections for 2030 resulted in an ensemble mean change
in tropospheric ozone burden ranging from a 5% decrease
to an increase by 6% and 15%, depending on the emission
scenario (Stevenson et al. 2006). A reduction in future
ozone levels results from a scenario with maximum feasible

reductions (MFR), whereas an intermediate increase by
6 ppb results from the scenario with current legislation
(CLE) and a stronger mean increase by 6–10 ppb from the
A2 scenario (IPCC 2007). Hence, only with the assumption
of best available technology in place globally, surface
ozone levels may generally decrease, but this assumption
seems to be too optimistic (Derwent 2008). Hence, the
more likely development is an increase in mean ozone
worldwide, even including Europe where precursor emis-
sions are expected to decline due to efforts under the
UNECE CLRTAP because of growing hemispheric influ-
ence of emissions in parts of Asia, Latin America and
Africa.

Although anthropogenic emissions cause the largest
response in ozone, a major factor influencing future trends
in ozone is climate change, but the effect of both factors
vary in space (Zeng et al. 2008). Separate effects of
emissions and climate change on the global distribution of
ozone in two selected months are shown in Fig. 3. The plots
show that emissions affect ozone levels mainly in the mid-
latitudes, while climate change effects are strongest in land
areas with the strongest warming.

Shifts in climate have diverse and complex impacts on
ozone through changes in circulation and meteorological
conditions affecting ozone production and destruction. IPCC
SRES emission scenarios consistently indicate an increase in
global mean temperature with the most pronounced warming
at mid to higher latitudes and associated shifts in precipita-
tion with some regions getting wetter and some regions
getting drier (IPCC 2007). Generally, warming in regions at
higher latitudes tends to be accompanied by increasing
annual precipitation, whereas those at lower latitudes receive
progressively less precipitation.

The change in surface temperature is associated with
increased atmospheric humidity (see the following section),
which again has an impact on ozone levels. While increasing
temperature, together with more radiation due to decreasing
cloudiness, favours ozone formation, several studies sug-
gested that a warmer and more humid climate would slow
down the increase in ozone because of the positive effect of
increased humidity on ozone destruction (cf. Zeng et al.
2008). The relative contribution of factors favouring ozone
formation vs. those favouring ozone degradation may change
with region, as shown for the United States (Racherla and
Adams 2008), with the main positive impact of future
climate change centred over the eastern United States. For
the second part of the twenty-first century, Vautard and
Hauglustaine (2007) analysing results of a number of
simulations studies concluded that surface ozone would
increase by 5–15 ppb at mid-latitudes where the impact of
increased radiation, temperature and more stagnant condi-
tions dominate over the effect of increased water vapour, in
contrast to tropical/equatorial areas where ozone destruction
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will be favoured by higher humidity and less warming.
Without considering trends in precursor emissions, Kunkel et
al. (2008) in a study for the northeast of the United States
quantified the effect of reduced cloudiness using two
different cumulus parameterisations. Resulting increases in
daily mean concentration ranged between 12% and 27% for
a scenario with high anthropogenic emissions. Zeng et al.
(2008) and others pointed to the important role of increasing
biogenic emissions of reactive species, which favours ozone
production. Biogenic emissions are generally thought to
increase with temperature as, for instance, emissions of
VOCs such as isoprene or terpene from forest trees are
highly temperature-dependent. According to IPCC (2007),
under the A2 scenario, biogenic hydrocarbons are projected
to increase by between 27% (Sanderson et al. 2003) and
59% (Hauglustaine et al. 2007) contributing to a 30% to 50%
increase in ozone formation over northern continental
regions. Increasing CO2 in the atmosphere could stimulate
total leaf surface area in forests leading to even larger
hydrocarbon emissions (Arneth et al. 2008), but this effect
may be limited because of a reduction in emission rates per
unit leaf area (Calfapietra et al. 2008). Therefore, the
quantitative contribution of these processes to ozone pro-
duction on larger scales remains uncertain (Racherla and
Adams 2008).

Extremely warm years can serve as a model case for
future conditions and measurements during such years can
help validate projections for future trends in ozone. 2003 was
a year that is often seen as an analogue of typical future
climatic conditions in Europe with long periods of heat and
low precipitation (Beniston et al. 2004). Blocking anti-

cyclonic conditions are likely becoming more frequent in
Europe (Schär et al. 2004), and also in other mid-latitude
continental regions (Vautard et al. 2007), and the frequency
of ‘hot’ days with temperatures above 30°C could increase
progressively over the next decades (Beniston et al. 2007).
From this it may be expected that the length of ozone
episodes may increase due to longer warm and dry periods.
In 2003, the average daily maximum ozone concentration in
summer in Switzerland was 15 ppb or nearly 29% higher
than during the period 1992–2002 (Ordóñez et al. 2005).
Using the meteorology of 2003, Szopa and Hauglustaine
(2007) projected for 2030 the strongest absolute increase in
ozone in the northern and eastern regions of Europe and a
smaller increase in more southern parts.

Increasing temperature will extend the ozone season
both into the late spring and early fall (Racherla and Adams
2008). Together with longer episodes with favourable
conditions for ozone formation this trend is likely to
increase the ozone accumulated exposure over the potential
growing season, although for specific crops cumulative
exposure may decline due to an accelerated development.
When using cumulative indices involving a cut-off concen-
tration such as AOT40, even more pronounced changes in
exposure than in mean concentrations are expected (Reilly
et al. 2007). This is because the increase in baseline ozone
leads to more frequent exceedance of the cut-off. Using 18
atmospheric models, Ellingsen et al. (2008), for the CLE
scenario (current legislation in place), obtained an increase
in AOT40 by 21–38% by 2030 over the northern
hemisphere, relative to 2000 and by 50% on the Indian
subcontinent, but a decrease with current regional legisla-
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Fig. 3 Modelled surface ozone (ppb) in January and July from the
present-day simulation (left), changes in surface ozone (ppb) between
2000 and 2100 due to anthropogenic emission changes (middle) and

due to climate change (right) (reprinted from Zeng et al. 2008, with
permission from the author)
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tion in Europe. For the A2 scenario, the largest increase in
AOT40 (80–100%) was found for India and Southeast
Asia. With respect to the effect of climate change by 2030,
the latter study provided inconclusive results because of the
short time horizon. Using MATCH (http://www.mpch-
mainz.mpg.de/~lawrence/MATCH/match_overview.html,
last accessed Oct 2008), a global 3-dimensional model of
atmospheric transport and chemistry AOT40 could increase
across much of the mid-latitude temperate regions by as
much as a factor of about 4 and 6 by 2050 and 2100,
respectively, for an emission scenario without pollution
control, but a decline for scenarios with pollutant emissions
capped at 2005 level and greenhouse gas emissions reduced
to stabilise CO2 concentrations at 550 ppm by 2100 (Reilly
et al. 2007). Giorgi and Meleux (2007), using the IPCC A2
scenario, projected the strongest increase in AOT40 by the
end of this century (>50% relative to 1961–1990) over
France, England, Belgium, the Netherlands, south-western
Germany and north-eastern Switzerland. Using regional
models, Meleux et al. (2007) for Europe and Forkel and
Knoche (2006) for southern Germany consistently pro-
jected increasing frequencies of ozone episodes by 2030
leading to substantial increases in seasonal cumulative
ozone exposure.

Overall, climate change, together with increasing base-
line ozone levels due to altered large-scale emission
patterns, could cause an increase in the frequency of years
with higher cumulative ozone exposures in Europe, as
compared to today, with a stronger trend in north-western
as compared to southern Europe. This is in spite of current
regional emission control measures. In most regions, ozone
risks for vegetation based on AOT40 show moderate
deteriorations by 2030 if current emissions legislation is
followed and slight improvements if current emissions
reduction technology is used optimally. In the case of a
pessimistic ‘business-as-usual’ scenario (A2) substantially
higher ozone levels by 2030/2050 must expected world-
wide, in particular on the Indian subcontinent, in Southeast
Asia and in some African regions. However, apart from
uncertain emission projections, uncertainties in the model
outputs remain; for instance with respect to effects of
climate-chemistry feedbacks (Stevenson et al. 2005) and of
land surface–climate interactions (Seneviratne et al. 2006;
Sitch et al. 2007).

Ozone risk determinants and their response to climate
change

Leaf uptake

The risk for ozone effects on plants not only depends on the
ozone concentration in the surface boundary layer, but also

on (1) the rate at which ozone penetrates leaves through
stomata and (2) the capacity of the leaves to tolerate ozone
and its derivatives present in the leaf interior (cf. Fuhrer and
Booker 2003). Hence, ozone damage is a function of the
balance between the rate of uptake at a given point in time,
Fst(t) and the plant’s defence reaction at that time, D(t), i.e.
the ‘effective flux’ (EFst) (Musselman et al. 2006):

EFst ¼ Fst tð Þ � D tð Þ ð1Þ
EFst can be integrated over time to yield the cumulative

effective loading (AFst). Rates of D are temporally variable
and depend on energy-consuming biochemical processes
removing ozone or its products in the leaf interior, for
which a general process-based representation in models is
still lacking (Matyssek et al. 2008) (see below). In the
absence of a mechanistic formulation, a constant value of D
is used. AFst with D=6 nmol m−2 project leaf area is
referred to as AFst6 (UNECE 2004), with the value for D
derived by best-fit regression using data from OTC studies.
Pleijel et al. (2007) and others provided empirical evidence
that modelling AFst6 yields better statistical relationships to
yield of wheat and potato than can be obtained with
concentration-based indices (e.g., AOT40). The difference
is likely due to the better capturing of the effect of
environmental conditions on Fst or more specifically leaf
conductance to ozone diffusion (gs) (see below). Figure 4
shows the relationships for AFst6 vs. relative yield for
wheat and potato. The improved relationship between AFst
and yield loss has stimulated the development of a flux-
based approach for ozone risk analysis in Europe to replace
the exposure-based assessment (Fuhrer 2000).

Factors affecting leaf uptake

Central to models of Fst is gs which together with the ozone
concentration gradient across the stomata determines the
rate of ozone diffusion into a leaf:

Fst ¼ gs $ O3½ � ð2Þ
From measured rates of water vapour diffusion, gs for

ozone can be estimated by accounting for the difference in
molecular diffusivity between ozone and water vapour. It is
often assumed that the ozone concentration inside the leaves
is zero; hence ozone uptake can be calculated from external
concentrations multiplied by gs. However, as pointed out by
Paoletti and Manning (2007), this assumption must be
questioned because experimental evidence suggests that
internal concentrations may be larger (Moldau and Bichele
2002). Under steady-state conditions, the ozone flux into the
leaves also depends on ozone removal by reaction with
apoplastic components, mainly ascorbate (asc) (see below).
Eller and Sparks (2006) showed a direct relationship between
symplastic asc and ozone influx. In their experiment, the
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concentration of asc together with gs explained 66% of the
variation in ozone flux. Additional factors such as reaction
with glutathione or the strength of the external surface sink
for ozone may explain the remaining variability.

Because ozone flux to leaves is partitioned to stomata
and to external surfaces, Fst is influenced by surface
destruction of ozone, which depends on leaf surface
characteristics and surface conditions such as wetness
(Zhang et al. 2006) and temperature (Fowler et al. 2001),
although the interactions are variable and may differ with
climate and plant species (Altimir et al. 2006). Unless
droplets block stomatal openings (Grantz et al. 1997),
surface wetness generally acts to enhance total ozone flux
to foliage, although a mechanistic understanding of how
surface moisture affects ozone deposition is lacking
(Altimir et al. 2006). This may significantly increase the
fraction of non-stomatal ozone flux and thus may prevent a
certain portion of stomatal uptake.

In a changing climate, changes in surface wetness are
complex as they depend both on night-time temperature and
on evaporative conditions during daytime. During extreme-
ly warm periods favourable for high ozone levels, it seems
likely that surface wetness declines and surface temperature
increases, which leads to increased surface destruction with
no known biological consequence, and, consequently, to a
reduction in the fractional stomatal ozone flux.

Climate change effects on stomatal uptake

There are several important environmental factors control-
ling gs under natural conditions: solar radiation (PPFD), air
temperature (Ta) and leaf-to-air vapour pressure deficit (Ds),
ambient CO2 concentration (Ca) and soil water potential (y)
and gs, which varies with phenological stage (phen).
Following Jarvis (1976), actual values of gs are often

modelled from species-specific maximum conductance gmax

under non-limiting conditions modified by coefficients or
scalars (f) accounting for the relative influence of each of
the above factors. In addition, gs responds to ozone due to
direct effects on guard cell functioning (Torsethaugen et al.
1999; Grulke et al. 2007) or indirectly to an increased ratio
of internal to external [CO2] resulting from reduced
photosynthetic CO2 assimilation or changes on stomatal
aperture and density (Elagöz et al. 2006). The effect of
ozone on stomatal behaviour and thus on gs is difficult to
quantify; in tree species, it was estimated at −12% on the
average for current ambient ozone relative to the concen-
tration in charcoal-filtered air (Wittig et al. 2007). This
negative effect of ozone can be considered by introducing
an additional scalar, fO3. However, using the Jarvis-type
model strongly depends on the quality of the gmax estimate
and results may only be accurate when applied under
conditions representative of those under which the param-
eterisation was performed. This limits application of the
Jarvis-type approach to estimate Fst across larger scales
covering different climates and to extrapolate Fst from
current climatic conditions to the future with different
climatic conditions and higher CO2 concentrations. More-
over, estimates of gmax and of the various functional
relationships are available only for a small number of
species in temperate climates and data for species in
Mediterranean and other non-temperate environments are
lacking (Alonso et al. 2007).

An alternative, semi-empirical method which does not
depend on gmax was proposed by Ball et al. (1987) (often
referred to as the Ball–Berry model) by introducing a
relationship between relative humidity (hs), air CO2

concentration (Ca) and photosynthetic rate (A). Later,
Leuning (1995) suggested replacing hs by the leaf-to-air
vapour pressure deficit (Ds) in the Ball–Berry model and

Fig. 4 Relationship between relative yield and the modelled,
accumulated stomatal uptake of ozone, per unit projected sunlit leaf
area, above an ozone uptake rate threshold of 6 nmol O3 m−2 s−1

(AFst6) for wheat (13 experiments from Belgium, BE, Finland, FI,
Italy, IT and Sweden, SE and potato (seven experiments from

Belgium, BE, Finland, FI, Germany, GE and Sweden, SE. The
integration period for AFst6 was from 270°C days before anthesis until
700°C days after anthesis for wheat and from plant emergence until
1,130°C days after emergence for potato (reprinted from Pleijel et al.
(2007), Copyright (2007), with permission from Elsevier)
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Yu et al. (2001) proposed gross assimilation rate (Ag) be
used instead of A. The resulting equation is then:

gs ¼ a
Ag

Ca 1þ DS=D0ð Þ ; ð3Þ

where a is a constant and D0 is a parameter reflecting
characteristics of response of stomata to Ds, i.e. the
curvature of the humidity response curve of gs. But like
the Jarvis-type approach, application of this model is
limited by uncertainties in the parameter values.

In the framework of the UNECE CLRTAP, ozone
deposition modelling at the continental scale applies the
deposition of ozone and stomatal exchange model (DO3SE,
Emberson et al. 2001a), which involves the multiplicative
Jarvis-type algorithm for gs:

gs ¼ gmax* min fphen; fO3
� �� �

*fPPFD

*max fmin; fT*fDs*f yð Þf g
ð4Þ

with fmin defining a fixed minimum value of gs (typically
1% of gmax).

Using this model, Harmens et al. (2007) simulated a
lower potential ozone risk for winter wheat under con-
ditions of +3°C, as compared to current climatic conditions,
in spite of an assumed increase in ozone concentration by a
constant amount of 5 ppb. The lower risk inferred from a
lower Fst could be expected from the assumed CO2-
dependent 35% reduction in gmax and the assumed decrease
in gs as a function of increasing leaf-to-air vapour pressure
deficit, Ds. Using a similar ozone flux model (ozone
deposition model, ODEM; Nussbaum et al. 2003; Bassin
et al. 2004), Keller et al. (2007) simulated AFst in wheat
and grassland in 2 years greatly differing in ozone levels
and in climatic conditions (2000 vs. 2003) and found only
small differences in AFst, indicating that the hot and dry
conditions on the Swiss Central Plateau in 2003 limited gs
and thus counteracted the effect of higher ozone concen-
trations (Fig. 5). These examples illustrate that using gs-
based models may be attractive to assess current and future
potential ozone risks of their sensitivity to changes in the
main climatic factors, but validation of the model with
respect to AFst remains difficult.

Under changing climatic conditions, the behaviour of
stomata, including the response to increased levels of CO2,
plays a central role for ozone risk to plants. A meta-analysis
of results from Free Air CO2 Enrichment (FACE) studies
revealed an average reduction in gs by elevated CO2 (475–
600 ppm) by 20% (Ainsworth and Long 2005), a
concentration that could be reached around 2050 (IPCC
2007), with the largest response in C3 and C4 grasses and
herbaceous crops (Ainsworth and Rogers 2007). A general
reduction in gs due to elevated CO2 concentration would
reduce the ozone flux from the atmosphere to the plant

interior and consequently would reduce ozone depletion in
surface air. It was estimated that under doubled CO2

concentration this effect could increase ozone levels
throughout the year by 5–20% over large parts of the
northern hemisphere (Sanderson et al. 2007). Additionally,
gs is influenced by Ds, which depends on air temperature,
Ta, and the air vapour pressure deficit, Da. Once Ds

approaches a critical value above which the evaporative
demand of the atmosphere exceeds the plant’s water
transport capacity, gs decreases and the sensitivity of gs to
Ta becomes small (Dai et al. 1992). At low Ds, gs increases
with increasing Ta. When gs declines, the evaporative
cooling of the leaf is reduced. This, in turn, leads to
moderately higher leaf temperatures (Tl) and to a change in
the difference between Tl and Ta (Tl−Ta). With an
increasing difference Tl−Ta, gs declines linearly (Baker et
al. 2007; Fig. 6), which can be considered an indirect
response to warming via changes in Ds. Hence, the
response of gs to Ds is critical in predicting physiological
responses to changing Ta in species adapted to cool-
temperate conditions (Sinclair et al. 2007).

The response of gs to Ds depends on species and it is
directly related to specific gs at low Ds (≤1 kPa) (Oren et al.
1999):

gs ¼ �m� lnDs þ b ð5Þ
where m is the stomatal sensitivity to D, or −dgs/dlnDs, and
b is defined as the reference gs at 1 kPa. Both parameters
can be generated by least-squares regression. The relation-
ship suggests that the sensitivity to changes in Ds is largest
in species characterised by high gs at low Ds (i.e., high
gmax). This could contribute to the difference between

Fig. 5 Comparison between the level of ozone in the air (expressed as
accumulated exposure above 0.04 ppm) in 2000 and 2003 and in
cumulative stomatal ozone flux to grasslands in Switzerland (plot
produced with data from Keller et al. 2007)

182 Naturwissenschaften (2009) 96:173–194



grassland species in terms of the level of ozone necessary to
elicit visible leaf injury at varying levels of Ds (Bungener et
al. 1999). With changing climatic conditions, this difference
in specific responses to Ds could affect plant–plant
interactions in multi-species communities, and hence their
responses to ozone stress, an effect which is not currently
taken into account in ozone risk evaluations.

Specific humidity in surface air currently increases by
about 4.9% °C−1, with differences between regions and
between day and night (IPCC 2007). Philipona et al. (2004)
and Auer et al. (2007) documented rapid increases in
moisture over central Europe over the period 1995 to 2003,
coupled to increasing Ta (Philipona et al. 2005). The
analysis of a global dataset revealed that during 1976–
2004 large increases in moisture occurred over the central
and eastern United States, India and western China, with
the largest increases over Eurasia where the strongest
warming (~0.2° to 0.7°C decade−1) occurred (Dai 2006).

While atmospheric moisture increased with recent climate
warming (Willett et al. 2007), Da changed very little during
the past 50 years of observation across the United States
(Szilagyi et al. 2001). For Da to increase, air warming would
need to be faster during the day than during the night, thus
increasing the diurnal range in Ta, which may be the case in
some regions (e.g. Mediterranean region in Europe), but not
in others (IPCC 2007). Hence, whether Da remains stable or
will change in the future depends on the changes in specific
humidity relative to the increase in daily maximum Ta.
Periodically, during periods with restrictive surface boundary
conditions for evapotranspiration (i.e., heatwaves), reduced
air humidity at high Ta will lead to increased Da, especially in

regions such as Europe with a strong land surface–
atmosphere coupling (Seneviratne et al. 2006). Only under
these dry conditions, direct effects of Ta and increasing Da

can be expected to strengthen the effect of Ds to reduce gs
and hence AFst.

This overview suggests that the behaviour of gs will
mainly depend on the ability of the plants to extract soil
water and to maintain high gs, particularly in regions where
the evaporative demand increases. If gs remains high,
potential productivity is sustained, but also AFst and the
associated risk for ozone impacts remains high. Therefore,
consideration of the availability and plant extraction of soil
water is crucial for estimating the response of stomata to
changes in temperature and humidity. Projections of
moisture in the upper soil layers have been presented
recently (IPCC 2007; Bates et al. 2008). Decreasing
average soil moisture is expected in the subtropics and in
the Mediterranean region and increases in East Africa,
central Asia and some other regions where precipitation is
expected to increase with climate change, including high
latitudes and some wet tropics. In dry tropics and much of
the mid-latitudes, including central and southern Europe,
the projected decrease in summer precipitation and a higher
evaporative demand would reduce soil moisture. Implica-
tions of these trends for ozone risks depend on the degree
of synergy between future crop growing periods and
climate-induced soil moisture changes and the presence or
absence of irrigation.

Factors affecting canopy uptake

The variables linking climate to gs are mainly based on
leaf-scale data, although some of the principles apply
equally to canopy conductance, gc. In optimal conditions,
leaf gs correlates well with gc over a wide range of
vegetation types. But at the canopy level, the situation can
be complicated by two inter-related factors: (1) canopy
architecture and (2) species composition. In pastures, both
of these may change in a changing climate through shifts in
species dominance (see below) and/or formation of gaps
resulting from the effect of drought (Lüscher et al. 2005).

Exposure to ozone varies vertically because ozone
penetration into the canopy depends on atmospheric turbu-
lence and leaf area distribution (Jäggi et al. 2006). In
monocultures of cereals this should be less important since
activity of the topmost leaves is most important for final
grain yield and ozone depletion inside the canopy is less
relevant. Nevertheless, in rice, Reid and Fiscus (2008) found
decreasing ozone effects on yield with increasing plant
density. In mixed grasslands, the effect of canopy structure
maybe even more pronounced as different species occupy
different canopy layers. Jäggi et al. (2006) showed that
ozone exposure of clover plants in the lower part of the

Fig. 6 Three dimensional response surface of stomatal conductance
(gs) measured at a photosynthetic photon flux density (PPFD) of
1,500 μmoles (photons) m–2 s–1 vs. leaf minus air temperature
differential (Tl−Ta) and leaf-to-air vapour pressure deficit (Ds).
Equation for the fitted plane is y=1.08–0.09(Tl−Ta)−0.26(Ds)
(redrawn from Baker et al. 2007)
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canopy is only about half the exposure of the taller grasses at
the top. Also, gs varies across the canopy due to gradients in
Da, Ta and photosynthetically active radiation (PAR).
Davison et al. (2003) found much greater reductions in
PAR than in ozone in a canopy of Rudbeckia laciniata. At
50 cm above ground, the ozone concentration varied from
only 15% to 90% of ambient levels, whereas PAR was
consistently below 10%. It was concluded that uptake of
ozone by low leaves was limited by PAR rather than by
ozone. In contrast, Jäggi et al. (2006) found a moderate PAR
reduction throughout the canopy in a two-layered grass
canopy with less than 20% of total LAI in the upper half. As
a result, gs in leaves of T. repens at 50% of the maximum
canopy height were similar to gs in Alopecurus pratensis
leaves at canopy top. During daytime, leaves of A. pratensis
were exposed to 92% while leaves of T. repens were exposed
to only 64% of the reference ozone concentration above the
canopy. Consequently, species occupying the lower part of
the canopy had reduced ozone uptake as compared with
taller companion species in spite of similar gs.

In the context of climate change and increasing CO2, the
effect of a changing canopy structure on microclimate is
relevant because elevated CO2 may cause a modest increase
in LAI (Ainsworth and Long 2005; Dermody et al. 2008). In
a field experiment with L. perenne, where Tl was raised over
Ta by 3°C, Nijs et al. (1997) observed a decrease in gs
relative to the ambient air control, but only in the top leaves
and not in leaves at lower canopy positions. In the same
experiment, interaction between Ca and Ta on gs was
observed, i.e. elevated CO2 decreased gs and reduced the
sensitivity of gs to Ta even in the most exposed leaves.
Similarly, the sensitivity to Ds can be reduced at high CO2

(e.g., Maherali et al. 2003). Vice versa, the effect of elevated
CO2 declines with increasing Tl (Allen et al. 2003).

As a result of cutting or grazing, gradients of ozone in
pasture canopies are temporarily removed and species at

lower canopy positions become exposed to higher ozone
levels and more light during the initial phase of re-growth.
Thus, more frequent management interventions in response
to climate-induced changes in phenology could increase the
ozone sensitivity of productive grassland systems (Ashmore
and Ainsworth 1995).

Defence reactions

Ozone dissolves in the apoplastic fluid where it decom-
poses to hydrogen peroxide, singlet oxygen and hydroxyl
radicals (ROS) (Sandermann 2008). A complex system of
protection from oxidative damage operates in the extracel-
lular and intracellular space, as recently reviewed by Tausz
et al. (2007), Sandermann (2008), Heath (2008) and
Matyssek et al. (2008). Reaction with asc has long been
recognised as a key process for the detoxification of
secondary ROS, and extracellular asc is believed to be the
first line of defence against ozone and its decomposition
products (Dizengremel et al. 2008), although antioxidants
other than asc may be involved (D’Haese et al. 2005;
Burkey et al. 2006). However, direct experimental evidence
for specific compounds remains scarce. Reactions of asc
with ozone proceeds via ozonolysis with the production of
zwitter ions and of singlet oxygen, which is toxic and needs
to react again with asc (for details, see Sandermann 2008).
End products of the electron transfer reactions are mono-
dehydroascorbate and dehydroascorbate (dha). After trans-
port through the plasmalemma, these compounds are
regenerated and reduced asc is re-translocated to the
extracellular space (Sanmartin et al. 2003) (Fig. 7). Using
plants over-expressing dehydrascorbate reductase, Chen and
Gallie (2005) and Eltayeb et al. (2006) provided direct
evidence for improved protection against oxidative damage
via enhanced recycling of asc and Eltayeb et al. (2007)
observed increased ozone tolerance in plants over-expressing

Fig. 7 Simplified scheme of
antioxidative defence systems
in green cells based on the
recycling of ascorbate (asc),
which in the apoplast captures
ROS produced by penetrating
ozone. (ROS reactive oxygen
species) (see Fuhrer and Booker
2003 for more details)
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mono-dehydrascorbate reductase. Further enzymes involved
are glutathione peroxidase, superoxide dismutase and cata-
lase (Heath 2008).

Similar reactions involving antioxidants to avoid oxida-
tive stress operate in cellular organelles to protect from
ROS produced during photo-chemical reactions. This
‘photo-protection’ is particularly important during periods
of photo-oxidative stress caused by the combination of
intensive radiation, drought and heat (Reynolds et al. 2005).
This could enable cross-tolerance to stresses imposed by
combinations of extreme weather and ozone, but the timing,
intensity and order of exposure would be crucial (Tausz et
al. 2007). Alternatively, under conditions of extremely
warm and dry weather, the antioxidant system may not be
as effective in removing ROS because of competing
intercellular reactions. Detoxification processes require
reducing power (NADPH) and C skeletons for the
regeneration and de novo synthesis of the antioxidants
involved (Dizengremel et al. 2008). Hence, the defence
capacity may decline when the supply of assimilates
becomes insufficient due to limited available energy
(Wieser and Matyssek 2007).

The situation is equally ambiguous with respect to the
effect of elevated CO2. In leaves of alfalfa (Medicago
sativa) CO2 enrichment reduced the activity of several
antioxidant enzymes (catalase, superoxide dismutase and
glutathione reductase and asc peroxidase), suggesting a
lower basal rate of oxygen activation and H2O2 formation,
leading to a relaxation of the antioxidant system (Erice et
al. 2007). Hence under less stressful climatic conditions
elevated CO2 could be beneficial for detoxification, as
reported for poplar plants (Populus alba x tremula)
(Schwanz and Polle 2001). Moreover, elevated CO2 was
found to increase antioxidant levels in leaves due to the
positive effect on photosynthesis and assimilate availability.
Nevertheless, in their review, Tausz et al. (2007) concluded
that although elevated CO2 increases different defence
metabolites the available information concerning CO2

effects on the efficiency of the antioxidant defence systems
remains inconclusive.

Detoxification capacity may be linked to the internal
structure of leaves. Leaves with a smaller intercellular air
space volume may be more tolerant to ozone, as shown for
strawberry cultivars (Fraxinus x ananassa) (Keutgen and
Pawelzik 2008). Cell density and mesophyll resistance can
be negatively correlated with specific leaf area (SLA) or
leaf area ratio (LAR) (cm2 g−1), and thus ozone tolerance
may decrease with increasing SLA, as suggested by Bassin
et al. (2007a) and Matyssek et al. (2008). Thicker cell walls
could have more detoxification capacity due to longer
residence times of ROS and thus a higher probability of
interactions with antioxidants (Plöchl et al. 2000; Rinnan
and Holopainen 2004).

Morphological traits of leaves could be altered by
climate change. For instance, interactive effects of in-
creased temperature, drought and elevated CO2 on leaf
morphology were studied in canola (Brassica napus)
(Qaderi et al. 2006). The study showed that specific leaf
weight (SLW, g m−2) and LAR increased in response to
drought and higher temperature thus indicating the forma-
tion of thicker leaves, while elevated CO2 partially reversed
the effect. Changes in leaf structure may reflect adaptation
to reduce water loss under dry and warm conditions, which
would imply increased tolerance to ozone.

Shifts in crop phenology

The largest influence of environmental stresses on final
cereal yield in terms of number of kernels head−1 and
individual kernel weight occurs during the stages of booting
through heading and anthesis to grain filling (Klepper et al.
1998). Pleijel et al. (1998) showed that ozone exposure is
much more effective in decreasing the grain yield of wheat
between anthesis and end of grain filling than ozone
exposure before anthesis. Soja et al. (2000) identified for
wheat that the most sensitive period was defined as starting
2 months before and ending 1 month after anthesis, with the
month in the middle as the most relevant one, and for bean
during post-anthesis, i.e. during pot-setting and pot-filling.
For bean (Phaseolus vulgaris), Tingey et al. (2002)
suggested that ozone-sensitivity was greatest during pod
filling and maturation because of reduced energy levels
available for repair. In plantain (Plantago lanceolata), as in
other native species, maximum sensitivity to ozone likely
occurs during early developmental stages (Soja et al. 2000).
Later in the season, gs and ozone uptake decline (Jaudé et
al. 2008; Bergweiler et al. 2008). But Soja et al. (2000)
argued that periods of maximum ozone uptake may not
coincide with periods of highest sensitivity with respect to
crop yield because of diurnal variations in leaf defence
capacity. For potato, Hacour et al. (2002) concluded that the
most distinct effects of long-term exposure to ozone were
only apparent at full canopy, but even more significant
during crop senescence. Similarly, a meta-analysis of data
for soybean (Glycine max) revealed increasing impact of
ozone with developmental stage with the greatest effect
evident at completion of seed filling (Morgan et al. 2003).

With increasing temperature, phenology will change. A
national survey of the phenology of 78 agricultural and
horticultural events in Germany spanning the years 1951–
2004 revealed that perennial crops exhibited a significantly
higher response to mean spring temperature than the annual
crops, and that the mean response lies around 4 d °C−1

(Estrella et al. 2007). Also, elevated CO2 was generally
found to accelerate crop development (cf. Cleland et al.
2007). With this shift in development, most sensitive stages
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will occur earlier during the year. Also, with warmer spring
temperatures farmers will likely advance planting dates.
Hence, with climate change the phenological calendar of
crops and the seasonal pattern of high ozone levels could
become separated, particularly in the more polluted regions
where highest levels of ozone occur during the warmest
part of the year. Conversely, in more remote regions with
early springtime peaks in ozone, together with conditions
favouring high gs, the situation may be worse as the
advancement of plant development may lead more frequent
co-occurrence of sensitive stages and early-season ozone
stress (Karlsson et al. 2007). Thus, studies of future ozone
risk for vegetation need to take account of shifting crop
phenology, in relation to changing seasonal patterns of
microclimatic conditions.

Shifts in pasture community characteristics

Climate change and elevated CO2 will affect the produc-
tivity and species composition of pastures (Lüscher et al.
2005). Hence, effects of ozone on future pasture commu-
nities cannot be assessed without considering species
changes. Provided that with increasing Ta and less rainfall
during the growing season, species with xeromorphic
characteristics such as dense leaves, succulence, dense
hairiness or a thick cuticle may be favoured (see the
previous section). These species are likely more tolerant to
ozone due to reduced gs and lower mesophyll conductance.
But in areas with increasing dryness, more sparse canopies
may develop providing improved penetration of ozone and
enhanced ozone exposure across the entire canopy.

Secondary effects

Pests, diseases and weeds

Ozone can have secondary effects on crops by affecting the
incidence of pests and diseases and by altering crop–weed
competition (cf. Fuhrer and Booker 2003). However, little
is known about how the effect of ozone may be modified in
a future climate with elevated CO2 in specific host–
pathogen or crop–weed systems. The outcome of environ-
ment–plant–pathogen or plant–pest interactions may
strongly vary with timing, stage of plant development,
predisposing factors and environmental conditions thus
making generalised predictions for future conditions very
difficult (cf. Fuhrer 2003). In one of the rare studies under
realistic field conditions, elevated ozone in combination
with elevated CO2 had no effect on adult female density but
stimulated egg-laying by a variant of the western corn
rootworm (Coleoptera: Chrysomelidae) suggesting in-
creased population density and risk of damage to the

subsequent corn crop (Schroeder et al. 2006). Climate
change is likely to modify the disease spectrum in some
regions and pathogens or pests considered unimportant
today may turn out to be potential new threats in future
(Chakraborty et al. 2000), but this issue is beyond the scope
of this review. An important role is played by the onset of
senescence in ozone-exposed plants and the declining
quality of the leaves, for instance in relation to aphid
infestation. Since ozone accelerates leaf senescence, it can
be expected that pests and diseases which depend on a high
quality diet will decline, while those primarily affecting
weakened plants will increase. However, data for specific
pests and diseases are often controversial. As an example,
for aphids there are nearly equal numbers of reports
indicating increased, reduced or no effect of ozone on
performance (Holopainen 2002). According to Pritchard et
al. (2007) it is unreasonable to expect that a single plant
component can predict the general response of aphids to
climate change, and the same may apply to ozone.

Similarly, little is known about crop–weed interactions,
but differential ozone tolerance of crops and weeds could
alter the competitive outcome. For instance, tomato
(Lycopersicon esculentum) was more sensitive to ozone
than nutsedge (Cyperus esculentus), which reduced tomato
productivity under low and moderate ozone concentrations;
thus, control of this weed may become more difficult with
increasing ambient ozone levels (Shrestha and Grantz
2005). Ozone may also affect the effectiveness of herbi-
cides. In the San Joaquin Valley (California), Grantz et al.
(2008) found that a glyphosate-resistant biotype of horse-
weed (Conyza canadensis) may lose its competitive
advantage in polluted environments.

Soil C sequestration

Effects of ozone on residue mass and on the concentration
of secondary metabolites, lignification and/or the C/N ratio
of above- and below-ground plant parts may change
decomposition processes in the soil (Booker et al. 2005).
This aspect must be considered in the context of reduced
transfer of C to roots and the soil and soil C turnover. Data
from a study with blackberry (Rubus cuneifolus Pursh.) and
broomsedge bluestem (Andropogon virginicus) indicated
that ozone influences substrate quality and soil microbial
activity, resulting in reduced rates of litter decomposition
(Kim et al. 1998). The effects of ozone on plant and residue
quality may translate into lasting changes in soil chemical
and microbiological properties. In aspen (Populus trem-
uloides) and in mixed aspen-birch (Betula papyrifera)
stands, Loya et al. (2003) observed that after 4 years of
exposure, ozone strongly inhibited extra stable soil C
formation from elevated CO2. Under wheat and soybean,
elevated ozone caused a change in soil C quality towards
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high molecular weight and more aromatic components, in
contrast to elevated CO2 (Islam et al. 1999). Highly
relevant in a global change context is the effect of ozone
on C pools in grassland soils, which probably contribute
>10% of the total biosphere C store (cf. Jones and Donnelly
2004). Volk et al. (2006) reported decreasing productivity
in semi-natural grasslands after 5 years of elevated ozone,
suggesting reduced C transfer to soil. In meadows at a
northern European site, Kanerva et al. (2008) observed
changes in biomass and composition of microbial commu-
nities, which may affect soil processes. Thus improved
estimates of potential soil C sequestration under different
management regimes and climate scenarios need to take
into account the effects of ozone, as suggested by
simulation with biogechemical models (Ren et al. 2007a;
Sitch et al. 2007). However, there are great uncertainties
associated with model parameters (Ren et al. 2007b). In
most studies, effects of ozone are simulated from direct
effects on photosynthesis and indirect effects on gs by
changing intercellular CO2 concentration. Possible changes
in residue quality, which may affect carbon cycling and
stabilisation in the soil, are often ignored due to uncertain
effects of ozone on this parameter. Moreover, effects of
fertilisation, irrigation tillage and differences between
different crop types are not usually taken into account.

The negative impact of ozone on stable soil C pools
could be aggravated by higher Ta. In modelling studies,
increasing temperatures could favour net soil C losses in
arable and grassland soils (Smith et al. 2008), but the issue
is still controversial (Davidson and Janssens 2006). It has
been stated that rates of soil C loss through soil respiration
could acclimate to higher Ta and would decline after a
period of treatment at elevated Ta (Luo and Zhou 2006).
Moreover, effects of climate change, CO2 and ozone on soil
C overlaps with strong effects of soil use and management
(Dawson and Smith 2007).

Crop improvement

Crop improvement could help to limit crop losses due to
changing climatic conditions with more frequent periods of
stress such as heat and drought and, hence, to increase food
security. One way of achieving this would be to create
varieties with improved tolerance to oxidative stress caused
by ozone, based on the current understanding of the
underlying mechanisms (see above). Comparative studies
reveal considerable variation between genotypes in ozone
tolerance, such as in snap bean (Phaseolus vulgaris)
(Flowers et al. 2007). Although the more tolerant genotypes
were not found to have significantly higher leaf antioxidant
levels (Burkey et al. 2000), ozone tolerance can be
associated with elevated extracellular asc contents at low

ozone concentrations (Burkey and Eason 2002). Suitable
varieties could be identified through rapid selection based
on molecular genetic approaches to identify discrete traits
and by quantitative trait locus (QTL) mapping for complex
traits (Takeda and Matsuoka 2008), particularly if these
traits are generic across differently stressed environments
(Reynolds et al. 2007). Given that oxygen toxicity plays an
important role not only with respect to ozone but also to
other abiotic stresses (Reynolds et al. 2005), ozone-tolerant
varieties may be among those varieties selected for
tolerance to other stresses such as drought, heat or salt.
Moreover, older varieties could be a source of more ozone-
tolerant material due to lower gs (Pleijel et al. 2006), higher
antioxidative capacity and higher levels of dark respiration
leading to lower oxidative damage to proteins and integrity
of cellular membranes (Biswas et al. 2008).

One of the most important effects of ozone is a reduction
of leaf lifespan. In cereals, accelerated senescence shortens
the period of grain filling and grain ripening, leading to
reduced grain weight. Drought has a similar effect and
crops with pronounced drought tolerance such as sorghum
(Sorghum bicolor) are characterised by their capacity to
delay senescence during dry periods, i.e. the ‘stay green’
trait. The underlying mechanisms have been discussed
extensively by Takeda and Matsuoka (2008). It needs to be
assessed whether the genetically controlled mechanisms
behind improved grain filling under drought could also
confer tolerance to ozone through the reduction of ozone
effects on leaf senescence, which again could be tied to the
role of asc in determining the onset of senescence (Conklin
and Barth 2004).

Conclusions

Ozone risks for crops and pastures depend on exposure, leaf
uptake and the plant’s defence capacity. These components
are likely to change with changing anthropogenic emissions
of precursor gases and climatic conditions. Largest effects of
increasing emissions on ozone levels are expected in region
with rapid industrialisation and population growth and
limited regulations, while modifying effects of climate
change on both ozone levels and plant sensitivity are likely
largest in areas experiencing the strongest warming. Proper-
ties of leaves determining the rate of absorption such as gmax

and actual gs, and the defence capacity can be modified by
temperature, air and soil moisture, increasing Ca and altered
radiation, all of which are undergoing changes with distinct
regional patterns. In areas where the frequency of hot/dry
periods is projected to increase such as much of the
Mediterranean and central Europe, ozone episodes may
become more frequent and cumulative exposures will grow,
but leaf uptake of ozone will decline. In contrast, in more
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remote rural areas with rapid warming and less drying, for
instance at northern latitudes, ozone risks are likely to grow
because of increasing hemispheric transport of pollution
leading to peak ozone levels at times when plant sensitivity
is high. Excess ozone uptake not only reduces crop growth
and yield and alters crop quality but in the longer term may
also lead to changes in species and genetic composition of
semi-natural plant communities and the ecosystem, water,
economy and carbon stocks. However, uncertainties in
climate projections and in model parameters make projec-
tions for future risks of increasing ozone difficult. Empirical
information obtained under current climatic conditions
should not be extrapolated in time because of changing
functional relationships and because plant traits will change
in response to climate change and technological develop-
ments. Thus, studies on interactions of different factors and
more mechanistic models than those currently used for ozone
risk assessments are needed in order to determine future
stocks at risks and the regions where ozone may impair food
security. This information would be necessary to identify
targets for crop improvements and for regulatory purposes.
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