
73

P 3T+: A performance estimator for

distributed and parallel programs∗

T. Fahringer and A. Požgaj
Institute for Software Science, University of Vienna,

Liechtensteinstrasse 22, A-1090 Vienna, Austria

E-mail: tf@par.univie.ac.at

Developing distributed and parallel programs on today’s mul-

tiprocessor architectures is still a challenging task. Particular

distressing is the lack of effective performance tools that sup-

port the programmer in evaluating changes in code, problem

and machine sizes, and target architectures. In this paper we

introduce P
3
T+ which is a performance estimator for mostly

regular HPF (High Performance Fortran) programs but par-

tially covers also message passing programs (MPI). P
3
T+

is unique by modeling programs, compiler code transforma-

tions, and parallel and distributed architectures. It computes

at compile-time a variety of performance parameters includ-

ing work distribution, number of transfers, amount of data

transferred, transfer times, computation times, and number

of cache misses. Several novel technologies are employed to

compute these parameters: loop iteration spaces, array access

patterns, and data distributions are modeled by employing

highly effective symbolic analysis. Communication is esti-

mated by simulating the behavior of a communication library

used by the underlying compiler. Computation times are pre-

dicted through pre-measured kernels on every target architec-

ture of interest. We carefully model most critical architecture

specific factors such as cache lines sizes, number of cache

lines available, startup times, message transfer time per byte,

etc. P
3
T+ has been implemented and is closely integrated

with the Vienna High Performance Compiler (VFC) to sup-

port programmers develop parallel and distributed applica-

tions. Experimental results for realistic kernel codes taken

from real-world applications are presented to demonstrate

both accuracy and usefulness of P
3
T+.

1. Introduction

Parallelizing and optimizing programs for multipro-

cessor systems with distributed memory is still a no-

∗This research is partially supported by the Austrian Science Fund

as part of Aurora Project under contract SFBF1104.

toriously hard task. In most cases it is the program-

mer’s responsibility to find parallelism, to distribute
data (data parallelism) and computations (task paral-

lelism) onto the target architecture, and to apply code

transformations in order to improve performance. Pro-
grammers are faced with many problems when it comes

to examine the performance of their codes:

– What is the effect of a code change in the perfor-
mance of a program?

– What happens to the performance if problem and

machine sizes are modified?
– How much performance can be gained by chang-

ing a specific machine parameter (e.g. communi-
cation bandwidth or cache size)?

Clearly this list is incomplete, but it shows, that tools

providing accurate performance information to exam-
ine some of these effects are of paramount importance.

Historically there have been two classes of perfor-

mance tools. On the one hand, there is extensive work
done on monitoring distributed and parallel applica-

tions but these approaches have several drawbacks:
availability of program and target architecture, long ex-

ecution times, perturbation of measured performance

data, and vast amounts of performance data. Monitor-
ing, however, in principle can handle arbitrary com-

plex and large codes and commonly also provides quite

accurate results. On the other hand, there is the class
of performance estimators that try to statically exam-

ine a program’s performance without executing it on

a target architecture. This approach suffers mostly by
restricting programs and machines that can be modeled

as well as by less accurate results. Performance predic-

tion does not require that the target architecture must
be available. Moreover, the time needed to compute

performance information can be very short.
In this paper we concentrate primarily on perfor-

mance prediction which has seen many research ef-

forts in the last several years. Traditionally, the qual-
ity of performance prediction has been hampered by

modeling either programs or architectures with good

accuracy but not both of them. Firstly, those methods

Scientific Programming 8 (2000) 73–93

ISSN 1058-9244 / $8.00 2000, IOS Press. All rights reserved

74 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

that provided accurate predictions for applications suf-

fered by some severe restrictions imposed on model-

ing architectures. Commonly these tools are unable to

determine useful parameters reflecting computational

and communication overhead. Secondly, performance

prediction that concentrates on modeling architectures

may not have enough information about the applica-

tion that executes on this architecture. Statistical mod-

els are commonly used to assume a more or less vir-

tual and often unrealistic application behavior. More-

over, very few performance estimators actually con-

sider code transformations and optimizations applied

by a compiler.

In this paper we introduce P 3T+, the successor

tool of P 3T [16,17,22], which models programs, code

transformations, and parallel and distributed architec-

tures. The input programs of P 3T+ are written in

High Performance Fortran [2,27] which represents the

de-facto standard of high-level data parallel program-

ming. Moreover, P 3T+ analyzes Fortran90 message

passing programs generated by the underlying com-

piler (VFC [3]) which can be executed on parallel and

distributed machines such as network of workstations.

P 3T+ models communication overhead, work distri-

bution, computation times, and cache misses which is

important for both distributed and parallel programs.

P 3T+ invokes a single profile run of the original

sequential input program – ignoring all explicit parallel

language constructs such as HPF directives – by using

SCALA [21] in order to determine execution frequen-

cies and branching probabilities. In order to achieve

high estimation accuracy, we aggressively exploit com-

piler analysis and optimization information. P 3T+
computes a variety of parameters that reflect some of

the most important performance aspects of a parallel

program which includes: work distribution, number of

transfers, amount of data transferred, transfer times,

computation times, and cache misses.

Our estimation technology is based on modeling loop

iteration spaces, array access patterns, and data distri-

butions by employing highly effective symbolic analy-

sis. Communication is estimated by simulating the be-

havior of the communication library as employed by the

underlying compiler. Computation times are predicted

through kernels which are pre-measured on every tar-

get architecture of interest. We carefully model most

critical architecture specific factors such as cache lines

sizes, number of cache lines available, startup times,

message transfer time per byte, etc.

The rest of this paper is organized as follows: The

following section discusses related work. In Section 3

we describe P 3T+ and its performance parameters.

Section 4 reports on experimental results by using sev-

eral realistic kernel codes taken from real-world appli-

cations. Finally, some concluding remarks are made

and future work is outlined.

2. Related work

J. Brehm et al. [6] built a user-driven performance

prediction tool PerPreT based on an analytical model to

predict speedup, execution time, computation time and

communication time for parallelization strategies. The

tool examines application strategies without requiring

a program. Communication and computation times are

described by parameterized formulas where parame-

ters describe the the application’s problem size and the

number of processors. The target machine is modeled

by architectural parameters such as the setup times for

computation, link bandwidth and sustained computing

performance per node (expressed in MFLOP/s). The

user can describe the application and machine model

through a specific language called LOOP [29]. While

PerPreT offers an interesting possibility to evaluate the

computation and communication times required by a

parallel application, it does not provide information

about work distribution or number of cache misses.

In [32] W. Kaplow et al. present a compile-time

method for determining the cache performance of the

loop nests in a program and a heuristic that uses this

method for compile-time optimization of loop ranges

in iteration-space blocking. The cache misses estima-

tions are produced by applying the program’s reference

string of a loop nest, determined during compilation, to

an architecturally parameterized cache simulator. Data

reference strings are generated while parsing the source

code as opposed to most hardware cache simulators

where reference strings are generated at run-time. Data

reference strings are then used by a simulator whose re-

sults are less accurate than hardware simulation. How-

ever, their approach appears to be effective enough for

loop optimization techniques.

W. Kaplow and B. Szymanski [32] described an ap-

proach to estimate cache behavior for parallel programs

based on realistic simulation of the input program for

parallel architectures. Array reference traces are simu-

lated at compile-time. The simulator can predict what

is the next set of indices for the same array reference

that will access the data beyond the cache line just

loaded. The speed at which program execution is simu-

lated is proportional to the cache miss rate of the simu-

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 75

lated loop nest which is much slower than our analytical

approach.

W. Meira et al. developed Carnival [31] which is

a performance measurement and visualization tool for

SPMD message-passing programs that automates the

cause-and-effect inference process for waiting time.

Carnival uses detailed event traces to gather perfor-

mance information, which it presents both as global

summary statistics and as localized performance pro-

files, facilitating top-down performance analysis. The

user interface presents performance information to-

gether with the source code, creating a link between the

observed phenomena and the code. Carnival supports

waiting time analysis, an automatic inference process

that explains each source of waiting time.

In [10,11] M. Clement et al. present a compiler-

generated analytical model for the prediction of cache

behavior, CPU execution time, and message passing

overhead for scalable algorithms implemented in high

level data-parallel languages. The performance predic-

tion requires a single instrumentation run of the pro-

gram with a reduced problem size to generate a sym-

bolic equation for execution time which includes the

contributions of each basic block in a program ex-

pressed as a function of the problem size and the num-

ber of processors. Since the result of this model is an

equation rather than a time estimate for a given problem

size, the execution time can be differentiated with re-

spect to a given system parameter. The resulting equa-

tion is used to determine the sensitivity of the appli-

cation to changes in that parameter as the problem is

scaled up. Their approach is more restricted in terms

of program classes that can be handled (e.g. more re-

stricted loops, no GOTOs, etc.) as compared to P 3T+.

M. Faerman et al. [15] introduced the Adaptive Re-

gression Modeling (AdRM) which is a method for

performance prediction of data transfer operations in

network-bound distributed data-intensive applications.

The presented technique predicts performance in multi-

user distributed environments by employing small net-

work bandwidth probes (provided by the Network

Weather Service (NWS) [48]) to make short-term pre-

dictions of transfer times for a range of problem sizes.

The NWS gathers performance probe data from a dis-

tributed collection of resources and catalogues that data

as individual performance histories for each resource.

It then applies lightweight time series analysis models

to each performance history to produce short-term fore-

casts of future performance levels. AdRM combines the

NWS measurements with instrumentation data taken

from actual application runs to predict the future per-

formance of the application. To capture the relation-

ship between NWS probes and application benchmark

data, regression models are used which calibrate the

application execution performance to the dynamic state

of the system measured by the NWS. The result is an

accurate performance model that can be parameterized

by “live” NWS measurements to make time-sensitive

performance predictions which can be used to support

adaptive scheduling of individual components of a dis-

tributed system.

In [23], W. Fang et al. present a method for the eval-

uation of the communication overhead in the SHRIMP

multicomputer under a variety of workloads: analytic

modeling and event-driven simulation. Using both

methods, the authors study the behavior of the system

under different communication patterns and report on

system performance parameters such as message la-

tency, occupancy of system buffers and network con-

gestion. The purpose of their work is to learn about

the behavior of the SHRIMP machine, and to explore

the tradeoffs between analytic modeling and simula-

tion as performance prediction techniques. Their an-

alytic model is based on two assumptions: (i) packet

inter-arrival times and service times at every compo-

nent are exponentially distributed, and (ii) the states of

any pair of components are independent random vari-

ables. While these assumptions do not match the way

the system really operates, the authors believe they do

not introduce a significant error in the model. Further-

more, the model assumes that each processor executes

the same program, that all messages are of the same

size and that messages are sent to uniformly distributed

destinations.

In [44,40], A. van Gemund presents a methodol-

ogy that yields parameterized performance models of

parallel programs running on shared-memory as well

as distributed-memory (vector) machines. The aim of

this research is to estimate performance degradation

due to synchronization effects, covering both condi-

tion synchronization (task dependency) as well as mu-

tual exclusion (resource contention). The author intro-

duces an explicit, highly structured formalism called

PAMELA together with an analysis technique that in-

tegrates an approximate analysis of mutual exclusion

within a conventional condition synchronisation anal-

ysis technique.

There is a variety of related projects which focus on

performance analysis based on real executions of the

parallel program on the target architecture.

B. Miller et al. developed the Performance Consul-

tant (PC) as part of the PARADYN project [37] which

76 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

data flow

control flow

Interactive performance-driven parallelization system

User

Passing Program

System (SCALA)
Analysis
Performance

Performance
Prediction
System (P3T+)

Code
Transformed

Predicted
Performance

Data

Data
Performance
Measured

Performance evaluation sub-system

VFCFlow Graph

Call Graph

Syntax Tree

Program Database

...

Performance Data

Input Code

Coordination System
+

GUI

Message

Fig. 1. Performance-driven development of distributed and parallel programs.

searches for performance bottlenecks according to the

W 3 Search Model. An automatic online performance

analysis is conducted by using dynamic instrumenta-

tion for monitoring. Hypotheses can be defined to de-

termine the occurrence of a set of performance bottle-

necks which is currently predefined. It includes CPUb-

ound, Excessive Sync Waiting Time, ExcessiveIOBlock-

ingTime, and TooManySmallIOOps.

F. Wolf and B. Mohr have built EARL [46] which en-

ables description of performance event patterns in mes-

sage passing programs in a procedural fashion as scripts

in a high-level event trace analysis language. Fre-

quently used, higher-level events like region instances

or message transfers are represented by links between

their constituent events, which can be easily traversed

by a script.

A. Espinosa et al. developed KAPPA-PI [1] which

is an automatic performance analyzer for PVM-

programs. It is a post-execution tool, implemented in

PERL, that evaluates traces generated by the Tape/PVM

monitoring library or by the VAMPIR MPI trace library.

Based on a predefined list of performance bottlenecks,

it searches for performance problems and their causes.

In addition to trace data, it analyzes the source code

using pattern matching.

3. P 3T+: A performance estimator for

distributed and parallel programs

P 3T+ is a state-of-the-art performance estimator
that targets both distributed and parallel programs. Fig-
ure 1 shows P 3T+ as part of a program development
and optimization system. Input programs are parsed
and analyzed by VFC which generates syntax trees,
call graphs, flow graphs, etc. and stores them in a
program database. VFC applies various code transfor-
mations and optimizations to the program with/without
user control. The programmer can invoke a perfor-
mance analysis system (SCALA) to instrument, com-
pile, and execute a distributed or parallel program on
the target architecture. Based on the instrumented
program execution, performance data is gathered and
stored in the program database. Moreover, P 3T+ can
be employed to predict the performance behavior of
the code transformations and optimizations applied by
VFC. P 3T+’s performance data is also stored in the
program database. All three tools (VFC, SCALA, and
P 3T+) are coordinated and controlled through a coor-
dination system that also includes a graphical user inter-
face (GUI) for displaying source code and performance
data and for enabling user interaction. Finally, as a
result of performance-driven program development, an
optimized distributed or parallel program is created by
VFC.

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 77

The programs which are estimated by P 3T+ are

based on the underlying compilation and program-

ming model of VFC [3] which is a source-to-source

parallelization system that translates Fortran90/HPF

programs to Fortran90/MPI message-passing SPMD

programs. Moreover, P 3T+ also models Fortran90

message-passing programs. The parallelization strat-

egy of VFC is based on data decomposition in conjunc-

tion with the Single-Program-Multiple-Data (SPMD)

programming model. With this method, data arrays in

the original program are each partitioned and mapped

to the processors of the target architecture. The spec-

ification of the mapping of the array elements to the

set of processors is called the data distribution of that

program. A processor is then thought of as owning

the data assigned to it; these data elements are stored

in its local memory. The work contained in the pro-

gram is distributed according to the data distribution:

computations which define the data elements owned

by a processor are performed by it – this is known as

the owner computes paradigm. The processors then

execute essentially the same code in parallel, each on

the data stored locally. If a computation requires data

which is owned by a remote processor, then such non-

local data is accessed through inter-processor commu-

nication, which is automatically implemented by VFC

through message passing.

P 3T+ currently supports mostly regular HPF pro-

grams which restricts array subscript expressions and

loop bounds to linear functions of loop variables. Ir-

regular codes with indirect array references (array sub-

script expressions contain array references) are ex-

cluded.

A key issue for a useful performance estimator is

to provide critical information to the programmer and

compiler which allows steering of the performance tun-

ing process. Most existing tools estimate only exe-

cution time. The problem with this parameter is that

all important information is hidden in a single run-

time figure. As a consequence, the cause of potential

performance losses remains unknown. It is not clear

whether a parallel program’s performance is poor due

to cache, load balance, communication or computation

behavior. Other performance parameters may also play

an important role. Without making such information

transparent, performance tuning is extremely difficult.

P 3T+ at compile-time computes a set of performance

parameters each of which reflects a different perfor-

mance aspect. In the following all P 3T+ performance

parameters are described.

3.1. Work distribution

It is well known [7,14,25,30,34,41–43,45] that

the work distribution has a strong influence on the

cost/performance ratio of a parallel system. An uneven

work distribution may lead to a significant reduction in

a program’s performance. Therefore, providing both

programmer and parallelizing compiler with a work

distribution parameter for parallel programs is critical

to steer the selection of an efficient data distribution.

Two problems must be solved in order to compute the

work distribution of a parallel program: first, how much

work is contained in a program and second, how much

work is being processed by every individual processor.

We first consider these problems for loops and then

extend our approach to full programs. Consider the

following loop nest with a statement S included in a

conditional statement.

DO J1=1,N1

DO J2=1,N2*J1

IF (J1 � N2) THEN

S : A = A + . . .
. . .

ENDIF

ENDDO

ENDDO

Computing how many times S is executed is equiva-

lent to counting the number of integer solutions of I =
{1 � J1 � N1, 1 � J2 � N2 ∗ J1, J1 � N2}. J1

and J2 are (loop) variables and N1, N2 are parameters

(loop invariants). Note that we consider J2 � N2 ∗ J1

to be non-linear, although N2 is loop invariant. The

statement execution count for S is given by:

min(N1,N2)
∑

J1=1

N2∗J1
∑

J2=1

1

=

{

N2

1
∗N2

2 + N1∗N2

2 , = if 1 � N1 � N2,

N3

2

2 +
N2

2

2 , = if 1 � N2 < N1.

In general, every loop implies at least two constraints

on its loop variable, one for its upper and one for its

lower bound. Additional constraints on both parame-

ters and variables can be implied, for instance, by con-

ditional statements, minimum and maximum functions,

data declarations, etc.

We briefly describe a symbolic algorithm which

computes the number of integer solutions of a set of

78 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

linear and non-linear constraints I defined over V ∪ P
where P is the set of parameters and V the set of vari-

ables. Every I ∈ I is restricted to be of the following

form:

p1(�P) ∗ v1 + . . . + pk(�P) ∗ vk REL 0 (1)

where REL ∈ {�,�, <,>,=, 	=} represents an equal-

ity or inequality relationship. �P is a vector defined

over parameters of P . pi(�P) are linear or non-linear

expressions over P , whose operations can be addition,

subtraction, multiplication, division, floor, ceiling, and

exponentiation. Minimum and maximum functions are

substituted where possible by constraints free of mini-

mum and maximum functions.

Figure 2 shows the algorithm for counting the num-

ber of solutions to a set of constraints, given I (set of

constraints), P , V , E, and R. E is an intermediate

result (symbolic expression) for a specific solution E i

of the symbolic sum algorithm. The result R is a set

of tuples (Ci, Ei) where 1 � i � k. Each tuple corre-

sponds to a conditional solution of the sum algorithm.

Note that the conditions C (satisfying (1)) among all

solution tuples are not necessarily disjoint. The result

has to be interpreted as the sum over all Ei under the

condition of Ci as follows:
∑

1�i�k

γ(Ci) ∗ Ei (2)

where γ is defined as

γ(C) =

{

1, if C = TRUE,

0, otherwise.
(3)

E and R must be respectively set to 1 and φ (empty

set) at the initial call of the algorithm.

In each recursion the algorithm (see Fig. 2) is elim-

inating one variable v ∈ V . First, all lower and upper

bounds of v in I are determined. Then the maximum

lower and minimum upper bound of v are searched by

generating disjoint subsets of constraints based on I.

For each such subset I ′, the algebraic sum of the cur-

rent E over v is computed. Then the sum algorithm

is recursively called for I ′, the newly computed E,

V−{v},P , and R. Eventually at the deepest recursion

level, V is empty, then E and its associated I repre-

sent one solution tuple defined solely over parameters.

More details about this algorithm are given in [20].

In what follows we demonstrate how the symbolic

sum algorithm can be used to determine the work con-

tained in a loop nest as well as the work to be processed

by a generic processor.

The following code shows a High Performance For-

tran – HPF code excerpt with a processor array PR of

size P .

INTEGER A(N2)

!HPF$ PROCESSORS :: PR(P)

!HPF$ DISTRIBUTE (BLOCK) ONTO PR :: A

DO J1=1,N1

DO J2=1,J1 ∗N1

IF (J2 � N2) THEN

S: A(J2) = . . .
ENDIF

ENDDO

ENDDO

The loop nest contains a write operation to a one-

dimensional array A which is block-distributed onto

P processors. Let k (1 � k � P) denote a specific

processor of the processor array. Computations that

define the data elements owned by a processor k are

performed exclusively by k. For the sake of simplicity

we assume that P evenly divides N2. Therefore, a

processor k is executing the assignment to A based on

the underlying block distribution if
N2∗(k−1)

P
+ 1 �

J2 �
N2∗k

P
. The precise work to be processed by a

processork is the number of times k is writingA, which

is defined by work(k).

The problem to estimate the amount of work to be

done by processor k can now be formulated as counting

the number of integer solutions to I which is given by:

1 � J1 � N1,

1 � J2 � J1 ∗N1,

J2 � N2,
N2∗(k−1)

P
+ 1 � J2 �

N2∗k
P

.

(4)

In the following we substitute
N2∗(k−1)

P
+ 1 by LB

and N2∗k
P

by UB.

By applying our algorithm we can automatically de-

termine that statement S is approximately executed

work(k) =
∑

1�i�3

γ(Ci) ∗ Ei(k)

times by a specific processor k (1 � k � P) for the

parameters N1, N2 and P . γ(Ci) is defined by (3) and

C1 = {UB � N2
1 , P � N2}

with

E1(k) = (N1+UB−LB)∗(LB−2∗N1+2∗LB∗N1+UB)
2∗N2

1

,

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 79

SUM(, , , ,)

INPUT:

: set of linear and non-linear constraints deÞned over

: set of variables

: set of parameters

: symbolic expression deÞned over

INPUT-OUTPUT:

: set of solution tuples where . is a conjunction

of linear or non-linear constraints deÞned over . is a

linear or non-linear symbolic expression deÞned over .

ALGORITHM:

S1: Simplify

S2: if is inconsistent (no solution) then

return

endif

S3: if then

return

endif

S4: Split

S4.1: Choose variable for being eliminated

S4.2: := subset of not involving

= ,..., := set of lower bounds of in

= ,..., := set of upper bounds of in

:= cardinality of

:= cardinality of

S4.3: for each do

:=

SUM()

endfor

S5: return

Fig. 2. Symbolic sum algorithm for computing the number of solutions of a set of constraints I .

C2 = {
UB

N1
> N1,

LB

N1
� N1}

with

E2(k) = (N1 −
LB

N1
+ 1) ∗ (

N2
1

2
−

LB

2
+ 1),

C3 = {N2 � P, N2
1 � UB + 1}

with

E3(k) =
N2

P
∗ (N1 −

UB + 1

N1
+ 1).

Note that by omitting the last two inequalities in

(4), we can use the same symbolic sum algorithm to

compute the overall work contained in the HPF code

excerpt shown above.

Most conventional performance estimators must re-
peat the entire performance analysis whenever the prob-
lem size or the number of processors used are changing.
However, our symbolic performance analysis provides
the solution of the above problem as a symbolic expres-
sion of the program unknowns (P,N1, N2, and k). For
each change in the value of any program unknown we
simply re-evaluate the result, instead of repeating the
entire performance analysis.

Having clarified the algorithm for computing how
much work is contained in a program and how much
work is being processed by every individual processor,
we finally present the definitions for work distribution
goodness of array assignment and loops, procedures
and programs. Let S be an array assignment statement
inside of a loop L, where A is the left hand-side array.
PA is the set of processors onto which A is distributed.

80 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

Definition 3.1. Optimal amount of work. The arith-

metic mean: owork(S) = work(S, PA)/|PA| defines

the optimal amount of work to be processed by every

single processor in PA.

Based on the optimal amount of work a goodness

function for the useful work distribution of an array

assignment statement in a loop L is defined.

Definition 3.2. Useful work distribution goodness

for an array assignment. The goodness of the useful

work distribution with respect to an array assignment

statement S is defined by

wd(S) =
1

owork(S)

× 2

√

√

√

√

1

|PA|

∑

p∈P A

(

work(S, p) − owork(S)
)2
.

The above formula is the standard deviation (σ)

divided by the arithmetic mean (owork(S)), which

is known as the variation coefficient in statistics [5].

In [17] we have presented a proof for the lower

and upper bound of wd(S) with the following result:

0 � wd(S) � |PA|−1. Best-case and worst-case work

distribution are, respectively, given by wd(S) = 0 and

wd(S) = |PA| − 1.

Based on Definition 3.2, a work distribution good-

ness function for loops, procedures, and programs can

be defined.

Definition 3.3. Work distribution goodness for

loops, procedures, and programs. Let E be a loop,

procedure or an entire program with ̺(E) the set of

array assignment and procedure call statements in E,

and freq(S) is the execution time frequency of S, then

the work distribution goodness for E is defined by:

wd(E) =
∑

S∈̺(E)

freq(S)
∑

S′∈̺(E)

freq(S′)
wd(S).

If S represents a call to a procedureE, then wd(S) : =
wd(E).

3.2. Communication parameters

The overhead to access nonlocal data from remote

processors on distributed memory architectures is com-

monly orders of magnitude higher than the cost of ac-

cessing local data. P 3T+ estimates this critical per-

formance aspect of a distributed or parallel program by

simulating on a von Neumann architecture the associ-

ated communication behavior and computing the fol-

lowing performance parameters: the number of trans-

fers (NT), the amount of data transfered (TD), and the

overall communication time (TT). In this paper we de-

scribe how P 3T+ models communication caused by

Fortran 90 array assignments in the context of regular

data distributions. Predicting communication based on

Fortran 77 array references has been described in detail

in [18].

In what follows, we briefly sketch how VFC gen-

erates parallel code for Fortran 90 array assignments.

Then, we outline the computation of the communica-

tion parameters for Fortran 90 array assignments based

on a modified VFC runtime system and associated com-

munication libraries

3.2.1. Modeling Fortran 90 array assignment

statements (VFC)

Distributed arrays, when referenced in a Fortran 90

array assignment statement, can introduce a consider-

able amount of communication, depending on the data

distribution of the arrays involved in the assignment,

access patterns implied by array subscripts, and prob-

lem and machine size chosen.

As shown in Fig. 3, a parallel program generated by

VFC contains calls to the VFC Run Time System (RTS)

which manages distributed data structures (including

redistribution of arrays) and provides an interface to

communication libraries such as Adlib library [8]. A

VFC generated parallel program contains calls to the

RTS for any kind of communication. RTS requires

allocation of a runtime descriptor (RD) for every ar-

ray in a program. The RD is updated during runtime,

for instance, when changing the shape of an array or

its distribution. Let an array assignment statement S
consist of a left-hand side array reference (LHS ref)

and several right-hand side array references (RHS ref).

VFC compiles Fortran 90 array assignment statements

as follows:

1. For every array reference in S, a section descrip-

tor (SD) is allocated and initialized. SD describes

the array elements (specified by an array section

with lower, upper bound and stride for every ar-

ray dimension) that are touched by a given array

reference.

2. Communication buffers are allocated for every

different distributed RHS ref of S.

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 81

ADLIB

MPICH

(generated by VFC based on HPF+ input program)

Compiled Parallel Program

VFC Run-Time System

Fig. 3. The structure of the compiled parallel program.

3. For every distributed RHS ref of S, a call to a

RTS routine is inserted with the following pa-

rameters: RD and SD of LHS ref and RHS ref,

and a communication buffer of RHS ref. The

RTS routine is responsible to transfer non-local

data to the communication buffer by invoking an

Adlib library call which is implemented on top of

MPI [26].

4. The subscript expressions of RHS ref are mod-

ified so as references to non-local data are redi-
rected to their associated communication buffers.

For further information on the parallelization of For-

tran 90 array assignments in VFC, the reader may refer
to [3].

3.2.2. Modifying VFC RTS and Adlib library

P 3T+ estimates the communication behavior of

VFC generated distributed or parallel programs by sim-
ulating the behavior of the VFC RTS and associated

Adlib library calls on a von Neumann architecture. This

means that at compile-time P 3T+ partially executes
calls to the VFC RTS and Adlib library for every pro-

cessor suppressing any actual communication. Only

those code sections that compute the sending processor
and size of messages are executed. This is achieved

by integrating P 3T+ with a modified VFC RTS and

Adlib library (see Fig. 4) and executing them for every
processor of the parallel program at compile-time on a

von Neumann architecture.
In RTS we suppressed initialization code where the

number of processors available on a given parallel ar-

chitecture is compared with the number of processors
requested by the parallel program. The Adlib library

has been modified as follows:

– Three global variables have been introduced:

NoOfProcessors holds the number of processors

onto which the parallel program is being executed

(as defined by the HPF PROCESSORS directive).
CurrentProcessor (1 � CurrentProcessor � NoOf-

Processors) defines the identification of the cur-
rent processor that is being simulated by P 3T+.
CurrentLineNumber holds the line number of the
currently analyzed source code line.

– All calls to functions MPI COMM SIZE and
MPI COMM RANK are, respectively, replaced with
a reference to NOOFPROCESSORS and CURRENT-
PROCESSOR.

– A new data structure – P3T COMM SEQUENCE
– is introduced which records all SEND oper-
ations of a unique statement S. Every entry
in P3T COMM SEQUENCE holds information
about a unique SEND operation by specifying the
size of the message in bytes, the sending processor,
and the number of the currently analyzed source
code line.

– All send operations are suppressed except compu-
tation of their parameters which are used to update
P3T COMM SEQUENCE.

– All receive and wait operations are suppressed.

We use a preprocessor together with conditional code
in VFC RTS and Adlib library thus both VFC and
P 3T+ can use the same sources. The conditional code
is only activated for P 3T+.

3.2.3. Computing P 3T+ communication parameters

In order to estimate the communication behavior of
all Fortran 90 array assignments in a parallel program,
P 3T+ proceeds as follows:

1. Invoke VFC to generate message passing code
based on input program.

2. Traverse VFC generated message passing code
and execute pre-compiled communication code –
based on modified VFC RTS and Adlib library –
for every call to a communication routine R of
VFC RTS.

82 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

ADLIB (modified)

VFC Run-Time System (modified)

P3T+

Adlib Extensions

MPICH

P3T+

Fig. 4. Modified VFC RTS and Adlib library as part of P3T+.

(a) Update P3T COMM SEQUENCE for every

processor p that executes R.

3. Compute communication parameter for all code

regions (e.g. statements, loops, procedures, and

program) of interest based on P3T COMM SE-

QUENCE entries.

Some of the input parameters of RTS and Adlib li-

brary calls may require user interaction. For instance,

in order to determine number of processors and pro-

gram unknowns appearing in array subscript expres-

sions or loop bounds, the user may be requested for

realistic values.

Definition 3.4. Communication parameters for an

array assignment. Let S denote the set of array as-

signments in a program and F(S) the set of procedures

referenced within a statement S ∈ S. Furthermore, let

K(S) denote the set of communication records (stored

in P3T COMM SEQUENCE) associated withS. Then

the number of transfers nt S(S), the amount of data

transfered td S(S), and the transfer time tt S(S) for S

statement are defined as

nt S(S) = freq(S) ∗

|K(S)|

+
∑

q∈F(S)

ntE(q) ∗ card(q, S)
∑

S′∈calls(q)

freq(S′) ∗ card(q, S′)

,

td S(S) = freq(S) ∗

∑

k∈K(S)

data(k)

+
∑

q∈F(S)

tdE(q) ∗ card(q, S)
∑

S′∈calls(q)

freq(S′) ∗ card(q, S′)

,

tt S(S) = freq(S) ∗

∑

k∈K(S)

(α + data(k) ∗ β)

+
∑

q∈F(S)

ttE(q) ∗ card(q, S)
∑

S′∈calls(q)

freq(S′) ∗ card(q, S′)

,

where freq(S) is the execution frequency of S,

calls(q) denotes the set of statements calling procedure

q in the program, ntE(q) denotes the overall number

of transfers for a procedure q, card(q, S) is the number

of calls to procedure q in S, data(k) is the amount of

data (in bytes) transfered by a message k, and α and

β, both measured on the target machine, denote the

message startup time and the transfer time per message

byte respectively.

The nesting level of a statement S is defined as the

number of loops enclosing that statement. If S is not

enclosed in a loop then S has loop nesting level 0.

Definition 3.5. Communication parameters for a

loop nest. Let L denote a loop at the nesting level

i, SL the set of all statements (excluding nested loop

statements and their bodies) appearing in the body of

L. Furthermore, let LL denote the set of all loops at the

nesting level i+1, occurring in the body ofL. Then the

number of transfers nt L(L), the amount of transfered

data td L(L), and the transfer time tt L(L) for L are

recursively defined as

ntL(L) =
∑

s∈SL

ntS(s) +
∑

l∈LL

ntL(l),

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 83

tdL(L) =
∑

s∈SL

tdS(s) +
∑

l∈LL

tdL(l),

ttL(L) =
∑

s∈SL

ttS(s) +
∑

l∈LL

ttL(l).

Definition 3.6. Communication parameters for a

procedure or a program. Let E be a procedure or

an entire program, LE the set of loop nests with nest-

ing level 0 (correspond to loop nests without enclosing

loop) in E. Furthermore, let SE denote the set of state-

ments (excluding loop nests) in E, outside of loops.

Then, number of transfers ntE(E), amount of trans-

fered data tdE(E), and transfer time ttE(E) implied

by all statements S ∈ SE and loop nests L ∈ LE , are

defined as

nt E(E) =
∑

s∈SE

ntS(s) +
∑

l∈LE

ntL(l),

td E(E) =
∑

s∈SE

tdS(s) +
∑

l∈LE

tdL(l),

tt E(E) =
∑

s∈SE

ttS(s) +
∑

l∈LE

ttL(l).

3.3. Computation times

The computation time parameter reflects the time re-
quired by a processor to execute local computations of

the program excluding communication. By local com-

putations we mean those computations assigned to a

processor according to the SPMD programming model

and the “owner computes paradigm” (see Section 3).
This parameter can be useful to

– analyze the communication/computation relation-

ship by incorporating also communication param-
eters described in Section 3.2

– evaluate whether there is enough computation con-

tained in a code region, thus parallelizing the code

region may be effective.

– identify the most time-consuming code regions of
the program (hot spots) which are often hard to

isolate without the help of a profiling tool.

Our method for predicting computation times em-

ploys statement execution frequencies and branching

probabilities as well as pre-measured kernel codes. Pre-

measured kernel codes are used to associate statements

and small code sections in the input program with pre-
measured execution times for a specific target machine.

A large set of kernel codes are pre-measured for every

target machine of interest and stored in a benchmark

kernel library.

Figure 5 shows the architecture of the CT parameter.

Given the Fortran program and the profiling informa-

tion for a specific set of input data, the computation time

parameter is estimated for each statement separately by

pattern matching against pre-measured kernels stored

in the benchmark kernel library.

In what follows we describe the set of kernels upon

which our techniques are based on. Then, we will dis-

cuss the training phase of the benchmark kernel library

which measures all kernels once for every different

target machine of interest. Finally, we describe how

to estimate computation times based on pre-measured

kernels and profiling data.

3.3.1. Benchmark kernel library

The benchmark kernels of the computation time pa-

rameter can be classified as follows:

1. Assignments

Scalar assignment operations considering several

cases where the data types of left-hand side and

right-hand side scalars are identical or different.

Different data types may cause additional over-

head due to type conversion.

2. Basic mathematical operations

Basic mathematical operations, such as +, -, *, /,

**.

3. Procedures (subroutines and functions)

Subroutine call and function reference overheads

for varying numbers of parameters.

4. Intrinsic functions

Standard intrinsic functions, like SIN, COS,

MOD, LOG, etc. and implicit reduction functions

included in Fortran such as MIN, MAX, SUM,

and INDEX.

5. Arrays

Kernels for array reference address calculations.

6. Miscellaneous

All other kernels comprising, for instance,

boolean operations, IF-THEN-ELSE constructs,

loop headers, etc.

3.3.2. Training phase

The performance estimator has to be trained once for

all different target machines of interest in order to de-

termine computation times for each different kernel in

the kernel library. This is achieved by a training phase.

Primitive statements and most primitive operations –

except array operations - are measured for different

data types and stored in the benchmark kernel library

as numeric values. Computation times for array oper-

84 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

CT calculation phase

External data (benchmark kernel library)

Input/Output Data (Fortran program)

Basic
Math.

Operations

Phase 2: Computation time estimation

ArraysCT calculation

Phase 1: Profiling

Phase 3: Annotation

Subroutines
and

Intrinsic
Functions

Functions

Benchmark Kernel Library

Input Program

profile data
+

Profiling

Program

Annotate

Program with

Annotate

Annotated Program

for a statement S

S with CT

n
ex

t
st

at
em

en
t

S

annotated statements

code regions

Assignments

Misc.

Fig. 5. Estimating computation times under P3T+.

ations and intrinsic functions depend not only on the

data types involved but also on the data size of arrays

and the number of parameters which are considered by

the measurements. Based on these measurements a set

of functions describing the computation times for dif-

ferent access patterns, data types, and problem sizes is

constructed using the chi-square fit method and stored

in the benchmark kernel library.

3.3.3. Estimating computation times

Obtaining computation times for a program essen-

tially involves 3 phases as shown in Fig. 5.

1. The input program is instrumented and executed

once on a von Neumann architecture. The profile

data is used to annotate the program with execu-

tion frequencies and branching probabilities.

2. For every statement, a kernel pattern matching

in combination with a performance evaluation al-

gorithm is invoked. Primitive operations, prim-

itive statements and intrinsic functions are sim-

ply detected by their syntax tree node represen-

tation. The computation times for every state-

ment are then weighted by their execution fre-

quencies or branching probabilities (in case of

conditional statements) which yields the overall

execution time for a statement. Every statement

is annotated with the estimated computation time

as obtained from this phase.

3. Estimated computation times for larger code re-
gions (e.g. loops, procedures, and programs)
are obtained by summing up the corresponding
computation times of all statements in this re-
gion. Larger code patterns (e.g. matrix mul-
tiplication) may require more advanced pattern
matching techniques such as those mentioned
in [12]. The current implementation of our pat-
tern matcher handles all kernels in the benchmark
kernel library except code patterns. The output
of phase 3 is the program annotated with compu-
tation times for all code regions.

In the following, we define the computation time
for a single statement, loop nest, procedure and entire
program.

Definition 3.7. Computation time for a program

statement. Let S denote the set of statements of a
program and F(S) the set of procedures referenced
within a statement S ∈ S, then the accumulated time
ct S(S) for this statement is defined as

ct S(S) = freq(S) ∗

ct Ssimple(S)

+
∑

q∈F(S)

ctE(q) ∗ card(q, S)
∑

S′∈calls(q)

freq(S′) ∗ card(q, S′)

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 85

where ct Ssimple(S) denotes the computation time re-

quired by the single instantiation of S excluding the

computation time required by any procedures refer-

enced in that statement. The set of statements refer-

encing procedure q in program is given by calls(q).
ctE(q) denotes the overall computation time of a pro-

cedure q, freq(S) the execution frequency of the state-

ment S, and card(q, S) the number of references to

procedure q in S.

Definition 3.8. Computation time for a loop nest.

Let L denote a loop at the nesting level i, SL the set

of all statements (excluding nested loop statements and

their bodies) appearing in the body of L. Further, let

LL denote the set of all do loops at the nesting level

i+1 occurring in the body of L. Then the computation

time for L denoted by ct L(L) is defined as

ct L(L) =
∑

s∈SL

ct S(s) +
∑

l∈LL

ct L(l).

Definition 3.9. Computation time for a procedure or

a program. Let E be a procedure or an entire program

and LE the set of loop nests with nesting level 0 in

E. Further, let SE denote the set of statements in E
outside of loops. Then the accumulated computation

time ct E(E), implied by all statements S ∈ SE and

loop nests L ∈ LE , is defined as

ct E(E) =
∑

s∈SE

ct S(s) +
∑

l∈LE

ct L(l).

3.4. Number of cache misses

It is well known [19,24,33,36,47] that inefficient

memory access patterns and data mapping into the

memory hierarchy (data locality problem) of a single

processor cause major program performance degrada-

tion. P 3T+ estimates the number of accessed cache

lines which correlates with the number of cache misses.

This parameter is derived for loops, procedures, and

entire programs.

The main idea of our estimation approach for cache

misses is that array references are grouped into array

access classes such that all arrays in a specific class

exploit reuse of array elements in the same set of array

dimensions. The definition of array access classes is

based on a specific number of innermost loops of a not

necessarily perfectly nested loop L. Two array refer-

ences are in the same array access class for a loop nest

if they actually access some common memory location

in the same array dimensions and reuse occurs in L.

The common accesses occur on either the same or a

different iteration of L.

In the following we define the number of cache

misses for a loop nest, procedure, and entire program.

Definition 3.10. Number of cache misses for a loop

nest. Let P define the set of processors executing the

loop nest L and F(L) the set of procedures referenced

withinL. Furthermore, let cmLp(L)define the number

of cache misses induced by a single instantiation of L
with respect to a processor p ∈ P , excluding the cache

misses implied by procedure calls within L. Then the

overall number of cache misses induced by L with

respect to all processors in P is defined as

cm L(L) = freq(L) ∗

1

|P |

∑

p∈P

cm Lp(L)

+
∑

q∈F(L)

cmE(q) ∗ card(q, L)
∑

S∈calls(q)

freq(S) ∗ card(q, S)

where calls(q) denotes the set of statements calling

procedure q in the program, cmE(q) denotes the accu-

mulated number of cache misses implied by procedure

q (see Definition 3.11), freq(S) and freq(L) denote

the execution frequency of statement S and loop nest

L respectively, and card(q, S) is the number of calls to

procedure q in S.

The first sum in Definition 3.10 describes the mean

value of cache misses implied by a single instantia-

tion of L across all processors in P executing L. The

second sum is explained as follows: in order to take

procedure calls into account, the parameter outcome

for a single procedure call instantiation is supposed to

be independent of the call site. This means that the

parameter outcome at a particular call site is the same

as the parameter outcome of the procedure over all call

sites, which is a common assumption made for per-

formance estimators. The estimated number of cache

misses for every specific loop is weighted by its execu-

tion count (freq) in order to reflect its impact on the

overall program performance.

All call graphs are supposed to be acyclic. Note

that Definition 3.10 is also applicable to a sequential

program iff |P | = 1.

Extending the cache cost function to a procedure or

a program is straight forward:

86 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

Defintion 3.11. Number of cache misses for a proce-

dure or a program. Let E be a procedure or an entire

program, and LE and SE , respectively, denote the set

of loop nests and statements with procedure calls at

nesting level 0 in E. Furthermore, let F(S) denote the

set of procedures referenced within a statement S ∈ S.

Then the number of cache misses induced by all loop

nests L ∈ LE and statements S ∈ SE is defined as

follows:

cm E(E) =
∑

l∈LE

cm L(l)

+
∑

S∈SE

∑

q∈F(S)

cmE(q) ∗ card(q, S)
∑

S′∈calls(q)

freq(S′) ∗ card(q, S′)

where calls(q), freq(S) and card(q, S) are defined as

in Definition 3.10.

The first sum in Definition 3.11 corresponds to the

loops contained in E. The second sum models proce-

dure calls outside of loops in E. It is assumed that the

same cache behavior is implied by every instantiation

of L. A more accurate modeling of cmE requires sep-

arate values regarding freq(L) for every instantiation

of L at the price of a considerably larger computational

effort.

More details about our cache modeling approach can

be found in [17].

4. Experiments

P 3T+ has been implemented and is currently used

to support development of parallel and distributed pro-

grams. P 3T+ is primarily used to guide the selec-

tion of profitable data distributions and program trans-

formations under VFC. Note that the programmer can

specify data data distributions (e.g. through HPF di-

rectives) and select transformations under VFC. The

compiler automatically compiles HPF directives and

applies transformations to the program.

In order to demonstrate the usefulness of P 3T+ we

present three different experiments on two different tar-

get machines. First, Cholesky factorization – a code

for factoring a n x n symmetric positive-definite matrix

into the product of a lower triangular matrix and its

transpose – is used to examine the accuracy of P 3T+’s

computation time, work distribution and cache misses

parameters on a Meiko CS-2 and a NEC Cenju-4 mul-

tiprocessor system. The performance outcome of vari-

ous code versions and data distributions is compared by

using P 3T+ and second, an application about pricing

of derivate products which is an important field in fi-

nance theory, is evaluated. Among others, we examine

the accuracy of P 3T+ for predicting execution times

of important parallel reduction operations. Third, we

apply P 3T+ to WIEN97 which is a code for quantum

mechanical calculations of solids. We compare pre-

dicted against measured performance parameters for

number of transfers, amount of data transferred, trans-

fer times, and work distribution for changing problem

and machine sizes.

4.1. Cholesky factorization

Cholesky factorization [9] factors a n x n, symmetric,

positive-definite matrix into the product of a lower tri-

angular matrix L and its transpose, i.e., A = LLT (or

A = UTU , where U is upper triangular). It is assumed

that the lower triangular portion of A is stored in the

lower triangle of a two-dimensional array and that the

computed elements of L overwrite the given elements

of A. Cholesky factorization is a key kernel used by

the material science code (see Section 4.3) which has a

significant impact on the performance of this code.

The following code excerpt shows the main portion

of a Cholesky factorization:

. . .
DOUBLE PRECISION :: A(N,N)

!HPF$ PROCESSORS ::

PR(NUMBER OF PROCESSORS())

!HPF$ DISTRIBUTE (CYCLIC,*) ONTO PR :: A

. . .
A = 2*N

DO 10 I=1,N

A(I,I) = SQRT(A(I,I))

A(I+1:N,I)=A(I+1:N,I)/A(I,I)

DO 20 K=I+1,N

DO 20 J=I+1,N

IF (K .GE. J) THEN

A(K,J)=A(K,J)-A(K,I)*A(J,I)

ENDIF

20 CONTINUE

10 CONTINUE

. . .

We have used P 3T+ to predict several performance

parameters of Cholesky factorization. Figure 6 shows

the predicted and measured computation times of the

Cholesky factorization code on a single processor of the

Meiko CS-2 distributed memory multiprocessor sys-

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 87

tem. Note that the computation time parameter refers to

the sequential computation time overhead. In the worst

case predicted computation times are off the measured

values by 10%.

Figure 7 shows estimated and measured work distri-

bution values for two different parallel versions of the

Cholesky factorization (BLOCK and CYCLIC distri-

bution [27] of the first dimension of array A) that has

been executed on 16 processors. For BLOCK distri-

bution, the predicted work distribution values are off

the measured results in the worst case by 0.6%. The

Cholesky factorization based on CYCLIC distribution

can yield estimation errors of up to 35% for very small

problem sizes (N) due to inaccurate division opera-

tions in our symbolic sum algorithm. However, for in-

creasing problem sizes, the estimation error is almost

negligible (less than 1%).

Figure 8 displays the estimated cache misses as ob-

tained by P 3T+ for various problem and machine

sizes, and loop nestings of the Cholesky factorization.

We tested two different loop nestings: first, K-loop is

the outer and J-loop the inner loop. Second, J-loop is

the outer and K-loop the inner loop. In the first case,

three array references are traversed in the first dimen-

sion by the K-loop which results in a better cache behav-

ior than the second case due to the column-major stor-

age layout of Fortran. Increasing the number of proces-

sors also increases the available cache memory which

in turn improves the overall cache performance. P 3T+
clearly detects these effects as shown by Fig. 8. It is

very difficult to measure the number of cache misses

without hardware support. For this reason, we mea-

sured the corresponding execution times (see Fig. 9)

for each code version of Fig. 8. The performance rank-

ing are identical for each different code version both

in terms of predicted cache behavior as well as mea-

sured execution times. Although the code versions dis-

play only a rather small difference in execution times,

we believe that it is the cache behavior that causes the

differences which is correctly modeled by P 3T+.

4.2. Pricing of financial derivatives

In this experiment we apply P 3T+ to an application

about pricing of derivate products which is an important

field in finance theory. A derivative (or derivative secu-

rity) is a financial instrument whose value depends on

other, so called underlying securities [28]. Examples

are stock options and variable coupon bonds, the latter

paying interest rate dependent coupons. The pricing

problem can be stated as follows: what is the price to-

day of an instrument which will pay some cash flows in

the future, depending on the development of an under-

lying security, e.g. stock prices or interest rates? For

simple cases analytical formulas are available, but for a

range of products, whose cash flows depend on a value

of a financial variable in the past – so called path de-

pendent products – Monte Carlo simulation techniques

have to be applied [39,35]. By utilizing massively par-

allel architectures very efficient implementations can

be achieved [49].

The parallel pricing system has been encoded as an

HPF program [13] by the group of Prof. Dockner,

Department of Business Administration, University of

Vienna. This program comprises approximately 1000

lines of code. This program has been executed on the

NEC Cenju-4 [38] distributed memory multiprocessor

system:

. . .
!HPF$ PROCESSORS ::

PR(NUMBER OF PROCESSORS())

!HPF$ DISTRIBUTE (BLOCK) ONTO PR ::

VALUE

. . .
TYPE(BOND) :: B ! the bond to be priced

REAL(DBLE) :: VALUE(1:N) ! all path results

REAL(DBLE) :: PRICE

!HPF$ INDEPENDENT, REDUCTION(PRICE),

ON HOME(VALUE(I))

DO I = 1, N

VALUE(I) = DISCOUNT(0,CASH FLOW(B,

1,N),FACTORS AT(RANDOM PATH(0,0,N)))

PRICE = PRICE + VALUE(I)

! reduction over PRICE

END DO

PRICE = PRICE/N ! mean value

. . .

Array VALUE has been block-wise distributed onto

the maximum number of processors – by using the HPF

intrinsic function NUMBER OF PROCESSORS() –

that are available on a given architecture. The HPF DO-

Independentdirective specifies that each iteration of the

main simulation loop can be executed simultaneously.

Every iteration of the simulation loop is executed by the

processor that owns array element VALUE(I) based on

the owner-computes paradigm [3]. The summation of

the path results over variable PRICE has been realized

by an HPF reduction directive which is compiled to an

efficient machine specific function.

88 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

0 100 200 300 400 500 600

N

0

10

20

30

40

50

se
cs

measured

predicted

Fig. 6. Measured versus predicted computation times of the Cholesky

factorization for various problem sizes (N) on the Meiko CS-2.

0 200 400 600 800 1000

N

0

0.01

0.02

0.03

0.04

0.05

0.06

w
o
rk

 d
is

tr
ib

u
ti

o
n

measured (block distribution)

predicted (block distribution)

measured (cyclic distribution)

predicted (cyclic distribution)

Fig. 7. Measured versus predicted work distribution of the Cholesky

factorization on 16 processors for various problem sizes (N) and data

distributions (BLOCK and CYCLIC).

We first used P 3T+ to predict the work distribu-

tion of this code based on BLOCK distribution for 16

processors. Figure 10 shows the estimated and mea-

sured work distribution for various problem sizes N . It

clearly shows that we achieve a best-case work distri-

bution (WD = 0.0). The estimates are identical with

measurements.

Furthermore, we used P 3T+ to predict the execu-

tion time behavior of the SUM reduction operation of

this code. Figures 11 and 12, respectively, show the

measured and predicted execution times for the reduc-

tion operation for various problem (size of reduction

data) and machine sizes on a NEC Cenju-4. Note that

although our computation time parameter is restricted

to local computations excluding communication, for

this experiment, we employed the same technique (pre-

measured kernel codes) to predict the execution time of

0 500 1000

N

0

5e+08

1e+09

1.5e+09

2e+09

es
ti

m
at

ed
 c

ac
h

e
m

is
se

s
(b

y
te

s)

2 processors, K-J loop nest

2 processors, J-K loop nest

4 processors, K-J loop nest

4 processors, J-K loop nest

Fig. 8. Predicted number of cache misses of the Cholesky factoriza-

tion for various machine and problem sizes, and loop nestings on a

NEC Cenju-4.

0 100 200 300 400 500 600

N

0

2000

4000

6000

8000

m
ea

su
re

d
 e

x
ec

u
ti

o
n
 t

im
e

(s
ec

)

2 processors, K-J loop nest

2 processors, J-K loop nest

4 processors, K-J loop nest

4 processors, J-K loop nest

Fig. 9. Measured execution times for the Cholesky factorization for

various machine and problem sizes, and loop nestings on a NEC

Cenju-4.

an an explicitly parallel reduction operation. The given

reduction operation (SUM) is defined over a scalar

(double precision variable PRICE). However, our im-

plementation is more general and covers reductions for

both scalars as well as replicated arrays. Figure 13

displays the estimation error rate (all predictions are

within 12% of the real results) which is given by the

following formula:

|measured value − predicted value|

measured value
. (5)

4.3. Quantum mechanical calculations of solids

In our final experiment we applied P 3T+ to

WIEN97 [4] which is a system for the calculation of

the electronic structure of solids that is being used by

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 89

0 1000 2000 3000 4000 5000 6000

N

0

0.2

0.4

0.6

0.8

1

w
o
rk

 d
is

tr
ib

u
ti

o
n

measured
predicted

Fig. 10. Estimated versus predicted work distribution of the pricing

code on 16 processors for various problem sizes N .

m
ea

su
re

d
 e

x
ec

u
ti

o
n
 t

im
es

 (
m

s)

number of processors

N

Fig. 11. Measured execution times of a summation reduction oper-

ation based on replicated data for varying number of processors and

reduction data size (N) on the NEC Cenju-4.

several 100 institutions world-wide. P 3T+ has been

employed to predict the performance behavior of HNS

that comprises 500 lines of code and is a core rou-

tine of WIEN97. HNS defines a symmetric (hermitian)

matrix (the Hamiltonian). Radial and angular depen-

dent contributions are pre-computed and condensed in
a number of vectors which are then applied in a series

of rank-2 updates to the symmetric (hermitian) Hamil-

ton matrix. HNS has 17 one-, 14 two-, 5 three-, and 6

four-dimensional arrays. The computational complex-

ity of HNS is of the order O(N 2). All floating point

operations are done in double (eight bytes) precision.

The following code shows the main loop nests of the

HNS code based on HPF/Fortran 90 array operations:

. . .

number of processors

N

p
re

d
ic

te
d

 e
x
ec

u
ti

o
n

 t
im

es
 (

m
s)

Fig. 12. Predicted execution times of a summation reduction opera-

tion based on replicated data for varying number of processors and

reduction data size (N) on the NEC Cenju-4.

es
ti

m
at

io
n

 e
rr

o
r

N

number of processors

Fig. 13. Estimation error rate of a summation reduction operation
based on replicated data for varying number of processors and reduc-

tion data size (N) on the NEC Cenju-4.

!HPF$ PROCESSORS ::

PR(NUMBER OF PROCESSORS())

!HPF$ DISTRIBUTE(*,CYCLIC) ONTO PR :: H

. . .
DO 60 I = 1, N

H(I,1:I) = H(I,1:I) + A1R(1,1:I)*A2R(1,I)

H(I,1:I) = H(I,1:I) - A1I(1,1:I)*A2I(1,I)

H(I,1:I) = H(I,1:I) + B1R(1,1:I)*B2R(1,I)

H(I,1:I) = H(I,1:I) - B1I(1,1:I)*B2I(1,I)

60 CONTINUE

. . .
DO 260 I = N+1, N+NLO

H(I,1:I) = H(I,1:I) + A1R(1,1:I)*A2R(1,I)

90 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

H(I,1:I) = H(I,1:I) - A1I(1,1:I)*A2I(1,I)

H(I,1:I) = H(I,1:I) + B1R(1,1:I)*B2R(1,I)

H(I,1:I) = H(I,1:I) - B1I(1,1:I)*B2I(1,I)

H(I,1:I) = H(I,1:I) + C1R(1,1:I)*C2R(1,I)

H(I,1:I) = H(I,1:I) - C1I(1,1:I)*C2I(1,I)

260 CONTINUE

. . .

The array operations are executed in parallel based

on the owner-computes-paradigm and the HPF distri-

bution directives [27]. Arrays are mapped onto the

maximum number of processors (HPF intrinsic func-

tion NUMBER OF PROCESSORS) that are available

on a given architecture.

Figures 14 displays the time needed to compute all

P 3T+ performance parameters for a specific problem

size and for varying machine sizes on a Sun Ultra 10

workstation. The timings do not include the profile

rune of the original sequential HNS program to deter-

mine execution frequencies and branching probabili-

ties. Note that the time needed to compute any perfor-

mance parameter is invariant with respect to the prob-

lem size of a given program.

Figures 15–17 show the predicted and measured val-

ues for the P 3T+ parameters: number of transfers,

amount of data transferred, and transfer times. The ex-

periments have been conducted for various number of

processors and problem sizes on a NEC Cenju-4 ma-

chine. Note that for small problem and machine sizes

the estimation errors are almost negligible whereas for

larger problem and machine sizes (more than 8 proces-

sors) the estimation errors can be more severe. P 3T+
replaces (only in its performance model not in the ac-

tual code) I in H(I,1:I) by N/2 (determined by the

0 32 64 96 128

number of processors

50

75

100

125

150

175

200

ex
ec

u
ti

o
n
 t

im
e

(s
ec

s)

Fig. 14. Execution times to obtain all P3T+ performance parame-

ters for HNS with varying machine sizes.

133 265 497

N

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

N
T

2 processors, predicted

2 processors, measured

4 processors, predicted

4 processors, measured

8 processors, predicted

8 processors, measured

Fig. 15. Measured versus predicted number of transfers of HNS for

various problem (N) and machines sizes on a NEC Cenju-4.

133 265 497

N

0

5e+09

1e+10

1.5e+10

2e+10

2.5e+10

3e+10

T
D

 (
b
y
te

s)

2 processors, predicted

2 processors, measured

4 processors, predicted

4 processors, measured

8 processors, predicted

8 processors, measured

Fig. 16. Measured versus predicted amount of data transferred (in

bytes) of HNS for various problem (N) and machines sizes on a NEC
Cenju-4.

enclosing loop bound and array access pattern) in the

HNS code. This assumption results in a decrease of the

predicted number of transfers for larger machine sizes.

In reality more processors are involved in the commu-

nication which causes higher number of transfers. The

predicted amount of data transferred is very close to the

measured values (see Fig. 16). As transfer times are

influenced by both number of transfers and amount of

data transferred, we observe a slightly better estimation

accuracy than for number of transfers.

Figure 18 and 19, respectively, show the estimated

and measured work distribution behavior of HNS based

on BLOCK and CYCLIC distribution of H in the sec-

ond dimension. It can be clearly seen that CYCLIC

distribution outperforms BLOCK distribution due to

the triangular loop iteration space of the HNS loop

nests. The estimation errors for CYCLIC distribu-

tion are mostly due inaccurate division operations in

our symbolic sum algorithm. All experiments for the

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 91

133 265 497

N

0

1000

2000

3000

4000

T
T

 (
se

cs
)

2 processors, predicted

2 processors, measured

4 processors, predicted

4 processors, measured

8 processors, predicted

8 processors, measured

Fig. 17. Measured versus predicted transfer time (secs) of HNS for

various problem (N) and machines sizes on a NEC Cenju-4.

133 265 497

N

0

0.1

0.2

0.3

0.4

0.5

0.6

W
D

2 processors, predicted

2 processors, measured

4 processors, predicted

4 processors, measured

8 processors, predicted

8 processors, measured

Fig. 18. Measured versus predicted work distribution values of HNS

for BLOCK distribution and various problem (N) and machine sizes.

HNS code have been conducted for problem sizes up

to N = 497 which reaches the memory capacity of the

target architecture.

5. Conclusions

In this paper, we have described P 3T+, a perfor-

mance prediction tool for parallel and distributed pro-

grams. P 3T+ is closely integrated with a parallelizing

compiler (VFC) and thus supports the programmer dur-

ing development of parallel programs under this com-

piler. Traditionally, the quality of performance predic-

tion has been hampered by modeling either programs

or architectures with good accuracy but not both of

them. Moreover, very few performance estimators ac-

tually consider code transformations and optimizations

applied by a compiler.

133 265 497

N

0

0.002

0.004

0.006

0.008

0.01

0.012

W
D

2 processors, predicted

2 processors, measured

4 processors, predicted

4 processors, measured

8 processors, predicted

8 processors, measured

Fig. 19. Measured versus predicted work distribution values of HNS

for CYCLIC distribution and various problem (N) and machine sizes.

In contrast to most other performance estimators

P 3T+ models programs, code transformations, and

parallel and distributed architectures. The transforma-

tions and optimizations are selected by the programmer

and automatically performed by VFC. At any stage in

the parallelization effort P 3T+ can be invoked to ex-

amine the performance of a given code version in the

parallelization search space of code versions generated

by VFC. P 3T+ computes a variety of performance pa-

rameters including work distribution, number of trans-

fers, amount of data transferred, transfer times, compu-

tation times, and number of cache misses. P 3T+ sup-

ports the programmer in finding efficient code transfor-

mations and optimizations by comparing different code

versions with respect to the outcome of the performance
parameters.

Several novel technologies are employed to compute

these parameters: loop iteration spaces, array access

patterns, and data distributions are modeled by employ-
ing highly effective symbolic analysis. Communica-

tion is estimated by simulating the behavior of a com-

munication library used by the underlying compiler.

Computation times are predicted through pre-measured
kernels on every target architecture of interest. We

carefully model most critical architecture specific fac-

tors such as cache lines sizes, number of cache lines

available, startup times, message transfer time per byte.
P 3T+ has been implemented and is currently evalu-

ated by several application developers. Experimental

results with realistic kernel codes taken from real-world

applications demonstrate the accuracy and usefulness
of P 3T+.

Various open issue will be followed by future work.

We want to extend P 3T+ by extensive symbolic anal-

ysis to handle programs with unknowns, irregular ap-

92 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

plications, and linear and non-linear symbolic expres-

sions. Performance information should be provided as

functions over program unknowns for all performance

parameters. Moreover, symbolic evaluation should

be employed to aggressively collect constraints about

program unknowns throughout a program. We also

plan to extend P 3T+ covering object-oriented multi-

threaded programs which exploit both data and task

parallelism. Finally, we examine approaches to de-

scribe parallel programs at a higher level than specific
programming languages which should alleviate porta-
bility and reusability of P 3T+ for various other trans-
formation and development systems.

References

[1] E.L.A. Espinosa and T. Margalef, Automatic Performance

Evaluation of Parallel Programs, IEEE Proc. of the 6th Eu-

romicro Workshop on Parallel and Distributed Processing,

IEEE Computer Society Press, January 1998.

[2] S. Benkner, HPF+: High Performance Fortran for advanced

industrial applications. Lecture Notes in Computer Science,
1401, 1998.

[3] S. Benkner, VFC: The Vienna Fortran Compiler, Journal of

Scientific Programming 7(1) (December 1998), 67–81.

[4] P. Blaha, K. Schwarz and J. Luitz, WIEN97, Full-potential,

linearized augmented plane wave package for calculating crys-

tal properties, Institute of Technical Electrochemistry, Vienna

University of Technology, Vienna, Austria, ISBN 3-9501031-

0-4, 1999.
[5] J. Bleymüller, G. Gehlert and H. Gülicher, Statistik für

Wirtschaftswissenschaftler, Verlag Vahlen, München, 1985,

WiSt Studienkurs.

[6] J. Brehm, M. Madhukar, E. Smirni and L. Dowdy, PerPreT –

A performance prediction tool for massively parallel systems,

Lecture Notes in Computer Science, 977, 1995.

[7] B. Carlson, T. Wagner, L. Dowdy and P. Worley, Speedup

properties of phases in the execution profile of distributed
parallel programs, in: Computer Performance Evaluation ’92:

Modeling Techniques and Tools, R. Pooley and J. Hillston,

eds., 1992, pp. 83–95.

[8] B. Carpenter, Adlib: A Distributed Array Library to Support

HPF Translation, Proc. of the 5th Workshop on Compilers for

Parallel Computers, Malaga, Spain, June 1995.

[9] J. Choi, J.J. Dongarra, S. Ostrouchov, A.P. Petitet, D.W.

Walker and R.C. Whaley, The design and implementation of
the ScaLAPACK LU, QR and Cholesky factorization routines,

Report ORNL/TM-12470, Oak Ridge National Laboratory,

Oak Ridge, TN, 1994. LAPACK Working Note 80.

[10] M. Clement and M. Quinn, Symbolic Performance Predic-

tion of Scalable Parallel Programs, Proc. of 9th International

Parallel Processing Symposium, St. Barbara, CA, April 1995.

[11] M.J. Clement and M.J. Quinn, Dynamic performance predic-

tion for scalable parallel computing, Technical Report 95-80-

04, Oregon State University.

[12] B. DiMartino, Algorithmic Concept Recognition Support for

Automatic Parallelization: A Case Study for Loop Optimiza-

tion and Parallelization, Journal of Information Science and

Engineering, Special Issue on Compiler Techniques for High-

Performance Computing, to appear in March 1998.

[13] E. Dockner and H. Moritsch, Pricing Constant Maturity

Floaters with Embeeded Options Using Monte Carlo Simu-

lation, Technical Report AuR 99-04, AURORA Technical

Reports, University of Vienna, January 1999.

[14] D. Eager, J. Zahorjan and E. Lazowska, Speedup versus Effi-

ciency in Parallel Systems, IEEE Transactions on Computers

38(3) (March 1989), 408–423.
[15] M. Faerman, A. Su, R. Wolski and F. Berman, Adaptive perfor-

mance prediction for distributed data-intensive applications,

Technical Report CS1999-0619, University of California, San

Diego, Computer Science and Engineering, May 18, 1999.

[16] T. Fahringer, Estimating and Optimizing Performance for

Parallel Programs, IEEE Computer 28(11) (November 1995),

47–56.

[17] T. Fahringer, Automatic Performance Prediction of Parallel

Programs, Kluwer Academic Publishers, Boston, USA, ISBN

0-7923-9708-8, March 1996.

[18] T. Fahringer, Compile-Time Estimation of Communication

Costs for Data Parallel Programs, Journal of Parallel and

Distributed Computing, Academic Press 39(1) (Nov. 1996),

46–65.

[19] T. Fahringer, Estimating cache performance for sequential

and data parallel programs, Proc. of the International Con-

ference and Exhibition on High-Performance Computing and

Networking (HPCN’97), Vienna, Austria, Lecture Notes in

Computer Science, Springer Verlag, 1997, pp. 840–850.

[20] T. Fahringer, Efficient Symbolic Analysis for Parallelizing

Compilers and Performance Estimators, Journal of Super-

computing, Kluwer Academic Publishers 12(3) (May 1998),

227–252.

[21] T. Fahringer, P. Blaha, A. Hössinger, J. Luitz, E. Mehofer,
H. Moritsch and B. Scholz, Development and Performance

Analysis of Real-World Applications for Distributed and Par-

allel Architecture, AURORA Technical Report TR1999-16,

http://www.vcpc.univie.ac.at/aurora/publications/, University

of Vienna, August 1999.

[22] T. Fahringer and H. Zima, A Static Parameter based Perfor-

mance Prediction Tool for Parallel Programs, Proc. of the 7th

ACM International Conference on Supercomputing, Tokyo,

Japan, ACM Press, July 1993. best paper award.

[23] W. Fang, E.W. Felten and M. Martonosi, Contention and

queueing in an experimental multicomputer: Analytical

and simulation-based results, Technical Report TR-508-96,

Princeton University, Computer Science Department, Jan.

1996.

[24] J. Ferrante, V. Sarkar and W. Trash, On estimating and enhanc-
ing cache effectiveness, Proc. of the 4th Workshop on Lan-

guages and Compilers for Parallel Computing, Santa Clara,

CA, Aug 1991.

[25] D. Ferrari, Computer Systems Performance Evaluation, Pren-

tice Hall, 1978.

[26] M.P.I. Forum, Document for a Standard Message Passing

Interface, draft edition, Nov. 1993.

[27] High Performance FORTRAN Language Specification, Tech-
nical Report, Version 2.0.δ, Rice University, Houston, TX,

October 1996.

[28] J.C. Hull, Options, Futures, and Other Derivatives, Prentice

Hall, April 1997.

[29] J. Brehm et al., A Multiprocessor Communication Benchmark,

Users Guide and Reference Manual, Public Report of the

ESPRIT III Benchmarking Project, 1994.

[30] R. Jain, The Art of Computer Systems Performance Analysis,
Wiley Professional Computing, 1991.

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 93

[31] W.M. Jr., T.J. LeBlanc and A. Poulos, Waiting Time Analysis

and Performance Visualization in Carnival, ACM SIGMET-

RICS Symp. on Parallel and Distributed Tools, May 1996,

pp. 1–10.

[32] W.K. Kaplow and B.K. Szymanski, Program optimization

based on compile-time cache performance prediction, Parallel

Processing Letters 6(1) (Mar. 1996), 173–184.

[33] K. Kennedy and K. McKinley, Optimizing for Parallelism and

Data Locality, International Conference on Supercomputing

1992, Washington D.C., July 1992, pp. 323–334.

[34] M. Kumar, Measuring parallelism in computation intensive

scientific/engineering applications, IEEE Transactions on

Computers 37(9) (1988), 1088–1098.

[35] C.S.L. Clelow, Implementing derivative Models, John Wiley

& Sons, 1998.
[36] M. Lam, E. Rothberg and M. Wolf, The Cache Performance

and Optimizations of Blocked Algorithms, In Proceedings

of the 4th International Conference on Architectural Support

for Programming Languages and Operating Systems, Santa

Clara, CA, April 1991.

[37] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin,

K. Karavanic, K. Kunchithapadam and T. Newhall, The Para-

dyn Parallel Performance Measurement Tool, IEEE Computer

28(11) (November 1995), 37–46.

[38] T. Nakata, Y. Kanoh, K. Tatsukawa, S. Yanagida, N. Nishi and

H. Takayama, Architecture and the Software Environment of

Parallel Computer Cenju-4, NEC Research and Development

Journal 39 (October 1998), 385–390.

[39] P.G.P. Boyle and M. Broadie, Monte carlo methods for security

pricing, Journal of Economic Dynamics and Control (1997),

1267–1321.
[40] A. van Gemund’s PAMELA project webpage, http://dutepp0.

et.tudelft.nl/˜gemund/Pamela/pamela.html.

[41] K.-H. Park, Dynamic Processor Partitioning for Multipro-

grammed Multiprocessor Systems, PhD thesis, Vanderbilt

University, Nashville, TN, Aug 1990.

[42] K. Sevcik, Characterization of parallelism in applications and

their use in scheduling, Performance Evaluation Review 17(1)

(1989), 171–180.
[43] C. Siddhartha, Compiling data-parallel programs for efficient

execution on shared-memory multiprocessors, PhD thesis,

Carnegie Mellon University, School of Computer Science,

Pittsburgh, PA, October 1991.

[44] A. van Gemund, Performance Modeling of Parallel Systems,

Delft University Press, 1996.

[45] S. Venugopal and V.K. Naik, SHAPE: a parallelization tool for

sparse matrix computations, Research report rc 17899, IBM
Research Division, T.J. Watson Research Center, Yorktwon

Heights, NY 10598, July 1992.

[46] F. Wolf and B. Mohr, EARL – A Programmable and Extensible

Toolkit for Analyzing Event Traces of Message Passing Pro-

grams, Proc. of 7th International Conference, HPCN Europe

1999, Amsterdam, The Netherlands, April 1999, pp. 503–512.

[47] M. Wolf and M. Lam, A data locality optimizing algorithm,

In Proceedings of the SIGPLAN 91 Conference on Program

Language Design and Implementation, Toronto, Canada, June

1991.

[48] R. Wolski, N. Spring and J. Hayes, The Network Weather Ser-

vice: A Distributed Resource Performance Forecasting Ser-

vice for Metacomputing, Journal of Future Generation Com-

puting Systems 15(5–6) (1999).

[49] S. Zenios, Parallel Monte Carlo simulation of mortgage-

backed securities, Cambridge University Press, 1993.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

