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CHAPTER 1

Introduction

Almost a century ago, Pierre Fatou and Gaston Julia laid the foundation for the

study of complex dynamical systems. There was a resurgence of interest in the field

in the early 1980s, with the development of computer imaging technology inspiring

mathematicians such as Benoit Mandelbrot, Adrian Douady, John Hubbard, and

Dennis Sullivan to make great strides in the study of complex dynamics. Complex

dynamicists primarly concern themselves with examining the different behaviors that

can result when one iterates a function φ defined on the Riemann sphere, and the

theory is well-developed. Fifteen to twenty years ago, Robert Benedetto, Juan Rivera-

Letelier, Liang-Chung Hsia, and others began studying p-adic dynamical systems, and

have begun to build up a theory analogous to what one sees in the complex setting.

One of the most intriguing and inspiring objects in complex dynamics is the

Mandelbrot set. The goal of this thesis is to define analogues of this object over

p-adic fields and to explore some of their properties, in the hope that they will be as

interesting and rich in information as the complex Mandebrot set has proven to be.

1. Complex Dynamics and the Mandelbrot Set

The classical Mandelbrot set is a subset of the moduli space of quadratic polyno-

mials defined over the complex numbers. We say that two polynomials f and g are

conjugates if there is an invertible affine linear transformation φ(z) = az+b such that

f = φ−1 ◦ g ◦ φ. As fn = φ−1 ◦ gn ◦ φ, conjugate maps exhibit the same dynamical

behavior, up to a change of coordinates. Every quadratic polynomial defined over the

complex numbers can be conjugated in a unique way to be put in the following form:

fc(z) = z2 + c, c ∈ C.
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Thus, we can identify the moduli space of quadratic polynomials in C[z] with the

complex plane, parameterized by the coefficient c.

The Mandelbrot set is defined to be the following subset of this moduli space:

(1.1.1) MC = {c ∈ C : the critical orbit of fc(z) = z2 + c is bounded}.

The critical orbit of a quadratic polynomial fc is the set of iterates of the critical

point, {0, fc(0), fc(fc(0)), . . . }. The set MC is a complicated and fractal-like subset

of the complex plane. Its alluring image and intriguing complexity, despite its simple

definition, have inspired much research in complex dynamics in the thirty years since

Mandelbrot first explored the set. During this time, it has become one of the most

famous objects in mathematics.

Many of the Mandelbrot set’s basic properties were established in the early 1980s

by Douady and Hubbard in [8, 9]. Of particular interest to this thesis is the work

done to explore Misiurewicz points on the Mandelbrot set. These are points that

correspond to polynomials for which the critical orbit is strictly preperiodic. They

appear on the boundary of the Mandelbrot set, which has been shown to be self-similar

and to locally bear a resemblance to corresponding Julia sets [15, 20]. This is just one

of many ways in which the Mandelbrot set encodes quite a bit of information about

the dynamics of quadratic polynomials. There are still many open questions about

the Mandelbrot set, which remains a topic of active research. For more information

about the classical Mandelbrot set, see [6, 7].

2. Non-Archimedean Dynamics

In the past two decades, much research has been done on dynamical systems in a

non-Archimedean setting. For a survey of the subject, see [4] or [18]. A good deal of

this work has been done with the intention of building up a theory analogous to what

exists for dynamical systems over the complex numbers. People have studied Julia

sets, Fatou components, periodic points, and other dynamical objects associated to

dynamical systems over non-Archimedean fields; and researchers have sought ana-

logues to famous theorems in complex dynamics, such as Sullivan’s theorem stating
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that there are no wandering domains, or Fatou’s theorem stating that every attract-

ing cycle attracts a critical orbit [3, 5, 12]. Juan Rivera-Letelier and others have

used the Berkovich projective line, a space that contains Cp but has the advantages of

being compact and path-connected, to further develop the theory of p-adic dynamical

systems, with much success. See, for example, [1, 11, 16, 21].

Non-Archimedean dynamical systems are studied in their own right for their

unique and interesting properties, but their study also helps to shed light on the

study of dynamical systems over global fields. In particular, understanding local dy-

namical systems is useful when studying canonical height functions, as a canonical

height can be expressed as a sum of local heights. There is also much interest in

studying post-critically finite rational maps, which can be identified as maps that are

post-critically bounded at every place.

3. Summary of Results

While quite a bit of work has been done in recent years to begin building a theory

of p-adic dynamics in the image of the well-established theory of complex dynamics, it

is still a young field and much remains unexplored. One underdeveloped area is that of

parameter spaces of rational functions, and in particular, Mandelbrot set analogues.

There is a good reason for this, since the obvious analogue of the classical Mandelbrot

setMC in a p-adic setting is uninspiring, as we will see in the next chapter. When one

generalizes the notion of the Mandelbrot set to higher degree polynomials in a natural

way, however, we find sets that are complicated and that seem to share many features

with the famous complex Mandelbrot set. We will study these p-adic Mandelbrot sets

associated to degree d polynomials, and we will find that there is a stark contrast

in their structures depending on whether p ≥ d or p < d. The former situation is

well-understood and easy to describe, while the latter is still highly mysterious. We

will concern ourselves primarily with the latter case throughout this thesis.

In Chapter 2, we introduce definitions, notation, and tools that we will use

throughout the thesis. We also survey known results regarding p-adic Mandelbrot
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sets and provide elementary proofs of these results and of other basic properties. We

will define the p-adic Mandelbrot set for degree d polynomials as a set of normalized

polynomials for which all critical points have bounded orbits, and we will describe

these sets completely when p > d or when d is a power of p. We will also establish

these sets as closed subsets of Cd−1
p containing, and sometimes equal to, a polydisk

centered at the origin.

In Chapter 3, we discuss the critical radius of the p-adic Mandelbrot set for poly-

nomials of degree d. In this chapter, we introduce the quantity r(d, p), which measures

the maximum possible p-adic absolute value for critical points of polynomials of de-

gree d in the corresponding p-adic Mandelbrot set. We seek to determine r(d, p) for

different values of d and p, and we prove results for 1
2
d < p < d in Theorem 3.4

and for d = 2p and d = 3p in Propositions 3.7 and 3.9, respectively. For all other

combinations of d and p, we provide examples that give lower bounds for r(d, p) and

we show that there is no uniform upper bound.

Finally, in Chapter 4, we examine the one-parameter family of cubic polynomials

ft(z) = z3 − 3
2
tz2 for t ∈ C2 to give a sense of the structure and complexity of these

p-adic Mandelbrot sets. In particular, we define what it means to be a Misiurewicz

point and examine the boundary of the Mandelbrot set associated to this family

near a particular Misiurewicz point. In doing so, we find that the boundary is self-

similar and that it resembles the Julia set for the corresponding polynomial. Both

of these phenomena are analogous to what occurs for the classical Mandelbrot set in

the complex quadratic setting, inspiring confidence that p-adic Mandelbrot sets for

degree d polynomials may share some of the interesting properties of the classical

Mandelbrot set when p < d.
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CHAPTER 2

Notation, Tools, and Proofs of Known Results

In this chapter, we establish the definitions and notation that we use throughout

this thesis. We also outline some key tools that are used in the proofs that follow.

In the third section, we provide proofs of two known results, as they do not appear

in this form in the literature. Finally, in Section 4, we prove basic facts about the

structure of p-adic Mandelbrot sets.

1. Background and Definitions

1.1. Foundations of Dynamical Systems. Generally speaking, a (discrete)

dynamical system consists of a set and a function from that set to itself. Throughout

this document, the sets in our dynamical systems will be either the complex numbers

C or a non-Archimedean field, usually Qp or Cp, and the functions that we study

will be polynomials. We let Cp denote the completion of the algebraic closure of the

p-adic numbers Qp. These p-adic fields are metric spaces, with a metric induced by

the p-adic absolute value | · |p. Our p-adic absolute value will be normalized in the

usual way so that |p|p = p−1.

We will be primarily working over Cp, which is totally disconnected and not locally

compact. The property of Cp that we will use most is that the p-adic absolute value

on Qp extends to Cp and satisfies the ultrametric triangle inequality, which says that

for all α, b ∈ Cp,

|a+ b|p ≤ max{|a|p, |b|p}, with equality if |a|p 6= |b|p.

For more information about Qp or Cp and their properties, see [14].

Let f ∈ K[z] be a polynomial defined over a field K with a nontrivial absolute

value. We will denote by fn the nth iterate of the map f , so that fn is equal to f
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composed with itself n times. We define the orbit of a point z ∈ K as follows:

Of (z) = {fn(z) : n ∈ N}.

A point z ∈ K is called periodic if fn(z) = z for some positive integer n. The

smallest such n is called the period of z. We say z is preperiodic if it has a finite

orbit. In other words, z is preperiodic if there exist positive integers n and m such

that fm(z) = fm+n(z). We say a point z ∈ K is strictly preperiodic if it is preperiodic

but not periodic.

We further classify periodic points as attracting, repelling, or neutral, depending

on the absolute value of their multipliers. The multiplier λ of a periodic point z with

period n is defined as follows:

λ = (fn)′(z).

If |λ| < 1, we say that z is an attracting periodic point. If |λ| > 1, we say that z is

repelling, and if |λ| = 1, we say that z is neutral. These terms reflect the dynamical

behavior of points near z as one iterates the function f . If z is attracting, nearby

points move toward the attracting cycle as one iterates f . If z is repelling, nearby

points move away from the cycle as f is iterated.

For a dynamical system f : K → K, each point z ∈ K is classified as being

in one of two sets, the Fatou set or the Julia set, depending on its orbit. Roughly

speaking, there are some points whose orbits resemble those of all nearby points, and

other points whose orbits cannot be predicted by the orbits of nearby points. These

latter points exhibit chaotic dynamical behavior, and comprise the Julia set of f . The

former set, the complement of the Julia set, is called the Fatou set.

More formally, the Fatou set associated to a dynamical system f is the largest

open subset U of K on which the set of iterates {fn : n ≥ 1} is equicontinuous. We

can then define the Julia set to be the complement of the Fatou set in K.

There are a number of equivalent ways to define the Julia set of a polynomial

f ∈ C[z]. It is equal to the closure of the set of repelling periodic points, and it is

also equal to the boundary of the set of points whose orbits are bounded [6, Theorem
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III.3.1]. This latter characterization, which only holds for polynomials and not for

rational functions in general, is also true for polynomials defined over p-adic fields [4,

Proposition 4.37], and is the definition that is most convenient for our purposes.

1.2. Generalizing the Mandelbrot set to a p-adic setting. The complex

Mandelbrot set, defined in (1.1.1), is a subset of the moduli space of quadratic polyno-

mials in C[z], defined by the orbit of the critical point 0. The orbit of the critical point

is of interest due to a classical theorem of Fatou, which states that every attracting

periodic cycle for a dynamical system defined over the complex numbers attracts a

critical orbit. This result was extended by Shishikura to include neutral cycles in [17].

Thus, critical orbits detect the presence of non-repelling cycles in a dynamical system.

The complex Mandelbrot set can be equivalently defined as the set of parameters c

for which the corresponding polynomial fc(z) = z2 + c has a connected Julia set [6,

Theorem VIII.1.1].

The natural way to extend the definition of the Mandelbrot set to a p-adic setting

is to retain the definition in (1.1.1), replacing C with Cp. This definition gives the

following set:

{c ∈ Cp : Ofc(0) is bounded}, where fc(z) = z2 + c.

This set proves to be much less inspiring than the classical Mandelbrot setMC, as it

is simply the p-adic unit disk:

Proposition 2.1. Let p be a prime number and let

M2,p = {c ∈ Cp : Ofc(0) is bounded},

where fc = z2 + c ∈ Cp[z]. Then, M2,p = {c ∈ Cp : |c|p ≤ 1}.

Proof. This is a straightforward consequence of the non-Archimedean absolute

value on Cp. First, suppose that |c|p > 1. Then, due to the ultrametric triangle

inequality,

|fnc (0)|p = |c|2n−1

p .
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Since |c|p > 1, this quantity grows without bound as n grows, so fc is not in M2,p.

Now consider c ∈ Cp with |c|p ≤ 1. Then, fc will map the p-adic unit disk to

itself. Therefore, the orbit of 0 stays within the unit disk, and fc ∈M2,p. �

We now generalize the definition of M2,p to higher degree polynomials. Just as

quadratic polynomials may be conjugated to be put in the form fc(z) = z2 + c, we

will choose a normal form for our degree d polynomials. Let

Pd,p = {f ∈ Cp[z] : f has degree d, is monic, and f(0) = 0}.

Note that any degree d polynomial in Cp[z] can be conjugated by an invertible

affine linear transformation so that it has this form, so we may restrict ourselves to

studying polynomials in Pd,p without loss of generality. Note also, however, that there

is usually more than one way to conjugate a polynomial so that it has this form —

in fact, there are up to d2 − d ways to do so. For a given polynomial of g of degree

d, we first conjugate by φ1(z) = az, where a is chosen so the resulting conjugated

polynomial φ−11 ◦ g ◦φ1 is monic. We have d− 1 choices for a, as we can multiply any

appropriate choice by a (d − 1)st root of unity, and the leading coefficient will be 1.

We then conjugate by φ2(z) = z+b, where b is a fixed point. This translation ensures

that the resulting polynomial φ−12 ◦φ−11 ◦g ◦φ1 ◦φ2 has a fixed point at 0. We have up

to d choices for b, as our polynomial has up to d distinct fixed points. Thus, any given

conjugacy class of degree d polynomials has up to d(d − 1) representatives in Pd,p.

Unlike the quadratic parameterization used in the definition ofMC, this normal form

does not define a moduli space for degree d polynomials, but a finite-to-one parameter

space. We choose this normal form because it allows us to parameterize a polynomial

by its critical points.

Definition 2.2. Let f ∈ Pd,p. We say that f is post-critically bounded, or PCB,

if all of its critical orbits are bounded. In other words, f is PCB if and only if Of (c)

is a bounded set for all c such that f ′(c) = 0.

With this notion, we define a p-adic Mandelbrot set for degree d polynomials as

follows:

8



(2.1.2) Md,p = {f ∈ Pd,p : f is PCB}.

Remark 2.3. We will often parameterize a polynomial f ∈ Pd,p by its set of

critical points {c1, . . . cd−1}, listed with multiplicity, which allows us to think ofMd,p

as a subset of Cd−1
p . Of course, since the set of critical points is an unordered set, and

since the normal form used in Pd,p is not unique, there are multiple points in Cd−1
p

that correspond to the same polynomial (or to polynomials in the same conjugacy

class). However, as noted earlier, a given conjugacy class of polynomials corresponds

to only finitely many points in Cd−1. When we think of Md,p as a subset of Cd−1
p , it

is important to keep in mind that Md,p will have the appropriate redundancies and

symmetries.

Remark 2.4. One may wonder why we choose to parameterize f ∈ Pd,p by its

critical points rather than by its coefficients. In some situations, such as the one

described in Theorem 2.8, the two notions are interchangeable, and it is equally easy

to describe the polynomials in Md,p in terms of their coefficients as it is to describe

them in terms of their critical points. In other situations, such as in Proposition 2.6,

it is much easier and more natural to describe the polynomials in Md,p in terms of

their critical points. This is because there is a uniform bound on the absolute value

of the critical points for polynomials in Md,p when d = pk, but the bounds on the

coefficients ai vary from coefficient to coefficient depending on the p-adic valuation

of i.

2. Notation and Tools

2.1. Notation. Throughout this document, we fix a prime number p and we let

f(z) = zd + ad−1z
d−1 + · · ·+ a1z ∈ Pd,p
9



be a degree d polynomial in Cp[z]. In the interest of having less cluttered notation,

we suppress the subscript p from our notation for absolute values and valuations. We

denote the critical points of f by c1, . . . , cd−1, not necessarily distinct, labeled so that

|c1| ≥ |c2| ≥ · · · ≥ |cd−1|.

We denote the closed disk centered at a of radius s in Cp by

D̄(a, s) =
{
z ∈ Cp : |z − a| ≤ s

}
.

The filled Julia set of f is the set

Kf = {z ∈ Cp : the f -orbit of z is bounded}.

We let R ≥ 0 be the smallest number such that

(2.2.3) Kf ⊆ D̄(0, pR).

Equivalently, we can define R as follows:

R = max

({
−v(ai)

d− i
: 1 ≤ i ≤ d− 1

}
∪ {0}

)
.

Here, R is chosen to be maximal such that if |z| = pR and R > 0, then |zd| = |aizi|

for some i. We can deduce that this definition is equivalent to the one given in (2.2.3)

using [4, Theorem 3.9].

Writing f(z) =
∏d

i=1(z − zi), where the zi are the roots of f , one sees that there

is yet another equivalent way to define R. We define R so that R = 0 if |zi| ≤ 1 for

all roots zi, and otherwise, R is chosen so that

pR = max
f(z)=0

|z|.

We also set

(2.2.4) r = −v(c1).

The quantity r measures the size of the largest critical point of f . Equivalently, r is

defined so that

pr = max
f ′(c)=0

|c|.

10



We will often use the fact that

(2.2.5) ai = (−1)d−i
d

i
σd−i,

where σj denotes the jth symmetric function of the critical points of f .

Whenever we count critical points, roots, or periodic points for f , we do so with

multiplicity.

2.2. The Newton Polygon. The Newton polygon is a useful object in p-adic

analysis that we will use frequently. Consider a polynomial

g(z) =
d∑
i=0

biz
i.

The Newton polygon for g is the lower convex hull of the set of points {(i, v(bi))}. If

any bi = 0, that point is omitted. (One can think of that point as being at infinity.)

The Newton polygon of g encodes information about the roots of g. In particular, it

tells us that if the Newton polygon for g has a segment of horizontal length n and

slope m, then g has n roots of absolute value pm, counting with multiplicity. For

proofs of these facts, see [14, Section IV.3].

One consequence of these facts is that for polynomials, or more generally, for power

series over Cp, a disk in Cp is mapped everywhere n-to-1 (counting with multiplicity)

onto its image, which is also a disk. The following proposition, whose proof can be

found in [4, Corollary 3.11], will prove useful.

Proposition 2.5. Let f(z) =
∑d

i=0 bi(z− a)i ∈ Cp[z] be a polynomial of degree d

and let D = D̄(a, ps) be a disk in Cp. Then f(D) = D̄(f(a), pr), where

r = max
1≤i≤d

{si− v(bi)}.

Moreover, f : D → f(D) is everywhere m-to-1 for some positive integer m, counting

with multiplicity.

11



3. Proofs of Known Results

In this section, we summarize all previously known results about Md,p of which

we are aware for various combinations of d and p. We provide elementary proofs for

the two main results stated here, as they do not appear in the literature in this form.

First, we treat the case that d = pk, for some positive integer k. A proof of this

result can be found in [10], but we present a proof here that is more straightforward

and tailored to the normal form that we are using.

Proposition 2.6. Let d = pk for some positive integer k, and let f ∈ Pd,p. Then

f is PCB if and only if |c| ≤ 1 for all critical points c of f . Hence, Md,p is simply a

product of closed unit disks in Cd−1
p .

Proof. First, suppose that all of the critical points for f lie in the unit disk.

Then, using (2.2.5), all of the coefficients of f are p-integral, and so

f(D̄(0, 1)) ⊆ D̄(0, 1).

Therefore, f is PCB.

Now, suppose f is PCB. By comparing the Newton polygons for f and f ′, one sees

that the slope of the rightmost segment of the Newton polygon for f ′ is greater than

the slope of the rightmost segment of the Newton polygon for f . This is because the

leading coefficient of f ′ is pk while the leading coefficient of f is 1, so the rightmost

point on the Newton polygon for f ′ is k units above the rightmost point of the

Newton polygon for f . Comparing all of the other coefficients, we see that any

point (i − 1, v(iai)) on the Newton polygon for f ′ is at most k − 1 units above the

corresponding point (i, v(ai)) on the Newton polygon for f . Therefore, the largest

critical point of f is strictly larger than the largest root of f . If this critical point

c were outside the unit disk, then |f(c)| = |c|d > R, and f would not be PCB.

Therefore, f is PCB if and only if all critical points lie in the unit disk. �
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Now, we turn to the case that p > d. This is also a known result, but as it does

not appear to be in the literature, we present an elementary proof. We will make use

of the following lemma.

Lemma 2.7. Let f ∈ Cp[x] be a degree d polynomial, let D̄(a, s) be a disk in Cp,

and let m be an integer with p - m. If f maps D̄(a, s) m-to-1 onto its image, then

D̄(a, s) contains exactly m− 1 critical points of f , counted with multiplicity.

Proof. Without loss of generality, we may replace f with a conjugate so that

D̄(a, s) = D̄(0, 1). Let

f =
d∑
i=0

biz
i.

Then, counting with multiplicity, f(z) − f(0) has m roots in the unit disk. Using

properties of the Newton polygon for f(z) − f(0), this implies that m is the largest

positive integer such that

v(bm) = min
1≤i≤d

v(bi).

Now consider the Newton polygon for f ′. Since m is the largest integer such that

v(bm) is minimal and p - m, we see that m is also the largest integer such that v(mbm)

is minimal among all v(ibi). Therefore, the Newton polygon for f ′ has exactly m− 1

non-positive slopes, which implies that there are m− 1 critical points, counted with

multiplicity, in D̄(0, 1). �

Theorem 2.8. Let p > d. Then f ∈ Pd,p is PCB if and only if |ci| ≤ 1 for all

critical points ci of f . Hence, Md,p is a product of closed unit disks in Cd−1
p .

Proof. First, suppose that |ci| ≤ 1 for all i. Then |ai| = |d
i
σd−i| ≤ 1 for all i,

and so f(D̄(0, 1)) ⊆ D̄(0, 1). Therefore, f is PCB.

Now let f be PCB and suppose, for contradiction, that −v(c1) = r > 0. Let m be

maximal such that −v(cm) = r. (In other words, there are exactly m critical points

with absolute value pr.) First, we show that there are exactly m roots z1, z2, . . . , zm

of f such that −v(zi) = r.
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Since p > d, the Newton polygons for f and f ′ are the same, up to horizontal

translation. Thus, the rightmost segment of the Newton polygon for f has the same

slope and horizontal length as the rightmost segment of the Newton polygon for f ′,

and therefore, f has exactly m roots zi such that −v(zi) = r.

Next, we use Lemma 2.7 to reach a contradiction. Consider f−1(D̄(0, pr)). This

is a union of at most d smaller disks D̄(zi, p
si), where the zi are the roots of f . Note

that, since f is PCB, each critical point must lie in one of these disks. By Proposition

2.5, we know that each si ≤ r/d.

So, each of the m large critical points c1, . . . , cm must lie in the following set:

V =
m⋃
i=1

D̄(zi, p
si).

The set V is a disjoint union of n ≤ m disks. Relabel the subscripts so that we can

express V as follows:

V =
n∐
i=1

D̄(zi, p
si).

Let D̄(zi, p
si) map di-to-1 onto D̄(0, r). Then, since V contains exactly m preimages

of 0, counted with multiplicity, we have

n∑
i=1

di = m.

Let bi be the number of critical points in D̄(zi, p
si). Then, Lemma 2.7 tells us that

bi = di − 1, and so the number of critical points, counted with multiplicity, in V is

n∑
i=1

bi = m− n < m.

This is a contradiction. Thus, if f is PCB, all of its critical points lie in the unit

disk. �

4. Basic Properties of Md,p as a subset of Cd−1
p

In this section, we parameterize a polynomial f ∈ Pd,p by its set of critical points

(c1, c2, . . . , cd−1), as in Remark 2.3. In doing so, we treat Md,p as a subset of Cd−1
p .

We have seen in Theorem 2.8 and Proposition 2.6 that if p > d or if d = pk, then

14



Md,p is the unit polydisk in Cd−1
p . In general, if p < d, the set Md,p is more difficult

to describe. It is no longer a polydisk, but it is a closed set which contains a polydisk

centered at the origin.

Proposition 2.9. Let f ∈ Pd,p with d 6= pk for any positive integer k. Define s

as follows:

s = min
1≤i≤d−1

v(d)− v(i)

d− i
.

Then, Md,p contains the polydisk D̄(0, ps)d−1. In other words, if −v(c) ≤ s for all

critical points c of f , then f is PCB.

Note that if d = pk, this proposition does not apply, but we have already seen in

Proposition 2.6 thatMd,p is equal to the unit polydisk in this case. We now proceed

to prove Proposition 2.9:

Proof. If d 6= pk, we note that s ≤ 0, as v(d) is not strictly larger than v(i) for

all i between 1 and d−1. Recall that, if f(z) =
∑d

i=1 aiz
i ∈ Pd,p, then the coefficients

ai can be obtained from the critical points ci as follows:

ai = (−1)d−i
d

i
σd−i,

where σn denots the nth symmetric function on the set of critical points. By this

definition, if −v(ci) ≤ s for all critical points ci of f , we see that

v(ai) ≥ v(d)− v(i)− (d− i)s ≥ v(d)− v(i)− (v(d)− v(i)) = 0.

Thus, all coefficients of f are p-integral, and f maps the unit disk to itself. Since

s ≤ 0, all critical points are in the unit disk, and therefore have bounded orbits. �

If p < d, it is possible for Md,p to contain points beyond the polydisk defined in

Proposition 2.9. These sets can be complicated and difficult to describe, but they are

always closed sets.

Proposition 2.10. Equate f ∈ Pd,p with the point (c1, . . . , cd−1) ∈ Cd−1
p , where

the ci are the critical points of f , as in Remark 2.3. Then, Md,p is a closed subset of

Cd−1
p .
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Proof. We will prove that the set of non-PCB maps is an open subset of Cd−1
p .

Let f ∈ Pd,p with critical points c, c2, . . . , cd−1, and suppose, without loss of generality,

that the orbit of c is unbounded. Let R be as defined in (2.2.3). Let n be minimal

such that |fn(c)| > pR. Now suppose g ∈ Pd,p with critical points γi = ci + δi, where

|δi| ≤ ε. We will show that, if ε is sufficiently small, the g-orbit of γ = c + δ1 is

unbounded.

Suppose that f(z) =
∑d

i=1Ai(c, c2, . . . , cd−1)z
i and g(z) =

∑d
i=1Ai(γ, γ2, . . . , γd−1)z

i,

where Ai is the symmetric polynomial defined in (2.2.5). We want to choose ε to sat-

isfy the following three conditions:

• ε is small enough that v(Ai(c, c2, . . . , cd−1)) = v(Ai(γ, γ2, . . . γd−1)),

• ε is small enough that |fn(c)− fn(γ)| ≤ pR,

• ε is small enough that |fn(γ)− gn(γ)| ≤ pR.

If these three conditions are satisfied, then we claim that Og(γ) is unbounded. The

first condition guarantees that the radius of the smallest disk containing the filled Julia

set Kg is the same as that for Kf , namely, pR. Thus, to show that the g-orbit of γ is

unbounded, we need to show that |gm(γ)| > pR for some m. The next two conditions

combine to show that |gn(γ)| = |fn(c)| > pR. We know that |fn(c)| > pR, so if we

can show that |fn(c) − gn(γ)| ≤ pR, then it must be the case that |gn(γ)| = |fn(c)|.

We show this by splitting the absolute value into two:

|fn(c)−gn(γ)| = |fn(c)−fn(γ)+fn(γ)−gn(γ)| ≤ max{|fn(c)−fn(γ)|, |fn(γ)−gn(γ)|}.

It remains to show that we can choose ε to satisfy the three stated conditions. All of

these facts stem from the continuity of polynomials. For the first condition, we need

|Ai(c, c2, . . . , cd−1)− Ai(γ, γ2, . . . γd−1)| < |Ai(c, c2, . . . , cd−1)|

for 1 ≤ i ≤ d− 1. Since Ai is a continuous function for all i, we can choose ε so that

these inequalities are satisfied. The second condition follows for the same reason — fn

is a continuous function, so we can choose ε so that if |δ1| < ε, |fn(c)−fn(c+δ1)| ≤ pR.
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For the final condition, we write fn and gn as follows:

fn(z) =
dn∑
i=1

Bi(c, c2, . . . , cd−1)z
i, gn(z) =

dn∑
i=1

Bi(γ, γ2, . . . , γd−1)z
i.

Since the Bi are symmetric polynomials, they are continuous, and we can choose ε so

that

|Bi(c, c2, . . . cd−1)−Bi(γ, γ2, . . . , γd−1)| ≤
pR

|γ|i

for all i. This guarantees that

max{
∣∣Bi(c, c2, . . . cd−1)γ

i −Bi(γ, γ2, . . . , γd−1)γ
i
∣∣} ≤ pR

and therefore, the third condition is satisfied. Thus, since its complement is open, we

conclude that Md,p is a closed subset of Cd−1
p . �
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CHAPTER 3

The Critical Radius of Md,p

We have seen that, when p ≥ d, the set Md,p is easy to describe. A polynomial

f ∈ Pd,p is inMd,p if and only if all of its critical points have absolute value less than

or equal to 1. The proof does not hold when p < d, which leads us to ask whatMd,p

looks like in this situation. In this section, we explore whether it is possible to have

PCB maps with critical points outside the unit disk, and if so, we seek to determine

a sharp upper bound for the p-adic absolute value of such critical points.

We can think of Md,p as a subset of Cd−1
p if we associate f ∈ Pd,p with the point

(c1, c2, . . . cd−1), where the ci are the roots of f ′, counted with multiplicity. (Since

the set of critical points of f is an unordered set, each polynomial in Pd,p has up to

(d− 1)! points in Cd−1
p associated to it.) By Proposition 2.9, the setMd,p contains a

polydisk D̄(0, ps)d−1. In the previous chapter, we have seen that if p > d or if d = pk,

this polydisk has radius 1, and is equal toMd,p. When p < d and d 6= pk, the polydisk

described in Proposition 2.9 is contained in Md,p but is not necessarily equal to all

of Md,p.

We define the following quantity, which measures the critical radius of the p-adic

Mandelbrot set in Pd,p:

(3.0.6) r(d, p) = sup
f∈Md,p

max
c∈Cp

f ′(c)=0

{−vp(c)}.

This is a (base p) logarithmic measure of the maximum possible absolute value

for a critical point of a polynomial f ∈ Md,p. For small primes, in particular p < d,

the setMd,p may be complicated and have a fractal-like boundary. We use r(d, p) as

a way to measure the extent to which Md,p extends beyond the polydisk described
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in Proposition 2.9. Just as the critical values for quadratic polynomials in the clas-

sical Mandelbrot set over C are contained in a disk of radius 2 [2, Theorem 9.10.1],

the critical points for polynomials in Md,p are contained in a disk of radius pr(d,p).

Knowing r(d, p) can be useful in searching for post-critically finite polynomials over

a given number field, as is done for cubic polynomials over Q in [13], as it gives

one a reasonably-sized search space. For p > d or d = pk, we have already seen in

Theorem 2.8 and Proposition 2.6 that r(d, p) = 0. In the sections that follow, we

determine r(d, p) for other combinations of d and p.

In the following table, we summarize the results of this chapter:

r(d, p) Conditions on d and p Notes

1 r(d, p) = 0 p > d

2 r(d, p) = 0 d = pk k ∈ Z, k > 0

3 r(d, p) = 0 d = 2p

4 r(d, p) = 0 d = 3p, p 6= 2

5 r(d, p) =
p

d− 1
1
2
d < p < d

6 r(d, p) ≥ a(k − `)pk

d− 1
d = apk + b

k maximal such that pk ≤ d,

` maximal such that p` | d

1 ≤ a < p, 0 ≤ b < pk

Line 1 was established in Theorem 2.8 and line 2 was shown to be true in Propo-

sition 2.6. We will first prove line 6 in Section 1, followed by line 5 in Section 2 and

lines 3 and 4 in Section 3.

1. Finding lower bounds for r(d, p)

In this section, we provide an example that gives the best known lower bounds

for r(d, p) when p < d. It gives a positive lower bound for r(d, p) for all p < d except

for those for which d has the form d = apk, where a < p.

Proposition 3.1. Suppose that p < d. Let k be the largest integer such that

pk < d and let ` be the largest integer such that p`|d. Write d = apk + b, where
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1 ≤ a < p and 0 ≤ b < pk. Then,

r(d, p) ≥ a(k − `)pk

d− 1
.

In particular, if d 6= apk, then r(d, p) > 0.

Proof. We first treat the b = 0 case. Let d = apk. Then since k = ` in this case,

we must show that r(d, p) ≥ 0. Consider the polynomial f(z) = zd−1(z − d). Then,

the critical points of f are 0, which is fixed, and d− 1. Since all of the coefficients of

f are p-integral, the polynomial f will map the unit disk to itself. Therefore, since

d−1 is a p-adic unit, the orbit of d−1 is bounded, and we have provided an example

of a PCB polynomial with a critical point of absolute value p0 = 1. Thus, r(d, p) ≥ 0.

Now suppose b 6= 0. Let α ∈ Cp satisfy the following equation:

(3.1.7) αd−1 =
dd

(−apk)apkbb
.

Then we claim that the lower bound given in Proposition 3.1 is realized by the fol-

lowing map:

(3.1.8) f(z) = zb(z − α)ap
k

.

This map has either two or three critical points: α, b
d
α, and possibly 0. (Zero is a

critical point if b 6= 1.) Since we chose α to satisfy (3.1.7), it follows immediately that

f

(
b

d
α

)
= α, f(α) = 0, and f(0) = 0.

Thus, f is post-critically finite, and therefore PCB, with

−v(α) =
a(k − `)pk

d− 1
.

By definition, we have r(d, p) ≥ −v(c) for any critical point c for a map f ∈ Md,p,

which gives the desired lower bound for r(d, p). �

Since ` is necessarily less than or equal to k, we see that r(d, p) ≥ 0 in all cases,

and r(d, p) is strictly greater than zero when b 6= 0. Proposition 3.1 does not give

a positive lower bound for r(d, p) when d = apk, where 1 ≤ a < p. We explore this

situation further in Section 3.
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Note that if f has just two distinct roots, as in (3.1.8), the example given in

Proposition 3.1 maximizes −v(α):

Proposition 3.2. Let m and n be positive integers such that m + n = d. Let β

be any value in Cp such that the polynomial

g(z) = zm(z − β)n is in Md,p.

Let a, b, k, and ` be defined in terms of d as in Proposition 3.1. Then,

−v(β) ≤ a(k − `)pk

d− 1
.

Proof. Suppose that −v(β) > 0. Since f ∈Md,p, it is necessary that the critical

point m
d
β have absolute value less than or equal to that of β. Thus, v(m) ≥ v(d).

Since the other critical points, β and (potentially) 0, have finite orbits, it suffices to

examine the orbit of m
d
β. Looking at its first iterate, we see that

f
(m
d
β
)

=
mm(−n)n

dd
βd.

It is necessary that −v(f(m
d
β)) ≤ −v(β), which implies that

|βd−1| ≤
∣∣∣∣ dd

mmnn

∣∣∣∣ .
This implies that

(3.1.9) −v(β) ≤ mv(m) + nv(n)− dv(d)

d− 1
.

First, we treat the b = 0 case. In this case, d = apk, so v(d) ≥ max{v(m), v(n)},

and thus −v(β) ≤ 0.

Now suppose b 6= 0. The quantity on the right hand side of (3.1.9) is maximized

when either mv(m) or nv(n) is as large as possible, which occurs when one of m or

n is equal to apk. In this case, we get that −v(β) = a(k−`)pk
d−1 , as desired. �

Remark 3.3. We note that Proposition 3.1 shows that there is no uniform upper

bound for r(d, p). For any positive integer k, if d = pk+1, then Proposition 3.1 shows

us that r(d, p) ≥ k.

21



2. Determining r(d, p) for 1
2
d < p < d

The following theorem, which gives the exact value of r(d, p) for certain values

of p < d, is the main result of this section.

Theorem 3.4. For 1
2
d < p < d we have

r(d, p) =
p

d− 1
.

To prove Theorem 3.4, we will rely on the following lemma:

Lemma 3.5. Let f ∈ Md,p, and let r and R be as defined by (2.2.3) and (2.2.4).

If r > 0 and 1
2
d < p < d, then R = r.

Proof. First note that if f is post-critically bounded, then R ≥ r is necessary.

Recall that

(3.2.10) R = max
1≤i≤d−1

{
−v(ai)

d− i

}
.

Since d
2
< p < d, there is exactly one coefficient ai with p|i, namely, ap. Thus,

|ai| = |σd−i| for i 6= p, and |ap| = p · |σd−p|.

The only way that R could be strictly greater than r is if −v(ap)/(d− p) is uniquely

maximal in the formula (3.2.10) for R, with

(d− p)r − 1 < −v(σd−p) ≤ (d− p)r.

In this case, we see that R = −v(ap)/(d− p) could be as large as r+ 1
d−p . But if this

is true, then f(c1) is dominated by a single term, namely apc
p
1 with

−v(f(c1)) = −v(apc
p
1) = pr + (d− p)R > R,

contradicting the fact that f is PCB. Thus R = r. �

Now, we are ready to prove Theorem 3.4.
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Proof. Suppose that 1
2
d < p < d. Note that Proposition 3.1 shows that r(d, p) ≥

p
d−1 . It remains to show that p

d−1 is also an upper bound for r(d, p). Suppose that

there is a polynomial f ∈ Md,p with a critical point c1 such that −v(c1) > 0. Recall

that we order the critical points of f so that |ci| ≥ |ci+1| for all i. Let r = −v(c1).

Our goal is to show that r ≤ p
d−1 . Lemma 3.5 implies that the critical orbits for f are

all contained in D̄(0, pr). Let m denote the number of critical points with absolute

value pr (with multiplicity), i.e.,

m = max{i : −v(ci) = r}.

We break the proof into two cases. The first case we consider is m < p.

We will refer to {c1, c2, . . . cm} as the large critical points. Each large critical point

must lie in one of the disks in the following set, where f(zi) = 0 and si ≤ 0:

f−1(D̄(0, pr)) =
d⋃
i=1

D̄(zi, p
si).

Proposition 3.6. Let f ∈Md,p and define R as in (2.2.3). Then f−1(D̄(0, pR))

is a union of up to d smaller disks D̄(zi, p
si), where the zi are the roots of f and

si ≤ 0.

Proof. We must show that if f(D̄(zi, p
si)) = D̄(0, pR), then si ≤ 0. Suppose that

a ∈ f−1(D̄(0, pR)). We will show that there is a root z0 of f such that |z0 − a| ≤ 1.

If |a| ≤ 1, we are done, as 0 is a root of f . So we may proceed assuming that |a| > 1.

Writing f(z) =
∏d

i=1(z − zi), we see that

|f(a)| =
d∏
i=1

|a− zi|.

At least one factor in this product has absolute value equal to pR — if |a| = pR,

then |a − 0| is such a factor, and if |a| < pR, then there is a root z1 of f such that

|z1| = pR, and therefore |a− z1| is such a factor. Since f(a) ∈ D̄(0, pR), we have that

|f(a)| ≤ pR. Without loss of generality, suppose that |a− z1| = pR. Then,

d∏
i=2

|a− zi| ≤ 1,
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which implies that |a− zi| ≤ 1 for at least one i. �

Proposition 3.6 allows us to assume that for every critical point ci for f , there is

a root zi such that |zi − ci| ≤ 1.

Define

k = d− p, so 1 ≤ k ≤ p− 1.

By Lemma 2.7, we must have more than m roots zi such that −v(zi) = r. Since

the Newton polygons for f and f ′ can only differ at one place (namely, at the pth

place), this is only possible if there are exactly k roots of f (and at most k−1 critical

points) with absolute value pr. This implies that −v(ap) = kr. Let cm+1 be the

largest critical point such that −v(cm+1) < r and let t = −v(cm+1). Since ap = d
p
σk,

we must have −v(σk) = kr − 1, which implies that t ≥ r − 1. Looking at f(cm+1),

the sole largest term is apc
p
m+1, which implies that

−v(f(cm+1)) = kr + pt ≥ dr − p.

If f is PCB, then −v(f(cm+1)) ≤ r, which gives the inequality dr − p ≤ r, and the

desired bound follows.

Now suppose that the number of large critical points is m ≥ p. Then, by analysis

of the Newton polygons for f and f ′, either f has a root z1 with −v(z1) > r, or f

has exactly m roots of absolute value pr. The first possibility does not occur, because

if −v(z1) > r, then z1 must be in the basin of infinity, by Lemma 3.5. This is a

contradiction, since z1 is preperiodic, as 0 is a fixed point for f . So, the largest root

z1 of f satisfies −v(z1) = r and the number of large critical points is equal to the

number of roots of absolute value pr. By Lemma 2.7, the only way for f to be PCB

is if there is a disk D̄(c1, p
s) mapping p-to-1 onto D̄(0, pr) containing at least p of the

large critical points, where s ≤ 0 by Proposition 3.6. To proceed with the proof of

Theorem 3.4, will again divide into two cases.
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First, suppose that −v(ci − cj) ≤ 0 for all critical points ci, cj. (Note that in this

case, m = d− 1.) Let ci = c1 + εi, where −v(εi) ≤ 0. Then we have

f(c1) = cd1 −
d

d− 1
σ1c

d−1
1 + · · ·+ (−1)d−1

d

1
σd−1c1.

We will use the fact that

(3.2.11) σi =

(
p+ k − 1

i

)
ci1 + δi,where −v(δi) < ir

to rewrite our expression for f(c1) as follows:

(3.2.12) f(c1) = cd1

(
1− d

d− 1

(
d− 1

1

)
+

d

d− 2

(
d− 1

2

)
− · · ·+ (−1)d−1

d

1

(
d− 1

d− 1

))
+ ε.

In (3.2.12), ε is a function of c1 and the δi, as defined in (3.2.11). It remains to

check that the coefficient of cd1 is a p-adic unit and to determine the largest possible

absolute value for ε. First, we look at the coefficient of cd1 in (3.2.12). This coefficient

can be rewritten as follows:

(3.2.13) 1− d

d− 1

(
d− 1

1

)
+ · · ·+ (−1)d−1

d

1

(
d− 1

d− 1

)
=

d−1∑
i=0

(−1)i
(
d

i

)
= (1− 1)d − (−1)d = (−1)d+1.

Hence the coefficient of cd1 is a p-adic unit, so the first term in f(c1) has absolute

value pdr. Since we must have −v(f(c1)) ≤ r in order for f to be PCB, it is necessary

that −v(ε) = dr as well. The only term that can possibly be that large is the one

corresponding to apc
p
1. Let σj(εi) denote the jth symmetric function on the εi. Then,

the portion of apc
p
1 contributing to ε is:
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(−1)k
d

p

((
d− 2

k − 1

)
σ1(εi)c

k−1
1 +

(
d− 3

k − 2

)
σ2(εi)c

k−2
1

+ · · ·+
(
p

1

)
σk−1(εi)c1 + σk(εi)

)
cp1.

Note that since
(
d−i−1
k−i

)
is a multiple of p for all i < k, the last term is the only

one that can possibly realize the absolute value pdr. Looking at x = (−1)k d
p
σk(εi)c

p
1,

we see that

−v(x) ≤ pr + 1.

Since −v(x) = dr, we have dr ≤ pr + 1, which implies that r ≤ 1
k

= 1
d−p . This is less

than or equal to p
d−1 , and we obtain the desired result.

Now we treat the final case, in which there are at least p large critical points and

there exist ci, cj such that −v(ci − cj) ≥ 0. Without loss of generality, let ci = c1,

where c1 is in the disk D̄(c1, p
s) which contains at least p critical points. Write f(z)−z

as
∏

(z − αi), where the αi are the fixed points of f . Then substituting z = c1 gives

the equation

f(c1)− c1 =
d∏
i=1

(c1 − αi).

Since the left hand side of this equation has absolute value at most pr, the same must

be true of the right hand side. Since 0 is a fixed point, we can let αd = 0. Then, since

−v(c1 − 0) = r, we are left with

−v

(
d−1∏
i=1

(c1 − αi)

)
≤ 0.

This implies that there is some αi satisfying −v(c1−αi) ≤ 0. Call this fixed point α.

Next, conjugate f by the affine linear transformation φ(z) = z+α. The new map

fφ = φ−1 ◦f ◦φ is of the desired form (monic with f(0) = 0) and is PCB because f is

PCB. Note that fφ has at least p, but no more than d− 2, critical points in D̄(0, ps),

where s ≤ 0. This implies that the number of large critical points for fφ is strictly

less than p. We have already dealt with this case, and so we know that all the critical
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points γi for fφ satisfy −v(γi) ≤ p
d−1 . So, we can conclude that

−v(γi) = −v(ci − α) ≤ p

d− 1

for all critical points ci of f . If any ci satisfies −v(ci) ≤ p
d−1 , we can conclude that

−v(α) ≤ p
d−1 as well, and we reach the desired conclusion. However, if all critical

points have the same absolute value as α, the result does not yet follow.

Suppose that −v(ci) = r for all i and that there exists ci such that ci 6∈ D̄(c1, p
s).

We have just shown that −v(ci − α) ≤ p
d−1 , which implies that −v(ci − cj) ≤ p

d−1

for all i, j. Since not all critical points are in D̄(c1, p
s), there is another disk in the

set V = f−1(D̄(0, pr)) containing n ≥ 1 critical points and (by Lemma 2.7) n + 1

roots. Thus, since all the large critical points and roots must be contained in V

in accordance with Lemma 2.7, the number of roots of absolute value pr outside

D̄(c1, p
s) must exceed the number of critical points outside D̄(c1, p

s) by at least one,

and therefore, the number of critical points inside D̄(c1, p
s) must be greater than p,

as there are exactly p roots in D̄(c1, p
s).

Let c1, . . . , cp+1 ∈ D̄(c1, p
s) and write all critical points as before with ci = c1 + εi.

Here, εi ≤ s ≤ 0 for 2 ≤ i ≤ p + 1, and εj ≤ p
d−1 for j > p + 1. Looking at

equation (3.2.12), we examine the size of ε. Once again, in order to have the necessary

cancellation with the leading term, it must be true that −v(ε) = dr, which can only

be achieved if −v(σk(εi)) = kr − 1. But,

−v(σk(εi)) ≤ (k − 2)
p

d− 1
.

This gives the following inequality:

kr − 1 ≤ (k − 2)
p

p+ k − 1
.

This reduces to:

r ≤ kp− 2p+ d− 1

k(d− 1)
.

If we can show that

kp− 2p+ d− 1

k
≤ p,
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then we are done, and this would give us the desired upper bound. This is true,

because

kp− 2p+ d− 1

k
= p+

d− 1− 2p

k
,

and d− 1− 2p ≤ 0. Therefore, r ≤ p
d−1 , and the proof is complete. �

3. Determining r(d, p) when p|d

Recall that Proposition 3.1 shows that r(d, p) > 0 for most values of d and p

with p < d. In this section, we begin to examine the (d, p) combinations for which

Proposition 3.1 does not apply, namely, when d = apk, with a < p and k ≥ 1.

Proposition 3.7. Let f ∈ Pd,p and suppose d = 2p. Then f is PCB if and only

if |ci| ≤ 1 for all critical points ci of f . In particular, r(2p, p) = 0 and Md,p is equal

to the unit polydisk in Cd−1
p .

Proof. Proposition 2.6 proves this statement if p = 2, so we proceed assuming

p 6= 2. One direction is straightforward. If all the critical points are in the unit disk,

then all the coefficients of f are p-integral, and f is PCB.

Now let f be PCB and suppose for contradiction that f has a critical point outside

the unit disk, with −v(c1) = r > 0. By comparing the rightmost segments of the

Newton polygons for f and f ′, since the rightmost vertex for f ′ is one unit above

the rightmost vertex for f , we get that, unless the rightmost segment of the Newton

polygon for f has horizontal length p, the largest critical point for f is larger than

its largest root. Since we can write f(z) =
∏d

i=1(z − zi), where the zi are the roots

of f counted with multiplicity, in this situation |c1 − zi| = |c1| for all i, and therefore

|f(c1)| = |c1|d. More generally, |fn(c1)| = |c1|d
n
, and thus f cannot be PCB. If the

rightmost segment of the Newton polygon for f has horizontal length equal to p, it is

possible for the largest root of f to have the same absolute value as the largest critical

point. In this situation, there are exactly p roots zi with −v(zi) = r, and there are

at least p critical points ci with −v(ci) = r. Suppose there are exactly k such critical

points, counted with multiplicity, where p ≤ k ≤ 2p− 1. Now we use Lemma 2.7 to
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show that this is only possible if they are all contained in a disk centered at a root

z1 that maps p-to-1 onto D̄(0, pr). Recall that if f is PCB, then each critical point

lies in a disk D̄(zi, p
si) mapping via f onto D̄(0, pr), where f(zi) = 0. Proposition 2.5

implies that si ≤ r
2p

for all i. Since si < r, it is necessary that each of the k large

critical points lie in one of these disks centered at a root zi with −v(zi) = r. Since

there are at least p such critical points and only p such roots, Lemma 2.7 implies

that this is only possible if there is one disk D̄(z1, p
s) mapping via f onto D̄(0, pr)

containing all p such roots and all k of the largest critical points.

Writing ci = c1 + εi for 2 ≤ i ≤ k, we calculate f(c1):

f(c1) = c2p1

(
1− 2p

2p− 1

(
k

1

)
+

2p

2p− 2

(
k

2

)
− · · ·+ 2p

(
k

2p− 1

))
+ ε,

where −v(ε) < 2pr.

We will reach a contradiction if the coefficient of c2p1 is a p-adic unit, because this

would imply that −v(f(c1)) = 2pr > r = R, and thus that f is not PCB. To reduce

the coefficient of c2p1 modulo p, we will use the following lemma:

Lemma 3.8. Let k be a positive integer. Then(
k

p

)
≡
⌊
k

p

⌋
(mod p).

Proof. Write k = ap+ b, where 0 ≤ b ≤ p− 1 and a is a positive integer. Then⌊
k
p

⌋
= a. Now, consider (

k

p

)
=
k(k − 1) . . . (k − (p− 1))

p!
.

Note that, since the terms in the numerator range from (a− 1)p+ (b+ 1) to ap+ b,

there is exactly one factor from each congruence class modulo p in the numerator,

including ap, which is congruent to 0 (mod p). After factoring a p from the numerator

and denominator,
(
k
p

)
can therefore be expressed as follows:(

k

p

)
=
a((p− 1)! + px)

(p− 1)!
, where x is a positive integer.
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Thus, (
k

p

)
≡ a (mod p),

as desired. �

We now return to our proof of Proposition 3.7. Lemma 3.8 implies that the

coefficient of c2p1 is congruent to

1− 2p

p

(
k

p

)
≡ 1− 2 ≡ −1 (mod p).

Thus, we reach the desired conclusion, that f is PCB if and only if all the critical

points lie in the unit disk. �

Proposition 3.7 states that r(2p, p) = 0. The same is true if d = 3p, with p ≥ 3:

Proposition 3.9. Let f ∈ Pd,p and suppose d = 3p with p ≥ 3. Then f is PCB if

and only if |ci| ≤ 1 for all critical points ci of f .In particular, when p 6= 2, r(3p, p) = 0

and Md,p is equal to the unit polydisk in Cd−1
p .

Proof. This proof is similar to the proof given for Proposition 3.7, but requires

a more elaborate argument similar to that given in the proof of Theorem 3.4. Once

again, Proposition 2.6 proves the statement for p = 3, so we can assume p ≥ 5. If

|ci| ≤ 1 for all critical points ci of f , it is apparent that f must be PCB, because all

coefficients of f are p-integral, and therefore f(D̄(0, 1)) ⊂ D̄(0, 1).

Now suppose f is PCB, and suppose further, for contradiction, that f has a critical

point c1 such that −v(c1) = r > 0. By the same argument that appears in the proof

of Proposition 3.7, examining the rightmost segment of the Newton polygon for f

leads one to conclude that the number of roots of absolute value pr must be exactly

p or 2p, counting with multiplicity.

First, suppose that the number of roots of f with absolute value pr is p. Continuing

to follow the argument from the proof of Proposition 3.7, we see that we must have at

least p critical points of absolute value pr, and they must all be contained in a p-to-1

disk D̄(z1, p
s) that maps onto D̄(0, pr), where z1 is a root of f with −v(z1) = r.

Proposition 2.5 implies that s ≤ r
3p

. Suppose there are exactly k critical points of
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absolute value pr, where k ≥ p, and write ci = c1 + εi for 2 ≤ i ≤ k, where −v(εi) ≤ s.

We now examine f(c1).

f(c1) = c3p1

(
1− 3p

3p− 1

(
k

1

)
+

3p

3p− 2

(
k

2

)
− · · ·+ 3p

(
k

3p− 1

))
+ ε,where −v(ε) < 3pr.

Modulo p, the coefficient of c3p1 is congruent to

1− 3p

2p

(
k

p

)
+

3p

p

(
k

2p

)
.

First, if p ≤ k < 2p, Lemma 3.8 implies that this expression is congruent to 1− 3
2
≡ −1

2

(mod p), which is a p-adic unit. If k ≥ 2p, then Lemma 3.8 implies that this expression

is congruent to 1 − 3 + 3 ≡ 1 (mod p), which is also a p-adic unit. Therefore,

|f(c1)| = |c1|3p = p3pr > pR, contradicting the fact that f is PCB.

Now, suppose that the number of roots of f of absolute value pr is 2p, with k ≥ 2p

critical points of absolute value pr. As in the proof of Theorem 3.4, we split into two

subcases, depending on whether all k large critical points are contained in an open

disk of radius pr or not. First suppose that |ci − cj| < pr for all i, j ∈ {1, 2, . . . , k}.

We proceed as in the previous case, by writing ci = c1 + εi for 2 ≤ i ≤ k. Then

f(c1) = Ac3p1 + ε, where −v(ε) < 3pr and the coefficient A is given as follows:

A = 1− 3p

3p− 1

(
k

1

)
+

3p

3p− 2

(
k

2

)
− · · ·+ 3p

(
k

3p− 1

)
≡ 1− 3

2

(
k

p

)
+ 3

(
k

2p

)
(mod p).

Using Lemma 3.8, we see that A is a p-adic unit, and therefore −v(f(c1)) = 3pr > R.

This contradicts the fact that f is PCB.

Finally, we consider the case where k ≥ 2p and there exist two critical points ci

and cj such that |ci − cj| = pr. Using Lemma 2.7, we see that we must either have

a p-to-1 disk or a 2p-to-1 disk containing at least p critical points, and p or 2p roots,

respectively. Without loss of generality, suppose that c1, ...cp are in that disk, and
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that ck is not. Mimicking an argument that appears in the proof of Theorem 3.4, there

exists a fixed point α for f such that |c1 − α| ≤ 1. Conjugating f by φ(z) = z + α,

we see that fφ = φ−1 ◦ f ◦ φ ∈ Md,p, with critical points {ci − α : 1 ≤ i ≤ 3p − 1}.

Moreover, the largest critical point of fφ has absolute value pr, and there are strictly

fewer than 2p such critical points. This is because we have moved the disk centered

at α containing at least p critical points to a disk centered at 0. Thus, there are at

least p critical points of absolute value strictly less than pr, which leaves fewer than

2p critical points (but at least one, namely ck−α) of absolute value pr. We have now

reduced to the previous case, and thus we know that all critical points of fφ must lie

in the unit disk. This give us our desired contradiction, as |ck − α| = pr.

All cases have been examined, and the proof is now complete. �

The techiques of the previous two proofs are insufficient to generalize these propo-

sitions to the general case where d = pkq, with q < p. Nevertheless, these proofs,

along with the absence of counterexamples, lead us to make the following conjecture:

Conjecture 3.10. Suppose d = pq, where q < p, and let f ∈ Pd,p. Then

f ∈ Md,p if and only if |ci| ≤ 1 for all critical points ci of f . So in particular,

r(pq, p) = 0.
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CHAPTER 4

A One-Parameter Family of Cubic Polynomials over C2

We have mentioned that Md,p can be a complicated and interesting set when

p < d. In this section, we examine a particular slice ofM3,2 to illustrate this assertion.

This one-parameter family of cubic polynomials reveals that the boundary of this

Mandelbrot set is sometimes complicated and fractal-like.

Consider the following one-parameter family of cubic polynomials, where the pa-

rameter t ∈ C2:

(4.0.14) ft(z) = z3 − 3

2
tz2.

Of the two critical points, one (zero) is a fixed point and the other is t. Note that

t = 1 corresponds to a post-critically finite map, with the free critical point 1 mapping

to the fixed point −1
2
.

1. The Misiurewicz Point t = 1

For the complex Mandelbrot set MC, a Misiurewicz point is a parameter c such

that the corresponding polynomial fc(z) = z2+c is post-critically finite, with a strictly

preperiodic critical orbit. It can be shown that, for Misiurewicz points c, the periodic

cycle that the critical orbit falls into is always repelling. Misiurewicz points in the

complex Mandelbrot set have a number of interesting properties. They all appear

on the boundary of the Mandelbrot set, they are dense in the boundary of MC, and

the boundary ofMC is self-similar at Misiurewicz points. Moreover, the shape of the

Mandelbrot set near a Misiurewicz point c reveals information about the Julia set

of fc. For proofs of these facts, see [6, 20]. We now define what it means to be a

Misiurewicz point in our p-adic, degree d setting.
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Definition 4.1. A polynomial f in the parameter space Pd,p is a Misiurewicz

point if f is post-critically finite with at least one critical point c such that the orbit

of c is strictly preperiodic with a repelling periodic cycle.

For the family defined in (4.0.14), t = 1 corresponds to a post-critically finite

map. Since ft(1) = −1
2

and −1
2

is a repelling fixed point for f1 (with multiplier 9
4
), f1

is a Misiurewicz point in M3,2. We now explore the PCB locus of the family ft near

the Misiurewicz point t = 1.

Proposition 4.2. Consider the one-parameter family of cubic polynomials de-

fined in (4.0.14). There is a sequence of disks Dk = D̄(1+22k, 2−(2k+1)) converging to

{1} such that for tk ∈ Dk with k ≥ 2, the corresponding polynomial ftk is not PCB.

There is another sequence of disks Dm = D̄(1 + 3 · 22m+1, 2−(2m+3)), also converging

to {1}, such that for tm ∈ Dm with m ≥ 2, the corresponding polynomial ftm is PCB.

Proposition 4.2 shows that t = 1 is on the boundary of the p-adic Mandelbrot set

for this family of polynomials, in that it is arbitrarily close in the parameter space

to parameters corresponding to both PCB and non-PCB maps. For p > d, such

examples do not exist, asMd,p is simply the unit polydisk in Pd,p ' Cd−1
p , which has

empty boundary .

Proof of Proposition 4.2. First, consider tk ∈ D̄(1 + 22k, 2−(2k+1)). As k

approaches infinity, tk approaches 1 in C2. We will now show that for k ≥ 2, the orbit

of the critical point tk under iteration of ftk is unbounded. Let t ∈ C2 and k ≥ 2 such

that t ≡ 1 + 22k (mod 22k+1).

We begin by calculating the first few iterates of t under ft:

ft(t) = −1

2
t3 ≡ −1

2
+ 22k−1 (mod 22k),

f 2
t (t) = −1

8
t9 − 3

8
t7 ≡ −1

2
+ 22k−2 (mod 22k−1),
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f 3
t (t) = − 1

512
t15(t12 + 9t10 + 27t8 + 27t6 + 12t4 + 72t2 + 108)

≡ −1

2
+ 22k−4 (mod 22k−3) for k ≥ 3.

From here, each iterate moves further away from −1
2
, so that for 2 ≤ i ≤ k we have

v

(
f it (t) +

1

2

)
= 2k − 2i+ 2.

Thus, v(fkt (t) + 1
2
) = 2 and we can write fkt (t) = −1

2
+ 4u, where |u| = 1. We now

calculate the next two points in the orbit of t:

ft(−
1

2
+ 4u) ≡ −1

2
+ u (mod 2).

Let ft(−1
2

+ 4u) = −1
2

+ u + 2v, where |v| ≤ 1. Then, the next iterate will have

absolute value 4:

ft(−
1

2
+ u+ 2v) ≡ u

4
+
v − 1

2
(mod 1).

Therefore, |fk+2
t (t)| = 4. Note that in this case, R = 1. So, since fk+2

t (t) 6∈ D̄(0, 2R),

the orbit of t is unbounded.

Now we turn our attention to the other sequence of disks, and our goal will be to

show that ft is PCB for all t in those disks. Let tm ∈ D̄(1 + 3 · 22m+1, 2−(2m+3)). For

ease of notation, let t = tm for some m ≥ 2. Then t = 1 + (3 + 4u) · 22m+1 for some u

with |u| ≤ 1. Once again, we begin by calculating the first few iterates of t:

ft(t) ≡ −
1

2
− 3(3 + 4u)22m (mod 24m+1),

f 2
t (t) ≡ −1

2
− 15(3 + 4u)22m−1 (mod 24m−1),

f 3
t (t) ≡ −1

2
− 141(3 + 4u)22m−3 (mod 24m−3).

In general, for 3 ≤ i ≤ m+ 1, we have

f it (t) ≡ −
1

2
− ci(3 + 4u)22m−2i+3 (mod 22m−2i+7), where ci ≡ 1 (mod 4).

More specifically, ci = 9ci−1 + 3 · 22i−3. This shows that

fm+1
t (t) ≡ −1

2
− (3 + 4u) · 2 ≡ 3

2
(mod 8).
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Thus, we can write fm+1
t (t) = 3

2
+ 8w, for some w such that |w| ≤ 1. Calculating one

more iterate, we see that

fm+2
t (t) = ft

(
3

2
+ 8w

)
≡ 0 (mod 2).

This ensures that the orbit of t is bounded, because ft maps D̄(0, 1
2
) to itself. While

the orbit of t is repelled from the fixed point near −1
2
, it eventually falls either into

the basin of attraction of the superattracting fixed point 0, or it falls into the circle

{z : |z| = 1
2
}, which ft maps to itself. �

Proposition 4.2 shows that this 2-adic Mandelbrot set, i.e., the set

{t ∈ C2 : ft is PCB},

has a complicated boundary. While this set is difficult to visualize over C2, we can

begin to draw it if we restrict to Q2. For the remainder of this chapter, let

M = {t ∈ Q2 : ft is PCB}.

For |t| > 1, note that R = −v(3
2
t) = −v(t) + 1. We now calculate |ft(t)|:

|ft(t)| =
∣∣∣∣−1

2
t3
∣∣∣∣ = 2 |t|3 > 2 |t| = 2R.

Therefore, the orbit of t is unbounded for all t outside the unit disk. Next note that

ft maps D̄(0, 1) to itself for |t| ≤ 1
2
. So t ∈M for |t| ≤ 1

2
. If we are interested in the

boundary of M, we therefore only have to consider t for which |t| = 1.

We can represent a neighborhood in Q2 as a binary tree, as every disk in Q2 is

comprised of two disjoint disks. For example, the disk D̄(1, 1
2
) = {t ∈ Q2 : |t| = 1},

which will be the root of our tree, is comprised of D̄(1, 1
4
) and D̄(3, 1

4
). Each disk in

turn branches into two smaller disks. Traversing down the tree, one “zooms in” on

a point in Q2. See Figure 1 for a depiction of the first few levels of this tree. We

color a node black if the entire disk is in M, we color a node white if the entire disk

is outside M, and we color a node gray if it contains some points in M and some

points outside it. The number that labels each node denotes the center of the disk

the node represents. As one moves down the left side of the tree, one zooms in on
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Figure 1. Critical orbit behavior for ft with |t| = 1.

the post-critically finite boundary point t = 1. This tree is symmetrical, because

fnt (t) = −fn−t(−t), and so ft is PCB if and only if f−t is PCB. In Figure 2, we depict

the disk D̄(1, 1
8
) and the tree that emanates from it to give a sense of the complexity

of M. You can find the data supporting the coloring in Figure 2 in Appendix A.

Note that as one zooms in on t = 1, a self-similar pattern emerges, as illustrated

in Figure 3 and as shown in Proposition 4.2. This is reminiscent of the classical

Mandelbrot set over C and its fractal-like boundary. Beginning at D̄(1, 2−(2k+1)) for

any k > 1, we see in Figure 3 that the pattern repeats every time we move two levels

down the tree toward 1. The disk D̄(1+22k+2, 2−(2k+3)) corresponds to non-PCB maps,

while the disks D̄(1 + 3 · 22k+1, 2−(2k+3)) and D̄(1 + 5 · 22k+1, 2−(2k+4)) correspond to

PCB maps. The first two of these three assertions are shown in Proposition 4.2. We

now prove the third assertion.

Proposition 4.3. If t ∈ Q2 is of the form t ≡ 1+5 ·22k+1 (mod 22k+4) for k ≥ 2,

then ft is PCB.
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Figure 2. Critical orbit behavior for ft with t ∈ D̄(1, 1
8
).

Proof. Let t = 1 + 5 · 22k+1 + 22k+4u, where u ∈ Z2. We calculate the first few

iterates of t under ft:

ft(t) = −1

2
t3 ≡ −1

2
− 3(5 + 8u) · 22k (mod 24k),

f 2
t (t) ≡ −1

2
− 15(5 + 8u) · 22k−1 (mod 24k−1),

f 3
t (t) ≡ −1

2
− 141(5 + 8u) · 22k−3 (mod 24k−3).

If k = 2, the congruence given for f 3
t (t) shows that f 3

t (t) ≡ −5
2

(mod 16). Now

suppose k ≥ 3. By induction, we see that for 3 ≤ n ≤ k,

fnt (t) ≡ −1

2
− cn(5 + 8u) · 22k−2n+3 (mod 22k−2n+7), where cn ≡ 5 (mod 8).
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Figure 3. Critical orbit behavior for ft as t → 1. The top node

corresponds to the disk D̄(1, 2−(2k+1)) for k ≥ 2.

Letting n = k, we find that fkt (t) ≡ −17
2

(mod 64). A quick calculation shows

that f(D̄(−17
2
, 2−6)) = D̄(−5

2
, 2−4), so for k ≥ 2, fk+1

t (t) ∈ D̄(−5
2
, 2−4). The following

lemma completes the proof:

Lemma 4.4. If t ∈ Z2 with t ≡ 1 (mod 32), then ft maps the Q2 points of the

disks D̄(−5
2
, 2−4) and D̄(3, 2−2) to each other.

Proof. The proof is a straightforward calculation. Suppose t = 1 + 32u for some

u with |u| ≤ 1. First, let z ∈ D̄(−5
2
, 2−4) ∩ Q2. Then we can write z = −5

2
+ 16w,

where w ∈ Z2. We calculate ft(z):

ft(z) =

(
25

4
− 80w + 256w2

)
(−4 + 16w − 48u) ≡ 3 (mod 4).
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We have seen that ft(z) ∈ D̄(3, 2−2)∩Q2. Let y = ft(z) = 3 + 4v, where v ∈ Z2. We

now calculate ft(y):

ft(y) = (9 + 24v + 16v2)(
3

2
+ 4v − 48u) ≡ 27

2
+ 8v(9 + 3v) (mod 16).

Note that since v ∈ Z2, either 2 | v or 2 | (9 + 3v), so 8v(9 + 3v) ≡ 0 (mod 16).

We conclude that ft(y) ∈ D̄(−5
2
, 2−4). Thus, ft maps the Q2 points of the disks

D̄(−5
2
, 2−4) and D̄(3, 2−2) to each other. �

Returning to the proof of Proposition 4.3, we see that after k+1 iterates, the orbit

of t falls into a 2-cycle of disks in Q2, namely, D̄(−5
2
, 2−4)→ D̄(3, 2−2)→ D̄(−5

2
, 2−4).

Therefore, the orbit of t is bounded, and ft is PCB. �

With Proposition 4.2 and Proposition 4.3, we have now justified the black and

white colorings in Figure 3. It is important to note that the patterns established in

Proposition 4.2 hold over C2, while the pattern established in Proposition 4.3 only

holds for parameters in Q2. Over C2, if t ≡ 1 (mod 32), f 2
t maps the disk D̄(−5

2
, 2−4)

to D̄(−5
2
, 2−3). There is enough cancellation over Q2 that D̄(−5

2
, 2−4) maps to itself

via f 2
t , but over C2, the map f 2

t is expanding, and boundedness is not guaranteed,

or even expected. We have established that t = 1 is a boundary point in M and

that the boundary of M has a self-similar pattern as one zooms in on t = 1. This is

reminiscent of Misiurewicz points for the complex Mandelbrot set. We now examine

another similarity between this Misiurewicz point t = 1 in M and those which can

be found in the complex Mandelbrot set MC.

By a theorem of Tan Lei [20], the boundary of the complex Mandelbrot set MC

near a Misiurewicz point c resembles the Julia set of the polynomial f(z) = z2+c near

the critical value c. The Julia set of a polynomial defined over C2 is the boundary

of the set of points with bounded orbits. For a proof of this fact, see [4, Proposition

4.37]. In the interest of comparing the patterns we have found in M near the point

t = 1 to the Julia set of f1, we now examine which points near the critical value

z = −1
2

have bounded orbits under iteration of f1(z) = z3 − 3
2
z2. Figure 4 shows the

pattern that exists for the disk D̄(−1
2
, 1
2
). Much as in Figures 1 through 3, we color

40



-1/2

repeat

-1/2

-1/2

3/2

Figure 4. Boundedness of orbits under iteration of f1(z) = z3 − 3
2
z2

a node black if every point in the corresponding disk has a bounded orbit, we color a

node white if every point in the corresponding disk has an unbounded orbit, and we

color a node gray if there are some points in the disk with bounded orbits and others

with unbounded orbits. Points in the Julia set will belong to gray disks at every level.

In the following proposition, we prove the boundedness pattern that is illustrated in

Figure 4.

Proposition 4.5. Let f1(z) = z3 − 3
2
z2. Then, for any positive integer k, all

points contained in the disk D̄(−1
2

+ 22k+2, 2−(2k+3)) have unbounded orbits under

iteration of f . Moreover, all points belonging to the disks D̄(−1
2

+22k+1, 2−(2k+3)) and

D̄(−1
2
− 22k+1, 2−(2k+4)) ∩Q2 have bounded orbits.

Proof. We begin with z ∈ D̄(−1
2

+ 22k+2, 2−(2k+3)). By induction, we see that

for 1 ≤ n ≤ k + 1, fn1 (z) satisfies

fn1 (z) ≡ −1

2
+ 22k+2−2n (mod 22k+3−2n).

Then, we can write fk+1
1 (z) = 1

2
+ 2w, where |w| ≤ 1. Calculating one more iterate,

we see that

|fk+2
1 (z)| =

∣∣∣∣f1(1

2
+ 2w

)∣∣∣∣ =

∣∣∣∣(1

4
+ 2w + 4w2

)
(−1 + 2w)

∣∣∣∣ = 4.
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Since R = 1, and therefore all points of absolute value greater than 21 have unbounded

orbits, we see that the orbit of z is unbounded.

Now we turn our attention to the two bounded cases. First suppose that z ∈

D̄(−1
2

+ 22k+1, 2−(2k+3)). Again, we proceed by induction to see that, for 1 ≤ n ≤ k,

fn1 (z) satisfies

fn1 (z) = −1

2
+ 22k+1−2n (mod 22k+3−2n).

Then, we can write fk1 (z) = 3
2

+ 8w, where |w| ≤ 1. Calculating one more iterate, we

see that

|fn1 (z)| =
∣∣∣∣f1(3

2
+ 8w

)∣∣∣∣ =

∣∣∣∣(9

4
+ 24w + 64w2

)
(8w)

∣∣∣∣ ≤ 1

2
.

Since f1 maps D̄(0, 1
2
) to itself, we see that the orbit of z is bounded.

Finally, we consider z ∈ D̄(−1
2
−22k+1, 2−(2k+4))∩Q2. Note that we are restricting

to Q2 in this case, as we did in Proposition 4.3. First, we see by induction that for

1 ≤ n ≤ k, fn1 (z) satisfies

fn1 (z) = −1

2
− 22k+1−2n (mod 22k+4−2n).

So, fk1 (z) ∈ D̄(−5
2
, 2−4). Now, we apply Lemma 4.4 to complete the proof. �

Combining the results in Propositions 4.2, 4.3, and 4.5, we see that the Julia set

near the critical value −1
2

exhibits the same self-similar pattern as the Mandelbrot set

M near the corresponding Misiurewicz point t = 1. This example shows that there

can be a relationship between Mandelbrot sets and Julia sets in the p-adic setting,

as there is in the complex quadratic case. This example is sufficiently generic that

we expect to see these similarities more generally for Misiurewicz points in parameter

spaces defined over p-adic fields, but this question is beyond the scope of this thesis.

2. An exploration of the intricate segments of the boundary

We have seen that in a disk D = D̄(1, 2−(2m+1)) ∩ Q2 with m ≥ 2, at least one

half of the parameters t ∈ D belong toM and at least one third of parameters t ∈ D

correspond to non-PCB polynomials. These facts follow from summing the geometric

series that result from the patterns in Figure 3. The remaining one sixth of D consists
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of disks of the form D̄(1 + 22k+1, 2−(2k+4)), where k ≥ m. These are the disks labeled

with question marks in Figure 3. In this section, we explore these regions, where the

boundary of M appears to be most intricate.

We provide a large collection of data in Table 3 in Appendix A, listing whether

or not ft is PCB for many t values that can be found in these disks for k values

ranging from 2 to 11. For each k in this range, we say whether or not ft is PCB for

t = 1 + 22k+1 + 22k+4i, where i ranges from 0 to 31. This gives us a parameter t from

each of the 32 disks of radius 2−(2k+9) centered at Q2-points and emanating from the

disk D̄(1 + 22k+1, 2−(2k+4)). In Table 1, we list the results for each of the ten different

k values side-by-side, to show that there is no apparent pattern from level to level

in these regions. Each column corresponds to the k value listed at the top. Each

row corresponds to the i value listed on the left. Note that we label all parameters

that correspond to non-PCB polynomials with a 0, and we label all parameters that

correspond to PCB polynomials with a 1.

If there were a pattern of PCB behavior in these disks, we would see entire rows

of all 0s or all 1s. The fact that we do not see this pattern indicates that the self

similarity of the boundary ofM near t = 1 fails on these disks. This is to be expected,

as something similar is true with the boundary of the complex Mandelbrot set near

Misiurewicz points. The boundary of MC near a Misiurewicz point is quasi-self-

similar, but not exactly self-similar. The same appears to be true in this case.

In Table 3, which can be found in Appendix A, there is an n value listed with

each t value. If ft is not PCB, n is minimal such that |fnt (t)| > 2, guaranteeing

that ft is not PCB. If ft is PCB, n is minimal such that fnt (t) ∈ D̄(0, 1
2
) ∪ D̄(3, 1

4
),

guaranteeing that ft is PCB. As the radius of a disk increases by a factor of at most

4 with each iterate of ft, we lose at most 2 degrees of precision every time we iterate

ft. Thus, the n value n0 associated with a t value t0 tells us that if t ∈ D̄(t0, 2
−2n0−2),

then fn0
t (t) ∈ D̄(fn0

t0 (t0), 2
−2), which implies that t ∈ M if and only if t0 ∈ M. For

example, the first line of Table 3 tells us that when t = 33, n = 6. This means that it

takes 6 iterates for the orbit of t to enter D̄(0, 1
2
)∪ D̄(3, 1

4
). We can also deduce that
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if t ≡ 33 (mod 214), then ft is also PCB. These n values give a conservative estimate

— we see from Figure 2 that in fact, it is only necessary that t ≡ 33 (mod 29) for ft

to be PCB, but this requires a more careful calculation.

The data collected in Table 3 and summarized in Table 1 show that the boundary

ofM is quite intricate for t ∈ D̄(1+22k+1, 2−(2k+4)) and exhibits no apparent pattern

from level to level, quite unlike what we see in the other regions of Z2.
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Table 1. PCB behavior for t = 1 + 22k+1 + 22k+4i

i k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11

0 1 0 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1

2 1 1 0 1 1 0 0 1 1 1

3 0 0 0 1 1 1 0 0 0 1

4 1 1 0 1 1 1 1 1 1 1

5 0 1 1 0 0 1 1 1 0 1

6 1 1 1 0 1 0 0 1 1 1

7 1 1 1 0 0 1 1 1 0 0

8 1 0 1 1 1 1 1 1 1 0

9 0 1 1 1 1 1 0 1 1 1

10 1 1 1 0 1 0 1 0 1 0

11 1 0 0 1 1 1 0 1 0 1

12 1 1 1 0 1 0 1 0 0 1

13 0 1 1 1 1 1 1 0 1 0

14 1 1 1 0 0 1 1 1 1 1

15 1 1 1 1 1 1 0 1 1 0

16 1 0 0 1 0 1 0 1 1 1

17 0 0 1 1 1 1 1 0 0 0

18 1 1 1 1 1 1 1 1 1 1

19 0 1 0 1 0 1 1 1 1 1

20 1 1 1 0 1 1 1 1 0 1

21 0 1 0 0 0 0 1 1 1 1

22 1 1 1 1 1 0 0 0 1 0

23 1 1 1 1 1 1 1 1 0 1

24 1 0 0 1 1 1 1 1 1 1

25 0 1 0 1 0 0 1 1 1 1

26 1 1 1 1 0 0 1 1 1 0

27 0 1 1 0 1 1 1 1 1 1

28 1 1 1 0 1 1 0 1 0 1

29 0 1 1 1 0 1 1 1 1 1

30 1 1 0 0 1 1 0 1 0 1

31 1 0 1 1 1 1 1 0 1 1
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APPENDIX A

Data for cubic family in Chapter 4

1. Data supporting Figure 2

All calculations were done in SAGE [19]. Table 2 lists the disks in Q2 that are

depicted in Figure 2. The first column specifies the disk. The next two columns list

a positive integer n and region containing fnt (t) for all t in the specified disk. The

final two columns list whether or not ft is PCB with a reference if necessary. If ft is

not PCB, we will label it post-critically unbounded, or PCU. We remind the reader

that if fnt (t) ∈ Q2 r D̄(0, 2) for any n, then ft is not PCB. If fnt (t) ∈ D̄(0, 1
2
) for any

n, then ft is PCB. For the disks listed in the first three rows, we assume k ≥ 2.

Table 2: Data supporting Figure 2

Disk n Location of fnt (t) PCB/PCU Reference

D̄(1 + 22k, 2−(2k+1)) k + 2 Q2 r D̄(0, 2) PCU Proposition 4.2

D̄(1 + 3 · 22k+1, 2−(2k+3)) k + 2 D̄(0, 1
2
) PCB Proposition 4.2

D̄(1 + 5 · 22k+1, 2−(2k+4)) k + 1 D̄(−5
2
, 2−4) PCB Proposition 4.3

D̄(25, 2−5) 3 D̄(0, 1
2
) PCB

D̄(41, 2−7) 7 Q2 r D̄(0, 2) PCU

D̄(9, 2−8) 9 Q2 r D̄(0, 2) PCU

D̄(73, 2−8) 9 Q2 r D̄(0, 2) PCU

D̄(233, 2−8) 12 Q2 r D̄(0, 2) PCU

D̄(33, 2−9) 6 D̄(−5
2
, 2−4) PCB Proposition 4.3

D̄(393, 2−9) 12 Q2 r D̄(0, 2) PCU

D̄(201, 2−9) 4 D̄(35
2
, 2−6) PCB 3-cycle A

D̄(289, 2−10) 9 Q2 r D̄(0, 2) PCU
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Table 2: Data supporting Figure 2

Disk n Location of fnt (t) PCB/PCU Reference

D̄(137, 2−10) 14 Q2 r D̄(0, 2) PCU

D̄(457, 2−10) 14 Q2 r D̄(0, 2) PCU

D̄(1825, 2−11) 9 D̄(−5
2
, 2−4) PCB Proposition 4.3

D̄(649, 2−11) 19 Q2 r D̄(0, 2) PCU

D̄(1673, 2−11) 5 D̄(9, 2−6) PCB 5-cycle B1

D̄(969, 2−11) 5 D̄(9, 2−6) PCB 5-cycle B2

D̄(1993, 2−11) 19 Q2 r D̄(0, 2) PCU

D̄(801, 2−12) 13 Q2 r D̄(0, 2) PCU

D̄(2849, 2−13) 5 D̄(4767
2
, 2−13) PCB 4-cycle C

D̄(6945, 2−13) 17 Q2 r D̄(0, 2) PCU

Cycles Referenced in Table 2

3-cycle A:

D̄

(
35

2
, 2−6

)
→ D̄(1, 2−4)→ D̄

(
−89

2
, 2−8

)
→ D̄

(
35

2
, 2−6

)

5-cycle B1:

D̄(9, 2−6)→ D̄

(
423

2
, 2−11

)
→ D̄

(
83

2
, 2−9

)
→ D̄(−17, 2−7)

→ D̄

(
−93

2
, 2−8

)
→ D̄(9, 2−6)

5-cycle B2:

D̄(9, 2−6)→ D̄

(
−537

2
, 2−11

)
→ D̄

(
499

2
, 2−9

)
→ D̄(75, 2−7)

→ D̄

(
−157

2
2−8
)
→ D̄(9, 2−6)
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4-cycle C:

D̄

(
4767

2
, 2−13

)
→ D̄

(
2447

2
, 2−11

)
→ D̄

(
683

2
, 2−9

)
→ D̄(33, 2−7)→ D̄

(
4767

2
, 2−13

)
2. Data for Disks Labeled with Question Marks in Figure 3

In Chapter 4, we noted that the PCB locus of ft as defined in (4.0.14) was com-

plicated when t ∈ D̄(1 + 22k+1, 2−(2k+4)), for k ≥ 2. In Table 3, we consider some

values of t in these disks, and calculate using Sage [19] whether or not ft is PCB. We

consider k values from 2 to 11, and for each k value, we include one representative

from each of the 32 disks of radius 2−(2k+9), centered at Q2-points, emanating from

D̄(1 + 22k+1, 2−(2k+4)). Each set of 32 t values for a given k are grouped together.

For example, the first 32 entries correspond to t = 33 + 28i, where i ranges from 0 to

31, and the next set of 32 entries correspond to t = 129 + 210i, for 0 ≤ i ≤ 31. The

second column in Table 3 indicates whether or not ft is PCB for the stated value of

t. We put a 0 in this column if ft is PCU, and we put a 1 in this column if ft is PCB.

Recall that ft is PCU if the orbit of t ever exits the disk D̄(0, 2), and ft is PCB if the

orbit of t ever enters the disk D̄(0, 1
2
). Recall further that, by Lemma 4.4, ft is PCB

if the orbit of t ever enters the disk D̄(3, 1
4
). If the orbit of t is not clearly PCB or

PCU after 10,000 iterates — namely, if it does not fall into one of the three regions

mentioned in the previous two sentences — it is labeled with a 2. This only occurs

once in our data set, for t = 2849. Handling this case separately, we see that ft is

PCB. See Table 2 for a reference for this fact. Finally, the third column of Table 3,

labeled n, indicates how many iterates it takes for the orbit of t to enter one of the

3 key regions mentioned above. In the one case where our code returns a 2, this n

value is listed as 9999.
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Table 3. Data for Disks of the form D̄(1 + 22k+1, 2−(2k+4))

t PCB? n

33 1 6

289 0 8

545 1 6

801 0 12

1057 1 6

1313 0 8

1569 1 6

1825 1 7

2081 1 6

2337 0 8

2593 1 6

2849 2 9999

3105 1 6

3361 0 8

3617 1 6

3873 1 7

4129 1 6

4385 0 8

4641 1 6

4897 0 12

5153 1 6

5409 0 8

5665 1 6

5921 1 7

6177 1 6

6433 0 8

6689 1 6

6945 0 16

7201 1 6

7457 0 8

7713 1 6

7969 1 7

t PCB? n

129 0 10

1153 1 12

2177 1 8

3201 0 16

4225 1 9

5249 1 14

6273 1 8

7297 1 11

8321 0 10

9345 1 11

10369 1 8

11393 0 16

12417 1 13

13441 1 14

14465 1 8

15489 1 20

16513 0 10

17537 0 13

18561 1 8

19585 1 23

20609 1 9

21633 1 21

22657 1 8

23681 1 11

24705 0 10

25729 1 11

26753 1 8

27777 1 17

28801 1 14

29825 1 18

30849 1 8

31873 0 13

t PCB? n

513 1 13

4609 1 14

8705 0 21

12801 0 12

16897 0 61

20993 1 19

25089 1 17

29185 1 10

33281 1 33

37377 1 23

41473 1 41

45569 0 18

49665 1 22

53761 1 21

57857 1 13

61953 1 10

66049 0 46

70145 1 32

74241 1 16

78337 0 12

82433 1 52

86529 0 16

90625 1 23

94721 1 10

98817 0 32

102913 0 22

107009 1 17

111105 1 11

115201 1 30

119297 1 20

123393 0 15

127489 1 10
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Table 3. Data for Disks of the form D̄(1 + 22k+1, 2−(2k+4))

t PCB? n

2049 1 23

18433 1 32

34817 1 12

51201 1 64

67585 1 38

83969 0 59

100353 0 29

116737 0 22

133121 1 76

149505 1 19

165889 0 14

182273 1 141

198657 0 40

215041 1 20

231425 0 44

247809 1 19

264193 1 56

280577 1 19

296961 1 12

313345 1 69

329729 0 64

346113 0 17

362497 1 27

378881 1 16

395265 1 39

411649 1 21

428033 1 19

444417 0 20

460801 0 43

477185 1 94

493569 0 39

509953 1 55

t PCB? n

8193 1 36

73729 1 14

139265 1 34

204801 1 34

270337 1 35

335873 0 87

401409 1 39

466945 0 109

532481 1 37

598017 1 66

663553 1 68

729089 1 18

794625 1 24

860161 1 140

925697 0 45

991233 1 26

1056769 0 167

1122305 1 140

1187841 1 20

1253377 0 92

1318913 1 69

1384449 0 42

1449985 1 100

1515521 1 85

1581057 1 68

1646593 0 274

1712129 0 202

1777665 1 50

1843201 1 43

1908737 0 34

1974273 1 21

2039809 1 101

t PCB? n

32769 1 23

294913 1 41

557057 0 247

819201 1 59

1081345 1 211

1343489 1 30

1605633 0 68

1867777 1 512

2129921 1 34

2392065 1 235

2654209 0 63

2916353 1 328

3178497 0 32

3440641 1 41

3702785 1 57

3964929 1 188

4227073 1 285

4489217 1 282

4751361 1 112

5013505 1 54

5275649 1 343

5537793 0 114

5799937 0 58

6062081 1 142

6324225 1 33

6586369 0 237

6848513 0 436

7110657 1 187

7372801 1 284

7634945 1 130

7897089 1 182

8159233 1 86
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Table 3. Data for Disks of the form D̄(1 + 22k+1, 2−(2k+4))

t PCB? n

131073 1 170

1179649 1 452

2228225 0 1248

3276801 0 28

4325377 1 620

5373953 1 503

6422529 0 927

7471105 1 123

8519681 1 326

9568257 0 274

10616833 1 29

11665409 0 47

12713985 1 202

13762561 1 969

14811137 1 609

15859713 0 638

16908289 0 168

17956865 1 166

19005441 1 593

20054017 1 70

21102593 1 186

22151169 1 201

23199745 0 904

24248321 1 18

25296897 1 234

26345473 1 761

27394049 1 419

28442625 1 791

29491201 0 282

30539777 1 111

31588353 0 573

32636929 1 137

t PCB? n

524289 1 890

4718593 1 756

8912897 1 615

13107201 0 141

17301505 1 949

21495809 1 899

25690113 1 426

29884417 1 85

34078721 1 741

38273025 1 477

42467329 0 760

46661633 1 192

50855937 0 33

55050241 0 123

59244545 1 875

63438849 1 446

67633153 1 886

71827457 0 773

76021761 1 915

80216065 1 293

84410369 1 965

88604673 1 736

92798977 0 153

96993281 1 258

101187585 1 691

105381889 1 570

109576193 1 659

113770497 1 298

117964801 1 683

122159105 1 218

126353409 1 1037

130547713 0 149

t PCB? n

2097153 1 233

18874369 1 45

35651585 1 1712

52428801 0 274

69206017 1 422

85983233 0 1646

102760449 1 368

119537665 0 1223

136314881 1 1292

153092097 1 325

169869313 1 204

186646529 0 421

203423745 0 42

220200961 1 1413

236978177 1 2333

253755393 1 107

270532609 1 1929

287309825 0 994

304087041 1 2118

320864257 1 3395

337641473 0 75

354418689 1 1690

371195905 1 63

387973121 0 4164

404750337 1 347

421527553 1 156

438304769 1 162

455081985 1 118

471859201 0 1739

488636417 1 1677

505413633 0 1000

522190849 1 250
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Table 3. Data for Disks of the form D̄(1 + 22k+1, 2−(2k+4))

t PCB? n

8388609 1 3379

75497473 1 446

142606337 1 2148

209715201 1 2839

276824065 1 2989

343932929 1 3088

411041793 1 3842

478150657 0 1758

545259521 0 3707

612368385 1 384

679477249 0 680

746586113 1 3245

813694977 1 712

880803841 0 450

947912705 1 4093

1015021569 0 406

1082130433 1 338

1149239297 0 798

1216348161 1 179

1283457025 1 5407

1350565889 1 379

1417674753 1 681

1484783617 0 5024

1551892481 1 1047

1619001345 1 3239

1686110209 1 3736

1753219073 0 3394

1820327937 1 2554

1887436801 1 323

1954545665 1 2095

2021654529 1 7420

2088763393 1 2500
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List of Notation

D̄(a, s) closed disk centered at a of radius r in Cp, page 9

C complex numbers, page 5

Cp completion of algebraic closure of Qp, page 5

Kf filled Julia set of f , page 9

λ multiplier of a periodic point, page 6

|·|p = |·| p-adic absolute value on Cp, page 5

Md,p p-adic, degree d Mandelbrot set, page 8

M PCB locus for the cubic family ft(z) = z3 − 3
2
z2, page 32

MC complex Mandelbrot set, page 2

Of (z) orbit of z under iteration of f , page 5

Pd,p parameter space of f ∈ Cp[z], degree d, monic, with f(0) = 0, page 7

Qp p-adic (rational) numbers, page 5

σi ith symmetric function on the critical points of f , page 9

Zp ring of integers in Qp, page 34

fn nth iterate of the function f , page 5

R smallest number such that Kf ⊂ D̄(0, pR), page 9

r negation of minimal p-adic valuation of critical points, page 9

r(d, p) critical radius of Md,p, page 14

vp(·) = v(·) p-adic valuation on Cp, page 9

PCB post-critically bounded, page 8

PCU post-critically unbounded, page 42
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Norm. Sup. (4), 20(1):1–29, 1987.

[18] Joseph H. Silverman. The arithmetic of dynamical systems, volume 241 of Graduate Texts in

Mathematics. Springer, New York, 2007.

[19] W. A. Stein et al. Sage Mathematics Software (Version 5.4.1). The Sage Development Team,

2012. http://www.sagemath.org.

[20] Lei Tan. Similarity between the Mandelbrot set and Julia sets. Comm. Math. Phys., 134(3):587–

617, 1990.

[21] Eugenio Trucco. Wandering Fatou components and algebraic Julia sets, 2010. Preprint. arXiv:

0909.4528.

55


