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Abstract

We postulate axioms for a chiral half of a nonarchimedean 2-dimensional bosonic
conformal field theory, that is, a vertex operator algebra in which a p-adic Banach space
replaces the traditional Hilbert space. We study some consequences of our axioms
leading to the construction of various examples, including p-adic commutative Banach
rings and p-adic versions of the Virasoro, Heisenberg, and the Moonshine module
vertex operator algebras. Serre p-adic modular forms occur naturally in some of these
examples as limits of classical 1-point functions.
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1 Introduction
In this paper we introduce a new notion of p-adic vertex operator algebra. The axioms of
p-adic VOAs arise from p-adic completion of the usual or, as we call them in this paper,
algebraic VOAs with suitable integrality properties. There are a number of reasons why
this direction is worth pursuing, both mathematical and physical. From a mathematical
perspective, many natural and important VOAs have integral structures, including the
Monster module of [17], whose integrality properties have been studied in a number of
recent papers, including [4,7–9]. Completing such VOAs with respect to the supremum-
norm of an integral basis as in Sect. 7 below provided the model for the axioms that we
present here. In a related vein, the last several decades have focused attention on various
aspects of algebraic VOAs over finite fields. Here we can cite [1,2,12,13,31,32,40]. It is
natural to ask how such studies extend to the p-adic completion, and this paper provides
a framework for addressing such questions.
In a slightly different direction, p-adic completions have been useful in a variety of

mathematical fields adjacent to the algebraic study of VOAs. Perhaps most impressive
is the connection between VOAs and modular forms, discussed in [10,15,36,46]. It is
natural to ask to what extent this connection extends to the modern and enormous field
of p-adic modular forms, whose study was initiated in [27,43] and which built on earlier
work of many mathematicians. We provide some hints of such a connection in Sects. 9
and 11 below.
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Finally on themathematical side, local–global principles have been a part of the study of
number-theoretic problems for over a century now, particularly in relation to questions
about lattices and their genera. One can think of algebraic VOAs as enriched lattices
(see [15] for some discussion and references on this point) and it is natural to ask to
what extent local–global methods could be applied to the study of VOAs. For example,
mathematicians still do not know how to prove that the Monster module is the unique
holomorphic VOA with central charge 24 and whose weight 1 graded piece is trivial.
Could the uniqueness of its p-adic completion be more accessible?
When considering how to apply p-adicmethods to the study of vertex operator algebras,

one is confrontedwith the question ofwhich p to use. In the algebraic andphysical theories
to date,most attention has been focused on the infinite, archimedean prime. Afinite group
theorist might answer that p = 2 is a natural candidate. While focusing on p = 2 could
trouble a number theorist, there is support for this suggestion in recent papers such as [22]
where the Bruhat-Tits tree for SL2(Q2) plays a prominent rôle. One might also speculate
that for certain small primes, p-adic methods could shed light on p-modular moonshine
[1,2,40] and related constructions [14]. However, a truly local–global philosophy would
suggest considering all primes at once. That is, one might consider instead the adelic
picture, an idea that has arisen previously in papers such as [19]. Examples of such objects
are furnished by completions lim←−n≥1 V /nV of vertex algebras V defined over Z. After
extension byQ, such a completion breaks up into a restricted product over the various p-
adic completions. Thus, the p-adic theory discussed below could be regarded as a first step
toward a more comprehensive adelic theory. Other than these brief remarks, however, we
say no more about the adeles in this paper.
There is a deep connection between the algebraic theory of VOAs and the study of

physical fields connected to quantum and conformal field theory (CFT) which has been
present in the algebraic theory of VOAs from its very inception. A ‘physical’ 2-dimensional
CFTprovides for a pair ofHilbert spaces of states, called the left- and right-movingHilbert
spaces, or ‘chiral halves’. We will not need any details here; some of them are presented
in [26], or for a more physical perspective one can consult [6,41].
The current mathematical theory of vertex operator algebras is, with some exceptions,

two steps removed from this physical picture: one deals exclusively with one of the chi-
ral halves and beyond that the topology is rendered irrelevant by restricting to a dense
subspace of states and the corresponding fields, which may be treated axiomatically and
algebraically.
The p-adic theory we propose is but one step removed from the physical picture of

left- and right-moving Hilbert spaces: although we deal only with chiral objects, they are
topologically complete. The metric is nonarchimedean and the Hilbert space is replaced
by a p-adic Banach space. Thus our work amounts to an axiomatization of the chiral half
of a nonarchimedean 2-dimensional bosonic CFT.
There is a long history of p-adic ideas arising in the study of string theory and related

fields, cf. [18,19,21,23,24,44,45] for a sample of some important works. In these papers
the conformal fields of interest tend to be complex-valued as opposed to the p-adic valued
fields discussed below. Nevertheless, the idea of a p-adic valued field in the sense meant
by physicists has been broached at various times, for example in Section 4.4 of [34].
The new p-adic axioms are similar to the usual algebraic ones, as most of the axioms

of an algebraic VOA are stable under completion. For example, the formidable Jacobi
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identity axiom is unchanged, though it now involves infinite sums that need not truncate.
On the other hand, in our p-adic story the notion of a field in the sense of VOA theory
must be adjusted slightly, and this results in a slightly weaker form of p-adic locality.
Otherwise, much of the basic algebraic theory carries over to this new context. This is
due to the fact that the strong triangle inequality for nonarchimedean metrics leads to
analytic considerations that feel verymuch like they are part of algebra rather than analysis.
Consequently, many standard arguments in the algebraic theory of VOAs can be adapted
to this new setting.
The paper is organized as follows: to help make this work more accessible to a broader

audience, we include in Sects. 2 and 3 a recollection of some basic facts about algebraic
VOAs and p-adic Banach spaces respectively. In Sect. 4 we introduce our axioms for p-
adic fields and p-adic vertex algebras and derive some basic results about them. In Sect. 5
we establish p-adic variants of the Goddard axioms [20] as discussed in [35,38]. Roughly
speaking, we show that a p-adic vertex algebra amounts to a collection of mutually p-
adically local p-adic fields, a statement whose archimedean analog will be familiar to
experts. In Sect. 6 we discuss Virasoro structures, define p-adic vertex operator algebras,
and constuct p-adic versions of the algebraic Virasoro algebra. Section 7 provides tools for
constructing examples of p-adic VOAs via completion of algebraic VOAs. In Sect. 8 we
elaborate on some aspects of p-adic locality and related topics such as operator product
expansions. Finally, Sects. 9 and 11 use the preceding material and results in the literature
to study examples of p-adic VOAs. In particular, we establish the following result:

Theorem 1.1 There exist p-adic versions of the Virasoro, Heisenberg and Monster VOAs.

Perhaps as interesting is the fact that in the second and third cases mentioned in Theorem
1.1, the character maps (i.e., 1-point correlation functions, or graded traces) for the VOAs
extend by continuity to character maps giving rise to p-adic modular forms as defined in
[43]. A noteworthy fact about theHeisenberg algebra is that while the quasi-modular form
E2/η is the graded trace of a state in the Heisenberg algebra, if we ignore the normalizing
factor of η−1, then this is a genuine p-adic modular form à la Serre [27,43]. In this sense,
the p-adic modular perspective may bemore attractive than the algebraic case where one
must incorporate quasi-modular forms into the picture. See Sects. 9, 10 and 11 for more
details on these examples. In particular, in Sect. 10 we show, among other things, that
the image of the p-adic character map for the p-adic Heisenberg algebra contains the
p-stabilized Eisenstein series of weight 2,

G∗
2

..= p2 − 1
24

+
∑

n≥1
σ ∗(n)qn,

with notation as in [43], so that σ ∗(n) denotes the divisor sum function over divisors
of n coprime to p. It is an interesting problem to determine the images of these p-adic
character maps, a question we hope to return to in the near future.
In a similar way, one can deduce the existence of p-adic versions of many well-known

VOAs, such as lattice theories, and theories modeled on representations of affine Lie
algebras (WZW models). However, since it is more complicated to formulate definitive
statements about the (p-adic) characters of such objects, and in the interest of keeping the
discussion to a reasonable length, we confine our presentation to the cases intervening in
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Theorem 1.1. We hope that they provide a suitable demonstration and rationale for the
theory developed below.
The authors thank Jeff Harvey and Greg Moore for comments on a prior version of this

paper.

1.1 Notation and terminology

Researchers in number theory and conformal field theory have adopted a number of
conflicting choices of terminology. In this paper field can mean algebraic field as in the
rational, complex, or p-adic fields. Alternately, it can be a field as in the theory of VOAs
or physics. Similarly, local can refer to local fields such as the p-adic numbers, or it can
refer to physical locality, as is manifest in the theory of VOAs. In all cases, the context will
make it clear what usage is intended below.

– If A, B are operators, then [A, B] = AB − BA is their commutator;
– For a rational prime p,Qp and Zp are the rings of p-adic numbers and p-adic integers

respectively;
– IfV is ap-adicBanach space, thenF (V ) is the spaceofp-adic fields onV , cf.Definition

4.1;
– The Bernoulli numbers Bk are defined by the power series

z
ez − 1

=
∑

k≥0

Bk
k !

zk ;

2 Primer on algebraic vertex algebras
In this Section we review the basic theory of algebraic vertex algebras over an arbitrary
unital, commutative base ring k , and we variously call such a gadget a k-vertex algebra,
vertex k-algebra, or vertex algebra over k . Actually, our main interests reside in the cases
when k is a field of characteristic 0, or k = Z, Z/pnZ, or the p-adic integers Zp, but there
is no reason not to work in full generality, at least at the outset. By algebraic, we mean
the standard mathematical theory of vertex algebras based on the usual Jacobi identity
(see below) as opposed to p-adic vertex algebras as discussed in the present paper. Good
references for the theory over C are [16,30] (see also [36] for an expedited introduction)
and the overwhelming majority of papers in the literature are similarly limited to this
case. The literature on k-vertex algebras for other k , especially when k is not aQ-algebra,
is scarce indeed. There is some work [7–9] on the case when k = Z that we shall find
helpful—see also [1,2,4,12,13,25,31,32,40]. A general approach to k-vertex algebras is
given in [35].

2.1 k-vertex algebras

Definition 2.1 An (algebraic) k-vertex algebra is a triple (V, Y, 1)with the following ingre-
dients:

• V is a k-module, often referred to as Fock space;
• Y : V → Endk (V )[[z, z−1]] is k-linear, and we write Y (v, z) ..= ∑

n∈Z v(n)z−n−1 for
the map v �→ Y (v, z);

• 1 ∈ V is a distinguished element in V called the vacuum element.

The following axioms must be satisfied for all u, v, w ∈ V :
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(1) (Truncation condition) there is an integer n0, depending on u and v, such that
u(n)v = 0 for all n > n0;

(2) (Creativity) u(−1)1 = u, and u(n)1 = 0 for all n ≥ 0;
(3) (Jacobi identity) Fix any r, s, t ∈ Z and u, v, w ∈ V . Then

∞∑

i=0

(
r
i

)
(u(t + i)v)(r + s − i)w

=
∞∑

i=0
(−1)i

(
t
i

) (
u(r + t − i)v(s + i)w − (−1)tv(s + t − i)u(r + i)w

)
. (2.1)

Inasmuchasu(n) is a k-linear endomorphismofV called thenthmodeofu, wemay think
of V as a k-algebra equipped with a countable infinity of k-bilinear products u(n)v. The
vertex operator (or field)Y (u, z) assembles themodes ofu into a formal distribution andwe
can use an obvious notation Y (u, z)v ..= ∑

n∈Z u(n)vz−n−1. Then the truncation condition
says that Y (u, z)v ∈ V [z, z−1][[z]] and the creativity axiom says that Y (u, z)1 = u + O(z).
By deleting w everywhere in the Jacobi identity, equation (2.1) may be construed as an
identity satisfied by modes of u and v.
Some obvious but nevertheless important observations need to be made. For any given

triple (u, v, w) of elements inV , the truncation condition ensures that (2.1) is well-defined
in the sense that both sides reduce to finite sums. Furthermore, only integer coefficients
occur, so that (2.1) makes perfectly good sense for any commutative base ring k .
It can be shown as a consequence of these axioms [35] that 1 is a sort of identity element,

and more precisely that Y (1, z) = idV .
Suppose that U = (U, Y, 1), V = (V, Y, 1) are two k-vertex algebras. A morphism f :

U → V is amorphismof k-modules that preserves vacuum elements and all nth products.
This latter statement can be written in the form fY (u, z) = Y (f (u), z)f for all u ∈ U .
k-vertex algebras and their morphisms form a category k − Ver. A left-ideal in V is a k-
submoduleA ⊆ V such that Y (u, z)a ∈ A[z, z−1][[z]] for all u ∈ V and all a ∈ A. Similarly,
A is a right-ideal if Y (a, z)u ∈ A[z, z−1][[z]]. A 2-sided ideal is, of course, a k-submodule
that is both a left- and a right-ideal. If A ⊆ V is a 2-sided ideal then the quotient k-
module V /A carries the structure of a vertex k-algebra with the obvious vacuum element
and nth products. Kernels of morphisms f : U → V are 2-sided ideals and there is an
isomorphism of k-vertex algebras U/ ker f ∼= im f .

2.2 k-vertex operator algebras

A definition of k-vertex operator algebras for a general base ring k is a bit complicated
[35], so we will limit ourselves to the standard case where k is aQ-algebra. This will suffice
for later purposes where we are mainly interested in considering k = Qp, which is a field
of characteristic zero.
Recall the Virasoro Lie algebra with generators L(n) for n ∈ Z together with a central

element κ satisfying the bracket relations

[L(m), L(n)] = (m − n)L(m + n) + δm,−n
(m3−m)

12 κ . (2.2)

In a k-vertex operator algebra the Virasoro relations (2.2) are blended into a k-vertex
algebra as follows:
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Definition 2.2 A k-vertex operator algebra is a quadruple (V, Y, 1,ω) with the following
ingredients:

• A k-vertex algebra (V, Y, 1);
• ω ∈ V is a distinguished element called the Virasoro element, or conformal vector;

and the following axioms are satisfied:

(1) Y (ω, z) = ∑
n∈Z L(n)z−n−2 where the modes L(n) satisfy the relations (2.2) with

κ = c idV for some scalar c ∈ k called the central charge of V ;
(2) there is a direct sum decomposition V = ⊕n∈ZVn where

Vn ..= {v ∈ V | L(0)v = nv}
is a finitely generated k-module, and Vn = 0 for n � 0;

(3) [L(−1), Y (v, z)] = ∂zY (v, z) for all v ∈ V .

This definition deserves a lot of explanatory comment -muchmore thanwewill provide.
That themodes L(n) satisfy the Virasoro relationsmeans, in effect, thatV is amodule over
the Virasoro algebra. Of course it is a very special module, as one sees from the last two
axioms. Furthermore, because (V, Y, 1) is a k-vertex algebra, then the Jacobi identity (2.1)
must be satisfied by the modes of all elements u, v ∈ V , including for example u = v = ω.
ForQ-algebras k this is a non-obvious but well-known fact. Indeed, it holds for any k , cf.
[35], but this requires more discussion than we want to present here.
Despite their relative complexity, there are large swaths of k-vertex operator algebras,

especially in the case when k = C is the field of complex numbers. See the references
above for examples.

2.3 Lattices in k-vertex operator algebras

Ourmain source of examples of p-adic VOAs will be completions of algebraic VOAs with
suitable integrality properties, codified in the existence of integral forms as defined below.
This definition is modeled on [7], but see also [4] for a more general perspective on vertex
algebras over schemes.
Let either k = Q orQp and let A = Z or Zp, respectively.

Definition 2.3 An integral form in a k-vertex operator algebra V is an A-submodule
R ⊆ V such that

(i) R is an A-vertex subalgebra of V , in particular 1 ∈ R,
(ii) R(n) ..= R ∩ V(n) is an A-base of V(n) for each n,
(iii) there is a positive integer s such that sω ∈ R.

Condition (i) above means in particular that if v ∈ R, then every mode v(n) defines an
A-linear endomorphism of R. In particular, if R is endowed with the sup-norm in some
graded basis, and if this is extended toV , then the resultingmodes are uniformly bounded
in the resulting p-adic topology, as required by the definition of a p-adic field, cf. part (1)
of Definition 4.1 below.
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2.4 Remarks on inverse limits

Suppose now that we consider a Zp-vertex algebra V . For a positive integer k , pkV is a
2-sided ideal inV , so that the quotientV /pkV is again aZp-vertex algebra. (We could also
consider this as a vertex algebra over Z/pkZ.) We have canonical surjections of Zp-vertex
rings f mk : V /pmV → V /pkV form ≥ k and we may consider the inverse limit

lim←−V /pkV. (2.3)

This is unproblematic at the level of Zp-modules. Elements of the inverse limit are
sequences (v1, v2, v3, . . .) such that f mk (vm) = vk for allm ≥ k . It is natural to define the nth
mode of such a sequence to be (v1, v2, v3, . . .)(n) ..= (v1(n), v2(n), v3(n), . . .). However, this
device does not make the inverse limit into an algebraic vertex algebra over Zp in general.
This is because it is not possible, in the algebraic setting, to prove the truncation condition
for such modal sequences—see Sect. 9 below for a concrete example. And without the
truncation condition, the Jacobi identity becomesmeaningless even though in some sense
it holds formally. As we shall explain below, these problems can be overcome in a suitable
p-adic setting by making use of the p-adic topology. Indeed, this observation provides the
impetus for many of the definitions to follow.

3 p-adic Banach spaces
A Banach space V over Qp, or p-adic Banach space, is a complete normed vector space
overQp whose norm satisfies the ultrametric inequality

∣∣x + y
∣∣ ≤ sup(|x| , ∣∣y∣∣)

for all x, y ∈ V . See the encyclopedic [3] for general background on nonarchimedean
analysis with a view towards rigid geometry. Following Serre [42], we shall assume that
for every v ∈ V we have |v| ∈ ∣∣Qp

∣∣, so that under the standard normalization for the
p-adic absolute value, we can write |v| = pn for some n ∈ Z if v �= 0. Note that we drop
the subscript p from the valuation notation to avoid a proliferation of such subscripts.
SinceQp is discretely valued, this is the same as Serre’s condition (N). We will often omit
mention of this condition throughout the rest of this note. It is likely inessential and could
be removed, for example if one wished to consider more general nonarchimedean fields.
A basic and well-known consequence of the ultrametric inequality in V that we will use

repeatedly is the following:

Lemma 3.1 Let vn ∈ V bea sequence inap-adicBanach spaceV .Then
∑∞

n=1 vn converges
if and only if limn→∞ vn = 0. �

Proposition 1 of [42] and the ensuing discussion shows that, up to continuous isomor-
phism, every p-adic Banach space can be described concretely as follows. Let I be a set
and define c(I) to be the collection of families (xi)i∈I ∈ QI

p such that xi tends to zero in
the following sense: for every ε > 0, there is a finite set S ⊆ I such that |xi| < ε for all
i ∈ I\S. Then c(I) has a well-defined supremum norm |x| = supi∈I |xi|. Notice that since
the p-adic absolute value is discretely valued, this norm takes values in the same value
group asQp. Serre shows that every p-adic Banach space is continuously isomorphic to a
p-adic Banach space of the form c(I).



27 Page 8 of 41 C. Franc, G. Mason Res. Number Theory (2023) 9:27

Definition 3.2 LetV be a p-adic Banach space. Then a sequence (ei)i∈I ∈ QI
p is said to be

an orthonormal basis for V provided that every element x ∈ V can be expressed uniquely
as a sum x = ∑

i∈I xiei for xi ∈ Qp tending to 0 with i, such that |x| = supi∈I |xi|.
That every p-adic Banach space is of the form c(I), up to isomorphism, is tantamount to
the existence of orthonormal bases.
The underlying Fock spaces of vertex algebras overQp will be p-adic Banach spaces. To

generalize the definitions of 1-point functions to the p-adic setting, it will be desirable to
work in the context of trace-class operators.We thus recall some facts on linear operators
between p-adic Banach spaces.

Definition 3.3 If U and V are p-adic Banach spaces, then Hom(U,V ) denotes the set of
continuous Qp-linear maps U → V . If U = V then we write End(V ) = Hom(V,V ).

The space Hom(U,V ) is endowed with the usual sup-norm

∣∣f
∣∣ = sup

u�=0

∣∣f (u)
∣∣

|u| .

Thanks to our hypotheses on the norm groups of U and V it follows that
∣∣f
∣∣ =

sup|x|≤1
∣∣f (x)

∣∣. This norm furnishes Hom(U,V ) with the structure of a p-adic Banach
space.

4 p-adic fields and p-adic vertex algebras
Norms below refer either to the norm of an ambient p-adic Banach space V , or the
corresponding induced sup-normonEnd(V ).We adopt the same notation for both norms
and the context will make it clear which is meant.

Definition 4.1 Let V be a p-adic Banach space. A p-adic field on V associated to a
state a ∈ V consists of a series a(z) ∈ End(V )[[z, z−1]] such that if we write a(z) =∑

n∈Z a(n)z−n−1 then:

(1) there existsM ∈ R≥0 depending on a such that
∣∣a(n)b

∣∣ ≤ M |a| ∣∣b∣∣ for all n ∈ Z and
all b ∈ V ;

(2) limn→∞ a(n)b = 0 for all b ∈ V .

Remark 4.2 Property (1) in Definition 4.1 implies that the operators a(n) ∈ End(V ) are
uniformly p-adically bounded

∣∣a(n)
∣∣ ≤ M |a| in their operator norms, defined above in

Sect. 3 and recalled below. In particular, themodes a(n) are continuous endomorphisms of
V for all n. Property (2) of Definition 4.1 arises by taking limits of the truncation condition
(1) in Definition 2.1.

We single out a special case of Definition 4.1, of particular interest not only because of
its connection with Banach rings (see below) but also because it is satisfied in most, if not
all, of our examples.

Definition 4.3 LetV be a p-adic Banach space. A p-adic field a(z) onV is called submul-
tiplicative provided that it satisfies the following qualitatively stronger version of (1):

(1’)
∣∣a(n)b

∣∣ ≤ |a| ∣∣b∣∣ for all n ∈ Z and all a, b ∈ V .
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Remark 4.4 In the theory of nonarchimedean Banach spaces, where each a ∈ V defines a
single multiplication by a operator rather than an entire sequence of such operators, the
analogues of Property (1) in both Definitions 4.1 and 4.3 above are shown to be equivalent
in a certain sense: the constantM of Definition 4.1 can be eliminated at a cost of changing
the norm, but without changing the topology. See Proposition 2 of Section 1.2.1 in [3] for
a precise statement. We suspect that the same situation pertains in the theory of p-adic
vertex algebras. Most of the arguments below are independent of this choice of definition,
and so we work mostly with the apparently weaker Definition 4.1.
In the following, when we refer to (p-adic) fields, we will always mean in the sense of

Definition 4.1. If the intention is to refer to submultiplicative fields we will invariably say
so explicitly. Notice that if a(z) is a field, then we can define a norm

∣∣a(z)
∣∣ = sup

n∈Z

∣∣a(n)
∣∣ ,

where as usual
∣∣a(n)

∣∣ denotes the operator norm:

∣∣a(n)
∣∣ ..= sup

b∈V
b �=0

∣∣a(n)b
∣∣

∣∣b
∣∣ .

Definition 4.5 The space of p-adic fields on V in the sense of Definition 4.1, endowed
with the topology arising from the sup-norm defined above, is denoted F (V ), and Fs(V )
denotes the subset of submultiplicative fields.

Proposition 4.6 F (V ) is a Banach space overQp.

Proof Clearly F (V ) is closed under rescaling. To show that it is closed under addition,
let a(z), b(z) ∈ F (V ) be p-adic fields. Property (2) of Definition 4.1 is clearly satisfied by
the sum a(z)+ b(z). We must show that Property (1) holds as well, so take c ∈ V . LetM1
andM2 be the constants of Property (1) arising from a(z) and b(z), respectively. Then we
are interested in bounding

∣∣a(n)c + b(n)c
∣∣ ≤ max(

∣∣a(n)c
∣∣ ,
∣∣b(n)c

∣∣) ≤ max(M1,M2) |c| .
Thus Property (1) of Definition 4.1 holds for a(z) + b(z) with M = max(M1,M2). This
verifies that F (V ) is a subspace of End(V )[[z, z−1]].
It remains to prove thatF (V ) is complete. Let aj(z) be a Cauchy sequence inF (V ). This

means that for all ε > 0, there exists N such that for all i, j > N ,

sup
n∈Z

∣∣ai(n) − aj(n)
∣∣ = ∣∣ai(z) − aj(z)

∣∣ < ε.

In particular, for each n ∈ Z, the sequence (aj(n))j≥0 of elements of End(V ) is Cauchy
with a well-defined limit a(n) ..= limj→∞ aj(n).
We shall show that a(z) = ∑

n∈Z a(n)z−n−1 is a p-adic field. For a given ε > 0, by
definition of the sup-norm on p-adic fields, there exists N such that for all j > N and all
n ∈ Z,

∣∣a(n) − aj(n)
∣∣ < ε.

Let b ∈ V . Then for any choice of j > N ,
∣∣a(n)b

∣∣ ≤ sup(
∣∣a(n)b − aj(n)b

∣∣ ,
∣∣aj(n)b

∣∣) ≤ sup(ε,Mj)
∣∣b
∣∣
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where Mj is the constant of Property (1) in Definition 4.1 associated to aj(z). It follows
that a(z) satisfies Property (1) of Definition 4.1 with M = sup(ε,Mj), which is indeed
independent of b ∈ V .
Let b ∈ V be nonzero and fixed. To show that limn→∞ a(n)b = 0, let ε > 0 be given,

and choose j such that
∣∣a(n) − aj(n)

∣∣ < ε|b| for all n ∈ Z. That is,

sup
b′ �=0

∣∣a(n)b′ − aj(n)b′∣∣
∣∣b′∣∣ <

ε∣∣b
∣∣ .

Then as above we have
∣∣a(n)b

∣∣ ≤ sup(
∣∣a(n)b − aj(n)b

∣∣ ,
∣∣aj(n)b

∣∣) < sup(ε,
∣∣aj(n)b

∣∣).

Since aj is a p-adic field, there exists N such that for n > N , we have
∣∣aj(n)b

∣∣ < ε. We
thus see that for n > N , we have

∣∣a(n)b
∣∣ < ε. Therefore limn→∞ a(n)b = 0. This verifies

that the limit a(z) of the p-adic fields aj(z) is itself a p-adic field, and therefore F (V ) is
complete. ��

Remark 4.7 The set of fields Fs(V ) is not necessarily a linear subspace of F (V ), so there
is no question of an analog of Proposition 4.6 for submultiplicative fields.

Now suppose that we have a continuousQp-linear map

Y (•, z) : V → F (V ).

In the submultiplicative case the continuity hypothesis is automatically satisfied, as in the
following result.

Lemma 4.8 Let Y (•, z) : V → F (V ) be a linear map associating a submultiplicative
p-adic field Y (a, z) to each state a ∈ V . Then Y is necessarily continuous.

Proof By Proposition 2 in Section 2.1.8 of [3], in this setting, continuity and boundedness
are equivalent, though we only require the easier direction of this equivalence. We have

∣∣Y (a, z)
∣∣ = sup

n

∣∣a(n)
∣∣ = sup

n
sup
|b|=1

∣∣a(n)b
∣∣ ≤ sup

n
sup
|b|=1

|a| ∣∣b∣∣ = |a| .

In particular, Y (•, z) is a bounded map and thus continuous. ��

For every u, v ∈ V , we have u(n)v ∈ V and so there are well-defined modes (u(n)v)(m)
arising from the p-adic field Y (u(n)v, z). The following Lemma concerning these modes
will allow us to work with the usual Jacobi identity from VOA theory in this new p-adic
context.

Lemma 4.9 Let u, v, w ∈ V . Then for all r, s, t ∈ Z, the infinite sum

∞∑

i=0

(
r
i

)
(u(t + i)v)(r + s − i)w

−
∞∑

i=0
(−1)i

(
t
i

){
u(r + t − i)(v(s + i)w) − (−1)tv(s + t − i)(u(r + i)w)

}

converges in V .
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Proof Since |n| ≤ 1 for all n ∈ Z by the strong triangle inequality, Lemma 3.1 implies
that it will suffice to show that

lim
i→∞

∣∣(u(t + i)v)(r + s − i)w
∣∣ = 0,

lim
i→∞

∣∣u(r + t − i)(v(s + i)w)
∣∣ = 0,

lim
i→∞

∣∣v(s + t − i)(u(r + i)w)
∣∣ = 0.

We first discuss the second limit above, so let M be the constant from Property (1) of
Definition 4.1 applied to u. Then we know that

∣∣u(r + t − i)(v(s + i)w)
∣∣ ≤ M

∣∣v(s + i)w
∣∣ .

By Property (2) of Definition 4.1, this goes to zero as i tends to infinity. This establishes
the vanishing of the second limit above, and the third is handled similarly.
The first limit requires slightlymore work. Notice that ifw = 0 there is nothing to show,

so we may assume w �= 0. Since limi→∞ u(t + i)v = 0, continuity of Y (•, z) implies that

lim
i→∞Y (u(t + i)v, z) = 0.

Hence, given ε > 0, we can findN such that for all i > N , we have
∣∣Y (u(t + i)v, z)

∣∣ < ε
|w| .

By definition of the norm on p-adic fields, this means that

sup
n

∣∣(u(t + i)v)(n)w
∣∣ < ε.

In particular, taking n = r + s− i, then for i > N we have
∣∣(u(t + i)v)(r + s − i)w

∣∣ < ε as
required. This concludes the proof. ��

The reader should compare the next Definition with Definition 2.1.

Definition 4.10 A p-adic vertex algebra is a triple (V, Y, 1) consisting of a p-adic Banach
space V equipped with a distinguished state (the vacuum vector) 1 ∈ V and a p-adic
vertex operator, that is, a continuous p-adic linear map

Y : V → F (V ),

written Y (a, z) = ∑
n∈Z a(n)z−n−1 for a ∈ V , satisfying the following conditions:

(1) (Vacuum normalization) |1| ≤ 1.
(2) (Creativity) We have Y (a, z)1 ∈ a+ zV [[z]], in other words, a(n)1 = 0 for n ≥ 0 and

a(−1)1 = a.
(3) (Jacobi identity) Fix any r, s, t ∈ Z and u, v, w ∈ V . Then

∞∑

i=0

(
r
i

)
(u(t + i)v)(r + s − i)w

=
∞∑

i=0
(−1)i

(
t
i

){
u(r + t − i)v(s + i)w − (−1)tv(s + t − i)u(r + i)w

}
.

Definition 4.11 A p-adic vertex algebra V is said to be submultiplicative provided that
every p-adic field Y (a, z) is submultiplicative.
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Remark 4.12 If V is a submultiplicative p-adic vertex algebra, then Lemma 4.8 implies
that continuity of the state-field correspondence follows from the other axioms.

As in the usual algebraic theory of Sect. 2, the vertex operator Y is sometimes also called
the state-field correspondence, and both it and the vacuum vector will often be omitted
from the notation. That is, we shall often simply say that V is a p-adic vertex algebra.
The vacuum property Y (1, z) = idV follows from these axioms and does not need to be
itemized separately. See Theorem 5.5 below for more details on this point.

Remark 4.13 In the formulation of the Jacobi identity we have used the completeness of
the p-adic Banach space V to ensure that the infinite sum exists, via Lemma 4.9. If V is
not assumed complete, one could replace the Jacobi identity with corresponding Jacobi
congruences: fix r, s, t ∈ Z and u, v, w ∈ Z. Then the Jacobi congruences insist that for all
ε > 0, there exists j0 such that for all j ≥ j0, one has

∣∣∣∣
j∑

i=0

(
r
i

)
(u(t + i)v)(r + s − i)w

−
j∑

i=0
(−1)i

(
t
i

){
u(r + t − i)(v(s + i)w) − (−1)tv(s + t − i)(u(r + i)w)

} ∣∣∣∣ < ε.

In the presence of completeness, this axiom is equivalent to the Jacobi identity.

4.1 Properties of p-adic vertex algebras

In this Subsection we explore some initial consequences of Definition 4.10.

Proposition 4.14 If V is a p-adic vertex algebra, then for a ∈ V we have

|a| ≤ ∣∣Y (a, z)
∣∣ .

In particular, the state-field correspondence Y is an injective closed mapping. If V is fur-
thermore assumed to be submultiplicative, then |a| = ∣∣Y (a, z)

∣∣ for all a ∈ V .

Proof If a ∈ V then a(−1)1 = a by the creativity axiom, and so

|a| = ∣∣a(−1)1
∣∣ ≤ ∣∣Y (a, z)

∣∣ |1| ≤ ∣∣Y (a, z)
∣∣ ,

where the last inequality follows by vacuum normalization. This proves the first claim,
and the second follows easily from this.
For the final claim, observe that the proof of Lemma 4.8 shows that when V is submul-

tiplicative, we also have
∣∣Y (a, z)

∣∣ ≤ |a|. This concludes the proof. ��
Definition 4.15 A p-adic vertex algebra V is said to have an integral structure provided
that for the Zp-module V0 ..= {v ∈ V | |v| ≤ 1}, the following condition holds:

(1) the restriction of the state-field correspondence Y to V0 defines a map

Y : V0 → EndZp (V0)[[z, z−1]].

Note that 1 ∈ V0 by definition, and if a ∈ V0 then Y (a, z)1 ∈ a+ zV0[[z]]. In effect, then,
the triple (V0, 1,ResV0 Y ) is a p-adic vertex algebra over Zp, though we have not formally
defined such an object.
The axioms for a p-adic vertex algebra are chosen so that the following holds:



C. Franc, G. Mason Res. Number Theory (2023) 9:27 Page 13 of 41 27

Lemma 4.16 Suppose that V is a p-adic vertex algebra with an integral structure V0.
Then V0/pkV0 inherits a natural structure of algebraic vertex algebra over Z/pkZ for all
k ≥ 0.

Proof For a formal definition of a vertex ring over Z/pkZ, the reader can consult [35].
Since we do not wish to go into too many details on this point, let us simply point out
that if a, b ∈ V0, then since a(n)b tends to 0 as n grows, it follows that for any k ≥ 1, the
reduced series

∑

n∈Z
a(n)bz−n−1 (mod pkV0) ∈ EndZ/pkZ(V0/pkV0)[[z, z−1]]

has a finite Laurent tail. Since this is the key difference between algebraic and p-adic vertex
rings, one deduces the Lemma from this fact. ��

5 p-adic Goddard axioms
In this Section we draw some standard consequences from the p-adic Jacobi identity in
(4.10). The general idea is to show that the axioms for a p-adic vertex algebra, especially
the Jacobi identity, are equivalent to an alternate set of axioms that are ostensibly more
intuitive and easier to recognize and manipulate. In the classical case of algebraic vertex
algebras over C, or indeed any commutative base ring k , these are known as Goddard
axioms [20,35,38]. At the same time, we develop some facts that we use later. Let V be a
p-adic vertex algebra.

5.1 Commutator, associator and locality formulas

We begin with some immediate consequences of the Jacobi identity.

Proposition 5.1 (Commutator formula) For all r, s ∈ Z and all u, v, w ∈ V we have

[u(r), v(s)]w =
∞∑

i=0

(
r
i

)
(u(i)v)(r + s − i)w. (5.1)

Proof Take t = 0 in the Jacobi identity. ��

Proposition 5.2 (Associator formula) For all s, t ∈ Z and all u, v, w ∈ V we have

(u(t)v)(s)w =
∞∑

i=0
(−1)i

(
t
i

){
u(t − i)v(s + i)w − (−1)tv(s + t − i)u(i)w

}
. (5.2)

Proof Take r = 0 in the Jacobi identity. ��
The next result requires slightly more work.

Proposition 5.3 (p-adic locality) Let u, v, w ∈ V . Then

lim
t→∞(x − y)t [Y (u, x), Y (v, y)]w = 0. (5.3)

Proof Because limn→∞ a(n)b = 0, continuity of Y yields limn→∞ Y (a(n)b, z) = 0 in the
uniform sup-norm. Thus, as in the last stages of the proof of Lemma 4.9, for any ε > 0
and fixed r, s, i, we have the inequality

∣∣(u(t + i)v)(r + s − i)w
∣∣ < ε for all large enough t.

Apply this observation to the left side of the Jacobi identity to deduce the following:
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Let r, s ∈ Z and u, v, w ∈ V . For any ε > 0 there is an integer N such that for all t > N
we have

∣∣∣∣∣

∞∑

i=0
(−1)i

(
t
i

) (
u(r + t − i)v(s + i)w − (−1)tv(s + t − i)u(r + i)w

)
∣∣∣∣∣ < ε.

By a direct calculation, we can see that the summation on the left side of this inequality is
exactly the coefficient of xrys in (x−y)t [Y (u, x), Y (v, y)]w. Thus, we arrive at the statement
of p-adic locality, and this concludes the proof. ��

Definition 5.4 If equation (5.3) holds for two p-adic fields Y (u, x) and Y (v, y), we say that
Y (u, x) and Y (v, y) aremutually local p-adic fields. When the context is clear, we will drop
the word p-adic from the language.

5.2 Vacuum vector

We will prove

Theorem 5.5 Suppose that (V, Y, 1) is a p-adic vertex algebra. Then

Y (1, z) = idV .

Proof We have to show that for all states u ∈ V we have

1(n)u = δn,−1u. (5.4)

To this end, first we assert that for all s ∈ Z,

u(−1)1(s)1 = 1(s)u. (5.5)

This follows directly from the creativity axiom and the special case of the commutator
formula (5.1) in which v = w = 1 and r = −1, t = 0.
Now, by the creativity axiom once again, we have 1(s)1 = 0 for s ≥ 0 as well as

1(−1)1 = 1. Feed these inequalities into (5.5) to see that (5.4) holds whenever n ≥ −1.
Now we prove (5.4) for n ≤ −2 by downward induction on n. First we choose u = v =

w = 1 and t = −1 in the Jacobi identity and fix r, s ∈ Z, to see that

∞∑

i=0

(
r
i

)
(1(−1 + i)1)(r + s − i)1

=
∞∑

i=0

{
1(r − 1 − i)(1(s + i)1) + 1(s − 1 − i)(1(r + i)1)

}
,

and therefore since we already know that 1(n)1 = δn,−11 for n ≥ −1 we obtain

1(r + s)1 =
∞∑

i=0

{
1(r − 1 − i)(1(s + i)1) + 1(s − 1 − i)(1(r + i)1)

}
(5.6)

Specialize (5.6) to the case r = s = −1 to see that

1(−2)1 = {
1(−2)(1(−1)1) + 1(−2)(1(−1)1)

} = 21(−2)1,

whence 1(−2)1 = 0. This begins the induction.
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Now choose r + s = −n with 0 ≤ r < −s − 1. Then (5.6) reads

1(−n)1 =
∞∑

i=0
1(r − 1 − i)1(s + i)1 (5.7)

By induction, the expression in (5.7) under the summation sign vanishes whenever s+ i >

−n and s+i �= −1, i.e., i > r, i �= −s−1. It also vanishes if i < r thanks to the commutator
formula (5.1). So, the only possible nonzero contribution arises when i = r and i = −s−1,
in which case we obtain 1(−n)1 = 21(−n)1 and therefore 1(−n)1 = 0. ��

5.3 Translation-covariance and the canonical derivation T

The canonical endomorphism T of V is defined by the formula

Y (a, z)1 = a + T (a)z + O(z2), (5.8)

that is, T (a) ..= a(−2)1. The endomorphism T is called the canonical derivation of V
because of the next result. Translation-covariance (with respect to T ) may refer to either
of the equalities in (5.9) below, but we will usually retain this phrase to mean only the
second equality.

Theorem 5.6 We have T (a)(n) = −na(n − 1) for all integers n ∈ Z. Indeed,

Y (T (a), z) = ∂zY (a, z) = [T, Y (a, z)]. (5.9)

Moreover, T is a derivation of V in the sense that for all states u, v ∈ V and all n we have

T (u(n)v) = T (u)(n)v + u(n)T (v).

Proof Take v = 1 and t = −2 in the associator formula (5.2) to get

(u(−2)1)(s)w =
j∑

i=0
(−1)i

(−2
i

){
u(−2 − i)1(s + i)w − 1(s − 2 − i)u(i)w

}
. (5.10)

Now use Theorem 5.5. The expression under the summation is nonzero in only two
possible cases, namely s + i = −1 and s − i = 1, and these cannot occur simultaneously.
In the first case (5.10) reduces to

(u(−2)1)(s)w + su(s − 1)w = 0. (5.11)

This is the first stated equality in (5.9)). In the second case, when s− i = 1, we get exactly
the same conclusion by a similar argument. This proves (5.9) in all cases.
Next we will prove that T is a derivation as stated in the Theorem. Use the creativity

axiom and the associator formula (5.2) with s = −2 to see that

(u(t)v)(−2)1 =
j∑

i=0
(−1)i

(
t
i

)
u(t − i)v(−2 + i)1 = u(t)v(−2)1 − tu(t − 1)v,

Using the special case (5.11) of (5.9) that has already been established, the previous display
reads Tu(t)v = u(t)T (v) + T (u)(t)v. This proves the derivation property of T .
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Finally, we have

[T, a(n)]w = T (a(n)w) − a(n)T (w) = T (a)(n)w

by the derivation property of T . This is equivalent to the second equality

Y (T (a), z) = [T, Y (a, z)]

in (5.9). We have now proved all parts of the Theorem. ��

5.4 Statement of the converse

We have shown that a p-adic vertex algebra (V, Y, 1) consists, among other things, of a set
of mutually local, translation-covariant, creative, p-adic fields on V . Our next goal is to
prove a converse to this statement. Specifically,

Theorem 5.7 Let the quadruple (V, Y, 1, T ) consist of a p-adic Banch space V ; a con-
tinuous Qp-linear map Y : V → F (V ), notated a �→ Y (a, z) ..= ∑

n∈Z a(n)z−n−1; a
distinguished state 1 ∈ V ; and a linear endomorphism T ∈ End(V ) satisfying T (1) = 0.
Suppose further that:

(a) any pair of fields Y (a, x), Y (b, y) are mutually local in the sense of (5.3);
(b) they are creative with respect to 1 in the sense of Definition 4.10 (1);
(c) and they are translation covariant with respect to T in the sense that the second

equality of (5.9) holds.

Then the triple (V, Y, 1) is a p-adic vertex algebra as in Definition 4.10, and T is the
canonical derivation.

We will give the proof of Theorem 5.7 over the course of the next few Sections. Given
that (V, Y, 1) is a p-adic vertex algebra, it is easy to see that T is its canonical derivation.
For, by translation covariance, we get

T (Y (a, z)1) = ∂zY (a, z)1,

so that T (a) = T (a(−1)1) = a(−2)1, and this is the definition of the canonical deriva-
tion (5.8). What we have to prove is that the Jacobi identity from Definition 4.10 is a
consequence of the assumptions in Theorem 5.7.

Lemma 5.8 The Jacobi identity is equivalent to the conjunction of the associativity formula
(5.2) and the locality formula (5.3).

Proof We have already seen in Sect. 5.1 that the Jacobi identity implies the associativity
and locality formulas. As for the converse, fix states a, b, c ∈ V , r, s, t ∈ Z and introduce
the notation:

A(r, s, t) ..=
∞∑

i=0

(
r
i

)
(a(t + i)b)(r + s − i)c,

B(r, s, t) ..=
∞∑

i=0
(−1)i

(
t
i

)
a(r + t − i)b(s + i)c,

C(r, s, t) ..=
∞∑

i=0
(−1)t+i

(
t
i

)
b(s + t − i)a(r + i)c
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In these terms, the Jacobi identity is just the assertion that for all a, b, c and all r, s, t we
have

A(r, s, t) = B(r, s, t) − C(r, s, t). (5.12)

On the other hand, in Sect. 5.1 we saw that the associativity formula is just the case r = 0
of (5.12). Now use the standard formula

(
m
n

)
=
(
m − 1

n

)
+
(
m − 1
n − 1

)

to see thatA(r+1, s, t) = A(r, s+1, t)+A(r, s, t+1), and similarly forB andC . Consequently,
(5.12) holds for all r ≥ 0 and all s, t ∈ Z.
Now we invoke the locality assumption. In fact, we essentially saw in Sect. 5.1 that

locality is equivalent to the statement that for any ε > 0 there is an integer t0 such that
for all t ≥ t0 we have

∣∣A(r, s, t) − B(r, s, t) + C(r, s, t)
∣∣ < ε, (5.13)

and we assert that (5.13) holds uniformly for all r, s, t. We have explained that it holds for
all t ≥ t0 and all r ≥ 0, so if there is a triple (r, s, t) for which it is false then there is a triple
for which r + t ismaximal. But we have

∣∣A(r, s, t) − B(r, s, t) + C(r, s, t)
∣∣

= ∣∣A(r + 1, s − 1, t) − A(r, s − 1, t + 1) − B(r + 1, s − 1, t) + B(r, s − 1, t + 1)

+C(r + 1, s − 1, t) − C(r, s − 1, t + 1)
∣∣

< ε

by the strong triangle inequality. This completes the proof that (5.13) holds for all r, s, t
and all a, b, c ∈ V . Now because V is complete we can invoke Remark 4.13 to complete
the proof of the Lemma. ��

5.5 Residue products

Lemma 5.8 facilitates reduction of the proof of Theorem 5.7 to the assertion that locality
implies associativity. With this in mind we introduce residue products of fields following
[33]. To ease notation, in the following for a state a ∈ V , we write a(z) = Y (a, z) =∑

n a(n)z−n−1. For states a, b, c ∈ V and any integer t, we define the tth residue product
of a(z) and b(z) as follows:

(a(z)tb(z))(n) ..=
∞∑

i=0
(−1)i

(
t
i

){
a(t − i)b(n + i) − (−1)tb(t + n − i)a(i)

}
. (5.14)

To be clear, a(z)tb(z) is defined to have a modal expansion with the nth mode being the
expression (5.14) above. The holistic way to write (5.14) is as follows:

a(z)tb(z) =Resy(y − z)ta(y)b(z) − (−1)t Resy(z − y)tb(z)a(y). (5.15)
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It is important to add that here we are employing the convention1 that (y−z)t is expanded
as a power series in z, whereas (z − y)t is expanded as a power series in y.
Notice that in ap-adic vertex algebra, the associativity formula (5.2)maybeprovocatively

reformulated in the following way:

Y (u(t)v, z)w = Y (u, z)tY (v, z). (5.16)

In the present context we do not know that V is a vertex algebra: indeed, it is equation
(5.16) that we are in the midst of proving on the basis of locality alone! Nevertheless, it
behooves us to scrutinize residue products. First we have

Lemma 5.9 Given a(z), b(z) ∈ F (V ), we have a(z)tb(z) ∈ F (V ) for every t ∈ Z. Moreover,
∣∣a(z)tb(z)

∣∣ ≤ ∣∣a(z)
∣∣ ∣∣b(z)

∣∣ .

Proof From equation (5.14) we obtain the bound

∣∣a(z)tb(z)(n)
∣∣ ≤ sup

i≥0

(
sup{∣∣a(t − i)b(n + i)

∣∣ ,
∣∣b(t + n − i)a(i)

∣∣})

≤ sup
i≥0

(
sup{∣∣a(t − i)

∣∣ ∣∣b(n + i)
∣∣ ,
∣∣b(t + n − i)

∣∣ ∣∣a(i)
∣∣})

≤ sup
u∈Z

∣∣a(u)
∣∣ · sup

v∈Z

∣∣b(v)
∣∣ = ∣∣a(z)

∣∣ ∣∣b(z)
∣∣ .

This establishes the desired inequality, and it shows that property (1) of Definition 4.1
holds withM = ∣∣a(z)

∣∣. Similarly, since we know that limn→∞ a(n)c = limn→∞ b(n)c = 0
then

∣∣(a(z)tb(z))(n)c
∣∣ = sup

i

∣∣a(t − i)b(n + i)c − (−1)tb(t + n − i)a(i)c
∣∣

≤ M sup
i

{∣∣b(n + i)c
∣∣ ,
∣∣b(t + n − i)c

∣∣}

→n 0.

which establishes property (2) of Definition 4.1. The Lemma is proved. ��

Remark 5.10 Lemma 5.9 has the following interpretation: identify V with its image in
F (V ) under the vertex operatormap a �→ a(z), and define a new vertex operator structure
on these fields using the residue products. Then Lemma 5.9 says that these new fields are
submultiplicative in the senseofDefinition4.3.This is so even thoughwehavenot assumed
that V is submultiplicative, cf. Corollary 5.15 for further discussion of this point.

Now recall that we are assuming the hypotheses of Theorem 5.7 that a(z), b(z) are
creative with respect to 1 and, in particular, b(z) creates the state b in the sense that
b(z)1 = b + O(z).

Lemma 5.11 For all integers t, a(z)tb(z) is creative with respect to 1 and creates the state
a(t)b.

1In general, expand (z − w)n as a power series in the second variable. This is inconsequential if n ≥ 0.
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Proof This is straightforward, for we have

(a(z)tb(z))(n)1 =
∞∑

i=0
(−1)i

(
i
i

){
a(t − i)b(n + i)1 − (−1)tb(t + n − i)a(i)1

}

=
∞∑

i=0
(−1)i

(
t
i

){
a(t − i)b(n + i)1

}

and this vanishes if n ≥ 0 because b(z) is creative with respect to 1. Finally, if n = −1, for
similar reasons the last display reduces to a(t)b, and the Lemma is proved. ��

5.6 Further properties of residue products

Lemma 5.12 Let a, b, c ∈ V , so that a(z), b(z), c(z) are mutually local p-adic fields. Then
for any integer t, a(z)tb(z) and c(z) are also mutually local.

Proof We have to show that limn→∞(x − y)n[a(x)tb(x), c(y)] = 0. We have

lim
n→∞(x − y)n[a(x)tb(x), c(y)]

= lim
n→∞(x − y)n

{
Resw(w − x)t [a(w)b(x), c(y)] − (−1)t Resw(x − w)t [b(x)a(w), c(y)]

}

= lim
n→∞(x − y)n Resw(w − x)t

{
a(w)[b(x), c(y)] + [a(w), c(y)]b(x)

}−
(−1)t lim

n→∞(x − y)n Resw(x − w)t
{
b(x)[a(w), c(y)] + [b(x), c(y)]a(w)

}

= lim
n→∞(x − y)n Resw(w − x)t

{
[a(w), c(y)]b(x)

}−
(−1)t lim

n→∞(x − y)n Resw(x − w)t
{
b(x)[a(w), c(y)]

}
,

where we used the fact that b(z) and c(z) are mutually local p-adic fields.
Note that if t ≥ 0 then (w − x)t = (−1)t (x − w)t and the last expression vanishes as

required. So we may assume without loss that t < 0.
Now use the identity, with n ≥ m ≥ 0,

(x − y)n = (x − y)n−m(x − w + w − y)m = (x − y)n−m
m∑

i=0

(
m
i

)
(x − w)i(w − y)m−i

Pick any ε > 0. There is a positive integer N0 such that
∣∣(w − y)N [a(w), b(y)]

∣∣ < ε when-
ever N ≥ N0. We will choosem ..= N0 − t, which is nonnegative because t < 0. The first
summand in the last displayed equality is equal to

m∑

i=0
(−1)i

(
m
i

)
lim
n→∞(x − y)n−m Resw(w − x)t+i(w − y)m−i {[a(w), c(y)]b(x)

}

=
−t∑

i=0
“′′ +

m∑

i=−t+1
“′′,

where the quotation marks indicate that we are summing the same general term as in the
left-side of the equality. We get a very similar formula for the second summand.
Repeating the use of a previous device, if −t + 1 ≤ i then t + i ≥ 0, so that

(−1)t+i(w − x)t+i = (x − w)t+i. From this it follows that in our expression for
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limn→∞(x − y)n[a(x)tb(x), c(y)] the two sums over the range −t + 1 ≤ i ≤ m in fact
cancel. Hence we find that

lim
n→∞(x − y)n[a(x)tb(x), c(y)]

=
−t∑

i=0
(−1)i

(
m
i

){
lim
n→∞(x − y)n−m Resw(w − x)t+i(w − y)m−i[a(w), c(y)]b(x)

−(−1)t lim
n→∞(x − y)n−m Resw(x − w)t+i(w − y)m−ib(x)[a(w), c(y)]

}
.

For i ≤ −t we have m − i ≥ m + t = N0 and therefore each of the expressions (w −
y)m−i[a(w), c(y)] have norms less than ε. Therefore we see that

lim
n→∞(x − y)n[a(x)tb(x), c(y)] = 0,

and the Lemma is proved. ��

Lemma 5.13 If a(z) and b(z) are translation covariant with respect to T , then a(z)tb(z) is
translation covariant with respect to T for all integers t.

Proof This is a straightforward consequence of the next two equations, both readily
checked by direct caculation:

[T, a(z)tb(z)] =[T, a(z)]tb(z) + a(z)t [T, b(z)]

∂z(a(z)tb(z)) =(∂za(z))tb(z) + a(z)t (∂zb(z)) (5.17)

��

5.7 Completion of the proof of Theorem 5.7

We have managed to reduce the proof of Theorem 5.7 to showing that p-adic locality
implies associativity, i.e., the formula (5.16) in the format

(a(t)b)(z) =a(z)tb(z) (5.18)

We shall carry this out now on the basis of Lemmas 5.9 through 5.12. We need one more
preliminary result.

Lemma 5.14 Suppose that d(z) is a p-adic field that is translation covariant with respect
to T , mutually local with all p-adic fields a(z) (a ∈ V ), and creative with respect to 1. Then
d(z) = 0 if, and only if, d(z) creates 0.

Proof It suffices to show that if d(z) creates 0, i.e., d(−1)1 = 0, then d(z) = 0.
To begin the proof, recall that by hypothesis we have T1 = 0. Then

[T, d(z)]1 =T (d(z)1) =
∑

n<0
T (d(n)1)z−n−1.

By translation covariance we also have

[T, d(z)]1 = ∂zd(z)1 =
∑

n<0
(−n − 1)d(n)1z−n−2
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Therefore, for all n < −1 we have Td(n + 1)1 = (−n − 1)d(n)1. But d(−1)1 = 0 by
assumption. Therefore d(−2)1 = 0, and by induction we find that for all n < 0 we have
d(n)1 = 0. This means that d(z)1 = 0.
Now we prove that in fact d(z) = 0. For any state u ∈ V we know that u(z) creates u

from 1. Moreover we are assuming that d(z) and u(z) are mutually local, i.e., limn→∞(z −
w)n[d(z), u(w)] = 0. Consider

lim
n→∞ znd(z)u = lim

n→∞Resw w−1(z − w)nd(z)u(w)1

= lim
n→∞Resw w−1(z − w)nu(w)d(z)1 = 0.

Notice that the sup-norms of d(z)u and znd(z)u are equal, since multiplication by zn just
shifts indices. Therefore, the only way that the limit above can vanish is if d(z)u = 0. Since
u is an arbitrary element of V , we deduce that d(z) = 0, and this completes the proof of
Lemma 5.14. ��

Turning to the proof of Theorem 5.7, suppose that a, b ∈ V , let t be an integer, and
consider d(z) ..= a(z)tb(z)−(a(t)b)(z). This is a p-adic field by Lemma 5.9, and it is creative
by Lemma5.11, indeed that Lemma implies that d(z) creates 0.NowLemmas 5.11 through
5.13 supply the hypotheses of Lemma 5.14, so we can apply the latter to see that d(z) = 0.
In other words, a(z)tb(z) = (a(t)b)(z). Thus we have established (5.18) and the proof of
Theorem 5.7 is complete.
We record a Corollary of the proof that was hinted at during our discussion of equation

(5.16).

Corollary 5.15 Suppose that (V, Y, 1) is a p-adic vertex algebra, and let W ⊆ F (V ) be
the image of Y consisting of the p-adic fields Y (a, z) for a ∈ V . If we define the tth product
of these fields by the residue product Y (a, z)tY (b, z), then W is a submultiplicative p-adic
vertex algebra with vacuum state idV and canonical derivation ∂z. Moreover, Y induces
a bijective, continuous map of p-adic vertex algebras Y : V −→ W that preserves all
products.

Proof The set of fields Y (a, z) is closed with respect to all residue products by Lemma
5.16, and Y (1, z) = idV by Theorem 5.5. Then equation (5.16) says that the state-field
correspondence Y : (V, 1) −→ (W, idV ) preserves all products. Since V is a p-adic vertex
algebra and F (V ) is a p-adic Banach space by Proposition 4.6, then so too is W because
W is closed by Proposition 4.14. Next we show that ∂z is the canonical derivation forW .
Certainly ∂z idV = 0, and it remains to show that Y (a, z)−2 idV = ∂zY (a, z). But this is
just the case t = −1, b(z) = idV of (5.17). This shows that W is a p-adic vertex algebra.
That it is submultiplicaitve follows from (5.16) and Lemma 5.9. Finally, we assert that
Y : V → W is a continuous bijection. Continuity follows by definition and injectivity is a
consequence of the creativity axiom. ��

Remark 5.16 It is unclear to us whether themap Y : V −→ W of Corollary 5.15 is always
a topological isomorphism. It may be thatW functions as a sort of completion of V that
rectifies any lack of submultiplicativity in its p-adic fields. However, we do not know of an
example where Y is not a topological isomorphism onto its image.
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6 p-adic conformal vertex algebras
Here we develop the theory of vertex algebras containing a dedicated Virasoro vector.
We find it convenient to divide the main construction into two halves, namely weakly
conformal and conformal p-adic vertex algebras. One of the main results is Proposition
6.8.

6.1 The basic definition

As a preliminary, we recall that the Virasoro algebra over Qp of central charge c is the Lie
algebra with a canonical Qp-basis consisting of L(n), for n ∈ Z, and a central element κ

that satisfies the relations of Definition 2.2.

Definition 6.1 A weakly conformal p-adic vertex algebra is a quadruple (V, Y, 1,ω) such
that (V, Y, 1) is a p-adic vertex algebra (cf. Definition 4.10) and ω ∈ V is a distinguished
state (called the conformal vector, orVirasoro vector) such thatY (ω, z) =:

∑
n∈Z L(n)z−n−2

enjoys the following properties:

(a) [L(m), L(n)] = (m − n)L(m + n) + 1
12δm+n,0(m3 − m)cV idV for some c = cV ∈ Qp

called the central charge of V ,
(b) [L(−1), Y (v, z)] = ∂zY (v, z) for v ∈ V .

This completes the Definition.

Remark 6.2 We are using the symbols L(n) in two somewhat different ways, namely as
elements in an abstract Virasoro Lie algebra in (2.2) and as modes ω(n + 1) of the vertex
operator Y (ω, z) in part (a) of Definition 6.1. This practice is traditional and should cause
no confusion. Thus the meaning of (a) is that the modes of the conformal vector close on
a representation of the Virasoro algebra of central charge cV as operators on V such that
the central element κ acts as cIdV .

Remark 6.3 Part (b) of Definition 6.1 is called translation covariance. Comparison with
Subsection 5.3 shows that the meaning of part (b) is that L(−1) is none other than the
canonical derivation T of the vertex algebra (V, Y, 1).

Remark 6.4 When working over a general base ring it is often convenient to replace the
central charge c with the quasicentral charge c′ defined by c′ ..= 1

2c, so that the basic
Virasoro relation reads

[L(m), L(n)] = (m − n)L(m + n) + δm+n,0

(
m + 1

3

)
c′κ (6.1)

where all coefficients, with the possible exception of c′, lie in Z.

6.2 Elementary properties of weakly conformal p-adic vertex algebras

We draw some basic conclusions from Definition 6.1. These are well-known in algebraic
VOA theory, although the context is slightly different here. For an integer k ∈ Z we set

V(k) ..= {v ∈ V | L(0)v = kv}

Lemma 6.5 We have 1 ∈ V(0) and ω ∈ V(2).
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Proof First apply the creation axiom to see that

Y (ω, z)1 =
∑

n∈Z
L(n)1z−n−2 = ω + O(z),

in particular L(0)1 = 0, that is 1 ∈ V(0). This proves the first containment stated in the
Lemma and it also shows that L(−2)1 = ω.
Now use the Virasoro relations to see that

L(0)ω = L(0)L(−2)1 = [L(0), L(−2)]1 = 2L(−2)1 = 2ω,

that is ω ∈ V(2), which is the other needed containment. The Lemma is proved. ��

Lemma 6.6 Suppose that u ∈ V(m). Then for all integers 	 and k we have

u(	) : V(k) → V(k+m−	−1).

Proof Let v ∈ V(k). We have to show that L(0)u(	)v = (k + m − 	 − 1)u(	)v. With this
in mind, first consider the commutator formula Proposition 5.1 with ω in place of u and
r = 0. Bearing in mind that L(−1) = ω(0) we obtain

[L(−1), v(s + 1)] = (L(−1)v)(s),

and a comparison with the translation covariance axiom (b) above then shows that

(L(−1)v)(s) = −sv(s − 1). (6.2)

Now we calculate

L(0)u(	)v = [L(0), u(	)]v + u(	)L(0)v =
1∑

i=0
(L(i − 1)u)(1 + 	 − i)v + ku(	)v

where wemade another application of the commutator formula to get the first summand.
Consequently, by (6.2) we have

L(0)u(	)v = (L(−1)u)(1 + 	)v + (L(0)u)(	)v + ku(	)v

= −(	 + 1)u(	)v + mu(	)v + ku(	)v,

which is what we needed. ��

6.3 p-adic vertex operator algebras

Definition 6.7 A conformal p-adic vertex algebra is a weakly conformal p-adic vertex
algebra (V, Y, 1,ω) as in Definition 6.1 such that the integral part of the spectrum of L(0)
has the following two additional properties:

(a) each eigenspace V(k) is a finite-dimensionalQp-linear space,
(b) there is an integer t such that V(k) = 0 for all k < t.

We now have

Proposition 6.8 Suppose that (V, Y, 1,ω) is a conformal p-adic vertex algebra, and let
U ..= ⊕k∈ZV(k) be the sum of the integral L(0)-eigenspaces. Then (U, Y, 1,ω) is an algebraic
VOA overQp.
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Proof The results of the previous Subsection apply here, so in particular U contains 1
and ω by Lemma 6.5. Moreover, if u ∈ U , then Y (u, z) belongs to End(U )[[z, z−1]] thanks
to Lemma 6.6. More is true: because V(k) = 0 for k < t, the same Lemma implies that
u(	)v = 0 whenever u ∈ V(m), v ∈ V(k) and 	 > k + m − 1. Therefore, each Y (u, z) is an
algebraic field on U .
Because (V, Y, 1) is a p-adic vertex algebra, from the axioms of p-adic VOA, then the

vertex operators Y (u, z) for u ∈ U satisfy the algebraic Jacobi identity, and therefore
(U, Y, 1,ω) is an algebraic VOA overQp. ��

Definition 6.9 A p-adic VOA is a conformal p-adic vertex algebra (V, Y, 1,ω) as in Defi-
nition 6.7 such that V = Û .

As an immediate consequence of the preceding Definition and Proposition 6.8, we have

Corollary 6.10 Suppose that (V, Y, 1,ω) is a p-adic conformal vertex algebra, and let
U ..= ⊕k∈ZV(k) be the sum of the L(0)-eigenspaces. Then the completion Û of U in V is a
p-adic VOA. �

6.4 Examples

We discuss some elementary examples of p-adic VOAs of a type that are familiar in the
context of algebraic k-vertex algebras.
The first two are degenerate in the informal sense that the conformal vector ω is equal

to 0

Example 6.11 p-adic topological rings.
Suppose that V is a commutative, associative ring with identity 1 that is also a p-adic
Banach space. Concerning the continuity of multiplication, we only need to assume that
each multiplication a : b �→ ab, for a, b ∈ V , is bounded, i.e.,

∣∣ab
∣∣ ≤ M

∣∣b
∣∣ for a non-

negative constant M depending on a but independent of b. Define the vertex operator
Y (a, z) to be multiplication by a. We claim that (V, Y, 1) is a p-adic vertex algebra. Indeed,∣∣Y (a, z)

∣∣ = |a|, so Y is bounded and hence continuous. The commutativity of multipli-
cation amounts to p-adic locality, cf. Definition 5.4, and the remaining assumptions of
Theorem 5.7 are readily verified (taking T = 0). Then this result says that indeed (V, Y, 1)
is a p-adic vertex ring. Actually, it is a p-adic VOA (with ω = 0) as long as V = V(0) is
finite-dimensional overQp.

Example 6.12 Commutative p-adic Banach algebras.
This is essentially a special case of the preceding Example 1. In a p-adic Banach ringV with
identity, one has (by definition) that multiplication is submultiplicative, i.e.,

∣∣ab
∣∣ ≤ |a| ∣∣b∣∣.

Thus in the previous Example, the vertex operator Y (a, z) is submultiplicative (compare
with Definition 4.5).

Example 6.13 The p-adic Virasoro VOA.
The construction of the Virasoro vertex algebra overC can be basically reproduced work-
ing over Zp [35]. We recall some details here.
We always assume that the quasicentral charge c′ as defined in (6.1) lies in Zp. Form the

highest weight module, call it W , for the Virasoro algebra over Qp that is generated by a
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state v0 annihilated by all modes L(n), for n ≥ 0, and on which the central element K acts
as the identity.
By definition (and the Poincaré-Birkhoff-Witt theorem) then,W has a basis consisting

of the states L(−n1) · · · L(−nr)v0 for all sequences n1 ≥ n2 ≥ . . . ≥ nr ≥ 1. Thanks
to our assumption that c′ ∈ Zp it is evident from (6.1) that the very same basis affords
a module for the Virasoro Lie ring over Zp. We also let W denote this Zp-lattice. Let
W1 ⊆ W be the Zp-submodule generated by L(−1)v0. Then the quotient moduleW /W1
has a canonical Zp-basis consisting of states L(−n1) · · · L(−nr)v0 + W1 for all sequences
n1 ≥ n2 ≥ . . . ≥ nr ≥ 2.
The Virasoro vertex algebra over Zp with quasicentral charge c′ has (by Definition)

the Fock space V ..= W /W1 and the vacuum element is 1 ..= v0 + W1. By construction
V is a module for the Virasoro ring over Zp, and the vertex operators Y (v, z) for, say
v = L(−n1) · · · L(−nr)v0 + W1, may be defined in terms of the actions of the L(n) on V .
For further details see [35, Sect. 7], where it is also proved (Theorem 7.3, loc. cit) that
when so defined, (V, Y, 1) is an algebraic vertex algebra over Zp. Indeed, it is shown (loc.
cit, Subsection 7.5) that (V, Y, 1,ω) is a VOA over Zp in the sense defined there. But this
will concern us less because we want to treat our algebraic vertex algebra (W /W1, Y, 1)
over Zp p-adically.

Having gotten this far, the next step is almost self-evident.We introduce the completion

V ′ ..= lim←−V /pkV

Theorem 6.14 The completion V ′ is a p-adic VOA in the sense of Definition 6.9.

Proof It goes without saying that V ′ = (V ′, Y, 1,ω) where V ′, Y and 1 have already been
explained. We define ω ..= L(−2)v0 + W1 = L(−2)1 ∈ V . Implicit in [35, Theorem 7.3]
are the statements thatω is a Virasoro state inV , and that its mode L(0) has the properties
(a) and (b) of Definition 6.1. Thus (V ′, Y, 1,ω) is a weakly conformal p-adic VOA.
Now because V is an algebraic VOA then V = ⊕V(k) has a decomposition into L(0)-

eigenspaces as indicated, with V(k) a finitely generated free Zp-module and V(k) = 0 for
all small enough k . By Proposition 7.3 V is also the sum of the integral L(0)-eigenspaces
in V ′. So in fact (V ′, Y, 1,ω) is a conformal p-adic vertex algebra. Since by definition V ′

is the completion of V then (V ′, Y, 1,ω) is a p-adic VOA according to Definition 6.9. The
Theorem is proved. ��

7 Completion of an algebraic vertex operator algebra
We now discuss the situation of completing algebraic VOAs. The structure that arises
was the model for our definition of p-adic VOA above. This section generalizes Theorem
6.14 above.
Let V = (V, Y, 1) be an algebraic VOA overQp. Assume further thatV is equipped with

a nonarchimedean absolute value |·| that is compatible with the absolute value on Qp in
the sense that if α ∈ Qp and v ∈ V then |αv| = |α| |v|, and such that |1| ≤ 1. We do
not necessarily assume that V is complete with respect to this absolute value. In order
for the completion of V to inherit the structure of a p-adic VOA, it will be necessary to
assume some compatibility between the VOA axioms and the topology on V . To this end
we make the following definition.



27 Page 26 of 41 C. Franc, G. Mason Res. Number Theory (2023) 9:27

Definition 7.1 We say that |·| is compatible with V if the following properties hold:

(1) for each a ∈ V , the algebraic vertex operator Y (a, z) belongs to F (V ), i.e., it is a
p-adic field in the sense of Definition 4.1. In particular, each mode a(n) is a bounded
and hence continuous endomorphism of V .

(2) the association a �→ Y (a, z) is continuous when F (V ) is given the topology derived
from the sup-norm.

These conditions are well-defined even though V is not assumed to be complete. The
basic observation is the following:

Proposition 7.2 Assume that |·| is compatible with V = (V, Y, 1) in the sense of Definition
7.1, and letV ′ denote the completion ofV with respect to |·|. ThenV ′ has anatural structure
of p-adic VOA.

Proof Let a ∈ V ′ so that by definition we can write a = limn→∞ an for an ∈ V . We first
explain how to define Y (a, z) by taking a limit of the algebraic fields Y (an, z), and then we
show that this limit is a p-adic field on V ′.
Themodes of each an are continuous, and so they extend to continuous endomorphisms

of V ′, and indeed, since Y (an, z) ∈ F (V ) by condition (1) of Definition 7.1, we can
naturally view this as a p-adic field in F (V ′) by continuity. Next, by continuity of the
map b �→ Y (b, z) on V , and since F (V ′) is complete by Proposition 4.6, we deduce that
Y (a, z) = limn→∞ Y (an, z) is also contained inF (V ′). The extendedmap Y : V ′ → F (V ′)
inherits continuity similarly.
Next, it is clear that the creativity axiom is preserved by taking limits. Likewise, the Jacobi

identity is preserved under taking limits, as it is the same equality as in the algebraic case.
Finally, the Virasoro structure ofV ′ is inherited fromV , and similarly for the (continuous)
direct sum decomposition. ��

The following Proposition is straightforward, but we state it explicitly to make it clear
that the continuously-graded pieces of the p-adic completion of an algebraic VOA do not
grow in dimension:

Proposition 7.3 Let V = ⊕
n≥N V(n) denote an algebraic VOA endowed with a compat-

ible nonarchimedean absolute value, and let V ′ = ⊕̂
n≥NV ′

(n) denote the corresponding
completion (p-adic VOA). Then V(n) = V ′

(n) and

V ′
(n) = {v ∈ V ′ | L(0)v = nv}.

Proof Since each V(n) is a finite-dimensional Qp-vector space by hypothesis, it is auto-
matically complete with respect to any nonarchimedean norm. Therefore, the completion
V ′ consists of sums v = ∑

n≥N vn with vn ∈ V(n) for all n, such that vn → 0 as n → ∞.
Moreover v = 0 if and only if vn = 0 for all n. Since L(0) is assumed to be continuous with
respect to the topology on V (since all modes are assumed continuous) we deduce that

(L(0) − n)v =
∑

m≥N
(L(0) − n)vm =

∑

m≥N
(m − n)vm.

The preceding expression only vanishes if v ∈ Vn. Thus L(0) does not acquire any new
eigenvectors with integer eigenvalues in V ′, which concludes the proof. ��
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Nowwe wish to discuss one way that p-adic VOAs arise. It remains an open question to
give an example of a p-adic VOA that does not arise via completion of an algebraic VOA
with respect to some absolute value.
Let U = ⊕

k U(k) denote an algebraic vertex algebra over Zp in the sense of [35] and
Sect. 2, but equipped with an integral decomposition as shown, where each graded piece
U(k) is assumed to be a free Zp-module of finite rank. Then V ..= U ⊗Zp Qp has the
structure of an algebraic vertex algebra, and suppose moreover that V has a structure of
algebraic VOA compatible with this vertex algebra structure. As usual, V = ⊕kV(k) is the
decomposition ofV into L(0)-eigenspaces. Note that the conformal vectorω ∈ V may not
be integral, that is, it might not be contained in U . Suppose, however, that the gradings
are compatible, so that U(k) = U ∩ V(k). Choose Zp-bases for each submodule U(k), and
endow V with the corresponding sup-norm: that is, if (ej) are basis vectors, then

∣∣∣
∑

αjej
∣∣∣ = sup

j

∣∣αj
∣∣ . (7.1)

Proposition 7.4 Let V = U ⊗Zp Qp, equipped with the induced sup-norm (7.1). Then
the sup-norm is compatible with the algebraic VOA structure. Thus, the completion V ′ is
a p-adic VOA.

Proof Each a ∈ V is a finite Qp-linear combination of elements in the homogeneous
pieces U(k) of the integral model. The modes of elements in U(k) are direct sums of maps
between finite-rank free Zp-modules, and so they are thus uniformly bounded by 1 in the
operator norm. It follows that the modes appearing in any Y (a, z) are uniformly bounded.
Further, for each b ∈ V , the series Y (a, z)b has a finite Laurent tail since V is an algebraic
VOA. Therefore each Y (a, z) is a p-adic field, as required by condition (1) of Definition
7.1.
It remains to show that the state-field correspondence V → F (V ) is continuous. We

would like to use the conclusion of Proposition 4.14 below, but that result assumed that
we had a p-adic VOA to begin with. To avoid circularity, let us explain why the conclusion
nevertheless applies here: first, since 1 is from the underlying algebraic VOA, we still have
Y (1, z) = idV . This is all that is required to obtain |1| ≤ ∣∣Y (1, z)

∣∣, as in the proof of
Corollary 4.14. Then using this, and since a(−1)1 = a for a ∈ V since V is an algebraic
VOA, we deduce that

|a| ≤ ∣∣Y (a, z)
∣∣ (7.2)

for all a ∈ V , as in the proof of Proposition 4.14.
Now, returning to the continuity of the map V → F (V ), write a ∈ V as a = ∑

j αjej
where αj ∈ Qp and ej ∈ U(kj) are basis vectors used to define the sup-norm on V . In
particular, we have

∣∣ej(n)
∣∣ ≤ 1 for all j and n, since ej(n) is defined over Zp by hypothesis.

Then
∣∣Y (a, z)

∣∣ = sup
n

∣∣a(n)
∣∣ ≤ sup

n
sup
j

∣∣αj
∣∣ ∣∣ej(n)

∣∣ ≤ sup
j

∣∣αj
∣∣ = |a| .

Coupled with the previously established inequality (7.2), this implies that under the
present hypotheses we have

∣∣Y (a, z)
∣∣ = |a|. Thus, Y is an isometric embedding, and

this confirms in particular that the state-field correspondence is continuous, as required
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by condition (2) of Definition 7.1. Therefore we may apply Proposition 7.2 to complete
the proof. ��

Remark 7.5 We point out that the integral structure above was necessary to ensure a
uniform bound for the modes a(n), independent of n ∈ Z, as required by the definition of
a p-adic field.

Remark 7.6 There is a second, equivalent way to obtain a p-adic VOA from U (cf. Sect.
2.4). First observe that the Zp-submodules pnU are 2-sided ideals defined over Zp. We set

U ′ = lim←−U/pnU.

This is a limit of vertex rings over the finite rings Z/pnZ and U ′ has a natural structure
of Zp-module. Let V ′ = U ′ ⊗Zp Qp. Then this carries a natural structure of p-adic VOA
that agrees with the sup-norm construction above.

8 Further remarks on p-adic locality
The Goddard axioms of Sect. 5 illustrate that if Y (a, z) and Y (b, z) are p-adic vertex oper-
ators, then they aremutually p-adically local in the sense that

lim
n→∞(x − y)n[Y (a, x), Y (b, y)] = 0.

In this section we adapt some standard arguments from the theory of algebraic vertex
algebras on locality to this p-adic setting.
Let us first analyze what sort of series Y (a, x)Y (b, y) is. We write

Y (a, x)Y (b, y) =
∑

m,n∈Z
a(n)b(m)x−n−1y−m−1.

We wish to show that:

(1) there existsM ∈ R≥0 such that
∣∣a(n)b(m)c

∣∣ ≤ M |c| for all c ∈ V and all n,m ∈ Z;
(2) limm,n→∞ a(n)b(m)c = 0 for all c ∈ V .

Property (1) is true since a(n) and b(m) are each bounded operators on V , and thus so
is their composition a(n)b(m). For (2), notice that since there is a constant M such that∣∣a(n)c′

∣∣ ≤ M
∣∣c′
∣∣ for all c′ ∈ V , we have

∣∣a(n)b(m)c
∣∣ ≤ M

∣∣b(m)c
∣∣ → 0

as m → ∞, where convergence is independent of n. If instead n grows, then a(n)b → 0
and continuity ofY (•, z) yieldsY (a(n)b, z) → 0. Thenuniformity of the sup-norm likewise
yields limn→∞

∣∣a(n)b(m)c
∣∣ = 0 uniformly in m. Thus for every ε > 0, there are at most

finitely many pairs (n,m) of integers n,m ≥ 0 with
∣∣a(n)b(m)c

∣∣ ≥ ε. This establishes
Property (2) above.
In order to give an equivalent formulation of p-adic locality, we introduce the formal

δ-function following Kac [26]:

δ(x − y) ..= x−1
∑

n∈Z

(
x
y

)n
.

Likewise, let ∂x = d/dx and define ∂
(j)
x = 1

j!∂
j for j ≥ 0. The following result is a p-adic

analogue of part of Theorem 2.3 of [26].
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Proposition 8.1 Let V be a p-adic Banach space and let Y (a, z), Y (b, z) ∈ F (V ) be p-adic
fields on V . Then the following are equivalent:

(1) limn→∞(x − y)n[Y (a, x), Y (b, y)] = 0;
(2) there exist unique series cj ∈ End(V )[[y, y−1]] with limj→∞ cj = 0 such that

[Y (a, x), Y (b, y)] =
∞∑

j=0
cj∂ (j)y δ(x − y).

Proof First, notice that by part (c) of Proposition 2.2 of [26], we can uniquely write

[Y (a, x), Y (b, y)] =
∑

j≥0
cj(y)∂ (j)y (x − y) + b(x, y),

b(x, y) =
∑

m∈Z≥0
n∈Z

am,nxmyn.

for series cj(y) ∈ End(V )[[y, y−1]] and am,n ∈ V .
Suppose that (1) holds. Then by part (e) of Proposition 2.1 of [26], we find that

limn→∞(x − y)nb(x, y) = 0. Since b(x, y) is constant and the sequence (x − y)n does
not have a p-adic limit, the only way this can transpire is if b(x, y) = 0. Then by parts (e)
and (d) of Proposition 2.1 in [26], we now have

(x − y)n[Y (a, x), Y (b, y)] =
∞∑

j=0
cj+n(y)∂ (j)y (x − y) (8.1)

By equation (2.2.2) of [26], the coefficient of the x−1-term in this expression is the
series cj+n(y). By definition of the sup-norm on formal series, as n grows, then since
(x−y)n[Y (a, x), Y (b, y)] tends to zero p-adically, we find that cj+n(y)must have coefficients
that becomemore andmore highly divisible by p. Thus limj cj = 0 in the sup-norm, which
confirms that (2) holds.
Conversely, if (2) holds, then we deduce that equation (8.1) holds as in the previous part

of this proof. Since the coefficients of δ
(j)
y (x − y) are integers, and the coefficients of cn(y)

go to zero p-adically in the sup-norm as n grows, we find that (1) follows from equation
(8.1) by the strong triangle ineqaulity. ��

Recall formula (2.1.5b) of [26]:

∂
(j)
y δ(x − y) =

∑

m∈Z

(
m
j

)
x−m−1ym−j .



27 Page 30 of 41 C. Franc, G. Mason Res. Number Theory (2023) 9:27

Thus, if Y (a, x) and Y (b, y) are mutually p-adically local, then we deduce that

[Y (a, x), Y (b, y)] =
∞∑

j=0
cj(y)∂ (j)y (x − y)

=
∞∑

j=0

∑

m∈Z

(
m
j

)
cj(y)x−m−1ym−j

=
∞∑

j=0

∑

m∈Z

∑

n∈Z

(
m
j

)
cj(n)x−m−1ym−n−j−1

=
∑

m∈Z

∑

n∈Z

⎛

⎝
∞∑

j=0

(
m
j

)
cj(m + n − j)

⎞

⎠ x−m−1y−n−1

Thus, we deduce the fundamental identity:

[a(m), b(n)] =
∞∑

j=0

(
m
j

)
cj(m + n − j). (8.2)

This series converges by the strong triangle inequality since cj → 0.

Remark 8.2 As a consequence of this identity, one candeduce thep-adic operator product
expansion as in equation (2.3.7b) of [26]. The only difference is that it now involves an
infinite sum: if Y (a, x) and Y (b, y) are twomutually local p-adic fields, then the coefficients
of the cj in equation (8.2) leads to an expression

Y (a, x)Y (b, y) ∼
∞∑

j=0

cj(y)
(x − y)j+1

which is strictly an abuse of notation that must be interpreted as in [26]. Again, this p-adic
OPE converges thanks to the fact that cj → 0.

As in the algebraic theory of VOAs, when Y (a, x) and Y (b, x) are mutually p-adically
local, one has the identity cj(n) = (a(j)b)(n) and equation (8.2) specializes to the commu-
tator formula (5.1).

Definition 8.3 LetV be a p-adic vertex algebra, and let L(V ) ⊆ End(V ) denote the p-adic
closure of the linear span of the modes of every field Y (a, x) for a ∈ V .

Theorem 8.4 The space L(V ) is a Lie algebra with commutators acting as Lie bracket.

Proof It is clear that L(V ) is a subspace, so it remains to prove that it is closed under
commutators. Let L ⊆ L(V ) denote the dense subspace spanned by the modes. First
observe that if a, b ∈ V , then [a(n), b(m)] ∈ L(V ) for all n,m ∈ Z, thanks to equation (5.1).
It follows by linearity that [L, L] ⊆ L(V ). The closure of [L, L] is equal to [L(V ), L(V )], and
so we deduce [L(V ), L(V )] ⊆ L(V ), which concludes the proof. ��
Finally, we elucidate some aspects of rationality of locality in this p-adic context, mod-

eling our discussion on Proposition 3.2.7 of [30]. Let V be a p-adic vertex algebra with a
completed graded decomposition

V =
⊕̂

n
V(n),



C. Franc, G. Mason Res. Number Theory (2023) 9:27 Page 31 of 41 27

whereVn = 0 if n � 0. The direct sumV ′ of the duals of each finite-dimensional subspace
V(n) consists of the linear functionals 	 on V such that 	|V(n) = 0 for all but finitely many
n ∈ Z. This space is not p-adically complete, so we let V ∗ denote its completion.

Lemma 8.5 The space V ∗ is the full continuous linear dual of V .

Proof Let 	 : V → Qp be a continuous linear functional. We must show that 	 is approx-
imated arbitrarily well by functionals in the restricted dual V ′. Continuity of 	 asserts the
existence of M such that

∣∣	(v)
∣∣ ≤ M |v| for all v ∈ V . Let δn ∈ V ′ denote the functional

that is the identity on V(n) and zero on V(m) form �= n, and write

	N =
∑

−N≤n≤N
δn	.

We clearly have 	N ∈ V ′ for all N . Then 	N → 	 expresses 	 as a limit of elements of V ′.
This concludes the proof. ��
Note that we did not need the condition V(n) = 0 if n is small enough in the preceding

proof.

Definition 8.6 The Tate algebra Qp〈x〉 consists of those series in Qp[[x]] such that the
absolute values of the coefficients go to zero.

The Tate algebra is the ring of rigid analytic functions on the closed unit disc inQp that
are defined over Qp. More general Tate algebras are the building blocks of rigid analytic
geometry in the same way that polynomial algebras are the building blocks of algebraic
geometry. Below we use the slight abuse of notationQp〈x, x−1〉 to denote formal series in
x and x−1 whose coefficients go to zero in both directions. Elements of Qp〈x−1〉[x] can
be interpreted as functions on the region |x| ≥ 1, while elements of Qp〈x, x−1〉 can be
interpreted as functions on the region |x| = 1. Unlike in complex analysis, this boundary
circle defined by |x| = 1 is a perfectly good rigid-analytic space.

Lemma 8.7 Let V be a p-adic VOA, let u, v ∈ V , let 	1 ∈ V ′, and let 	2 ∈ V ∗. Then

〈	1, Y (u, x)v〉 ∈ Qp〈x−1〉[x],
〈	2, Y (u, x)v〉 ∈ Qp〈x, x−1〉.

Proof Write u = ∑
n∈Z un and v = ∑

n∈Z vn where un, vn ∈ V(n) for all n, and
limn→∞ un = 0, limn→∞ vn = 0. Since each u(n) is continuous, we have

u(n)v =
∑

b∈Z
u(n)vb.

Likewise, since u �→ Y (u, x) is continuous, we have Y (u, x) = ∑
a Y (ua, x) and hence

u(n)v =
∑

a,b∈Z
ua(n)vb.

Since ua and vb are homogeneous of weight a and b, respectively, we have that ua(n)vb ∈
Va+b−n−1. If 	 : V → Qp is a continuous linear functional, and if V(n) = 0 for n < M,
then we have

	(u(n)v) =
∑

a,b≥M
a+b≥M+n+1

	(ua(n)vb).
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First suppose that 	 ∈ V ′, so that 	|V(n) = 0 if n > N , whereM ≤ N . Hence in this case
we have

	(u(n)v) =
∑

a≥M

N+n+1−a∑

b=M+n+1−a
	(ua(n)vb)

Suppose thatN + n+ 1− a < M. Then each vb in the sum above must vanish, so that we
can write the sum in fact as

	(u(n)v) =
N−M+n+1∑

a=M

N+n+1−a∑

b=M+n+1−a
	(ua(n)vb)

IfM > N −M + n+ 1, or equivalently, 2M −N − 1 > n, then the sum on a is empty and
	(u(n)v) vanishes. Therefore, 〈	, Y (u, x)v〉 has only finitelymany nonzero terms in positive
powers of x. If n → ∞ then since u(n)v → 0, and 	 is continuous, we likewise see that the
coefficients of the x−n−1 terms go to zero as n tends to infinity. This establishes the first
claim of the lemma.
Suppose instead that 	 ∈ V ∗, let C be a constant such that

∣∣u(n)v
∣∣ ≤ C |v| for all n (we

may assume without loss that v �= 0), and write 	 = 	1 + 	′ where 	1 ∈ V ′ and
∣∣	′∣∣ < ε

C|v| .
Then for each n,

∣∣	′(u(n)v)
∣∣ ≤ ε

C |v|
∣∣u(n)v

∣∣ ≤ ε

and so
∣∣	(u(n)v)

∣∣ ≤ sup(
∣∣	1(u(n)v)

∣∣ ,
∣∣	′(u(n)v)

∣∣) ≤ sup(
∣∣	1(u(n)v)

∣∣ , ε)

By the previous part of this proof, as n tends to −∞, eventually 	1(u(n)v) vanishes. We
thus see that 	(u(n)v) → 0 as n → −∞. Since 	 is a continuous linear functional and
u(n)v → 0 as n → ∞, we likewise get that 	(u(n)v) → 0 as n → ∞. This concludes the
proof. ��

Remark 8.8 A full discussion of rationality would involve a study of series

〈	, Y (a, x)Y (b, y)v〉
for v ∈ V and 	 ∈ V ∗, where a and b are mutually p-adically local. Ideally, one would
show that such series live in some of the standard rings arising in p-adic geometry, similar
to the situation of Lemma 8.7 above. It may be necessary to impose stronger conditions
on rates of convergence of limits such as limn→∞ a(n)b = 0 in the definition of p-adic
field in order to achieve such results. We do not pursue this study here.

9 The Heisenberg algebra
We now discuss p-adic completions of the Heisenberg VOA of rank 1, i.e., c = 1 in detail,
which was the motivation for some of the preceding discussion. In general there are many
possible ways to complete such VOAs, as illustrated below, though we only endow a
sup-norm completion with a p-adic VOA structure. Our notation follows [29]. To begin,
define

S = Qp[h−1, h−2, . . .],



C. Franc, G. Mason Res. Number Theory (2023) 9:27 Page 33 of 41 27

a polynomial ring in infinitely many indeterminates. This ring carries a natural action
of the Heisenberg Lie algebra. Recall that this algebra is defined by generators hn for
n ∈ Z\{0} and the central element 1, subject to the canonical commutation relations

[hm, hn] = mδm+n,01. (9.1)

The Heisenberg algebra acts on S as follows: if n < 0 then hn acts by multiplication,
1 acts as the identity, while for n > 0, the generator hn acts as n d

dh−n
. Then S carries a

natural structure of VOA as discussed in Chapter 2 of [16], where the Virasoro action is
given by

c �→ 1,

Ln �→ 1
2
∑

j∈Z
hjhn−j , n �= 0,

L0 �→ 1
2
∑

j∈Z
h−|j|h|j|.

Elements of S are polynomials with finitely many terms, and this space can be endowed
with a variety of p-adic norms. We describe a family of such norms that are indexed by
a real parameter r ≥ 0, which are analogues of norms discussed in Chapter 8 of [28] for
polynomial rings in infinitely many variables.
For I a finite multi-subset of Z<0, let hI = ∏

i∈I hi and define |I | = −∑
i∈I i, so that hI

has weight |I |. For fixed r ∈ R>0 define a norm
∣∣∣∣∣
∑

I
aIhI

∣∣∣∣∣
r

= sup
I

|aI | r|I |.

For example, when r = 1, this norm agrees with the sup-norm corresponding to the
integral basis given by the monomials hI . Let Sr denote the completion of S relative to the
norm a �→ |a|r .
Proposition 9.1 The ring Sr consists of all series

∑
I aIhI ∈ Qp[[h(−1), h(−2), . . .]] such

that

lim|I |→∞
|aI | r|I | = 0.

Proof Let an denote a Cauchy sequence in S relative to the norm |a|r , so that we can write
an = ∑

I anI hI for each n ≥ 0. We first show that for each fixed indexing multiset J , the
sequence anJ is Cauchy inQp and thus has a well-defined limit. For this, let ε > 0 be given
and choose N such that |an − am| < εr|J | for all n,m > N . This means that

∣∣anJ − amJ
∣∣ r|J | ≤ ∣∣an − am

∣∣ < εr|J |

for all n,m > N , so that the sequence (anJ ) is indeed Cauchy. Let aJ denote its limit inQp
and let a = ∑

J aJ hJ .
There exists an index n such that |a − an| < ε. But notice that since an ∈ S, it follows

that anI = 0 save for finitely many multisets I . In particular, if |I | is large enough we see
that

|aI | r|I | = ∣∣aI − anI
∣∣ r|I | ≤ ∣∣a − an

∣∣ < ε.

Therefore lim|I |→∞ |aI | r|I | = 0 as claimed, and this concludes the proof. ��
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Corollary 9.2 If 0 < r1 < r2 then there is a natural inclusion Sr2 ⊆ Sr1 .

Proof This follows immediately from the previous proposition since r1 < r2 implies that
|aI | r|I |

1 < |aI | r|I |
2 . ��

Remark 9.3 Let Ŝ = ⋂
r>0 Sr . The ring Ŝ consists of all series

∑
I aIhI such that

lim|I |→∞ |aI | r|I | = 0 for all r > 0. It contains S but is strictly larger: for example, the
infinite series

∑
n≥0 pn

2hn−1 is contained in Ŝ but, being an infinite series, it is not in S.
This ring is an example of a p-adic Frechet space that is not a Banach space. Therefore,
according to our definitions, Ŝ does not have a structure of p-adicVOA. Itmay be desirable
to extend the definitions to incorporate examples like this into the theory.

Lemma 9.4 If a, b ∈ Sr , then
∣∣a(n)b

∣∣
r ≤ |a|r

∣∣b
∣∣
r r

−n−1 for all n ∈ Z.

Proof Write a = ∑
I aIhI and b = ∑

I bIhI where |aI | r|I | → 0 and
∣∣bI
∣∣ r|I | → 0. Then

the ultrametric property gives
∣∣a(n)b

∣∣
r ≤ sup

I,J

∣∣aIbJ
∣∣ ∣∣hI (n)hJ

∣∣
r .

Notice that hI is homogeneous of weight |I |, and hJ is homogeneous of weight |J |.
Therefore, it follows that hI (n)hJ is homogeneous of weight |I | + |J | − n − 1, and thus∣∣hI (n)hJ

∣∣
r ≤ r|I |+|J |−n−1. Combining this observation with the lined inequality on

∣∣a(n)b
∣∣
r

above establishes the lemma. ��
The preceding lemma illustrates that it is nontrivial to obtain uniform bounds for∣∣a(n)b

∣∣
r / |a|r unless r = 1. In this case, however, we obtain:

Proposition 9.5 The Banach ring S1 has a natural structure of submultiplicative p-adic
VOA.

Proof Since S has an integral basis and |·|1 is the corresponding sup-norm, we may
apply Proposition 7.4 to conclude that S1 has the structure of a p-adic VOA. That it is
submultiplicative follows from Lemma 9.4. ��
In [11], the authors show that there is a surjective character map

S → Qp[E2, E4 , E6]η−1 (9.2)

of the Heisenberg algebra S onto the free-module of rank 1 generated by η−1 over the ring
of quasi-modular forms of level one with p-adic coefficients.2 After adjusting the grading
on the Fock space S, this is even a map of graded modules. See [36,37] for more details on
this map.
The character is defined as follows: if v ∈ S is homogeneous of degree k , then v(n) is

a graded map that increases degrees by k − n − 1. In particular, v(k − 1) preserves the
grading, andwewrite o(v) = v(k−1) for homogeneous v of weight k . This is the zero-mode
of v. The zero mode is then extended to all of S by linearity. With this notation, let S(n) be
the nth graded piece of S and define the character of v ∈ S by the formula

Z(v, q) ..= q−1/24
∑

n≥0
TrS(n) (o(v))q

n.

2Actually, the authors work over C, but their proof applies to any field of characteristic zero.
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Theorem 9.6 The association v �→ η · Z(v, q) defines a surjectiveQp-linear map

f : S → Qp[E2, E4 , E6],

where η is the Dedekind η-function. �

Our goal now is to use p-adic continuity to promote this to a map from S1 into Serre’s
ring Mp of p-adic modular forms as defined in [43]. Recall that Mp is the completion of
Qp[E4 , E6] with respect to the p-adic sup-norm on q-expansions. When p is odd, Serre
proved thatQp[E2, E4 , E6] ⊆ Mp.

Theorem 9.7 Let p be an odd prime. Then the map v �→ ηZ(v, q) on the Heisenberg
algebra S extends to a naturalQp-linear map

f : S1 → Mp.

The image contains all quasi-modular forms of level one.

Proof Recall that S1 is the completion of S with respect to the p-adic sup-norm. Since the
rescaling factor ofηwill not affect the continuity of f , we see that to establish the continuity
of f , we are reduced to proving the p-adic continuity of the map v �→ Z(v, q), where the
image space q−1/24Qp〈q〉 is given the p-adic sup-norm. Suppose that |u − v|1 < 1/pk , so
that we can write u = v + pkw for some w ∈ S1 with |w|1 ≤ 1. This means that w is
contained in the completion of Zp[h(−1), h(−2), . . .], and all of its modes are defined over
Zp and satisfy

∣∣w(n)
∣∣
1 ≤ 1. In particular, the zero mode o(w) is defined over Zp, and thus

so is its trace, so that
∣∣TrS(n) (o(w))

∣∣ ≤ 1 for all n.
By linearity of the zero-mode map o and the trace, we find that with respect to the

sup-norm on q−1/24Qp〈q〉,
∣∣Z(u, q) − Z(v, q)

∣∣ =
∣∣∣∣∣∣
q−1/24

∑

n≥0
pk TrS(n) (o(w))q

n

∣∣∣∣∣∣
< p−k .

This shows that the character map preserves p-adic limits. It then follows by general
topology (e.g., Theorem 21.3 of [39]) that since S1 is a metric space, f is continuous. ��
The map in Theorem 9.7 has an enormous kernel, as even the algebraic map that it

extends has an enormous kernel. This complicates somewhat the study of the image,
as there do not exist canonical lifts of modular forms to states in the Heisenberg VOA.
A natural question is whether states in S1 map onto nonclassical specializations (that
is, specializations of non-integral weight) of the Eisenstein family discussed in [43] and
elsewhere. In the next section we give some indication that this can be done, at least for
certain p-adic modular forms, in spite of the large kernel of the map f .

10 Kummer congruences in the p-adic Heisenberg VOA
Weuse the notation from Sect. 9, in particular S1 is the p-adicHeisenberg VOA associated
to the rank 1 algebraic Heisenberg VOA S with canonical weight 1 state h satisfying the
canonical commutator relations (9.1). We shall write down some explicit algebraic states
in S that converge p-adically in S1 and we shall describe their images under the character
map f of Theorem 9.7 which, as we have seen, is p-adically continuous. Thus, the f -image
of our p-adic limit states will be Serre p-adic modular forms inMp. The description of the
states relies on the square-bracket formalism of [46]; see [36] for a detailed discussion of
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this material. The convergence of the states relies, perhaps unsurprisingly, on the classical
Kummer congruences for Bernoulli numbers.
In order to describe the states in S of interest to us we must review some details from

the theory of algebraic VOAs, indeed the part that leads to the proof of Theorem 9.6. This
involves the square bracket vertex operators and states. For a succinct overview of this we
refer the reader to Section 2.7 of [36]. From this we really only need the definition of the
new operators h[n] acting on S, which is as follows:

Y [h, z] :=
∑

n∈Z
h[n]z−n−1 := ezY (h, ez − 1). (10.1)

This reexpresses the vertex operators as objects living on a torus rather than a sphere, a
geometric perspective that is well-explained in Chapter 5 of [16]. The following result is a
special case of a result proved in [37] and exposed in [36, Theorem 4.5 and equation (44)].

Theorem 10.1 For a positive odd integer r we have

ηZ(h[−r]h[−1]1, q) = 2
(r − 1)!

Gr+1(τ )

Here, Gk (τ ) is the weight k Eisenstein series

Gk (τ ) ..= −Bk
2k

+
∑

n≥1
σk−1(n)qn

where Bk is the kth Bernoulli number. ��
In order to assess convergence, we rewrite the square bracket state h[−r]h[−1]1 in

terms of the basis {h(−n1)...h(−ns)1} (n1 ≥ n2 ≥ ... ≥ ns ≥ 1) of S.

Lemma 10.2 We have

(r − 1)!h[−r]h[−1]1 =
r+1∑

m=0
c(r,m)h(−m − 1)h(−1)1 − Br+1

r + 1
1,

where

c(r,m) ..=
m∑

j=0
(−1)m+j

(
m
j

)
(j + 1)r−1 = m!

{
r

m + 1

}

and
{ r
m+1

}
denotes a Stirling number of the second kind. In particular, c(r,m) = 0 if m ≥ r.

Proof It is readily found from (10.1) that h[−1]1 = h(−1)1 = h. Then we calculate:

(r − 1)!h[−r]h[−1]1

= (r − 1)! Resz z−rY [h, z]h(−1)1

= (r − 1)! Resz z−rezY (h, ez − 1)h(−1)1

= (r − 1)! Resz z−rez
⎧
⎨

⎩
∑

m≥0
h(−m − 1)h(−1)1(ez − 1)m + 1(ez − 1)−2

⎫
⎬

⎭ .

This, then, is the desired expression for (r − 1)!h[−r]h[−1]1 in terms of our preferred
basis for S, and it only remains to sort out the numerical coefficients. Taking the second
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summand in the previous display first, we find by a standard calculation that

Resz z−r(r − 1)!ez(ez − 1)−2 = − (r − 1)! Resz z−r d
dz
(
(ez − 1)−1)

= − (r − 1)! Resz z−r d
dz

⎛

⎝
∑

	≥0

B	

	!
z	−1

⎞

⎠

= − (r − 1)!r
Br+1

(r + 1)!
= − Br+1

r + 1
,

thereby confirming the coefficient of 1 as stated in the Lemma. As for the first summand,
for each 0 ≤ m ≤ r + 1 the needed coefficient c(r,m) is equal to

(r − 1)! Resz z−rez(ez − 1)m =(r − 1)! Resz z−r
m∑

j=0
(−1)m+j

(
m
j

)
e(j+1)z

=(r − 1)! Resz z−r
m∑

j=0
(−1)m+j

(
m
j

) ∞∑

n=0

(j + 1)n

n!
zn

=
m∑

j=0
(−1)m+j

(
m
j

)
(j + 1)r−1

as required. The relationship between c(r,m) and Stirling numbers of the second kind
then follows by standard results, and this completes the proof of the Lemma. ��
Combining the last two results, we obtain

Corollary 10.3 For a positive odd integer r, define states vr in the rank 1 algebraic Heisen-
berg VOA S as follows:

vr := 1/2(r − 1)!h[−r]h[−1]1.

Then

vr = 1/2
{ ∞∑

m=0
c(r,m)h(−m − 1)h(−1)1 − Br+1

r + 1
1
}

and

f (vr) = Gr+1.

��
We now wish to study the p-adic properties of these states as r varies. We shall rescale

things in a convenient way:

ur ..= (1 − pr)
( ∞∑

m=0
c(r,m)h(−m − 1)h(−1)1 − Br+1

r + 1
1
)

= 2(1 − pr)vr .

We now lift the classical Kummer congruences for Bernoulli numbers to this sequence of
states in the p-adic Heisenberg VOA. We begin with a simple Lemma treating the c(r,m)
terms.

Lemma 10.4 Let p be an odd prime with r = 1+ pa(p− 1), s = 1+ pb(p− 1) and a ≤ b.
Then for all m we have c(r,m) ≡ c(s,m) (mod pa+1).
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Proof Recall that

c(r,m) ..=
m∑

j=0
(−1)m+j

(
m
j

)
(j + 1)r−1.

If p | j + 1 then certainly (j + 1)r−1 ≡ 0 (mod pa+1). On the other hand, if p � j + 1 then
(j + 1)r−1 ≡ 1 (mod pa+1). It follows that

c(r,m) ≡
m∑

j=0
p�j+1

(−1)m+j
(
m
j

)
(mod pa+1),

and since the right side of the congruence is independent of r we deduce that c(r,m) ≡
c(s,m) (mod pa+1). This proves the Lemma. ��

Theorem 10.5 (Kummercongruences)The sequence (u1+pa(p−1))a≥0 converges p-adically
in S1 to a state that we denote u′

1 := lima→∞ u1+pa(p−1).

Proof The convergence for the terms in this sequence involving the Bernoulli numbers
follows from the classical Kummer congruences. Therefore, if a ≤ b, it will suffice to
establish that,

(1 − p1+pa(p−1))c(1 + pa(p − 1), m) ≡ (1 − p1+pb(p−1))c(1 + pb(p − 1), m) (mod pa+1)

for allm in the range 0 ≤ m ≤ pb(p − 1). But this follows by the preceding Lemma. ��

Notice that, putting all of this together, we have

f (u′
1) = lim

a→∞(1 − p1+pa(p−1))2G2+pa(p−1)

= 2 lim
a→∞(1 − p1+pa(p−1))G2+pa(p−1)

= 2G∗
2 ,

where G∗
2 is the p-normalized Eisenstein series encountered in [43], with q-expansion

given by

G∗
2(q) = p2 − 1

24
+
∑

n≥1
σ ∗(n)qn.

Here σ ∗(n) is the sum over the divisors of n that are coprime to p.

Remark 10.6 This computation illustrates the fact that the p-adic Heisenberg algebra
contains states that map under f to p-adic modular forms that are not quasi-modular
forms of level 1. It seems plausible that the rescaled p-adic character map f of Theorem
9.7 is surjective, that is, for an oddprimep every Serrep-adicmodular formcanbe obtained
from the normalized character map applied to a sequence of p-adically converging states
in S1. Aside from some other computations with Eisenstein series, we have yet to examine
this possibility in detail.

11 The p-adic Moonshinemodule
The Moonshine module V � = (V �, Y, 1,ω) is a widely known example of an algebraic
VOA over C [17]. Its notoriety is due mainly to the fact that its automorphism group is
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theMonster simple group F1 (loc. cit.) (Use of F1 here follows the Atlas notation [5] rather
than the more conventional M in order to avoid confusion with the Heisenberg VOA).
The conformal grading on V � takes the general shape

V � = C1 ⊕ V �

(2) ⊕ · · · (11.1)

and we denote by V �
+ ..= V �

(2) ⊕ · · · the summand consisting of the homogeneous vectors
of positive weight.
Dong and Griess proved [7, Theorem 5.9] that V � has an F1-invariant integral form R

over Z as in Definition 2.3 (see also [4]) and in particular V � is susceptible to the kind of
analysis we have been considering, thereby giving rise to the p-adic Moonshine module
V �
p . In this Section we give some details.
We obtain an algebraic vertex algebra over Zp by extension of scalarsU ..= R⊗Zp, and

similarly a vertex algebra over Qp, namely V ..= R ⊗Z Qp = U ⊗Zp Qp. Note that ω ∈ V
thanks to property (iii) of Definition 2.3, so V is in fact a VOA overQp. Now define

V �
p

..= V ′ = the completion of V with respect to its sup-norm.

Comparison with Proposition 7.4 shows that V �
p is a p-adic VOA and U furnishes an

integral structure according to Definition 4.15 and Proposition 7.3. We can now prove
the following result:

Theorem 11.1 For each prime p the p-adic Moonshine module V �
p has the following

properties:

(a) V �
p has an integral structure isomorphic to the completion of the Dong-Griess form

R ⊗ Zp,
(b) The Monster simple group F1 is a group of automorphisms of V �

p ,
(c) The character map v �→ ZV � (v, q) for v ∈ V �

+ extends to aQp-linear map

V �
+ → Mp

into Serre’s ring of p-adicmodular forms. The image contains all cusp forms of integral
weight and level one.

Proof We have already explained the proof of part (a). As for (b), notice that every sub-
module pkV � is preserved by the action of F1 by linearity of this action. Therefore, there
is a natural well-defined action of F1 on each quotient V �/pkV � module, and this action
extends to the limit V �

p ..= lim←−k V
�/pkV �. This concludes the proof of part (b).

As for part (c),we assert that if v ∈ V �
+ then the trace functionZV � (v, τ ) has aq-expansion

of the general shape aq + bq2 + · · ·. For we may assume that v ∈ V �

(k) is homogeneous of
some weight k ≥ 2. Then o(v)1 = v(k − 1)1 = 0 by the creation property, and since V �

has central charge c = 24 then by (11.1) we have ZV � (v, τ ) = q−c/24∑
n≥0 TrV �

(n)
o(v)qn =

TrV �

(2)
o(v)q + · · ·, and our assertion is proved.

By the previous paragraph and Zhu’s Theorem [10,15,46], it follows that ZV � (v, τ ) is a
sum of cusp-forms of level 1 and mixed weights and by [7, Theorem 1] every such level 1
cusp-form appears in this way. Now to complete the proof of part (c), proceed as in the
proof of Theorem 9.6. There is no need to exclude p = 2 because E2 plays no rôle. ��
Remark 11.2 The manner in which p-adic modular forms arise from the character map
for the p-adic VOAs in Theorems 9.7 and 11.1 are rather different. This difference masks
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a well-known fact in the theory of VOAs, namely that the algebraic Heisenberg VOA and
the algebraic Moonshine module have vastly different module categories. Indeed, V � has,
up to isomorphism, exactly one simple module — namely the adjoint module V � itself
— whereas M has infinitely many inequivalent simple modules. In the case of V �, Zhu’s
theorem (loc. cit.) may be applied and it leads to the fact, explained in the course of the
proof of Theorem 11.1, that trace functions for positive weight states are already sums of
cusp forms of mixed weight. But to obtain forms without poles, we must exclude states
of weight 0 (essentially the vacuum 1). On the other hand, there is no such theory for the
algebraic Heisenberg and indeed one sees from (9.2) that the trace functions for M are
by no means elliptic modular forms in general. That they take the form described in (9.2)
is a happy convenience (and certainly not generic behaviour), and we can normalize the
trace functions to exclude poles by multiplying by η. Since the quasi-modular nature of
the characters disappears when one considers the p-adic Heisenberg algebra, it is natural
to ask whether the module category for the p-adic Heisenberg algebra is simpler than for
the algebraic Heisenberg VOA. We do not currently have an answer for this question,
indeed, we have not even given a concrete definition of the module category for a p-adic
VOA!
Remark 11.3 We point out that our notation V �

p for the p-adic Moonshine module as
we have defined it may be misleading in that it does not record the dependence on the
Dong-Griess form R. Indeed there are other forms that one could use in its place such
as the interesting self-dual form of Carnahan [4] and we have not studied whether these
different forms produce isomorphic p-adic Moonshine modules.
Data availibility Data sharing is not applicable to this article.
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