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P-automata provide an automata-theoretic approach to probabilistic verification. Similar to alternat-

ing tree automata accepting labelled transition systems, p-automata accept labelled Markov chains

(MCs). This paper proposes an extension of p-automata that accept the set of all MCs (modulo

bisimulation) obtained from a Markov decision process under its schedulers.

1 Introduction

Model checking of µ-calculus [9] formulas on a Kripke structure (or labelled translation system) is a well

studied method for verifying the correctness of discrete state systems [6]. The problem entails whether

every execution (infinite tree) of a Kripke structure satisfies a given µ-calculus formula. The satisfiability

problem for µ-calculus, on the other hand, is to decide whether there exists an infinite tree which satisfies

a given µ-calculus formula. Both these problems are algorithmically feasible, and the key method is the

translation to alternating tree automata [13].

The notion of p-automata was introduced in [8] to provide a similar automata-theoretical foundation

for the verification of probabilistic systems as alternating tree automata provide for Kripke structures. As

alternating tree automata describe a complete framework for abstraction with respect to branching-time

logic like, µ-calculus, CTL and CTL∗ [13], p-automata similarly give a unifying framework for different

probabilistic logics.

Every p-automaton defines a set of labeled Markov chains, that is, a p-automaton reads an entire

Markov chain as input and it either accepts the Markov chain or rejects it. Analogous to alternating

tree automata where acceptance of a Kripke structure is decided by solving 2-player games [13], the

acceptance of a labelled Markov chain by a p-automaton is decided by solving stochastic 2-player games.

In this paper we revisit p-automata defined by [8] and extend it with a new construct for representing

Markov decision processes. We view a Markov decision process (MDP) as a set of Markov chains

defined by different schedulers and use the extended p-automata to represent this set. Modeling MDPs

as p-automata allows us to define a automata theoretical framework for abstraction of MDPs.

The main contribution of this paper is as follows: We extend the p-automata with a construct that

captures the non-determinism in the choice of probability distribution. This allows us to model Markov

decision processes as p-automata. We show that the extended p-automata are closed under bisimulation,

union and intersection, (though, in contrast to [8], the language is no longer closed under negation). We

show that the language of the p-automaton obtained from an MDP accepts exactly those Markov chains

that are bisimilar to the Markov chains induced by the schedulers of the MDP. In the rest of the paper,

when referring to p-automata we will assume the extended p-automata (as defined in Definition 7), unless

the contrary is stated explicitly.

The paper is organised as follows. In Section 2, we mention some important definitions and prelim-

inaries. In section 3 and 4, we introduce the p-automata and define the acceptance game. In Section 5,

we describe the embedding of an MDP as a p-automaton and conclude in Section 6. Details of some of

the proofs are present in the appendix.
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2 Preliminaries and definitions

Let XY be the set of functions from the set Y to the set X . For ϕ ∈ XY let img(ϕ) ⊆ X be the image

and dom(ϕ) = Y be the domain of ϕ . The set of probability distributions over set X is denoted by

DX where d ∈ DX iff d ∈ RX
+ and d

T ·1 = 1 (R+ is the set of non-negative reals). For µ ∈ DX , let

supp(µ) = {x ∈ X | µ(x)> 0} be the support of distribution µ .

Definition 1. A Markov chain (MC) M is a quintuple (S,P, AP,L,sin) where S is a (countable) set of

states, P(s) ∈ DS for all s ∈ S, AP is a set of atomic propositions, L : S → 2AP is a labeling function, and

sin ∈ S is the initial state (Figure 1).

An infinite path σ through MC M is a sequence of states σ = {σi}i≥0, where for all i≥ 0, P(σi,σi+1)>
0. Let path(s) denote the set of (finite or infinite) paths starting from state s. For a path σ , let

σ↓ denote the last state of σ if this exists (i.e., if σ is finite) and |σ | denote the length of σ . Let

succ(s) = {t | P(s, t)> 0} be the successors of state s. A probability measure on sets of infinite paths is

obtained in a standard way. Let (Ωs,F ,Pr) be the Borel σ -algebra where Ωs is the set of infinite paths

from state s, F is the smallest σ -field on cylinder sets of Ωs, and Pr is the probability measure on F ,

for a finite path σ , Pr(σ) = ∏0<i≤|σ | P(σi−1,σi) [2].

Definition 2. A Markov decision process (MDP) D is a quintuple (S,∆,AP,L,sin) where S, AP, L, and

sin are as before, and ∆ : S → 2DS such that ∆(s) is a finite set of distributions. (Figure 2) We assume S

and ∆(s) for each s ∈ S to be finite (unless the contrary is explicitly specified).

A finite path of an MDP is a sequence of states σ = σ0 . . .σn such for each 0 < i ≤ n σi ∈ supp(µ)
for some µ ∈ ∆(σi−1). Let path(s) be the set of (finite and infinite) paths from the state s. Let succ(s) =
{t | t ∈

⋃

µ∈∆(s) supp(µ)} be the set of successors of s. As usual, we use schedulers to resolve the possible

non-determinism in a state.

Definition 3. A scheduler of MDP D = (S,∆,AP,L,sin) is a function η : S+ → DDS
with η(σ) ∈

D∆(σ↓). The scheduler η induces the MC Dη = (S+,P,AP,L′,sin) with L′(σ) = L(σ↓), and P(σ ,σ ·t) =

∑µ∈∆(σ↓) η(σ)(µ)·µ(t).

These schedulers are history-dependent and randomized. Let HR(D) denote the set of history-

dependent randomized schedulers of MDP D.

Definition 4. Let MC M = (S,P,AP,L, sin). The equivalence relation R ⊆ S × S is a probabilistic

bisimulation [10] iff for every (s,s′) ∈ R it holds:

1. L(s) = L(s′), and

2. for every C ∈ S/R, we have ∑t∈C P(s, t) = ∑t ′∈C P(s′, t ′).

Let ∼ denote the largest probabilistic bisimulation on S. The MCs M1 and M2 are probabilistically

bisimilar, denoted M1 ∼ M2, if s1
in ∼ s2

in in the disjoint union of M1 and M2.

Definition 5. A stochastic game G is a tuple (V,E,V0,V1,Vp,P,Ω), where (V,E) is a finite directed graph

and (V0,V1,Vp) is a partition of V . V0 is the set of Player 0 configurations, V1 is the set of Player

1 configurations and Vp is the set of stochastic (or probabilistic) configurations. P is a probability

transition function P : Vp → DV and Ω ⊆ V is a set of accepting configurations. A path (also called a

play) in the graph (V,E) is winning for Player 0 if it is finite and ends in Player 1 configuration, or it is

infinite and ends in a suffix of configurations in Ω. Otherwise, that play is winning for Player 1.
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Figure 1: A Markov chain M, with S = {s0,s1,s2}
P(s0,s0) = P(s0,s1) = P(s0,s2) =

1
3
,

P(s1,s1) = P(s2,s2) = 1.
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Figure 2: A Markov decision process D. ∆(s0) =
{µ1,µ2}, where µ1(s0) = 1

2
,µ1(s1) = 1

2
and

µ2(s2) = 1.

A stochastic game is called a weak stochastic game iff for all maximal connected components

(MSCC) C in (V,E), either C ⊆ Ω or C∩Ω = /0. On the other hand, if Vp = /0 then it is called a weak

game. A strategy of a Player 0 is a function γ : V ∗×V0 → DV , with γ(w·u)(v) > 0 implies (u,v) ∈ E.

A play w = v0v1 . . . is consistent with strategy γ if for every i ≥ 0, vi ∈ V0 implies γ(v0 . . .vi)(vi+1) > 0.

Strategies of Player 1 are defined similarly. Let ϒ and Π be the set of all strategies for Player 0 and Player

1, respectively. A player 0 strategy γ is memoryless iff γ(w·v) = γ(w′·v), for any w,w′ ∈V ∗, and it pure

iff γ : V ∗×V0 →V , (similarly definitions applies to strategies of player 1).

A pair of strategies (γ,π) ∈ ϒ × Π of a game G determines an MC Mγ,π (configurations with-

out an out-going transition are made absorbing) whose paths are plays of G according to γ , π . The

measure of the set of winning plays of Player 0 starting from a configuration c in Mγ,π is denoted

by val
γ,π
0 (c). We have val

γ,π
1 (c) = 1− val

γ,π
0 (c). The val0(c) = supγ∈ϒ infπ∈Π val

γ,π
0 (c) and val1(c) =

supπ∈Π infγ∈ϒ val
γ,π
1 (c). If a strategy achieves these values then it is called optimal.

Theorem 1. [11, 5, 4] Let G be a stochastic game and c be one of its configurations. Then G is deter-

mined, that is val0(c)+val1(c) = 1. If G is finite and weak, then optimal strategies for both players exist

and they are memoryless and pure. If G is a stochastic weak game, then the problem whether val0(c)
greater than a given quantity v∈Q can be decided in NP∩co-NP, and if G is weak game then val0(c) = 1

can be decided in linear time.

The theorem extends to cases where some configurations have predefined values in [0,1].

3 Weak p-automata

In this section we extend p-automata, as defined in [8] with a new operator ⊕.

Definition 6 (Boolean formulas on T ). Let T be any arbitrary set, then B+(T ) is the set of positive

boolean formulas generated by the following syntax:

ϕ ::= t | true | false | ϕ ∧ϕ | ϕ ∨ϕ (1)

where t ∈ T .

The closure of ϕ ∈ B+(T ) is defined as cl(ϕ), where ϕ ∈ cl(ϕ) and if ϕ1 ◦ϕ2 ∈ cl(ϕ) then ϕ1,ϕ2 ∈ cl(ϕ),
for ◦ ∈ {∧,∨}. Let Q be any set of states, the following sets are derived from Q:

‖Q‖> = {‖q‖⊲⊳p | q ∈ Q,⊲⊳∈ {≥,>}, p ∈ [0,1]∩Q} ‖Q‖∗ = {∗(t1, . . . , tn) | n ∈ N,∀i, ti ∈ ‖Q‖>}
‖Q‖∨ = {∨(t1, . . . , tn) | n ∈ N,∀i, ti ∈ ‖Q‖>} ‖Q‖⊕ = {⊕(r1, . . . ,rn) | n ∈ N,∀i,ri ∈ ‖Q‖∗}
‖Q‖ = ‖Q‖∗∪‖Q‖∨∪‖Q‖⊕



4 MDPs as p-automata

We will call the elements of ‖Q‖> guarded states and elements of ‖Q‖⊕ terms. For brevity, we will

write ∗(t|t ∈ X) for ∗(t1, . . . , tn) where X = {t1, . . . , tn}, (similarly for ϕ ∈ ‖Q‖⊕ or ‖Q‖∨). For ϕ =
∗(‖q1‖⊲⊳1 p1

, . . . ,‖qn‖⊲⊳n pn
) (or ∨(‖q1‖⊲⊳1 p1

, . . . ,‖qn‖⊲⊳n pn
)), let the set of guarded states be gs(ϕ)= {q1, . . . ,qn}.

If ϕ = ⊕(r1, . . . ,rn) then the set of terms is tm(ϕ) = {r1, . . . ,rn}. In particular, if |tm(ϕ)| = 1 then

ϕ =⊕(r) is the same as r where r = ∗(t1, . . . , tn). Thus, we consider ‖Q‖∗ a special case of ‖Q‖⊕.

We will see subsequently that, ϕ ∈ ‖Q‖∗ represents the different probabilistic branches, whereas

ϕ ∈ ‖Q‖⊕ represents the non-determinism among the possible probabilistic branching r ∈ tm(ϕ).

Definition 7. A p-automaton A is a tuple (Q,Σ,δ ,ϕin,F), where Q is a finite set of states, Σ is a finite

alphabet (2AP), δ : Q×Σ→B+(Q∪‖Q‖) is the transition function, ϕin ∈B+(‖Q‖) is an initial condition,

and F ⊆ Q is an accepting set of states.

As a convention, p-automata have states, MC have locations, and weak stochastic games have con-

figurations. We will make the following simplification, from hereon we assume that for each ϕ ∈ ‖Q‖⊕,

if a state q ∈ gs(r) and q ∈ gs(r′), where r,r′ ∈ tm(ϕ) then r = r′. A p-automaton A = (Q,Σ,δ ,ϕin,F)
defines a labeled directed graph GA = (Q′,E,Eb,Eu) (called the game graph):

Q′ = Q∪ cl(δ (Q,Σ))
E = {(ϕ1 ∧ϕ2,ϕi)|ϕi ∈ Q′ \Q,1 ≤ i ≤ 2} ∪ {(q,δ (q,σ)) | q ∈ Q,σ ∈ Σ}

{(ϕ1 ∨ϕ2,ϕi)|ϕi ∈ Q′ \Q,1 ≤ i ≤ 2}
Eu = {(ϕ ∧q,q),(q∧ϕ,q),(ϕ ∨q,q),(q∨ϕ,q) | ϕ ∈ Q′,q ∈ Q}
Eb = {(ϕ,q) |ϕ ∈ ‖Q‖∨,q ∈ gs(ϕ)} ∪ {(ϕ,q) |ϕ ∈ ‖Q‖⊕,q ∈ gs(tm(ϕ))}

where δ (Q,Σ) = {δ (q,σ) | q ∈ Q and σ ∈ Σ}∪{ϕin}.

Example 1. Let the p-automaton A = (Q,Σ,δ ,ϕ,F) be defined as follows: Q = {q1, . . . ,q5}, Σ =
{a,b,c}, ϕ = ⊕(∗(‖q1‖≥ 1

2
,‖q5‖≥ 1

2
),∗(‖q2‖≥1)), δ (q1,a) = ∗‖q3‖≥1, δ (q2,a) = ∗‖q4‖≥1,δ (q3,b) =

∗‖q3‖≥1, δ (q4,c) = ∗‖q4‖≥1, δ (q5,a) = ϕ and F = Q. The game graph is shown in Figure 3.

We add markings on the edges to distinguish them. Edges in Eu and E are unmarked and are called

unbounded and simple transitions, respectively. Edge (ϕ,q) ∈ Eb is called a bounded transition and is

marked with ⊕ if ϕ ∈ ‖Q‖⊕, else it is marked with ∨. Two formulas ϕ,ϕ ′ ∈ Q′ are related as ϕ �A ϕ ′

iff there is a path from ϕ to ϕ ′ in GA, and let �A ∩ �−1
A be defined as ≡A. The equivalence class JϕK

of ϕ with respect to ≡A forms a maximal strongly connected component (MSCC) in GA. An MSCC is

bounded iff every edge in an MSCC of GA, is either in E∪Eb, and an MSCC is unbounded iff every edge

of the MSCC is in E ∪Eu.

Definition 8 (uniform weak p-automata). A p-automaton A is called uniform if: 1.) Every MSCC of GA is

either bounded or unbounded. 2.) For every bounded MSCC marked edges are either all marked with ⊕
or (exclusively) with ∨. 3.) The set of equivalence classes {JϕK | ϕ ∈ Q′} is finite. 4.) For every symbol σ

and ϕ =⊕(r1, . . . ,rn), either every q ∈ ri, δ (q,σ) ∈B+(‖Q‖) or every q ∈ ri, δ (q,σ) ∈B+(Q). A (not

necessarily uniform) p-automaton A is called weak if for all q ∈ Q, either JqK∩Q ⊆ F or JqK∩F = /0.

In the rest of the paper we will only consider uniform weak p-automata.

4 Acceptance games

Let A = (Q,Σ,δ ,ϕin,Ω) be a p-automaton and M = (S,P,L,AP,sin) be an MC. The acceptance of

M by A depends on the results of a sequence of (stochastic) weak games. Let Φ = Q∪ cl(δ (Q,Σ))
be the set of formulas appearing in the vertices of the game graph GA. Consider the partial order
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Figure 3: Game graph GA without unbounded edges.

V
T,ϕ
0 = {〈T,ϕ〉} ∪ {〈T ′,ϕ ′,v〉 ∈ RT,ϕ ×ValT,ϕ | ⊥ 6= val(T ′,ϕ ′)< v} ∪

{〈T ′,ϕ1 ∨ϕ2,v〉 ∈ RT,ϕ ×ValT,ϕ | val(T ′,ϕ1 ∨ϕ2) =⊥}

V
T,ϕ
1 = {〈T,ϕ, f 〉 | f ∈ F

⊕
T,ϕ} ∪ {〈T ′,ϕ ′,v〉 ∈ RT,ϕ ×ValT,ϕ | ⊥ 6= val(T ′,ϕ ′)≥ v} ∪

{〈T ′,ϕ1 ∧ϕ2,v〉 ∈ RT,ϕ ×ValT,ϕ | val(T ′,ϕ1 ∧ϕ2) =⊥}
ET,ϕ = {(〈T,ϕ〉,〈T,ϕ, f 〉) | f ∈ F

⊕
T,ϕ} ∪ {(〈T ′,ϕ1◦ϕ2,v〉,〈T

′,ϕi,v〉) | ◦ ∈ {∧,∨},1 ≤ i ≤ 2,

(T ′,ϕ1◦ϕ2,v) ∈ RT,ϕ ×ValT,ϕ ,val(T
′,ϕ1◦ϕ2) =⊥} ∪

{(〈T ′,ϕ ′,v〉,〈T ′,ϕ ′〉) | T ′ ∈ succ(T ),ϕ ′ ∈ [ϕ],v ∈ ValT,ϕ ,val(T,ϕ
′) =⊥} ∪

{(〈T,ϕ, f 〉,〈T ′,δ (q,σ), f (q,T ′)〉) | T ′ ⊆ succ(T ),q ∈ Iϕ , f (q,T ′)> 0,} ∪
{(〈T,ϕ, f 〉,〈{s′},δ (q,σ), f (q,s′)〉) | s′ ∈ succ(T ),q ∈ Iϕ , f (q,T ′)> 0,δ (q,σ) ∈ B+(Q)}

Table 1: Acceptance game G(M, [ϕ]), Case 1. σ = L(T ).

(Φ\ ≡A,≤A) where [ϕ]≤A [ϕ]′ iff ϕ �A ϕ ′. Let T ⊆ S non-empty set of locations, where for all s,s′ ∈ T ,

L(s) = L(s′) = σ . We assign L(T ) to σ . For a formula ϕ ∈ Φ, val(T,ϕ) is calculated for each MSCC [ϕ]
inductively according to the partial order ≤A. val(T,ϕ) is the value val0(T,ϕ) of Player 0 in the game

G(M, [ϕ]) = (V,E,V0,V1,Vp,P,Ω) (defined below). When calculating val(T,ϕ), the value of val(T ′,ϕ ′)
is pre-calculated for every ϕ ′ ∈ [ϕ ′], such that [ϕ]≤A [ϕ ′]. Initially, we set val(T,ϕ) =⊥. Depending on

the MSCC we have the following cases:

Case 1. Let [ϕ] be a non-trivial bounded MSCC where marked edges have marking ⊕. For ϕ =
⊕(r1, . . . ,rn), let Iϕ = {q | q ∈ gs(r),r ∈ tm(ϕ)}, and pi,q be the probability bound on the state q in

the term ri, i.e., ri = ∗(‖q‖≥pi,q | q ∈ gs(ri)). Consider any non empty subset of states of the Markov

chain, T ⊆ S, such that for any s,s′ ∈ T,L(s) = L(s′). Let the label of every state of T be σ . We define

the set RT,ϕ , which is the set of successor configurations of 〈T,ϕ〉, and Vals,ϕ , which is the set of possible

values of val(T,ϕ). We need to enforce that the value of every state of val(T,ϕ) is well defined. Thus, if

val(T ′,ϕ) 6= val(T ′′,ϕ), then for all sets T ⊇ T ′∪T ′′, val(T,ϕ) = 0.

RT,ϕ =
⋃

q∈Iϕ

{(T ′,ϕ ′) | T ′ ∈ succ(T ) and ϕ ′ ∈ cl(δ (q,L(T )))}

ValT,ϕ = {0,1}∪{val(T ′,ϕ ′) | 〈T ′,ϕ ′〉 ∈ RT,ϕ ,val(T
′,ϕ ′) 6=⊥}

(2)

Observe, RT,ϕ is finite and hence ValT,ϕ ⊆Q is also finite. Let F
⊕
T,ϕ be a set of functions Iϕ ×S →ValT,ϕ

where f ∈ F
⊕
T,ϕ iff there exists a d ∈ Dtm(ϕ) and {aq,s′}q∈Iϕ ,s′∈S ∈ RIϕ×S such that:

∀q,∀s ∈ T ∈ Iϕ : ∑
s′∈succ(s)

aq,s′ f (q,s′)P(s,s′)≥ pi,qdri
, and ∀s′ ∈ succ(s) : ∑

q∈Iϕ

aq,s′ = 1 (3)

d and {aq,s′} are called witness of the function f . Note that, the set F⊕
s,ϕ is finite, because both the domain

and the range are finite sets (but can be exponential in size). The game G(M, [ϕ]) = (V,V0,V1,Vp,E,P,Ω)
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{s0},ϕ

{s0},ϕ,







s0,q1 7→ 0 s1,q1 7→ 1 s2,q1 7→ 0

s0,q5 7→ 1 s1,q5 7→ 0 s2,q5 7→ 0

s0,q2 7→ 0 s1,q2 7→ 0 s2,q2 7→ 1

. . . . . . {s0},ϕ,







s0,q1 7→ 1 s1,q1 7→ 0 s2,q1 7→ 0

s0,q5 7→ 0 s1,q5 7→ 1 s2,q5 7→ 0

s0,q2 7→ 0 s1,q2 7→ 0 s2,q2 7→ 1

{s1},∗‖q3‖≥1 {s2},∗‖q4‖≥1
{s0},‖q3‖≥1 {s1},ϕ{s1},∗‖q3‖≥1,(s1,q3) 7→ 1

{s2},∗‖q4‖≥1,(s2,q4) 7→ 1 false

Figure 4: 2-player game (case 1.) generated by p-automaton A in Example 1 and MC M in Figure 1.

The oval states are Player 0 states and the rectangle states are Player 1 states. State 〈{s1},ϕ〉 belongs to

another game and val({s1},ϕ) has been pre-computed.

is defined as follows:

V0 =
⋃

T,ϕ

V
T,ϕ
0 V1 =

⋃

T,ϕ

V
T,ϕ
1 Vp = /0 E =

⋃

T,ϕ

ET,ϕ Ω = /0 or V

where V
T,ϕ
0 ,V

T,ϕ
1 , and ET,ϕ are defined in Table 1, and Ω =V if for some q ∈ [t], q ∈ F else Ω = /0. Start-

ing from the configuration 〈T,ϕ〉, the game progresses as follows: At 〈T,ϕ〉, Player 0 selects a function

f ∈ F
⊕
T,ϕ (i.e., there exist witnesses {aq,s′} and d). Player 1 can select any subset T ′ ⊆ succ(T ), such

that for every state s′ ∈ T ′ there is a q ∈ Iϕ , such that f (s′,q) = 1 and δ (q,a) ∈ B+(‖Q‖). Or, it can

select T ′ = {s′}, where f (s′,q)> 0 and δ (q,σ)′ ∈ B+(Q). Thus, Player 1 can move to 〈T ′,δ (q,σ),v〉,
where v = f (s′,q) for s′ ∈ T . A winning play of the game (see Figure 4) for Player 0 is determined by

the following rules:

a. A finite play reaches a configuration 〈T ′,ϕ ′,v〉 such that val(s′,ϕ ′) 6= ⊥, that is the value of the con-

figuration 〈s′,ϕ ′〉, was already determined. Player 0 wins if v ≤ val(T ′,ϕ ′) else player 1 wins. Observe

again that configuration 〈T ′,ϕ ′,v〉 is a player 1 configuration if ⊥ 6= v ≤ val(T ′,ϕ) and a player 0 con-

figuration if ⊥ 6= v > val(T ′,ϕ ′).

b. If at 〈T ′,ϕ ′,v〉, val(T ′,ϕ ′) =⊥ then the play continues with 〈T ′,ϕ ′〉. An infinite play is winning if it

satisfies the weak acceptance condition Ω. That is, if the play stays in V then player 0 wins if and V ⊆ Ω

else player 1 wins.

Case 2. Let [ϕ] be a nontrivial MSCC such that every transition in the graph GA belonging to [ϕ] are not

in Eu and not marked ⊕. Details are present in the appendix.

Case 3. Let [ϕ] be a nontrivial MSCC such that all the transitions in [ϕ] of GA are in Eu ∪E. This gives

rise to a weak stochastic game.

V = {〈s,ϕ ′〉 | s ∈ S and ϕ ′ ∈ [ϕ]} V0 = {〈s,ϕ1 ∨ϕ2〉 ∈V} Vp = (S×Q)∩V

V1 = {〈s,ϕ1 ∧ϕ2〉 ∈V} P(〈s,q〉,〈s′,δ (q,L(s))〉) = P(s,s′) Ω = /0 or V
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where Ω is V if some q in [ϕ] is in F else Ω = /0.

E = {(〈s,ϕ1 ∧ϕ2〉,〈s,ϕi〉) ∈V ×V | 1 ≤ i ≤ 2} ∪ {(〈s,ϕ1 ∨ϕ2〉,〈s,ϕi〉) ∈V ×V | 1 ≤ i ≤ 2}
∪ {(〈s,q〉,〈s′,δ (q,L(s))〉) ∈V ×V |P(s,s′)> 0}

By Theorem 1. a value val0(s,ϕ) of any configuration 〈s,ϕ〉 ∈V exists. We set val({s},ϕ) to this value.

Case 4. Let [ϕ] be a trivial MSCC. It is handled as one of the above cases. The value of the configura-

tions val(s,ϕ) is obtained from the val(s′,ϕ ′) which have already been calculated in G(M, [ϕ ′]).

M is accepted by A, iff val({sin},ϕin) = 1. The language of A, L (A) = {M : A accepts M}.

The p-automata defined here has two notable difference than p-automata in [8]. First is the syntactic

difference due to the presence of formula ⊕(ϕ1, . . . ,ϕn). Second is the semantic difference were we

deal with sets of states of the Markov chains for a bounded MSCC (case 1.). This is crucial for proving

correctness of Theorem 3. For unbounded MSCC the description of the acceptance game is same as the

original definition.

The number of configurations of the weak game G(M, [ϕ]) is exponential in the size of [ϕ] and

Markov chain, when [ϕ] is bounded (case 1.). It is exponential in the size of automaton due to the

different function f ∈F⊕
s,ϕ . Since, weak games can be solved in polynomial time in the size of the game

(and the weak stochastic game can be solved in NP∩co-NP), the problem whether a finite Markov chain

is accepted by a p-automaton can be decided in exponential time.

Next we show that the language of a extended p-automaton is closed under probabilistic bi-simulation.

Proposition 1. For a p-automaton A and MCs M1 and M2 with M1 ∼ M2, M1 ∈ L (A) iff M2 ∈ L (A).

Proof. Let M1 = (S1,P,AP,L,s1,in) and M2 = (S2,P,AP,L,s2,in), with S1 disjoint from S2. Let A =
(Q,Σ,δ ,ϕin,Ω), G1 and G2 be the acceptance game for MCs M1 and M2, respectively. We show that

for each configurations 〈T1,ϕ〉 and 〈T2,ϕ〉 in G1 and G2, respectively, if for every s1 ∈ T1 there exists a

s2 ∈ T2 such that s1 ∼ s2 and vice-versa, then val(T1,ϕ) = val(T2,ϕ). Towards this end, we will construct

a winning strategy for player 0 in G2 from the game G1 and vice-versa. The details are present in the

appendix.

Theorem 2. The language of p-automata is closed under union, intersection, and bisimulation.

Proof. Closure under union and intersection follows from the presence of ∨ and ∧, respectively in the

syntax. Closure under bisimulation follows from Proposition 1.

5 Embedding MDP

In this section we will embed an MDP into an p-automaton. Let D = (S,∆,AP,L,sin) be an MDP.

Definition 9 (p-automata for an MDP). The p-automaton AD = (Q,Σ,δ ,ϕin,Ω) is defined as follows: 1

Q = S×S ; Ω = Q ; δ ((s,s′),L(s)) = ϕs′ and δ ((s,s′),σ) = false if σ 6= L(s)
ϕin = ⊕(ri | µi ∈ ∆(sin),ri = ∗(‖(sin,µi,s

′)‖≥µi(s′) | µi(s
′)> 0))

ϕs = ⊕(ri | µi ∈ ∆(s) and ri = ∗(‖(s,µi,s
′)‖≥µi(s′) | µi(s

′)> 0))
1It could be the case that there is some state q ∈ Q which a guarded state of more than one term of a formula ϕ ∈ ‖Q‖⊕.

This can be resolved by renaming and introducing new states.
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Example 2. The MDP in the Figure 2 is embedded in the automaton A defined in the Example 1 and the

MC of Figure 1 is accepted by A.

Theorem 3. Let D be an MDP and AD be its p-automaton. a.) For every scheduler η , Dη ∈ L (AD) and

b.) for every MC M ∈ L (AD) there exists a η ∈ HR(D) such that M ∼ Dη .

Proof. We first show that if for any η , Dη ∈ L(AD), and then we show that if a Markov chain M ∈ L(AD),
then there exists a scheduler η such that M ∼ Dη .

• Let the MDP D be (S,∆,Σ,L,sin). We will first show that for any scheduler η ∈ HR(D), Dη =
(S+,Σ,P′,L,s0) is in L (AD). We need to show that val({s0},ϕs0

) = 1. We first prove that for any

state w ∈ S+ of Dη , with w↓= s the value val({w},ϕs) = val({w·u},ϕu) whenever P′(w,w·u)> 0.

Player 0 at the configuration 〈{w},ϕs〉 chooses function f ∈ F
⊕
{w},ϕs

, such that the witness are as

follows: d = η(w), aq,w·u = 1 and f (q,w·u) = 1, where q = (s,µ,u). Observe, that there exists

exactly one state w·u, such that f (w·u,q) = 1. Thus player can only move to configurations of the

type 〈{w·u},ϕu〉. Thus, val({w},ϕs) = val({w·u},ϕu). In an MSCC where non of the values are

known, val({w},ϕs)= 1, because the every infinite path is winning. This shows, val({s0},ϕs0
)= 1.

• Suppose a finite path 〈T0,ϕs0
〉, . . . ,〈Tn,ϕsn

〉 is winning for Player 1. That is at 〈Tn,ϕsn
〉 it is not the

case that Player 0 can find a distribution d such that,

∀ri ∈ tm(ϕsn
) ∀q ∈ gs(ri) ∀s ∈ Tn : ∑

s′∈succ(s)

aq,s′ f (q,s′) = pi,qdi

and for each q ∈ gs(tm(ϕsn
)) and any set T ′ ⊆ succ(Tn), where ∀s′ ∈ T ′ : f (q,s′) = 1, 〈T ′,ϕsn

〉 is

winning for Player 0. Take any other (arbitrary) play 〈T ′
0 ,ϕs0

〉, . . . ,〈T ′
n ,ϕsn

〉 (with T0 = T ′
0 = {t0}).

Then 〈T0 ∪T ′
0 ,ϕs0

〉, . . . ,〈Tn ∪T ′
n ,ϕsn

〉 is also winning for Player 1. So it is in her best interest to

choose T ′ as large as possible

Let M = (T,Σ,P,L, t0), and M ∈ L (AD). The value of configuration 〈{t0},ϕs0
〉 is 1, and assume

Player 1 plays optimally, i.e., she chooses a set as large as possible. We will construct a map η⋆ ⊆
(S+×DDs

). For any possible finite run, ρn = 〈T0,ϕs0
〉, . . . ,〈Tn,ϕsn

〉, with T0 = {s0}, (s0, . . . ,sn,d)∈
η⋆, where d is the distribution chosen by Player 0 at 〈Tn,ϕsn

〉. Since, Player 1 plays optimally, it

cannot be the case that two distinct play ρn = 〈T0,ϕs0
〉, . . . ,〈Tn,ϕsn

〉 and ρ ′
n = 〈T ′

0 ,ϕs0
〉, . . . ,〈T ′

n ,ϕsn
〉

exists. Thus, we see that η⋆ ∈ HR(D).

Now consider an unrolling of M. Thus, states of M are subsets of T+. It suffices to show a

bisimulation relation between, Dη⋆ and the unrolled M. Let R ⊆ (T+ ∪ S+)× (T+ ∪ S+) be the

smallest transitive, reflexive and symmetric relation with the following property:

– t0Rs0.

– For each play ρn = 〈T0,ϕs0
〉, . . . ,〈Tn,ϕsn

〉〈Tn+1,ϕs〉, all t ∈ Tn+1, tRs.

We will show that R is a bi-simulation relation.

– If tRw then L(t) = L′(w). If L(t) 6= L′(w) then 〈t,ϕw↓〉 cannot be winning for Player 0.

– For each q ∈ Iϕw↓
, we know, ∑t ′∈succ(t) P(t, t ′)aq,t ′ f (q, t ′) = pq,idi. From this we can deduce,

∑t ′∈C,(t ′,w·s′)∈R P(t, t ′) = ∑w·s′∈C P′(w,w·s′) (see Appendix for details).

Thus, R is a bi-simulation relation , and M ∼ Dη⋆ .
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Figure 5: The MDP (left) and a Markov chain (right).

The embedding of MDP relies on the construct ϕ ∈ ‖Q‖⊕. Consider the MDP in Figure 2. At the

state s0 there are two choices of distribution. If we limit the definition of the p-automata to [8] then we

have only disjunction (or conjunction) to define the non-determinism at the state s0 and we cannot accept

the MC in Figure 1. We also store the subset of states T that were induced by the same q ∈ Iϕ . Refer to

the Figure 5. We need to remember that states t1 and t ′1, were induced by the same distribution. We end

this section by mentioning that any PCTL formula can be embedded as a p-automaton. That is, given

any PCTL formula, we can construct a p-automaton such that the set models of the formula is exactly

the language of the automaton [8].

6 Conclusion

We have presented an extension of the p-automata [8], and used it to represent the set of MCs which are

bisimilar to the MCs induced by the schedulers of an MDP. We have seen that the languages of the p-

automata are closed under bi-simulation (union and intersection, trivially). We have addressed the issue

of non-determinism of the probability distribution, observed in the concluding remark of [8], and shown

that the p-automata are powerful enough to represent various probabilistic systems and logics. Even

though the acceptance is still EXPTIME, the number configuration has become also exponential in the

size of the Markov chain. Unfortunately, the simulation relation gives only a sound characterize language

inclusion. It would be interesting to investigate well behaving fragments for which the simulation relation

exactly characterizes language inclusion.

Acknowledgment. Author thanks Prof. Nils Pitermann for his fruitful directions.
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Appendix

Acceptance game: Case 2

Case 2. Let [t] be a nontrivial bounded MSCC with ∨ marked edges. This give rise to an stochas-

tic weak game and is same for p-automata with out ‖Q‖⊕. Consider ϕ ∈ [t] ∩ ‖Q‖∨, that is ϕ =
∨(‖q1‖⊲⊳1 p1

, . . . ,‖qn‖⊲⊳n pn
). The sets Rs,ϕ ,Vals,ϕ are same as (2), V

s,ϕ
0 ,V

s,ϕ
1 ,Es,ϕ is same as in table 1,

with the only difference is the set of functions F∨
s,ϕ = Iϕ×≻ (s)→ Vals,ϕ (rather than F⊕

s,ϕ ). A function

f ∈ F∨
s,ϕ if there exists a ∈ RIϕ ×RS such that:

• there is a q ∈ Iϕ with ∑s′∈succ(s) aq,s f (q,s)P(s,s′)≥ pi or,

• there is a s ∈ succ(s) with ∑q∈Iϕ
aq,s′ 6= 1.

The winning condition is same as case 1. In this paper we will not need the terms in ‖Q‖∨ and present it

here only for completeness.

Proposition 1

For a p-automaton A and MCs M1 and M2 with M1 ∼ M2. M1 ∈ L (A) iff M2 ∈ L (A).

Proof. Let M1 = (S1,P,L,s1,in) and M2 = (S2,P,L,s2,in), with S1 disjoint from S2, hence we use the same

function P and L for both MCs with impunity. Let A be (Q,Σ,δ ,ϕin,Ω), G1 and G2 be the acceptance

game for MCs M1 and M2, respectively. We show that for each configurations 〈s1,ϕ〉 and 〈s2,ϕ〉 in G1

and G2, respectively, if s1 ∼ s2 then val(s1,ϕ) = val(s2,ϕ), for [ϕ] is a unbounded MSCC. Equivalently,

we construct a wining strategy π2 for Player 0 in G2 from the winning strategy π1 of Player 0 in G1. By

symmetry of the argument (presented below), it also follows that we can construct a wining strategy for

Player 0 in G1 from the winning strategy of Player 0 in G2.

Gi(Mi, [ϕ]) is a stochastic weak game (for i ∈ {1,2}). We start from the configurations c1 = 〈s1,ϕ〉
and c2 = 〈s2,ϕ〉 where s1 ∈ S1 and s2 ∈ S2 and s1 ∼ s2. The claim is, at each step of any play of the

games, we move to configurations 〈s′1,ϕ
′〉 and 〈s′2,ϕ

′〉 in G1 and G2 (according to strategy π1 and π2),

respectively, where s′1 ∼ s′2.

When ϕ is of the form ϕ1 ∧ϕ2, c1 and c2 are Player 1 configurations. If Player 1 chooses (s2,ϕi) in

G2 then we make Player 1 in G1 choose (s1,ϕi) for i ∈ {1,2}. When ϕ is of the form ϕ1 ∨ϕ2, c1 and

c2 are Player 0 configuration, Player 0 in G2 follows the choice of Player 0 in G1, i.e., if Player 0 chose

〈s1,ϕi〉 then Player 0 in G2 chooses 〈s2,ϕi〉 in G2 (for i ∈ {1,2}). For ϕ = q ∈ Q, the play is resolved by

a probabilistic choice. We know that P(s1,C1) = P(s2,C2) where Ci ⊆ Si (for i ∈ {1,2}) and C1 ∪C2 is

an equivalence class of ∼. Thus, for any play that ends in 〈s′1,δ (q,σ)〉 in G1, there is a corresponding

play in G2 that ends in 〈s′2,δ (q,σ)〉, and we have s′1 ∼ s′2 where σ = L(s1) = L(s2). Hence the set of

plays that are winning in G1 have the same probability measure as the set of corresponding play in G2.

Consequently, val(s1,ϕ) = val(s2,ϕ).

Let [ϕ] be a bounded MSCC of GA where the only marked edges have ⊕ as markings. Consider

T1 ⊆ S1 and T2 ⊆ S2, such that for each s1 ∈ T1, there exist s2 ∈ T2 such that s1 ∼ S2 and vice-versa. We

show that if val(T1,ϕ) = 1 then val(T2,ϕ) = 1. Disjunction and conjunctions are handled as before. Let

ϕ ∈ ‖Q‖⊕. We have a function f1 ∈ F⊕
s1,ϕ with witness d and {aq,s′}q∈Iϕ ,s′∈succ(s) for the play in G1.

Define f2 : Iϕ × succ(s2) → [0,1] with f2(q,s
′
2) = f1(q,s

′
1) for s′j ∈ succ(s j) ( j ∈ {1,2}) if s′1 ∼ s′2. It

remains to show that f2 ∈ F⊕
s2,ϕ . That is, we need to find suitable witnesses d

′ and {a′
q,s′2

}q∈Iϕ ,s′2∈succ(s2)
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for f2. Let d
′ = d and choose {a′q,s′} such that for each q ∈ Iϕ and an equivalence class C:

∑
s′1∈C

aq,s′1
P(s1,s

′
1) = ∑

s′2∈C

a′q,s′2
P(s2,s

′
2) (4)

There could be many possible solution for {a′q,s′}, we need to find one solution such that f2 ∈ F⊕
s,ϕ . For

each q ∈ Iϕ :

∑
s′2∈succ(s2)

a′q,s′2
P(s2,s

′
2) f2(q,s

′
2) = ∑

C∈S2∪S1\∼

(

∑
s′2∈C

a′q,s′2
P(s2,s

′
2) f2(q,s

′
2)

)

= ∑
C∈S2∪S1\∼

(

∑
s′1∈C

aq,s′1
P(s1,s

′
1) f1(q,s

′
1)

)

= ∑
s′1∈succ(s1)

a′q,s′1
P(s1,s

′
1) f1(q,s

′
1) = pi,qd

′(ri).

Thus any value of {a′
q,s′2

} satisfying the constraint (4) also satisfies the first condition of equation (3).

Next we show that under the constraint (4) there exist values for {a′
q,s′2

} such that ∑q∈Iϕ
a′

q,s′2
= 1 for all

s′2 ∈ succ(s2). For each equivalence class C of ∼, starting from equation 4, we can deduce:

∑
s′2∈C

a′q,s′2
P(s2,s

′
2) = ∑

s′1∈C

aq,s′1
P(s1,s

′
1)

Summing over q ∈ Iϕ

Or, ∑
q∈Iϕ

∑
s′2∈C

a′q,s′2
P(s2,s

′
2) = ∑

q∈Iϕ

∑
s′1∈C

aq,s′1
P(s1,s

′
1)

Changing the order of summation

Or, ∑
s′2∈C

∑
q∈Iϕ

a′q,s′2
P(s2,s

′
2) = ∑

s′1∈C

∑
q∈Iϕ

aq,s′1
P(s1,s

′
1)

Or, ∑
s′2∈C

P(s2,s
′
2) ∑

q∈Iϕ

a′q,s′2
= ∑

s′1∈C

P(s1,s
′
1) ∑

q∈Iϕ

aq,s′1

Or, ∑
s′2∈C

P(s2,s
′
2) ∑

q∈Iϕ

a′q,s′2
= ∑

s′1∈C

P(s1,s
′
1)

Or, ∑
C∈S1∪S2\∼

(

∑
s′2∈C

P(s2,s
′
2) ∑

q∈Iϕ

a′q,s′2

)

= ∑
C∈S1∪S2\∼

(

∑
s′1∈C

P(s1,s
′
1)

)

Or, ∑
s′2∈succ(s2)

P(s2,s
′
2)

(

∑
q∈Iϕ

a′q,s′2

)

= 1

One such solution of the equation is when ∑q∈Iϕ
a′

q,s′2
= 1 for every s′2 ∈ succ(s2).

If now Player 1 in G2 chooses 〈T ′
2 ,δ (q,σ),v〉, Player 1 in G1 is made to choose T1, such that for each

s′2 in T ′
2 there exist s′1 ∈ T1, such that s′1 ∼ s′2. This possible because of our choice of f2.

The case of bounded MSCC with only ∨ marked edges is handled similarly.

Theorem 3

We know, for each q ∈ Iϕw⇂
:

∑
t ′∈succ(t)

P(t, t ′)aq,t ′ f (q, t ′) = pq,idi

Or,

∑
C∈(T∪S+)\R

∑
t ′∈C

P(t, t ′)aq,t ′ f (q, t ′) = pq,idi.
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Let ρn = 〈T0,ϕs0
〉, . . . ,〈Tn,ϕsn

〉〈Tn+1,ϕs〉, and w = s0, . . . ,sn. For each q ∈ Iϕw⇂
, q = (w⇂,µ,s′) aq,t ′ > 0

iff f (q, t ′) = 1 and (t ′,w·s′) ∈ R.

∑
C∈(T+∪S+)\R

∑
t ′∈C

P(t, t ′)aq,t ′ f (q, t ′) = ∑
t ′∈C,(t ′,w·s′)∈R

P(t, t ′)aq,t ′ f (q, t ′)

Hence,

∑
t ′∈C,(t ′,w·s′)∈R

P(t, t ′)aq,t ′ f (q, t ′) = pq,idi = P′(w,w·s′).

Summing over all q ∈ Iϕw⇂
, i.e. w·s′ ∈C,

∑
w·s′∈C

∑
t ′∈C,(t ′,w·s′)∈R

P(t, t ′)aq,t ′ f (q, t ′) = ∑
w·s′∈C

P′(w,w·s′).

Changing the order of summations,

∑
t ′∈C,(t ′,w·s′)∈R

P(t, t ′) ∑
w·s′∈C

aq,t ′ f (q, t ′) = ∑
w·s′∈C

P′(w,w·s′).

For q′ 6∈C, aq′,t = 0, hence ∑q∈C aq,t = ∑q∈Iϕw⇂
aq,t .

∑
t ′∈C,(t ′,w·s′)∈R

P(t, t ′) ∑
w·s′∈Iϕw⇂

aq,t ′ f (q, t ′) = ∑
w·s′∈C

P′(ρ,ρ·s′).

Or,

∑
t ′∈C,(t ′,w·s′)∈R

P(t, t ′) = ∑
w·s′∈C

P′(w,w·s′).

Theorem ??

Let A1 and A2 be p-automata. Then:

A1 ≤ A2 implies L (A1)⊆ L (A2).

Proof. Let M =(S,P,Σ,L,sin) be an arbitrary MC and A1,A2 be p-automata (Q,Σ,δ ,ϕin,F), (U,Σ,δ ,ψin,F),
respectively. We assume that Q and U are disjoint and hence use the same symbol for the transition rela-

tions and final states for the two automata.

We show that, if val(sin,ϕin) = 1 in the acceptance game of M by A1 and val(ϕin,ψin) = 1 in the

simulation game of A1 by A2 then val(sin,ψin) = 1 in the acceptance game of M by A2. Let the acceptance

games of M by A1 and A2 be G1 and G2, respectively, and the simulation game of A1 by A2 be G≤.

Equivalently, we show that the claim: val(s,ϕ)·val(ϕ,ψ)≤ val(s,ψ), is true for any arbitrary s ∈ S,ϕ ∈
Q∪ cl(δ (Q,Σ)) and ψ ∈U ∪ cl(δ (U,Σ)). A triplet of configurations c1,c2 and c3 is said to be matching,

where c1,c2 and c3 are configurations of the game G1,G≤ and G2, respectively, if the first component of

c1 is equal to the first component of c3, the second component of c1 is equal to the second component of

c2 and the second component of c2 is equal to the second component of c3 (c1 = 〈s,ϕ〉,c2 = 〈ϕ,ψ〉,c3 =
〈s,ψ〉) .

We proceed by induction on the partial order �, and when considering configurations in ([ϕ], [ψ]), we

assume that the claim holds for every configuration in the pair ([ϕ ′], [ψ ′]), where ([ϕ], [ψ])� ([ϕ ′], [ψ ′]).
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Effectively, we construct a winning strategy for Player 0 in G2 from the strategies of the Players in G1

and G≤. We have the following cases:

Case 1. If ϕ ∈ Q and ψ ∈ ‖U‖⊕ then val(ϕ,ψ) = 0, and the claim follows trivially.

Case 2. Let [ϕ] and [ψ] be unbounded MSCCs, where G1(M, [ϕ]) and G2(M, [ψ]) are weak stochastic

game and G≤([ϕ], [ψ]) is stochastic game. Consider three matching configurations c1 = (s,α), c2 =
(α,β ) and c3 = (s,β ), such that α ∈ [ϕ] and β ∈ [ψ].

If α = α1 ∧α2 and β is not a conjunction then c2 is a Player 0 configuration. Suppose Player 0 at

c2 chose 〈αi,β 〉, then Player 1 at c1 is made to choose (s,αi). Else if β = β1 ∧β2 then c3 is a Player 1

configuration and if he chose 〈s,βi〉 then Player 1 at c2 chooses 〈α,βi〉. If α = α1 ∨α2 (c1 is a Player 0

configuration) and if she chose 〈s,αi〉 at c1 then Player 1 at c2 chooses 〈αi,β 〉. If β = β1 ∨β2 and Player

0 chooses 〈α,βi〉 at c2 then Player 0 in c3 chooses (s,βi). If α = q and β = u then c1 and c3 are stochastic

configurations and c2 is a Player 1 configuration. Player 1 is made to select the action σ = L(s) and reach

a configuration 〈δ (q,σ),δ (u,σ)〉 and next configuration in G1 and G2 is 〈s′,δ (q,σ)〉 and 〈s′,δ (u,σ)〉,
respectively. Note that these choices of moves always ensures that we move from one matching triplet to

the next.

Consider three matching paths in the games G1, G≤ and G2. If the path in G≤ is infinite then, and

the corresponding path in G1 is winning, then by the winning condition of G≤, the respective path in G2

is also winning. If it is finite then the triplet of paths end in configuration (〈s′′,α ′〉,〈α ′,β ′〉,〈s′′,β ′〉),
where 〈α ′,β ′〉 6∈ ([ϕ], [ψ]). Since, ([ϕ], [ψ]) is a weak game val(α ′,β ′) ≥ val(α,β ). By assumption

val(s′′,α ′)·val(α ′,β ′)≤ val(s′′,β ′) or val(s′′,α ′)·val(α,β )≤ val(s′′,β ′). The inequality holds for every

matching paths in all three games thus, val(s,α)·val(α,β )≤ val(s,β ).

Case 3. Suppose [ϕ] and [ψ] are bounded MSCCs, G1(M, [ϕ]), G≤([ϕ], [ψ]) and G2(M, [ψ]) are all

weak games. Consider a triplet of configurations (〈s,α〉,〈α,β 〉,〈s,β 〉). We assume val(s,α) = 1 and

val(α,β ) = 1, else val(s,α)·val(α,β )≤ val(s,β ) follows immediately.

The cases of conjunctions and disjunctions are handled as in case 2. The interesting case is when

α ∈ ‖Q‖⊕ and β ∈ ‖U‖⊕, where α =⊕(r1, . . . ,rn) and β =⊕(t1, . . . , tm). It follows that 〈s,α〉 and 〈s,β 〉
are Player 0 configurations and 〈α,β 〉 is a Player 1 configuration. Suppose Player 0 at 〈s,α〉 selects a

function f with witness d and {aq,s′}, where s′ ∈ succ(s), q ∈ Iα .

∀ri ∈ tm(α),q ∈ gs(ri) ∑
s′∈succ(s)

aq,s′ f (s′,q)P(s,s′)≥ pi,qdri
and ∀s′ ∈ succ(s) ∑

q∈Iα

aq,s′ = 1

We make Player 1 of G≤ choose an action σ = L(s) and move to Player 0 configuration 〈α,β ,σ〉.
Configuration 〈ri,β ,σ〉 is winning for Player 0, for each ri ∈ tm(α), in the game G≤. Let f i ∈ F

⊕
ri,β

be

the function with witness {ai
q,u}q∈Iri

,u∈Iβ
and c

i ∈ Dtm(β ). Thus for each ri we have:

∀u ∈ Iβ ∑
q∈Irk

aq,u f i(q,u)pi,q ≥ c
i
t j
·p j,u. and ∀q ∈ Iri ∑

u∈Iβ

aq,u = 1.

Player 0 in game G2 selects a function f ′′ such that f ′′(u,s′) is then the minimum value in Vals′,β
that is at least maxq∈gs(ri),ri∈tm(α) f (q,s′) f i(q,u). The reason for choosing such f ′′ will soon become

clear. The witness of f ′′ are as follows: au,s′ = ∑ri∈tm(α) ∑q∈gs(ri) aq,s′a
i
q,u and for each t j ∈ tm(β ),

d
′
t j
= ∑ri∈tm(α) dri

·ci
t j

. Intuitively, Player 0 in G1 gives the distribution d on the guarded terms rk ∈ tm(α)

and in the game G≤ gives the distribution to simulate each ri by β . This determines the distribution d
′

for the game G2.
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We will now show that f ′′ ∈ F
⊕
s,β . For each s′ ∈ succ(s):

∑
u∈Iβ

au,s′ = ∑
ri∈tm(α)

∑
q∈gs(ri)

aq,s′

(

∑
u∈Iβ

aq,u

)

= ∑
q∈Iα

aq,s′ = 1.

Consider any u ∈ gs(t j), where t j ∈ tm(β ):

∑
s′∈succ(s)

au,s′ f ′′(u,s′)P(s,s′)

= ∑
s′∈succ(s)

(

∑
ri∈tm(α)

∑
q∈gs(ri)

aq,s′a
i
q,u

)

f ′′(u,s′)P(s,s′)

= ∑
s′∈succ(s)

(

∑
ri∈tm(α)

∑
q∈gs(ri)

aq,s′a
i
q,u

)

max
q∈gs(ri),ri∈tm(α)

f (u,s′) f i(q,u)P(s,s′)

≥ ∑
s′∈succ(s)

∑
ri∈tm(α)

∑
q∈gs(ri)

aq,s′a
i
q,u f (q,s′) f i(q,u)P(s,s′)

= ∑
ri∈tm(α)

∑
q∈gs(ri)

ai
q,u f i(q,u) ∑

s′∈succ(s)

aq,s′ f (q,s′)P(s,s′)

≥ ∑
ri∈tm(α)

∑
q∈gs(ri)

ai
q,u f i(q,u)dri

pi,q

= ∑
ri∈tm(α)

dri ∑
q∈gs(ri)

aq,u f ′(q,u)pi,q

≥ ∑
ri∈tm(α)

dri
c

i
t j

p j,u

= d
′
t j

p j,u

If Player 1 in G2 chooses 〈s′,δ (u,σ), f ′′(u,s′)〉, we make Player 1 in G1 choose a state q ∈ Iβ (and

hence a term ri such that q∈ gs(ri)) such that f (q,s′) f i(q,u) is maximal and move to 〈s′,δ (q,σ), f (q,s′)〉,
correspondingly, we make Player 1 in G≤ to move to 〈δ (q,σ),δ (u,σ), f i(q,u)〉.

Consider a triplet of matching paths from G1, G≤ and G2. Suppose the play continues inside of

the MSCC pair of G≤, indefinitely. Then the play in G1 is winning because the play is according to a

winning strategy of Player 0 in G1, for the same reason the play in G≤ is winning. Because of the winning

condition of G≤, the corresponding play in G2 is also winning.

Suppose the plays in G≤ reach a triplet of configurations (〈s′′,α ′′,v1〉,〈α
′′,β ′′,v2〉,〈s

′′,β ′′,v3〉), where

([α ′′], [β ′′]) 6= ([ϕ], [ψ]). We have val(s′′,α ′′)· val(α ′′,β ′′) ≤ val(s′′,β ′′) from the induction hypothesis.

We have to show val(s′′,β ′′) ≥ v3. Let the triplet of configurations (〈s′,α ′〉,〈α ′,β ′〉,〈s′,β ′〉) be the last

configurations such that 〈α ′,β ′〉 is inside the MSCC pair ([ϕ], [ψ]). Player 1 in G1 at configuration 〈s′,α ′〉
chooses a q such that f (q,s′) f i(q,u) is maximum. As the plays in G1 and G≤ are winning for Player 0,

val(s′′,α ′′) ≥ v1 and val(α ′′,β ′′) ≥ v2. This makes val(s′′,β ′′) ≥ v1v2. Observe that v3 is the minimum

value in Vals′,β ′ which is at least minq∈I′α
f i(q,u) f (q,s′) thus minq∈Iα ′ f i(q,u) f (q,s′)≤ v3 ≤ x ∈ Vals′,β ′ .

Since, Vals′,β ′ includes val(s′′,β ′′), therefore, val(s′′,β ′′)≥ v3.

Case 4. Let [ϕ] is bounded and [ψ] is unbounded MSCCs. G1(M, [ϕ]) is a weak game, whereas

G≤([ϕ], [ψ]) and G2(M, [ψ]) are weak stochastic games. Consider a matching triplet of configurations

(〈s,ϕ〉,〈ϕ,ψ〉,〈s,ψ〉). The interesting case is when val(s,ϕ) = 1, else the claim follows trivially. If ψ is

a conjunction of the form ψ1∧ψ2, then Player 1 in G2 chooses the next configuration 〈s,ψi〉, then Player

1 in G≤ chooses 〈ϕ,ψi〉 in G≤. If ψ = ψ1 ∨ψ2 we need to decide which of the disjunct to choose. If

ϕ = ϕ1 ∧ϕ2, then 〈ϕ,ψ〉 is Player 0 configuration in G≤. If Player 0 chooses 〈ϕi,ψ〉 then Player 1 in G1
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is made to choose 〈s,ϕi〉. If ϕ = ϕ1∨ϕ2, and Player 0 in G1 moves to configuration 〈s,ϕi〉, then Player 1

in G≤ moves to 〈ϕi,ψ〉. If ϕ ∈ ‖Q‖⊕ then 〈ϕ,ψ〉 is a Player 0 configuration. If she chooses (ϕ,ψi) then

Player 0 in G2 chooses (s,ψi).
The remaining case is γ ∈ ‖Q‖⊕ and ε ∈U , where γ =⊕(r1, . . . ,rn) and ε = u. 〈s,γ〉 in G1 is Player

0 configuration and she chooses a function f ∈F⊕
s,ϕ with witness d ∈Dtm(ϕ) and {aq,s′}q∈Iϕ ,s′∈succ(s) and

moves to the configuration 〈s,ϕ, f 〉. Player 1 at configuration 〈γ,u〉 in G≤ chooses the action σ = L(s)
and then chooses a configurations 〈rk,u〉 such that val(γ,u) is minimum (i.e., he plays his best possible

move).

〈s,ϕ, f 〉 in the game G1 is a Player 1 configuration and there could be more than one way for the

game to evolve to the next matching triplet configurations. For example, if f (q,s′)> 0 and f (q′,s′)> 0,

q,q′ ∈ Iϕ , then it possible to have the next matching triplets as 〈s,δ (q,σ), f (q,s′)〉, 〈δ (q,σ),δ (u,σ)〉,
and 〈s′,δ (u,σ)〉 or 〈s,δ (q′,σ), f (q′,s′)〉, 〈δ (q′,σ),δ (u,σ)〉, and 〈s′,δ (u,σ)〉. We prove that the claim

holds for any of matching triplets arising from different choice of q ∈ Iϕ , i.e., it holds in the worst case.

Equivalently, we show that the claim holds for a choice of q for which the value val(s,α)·val(α,β ) is

maximum. Consider the triplet of matching plays (where the configurations are step wise matching) from

matching configurations 〈s,α〉, 〈α,β 〉 and 〈s,β 〉. We have the following cases:

4.a. The triplet of configurations 〈s,α〉, 〈α,β 〉 and 〈s,β 〉 where 〈α,β 〉 is not in the pair of equivalence

classes ([ϕ], [ψ]). The claim follows from induction hypothesis val(s,α)·val(α,β )≤ val(s,β ).

4.b. For every choice of matching of triplets during the evolution of the game, every play from 〈α,β 〉
stays in ([ϕ], [ψ]) and are winning for Player 0 in G≤. If the matching play in G1 starting from 〈s,α〉 is

winning, then the matching play in G2 from 〈s,β 〉 are also winning for Player 0. Suppose this is not the

case and there is a play from 〈s,β 〉 that is not winning. Consider any corresponding matching play in

G≤, together they define a matching play in G1. If the play is not winning in G2 then the matching play

in G1 is also not winning, which cannot happen as val(s,α) = 1 and G1 is a weak game.

4.c. For every choice of matching of triplets the play stays in ([ϕ], [ψ]) and are not winning for Player 0

in G≤. Then val(α,β ) = 0 and the claim follows trivially.

4.d. The triplet of configurations 〈s,α〉, 〈α,β 〉 and 〈s,β 〉 such that for all choices of matching of triplets,

not all the plays in ([ϕ], [ψ]) are winning for Player 0 in G≤ but probability of the set of winning plays is

greater than zero. Here we explicitly assume that the MC M and automata A1,A2 are finite. Every time

a configuration 〈s,α〉 is revisited, the same function f ∈ F⊕
s,α is chosen. Hence, the number of different

matching configurations is finite.

We show that the claim, val(s,α)P(α,β ) ≤ P(s,β ), holds, where P(s,β ) and P(α,β ) is the worst

case probability of reaching one of the three types of configurations covered in the previous three cases.

Let Pn(α,β ) and Pn(s,β ) be the probability of reaching one of the three types of configurations (defined

in case 4.a, 4.b and 4.c) in n steps from 〈α,β 〉 and 〈s,β 〉, respectively by matching paths, when matching

triplet are chosen such that, Pn(α,β )·val(s,α) is maximum. We show that Pn(s,β )≥ Pn(α,β )·val(s,α)
for any n. We proceed by induction on n.

If 〈s,α〉,〈α,β 〉,〈s,β 〉 is one of the three configurations from case 4.a, 4.b and 4.c then P0(α,β ) =
val(α,β ) and P0(s,β ) = val(s,β ), else zero. Now, consider the triplet 〈s,α〉, 〈α,u〉 and 〈s,u〉, where

α = ⊕(r1, . . . ,rn) and P0(α,u) = 0 and P0(s,u) = 0 but for some successor s′ ∈ succ(s) and q ∈ Iα ,

P0(s
′,δ (u,σ)) > 0 and P0(δ (q,σ),δ (u,σ)) > 0 (σ = L(s)). Let f ∈ F⊕

s,α be the function chosen by
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Player 0 at 〈s,α〉 with witnesses {aq,s′}q∈Iα ,s′∈S and d. We have:

P1(s,u) = ∑
s′∈succ(s)

P(s,s′)·P0(s
′,δ (u,σ)). (5)

And,

P1(α,u) = min
rk∈tm(α)

∑
q∈gs(rk)

P0(δ (q,σ),δ (u,σ))pk,q

≤ ∑
ri∈tm(α)

dri ∑
q∈gs(ri)

P0(δ (q,σ),δ (u,σ))pi,q

(6)

For each s′ ∈ succ(s) let qs′ be the choice of q such that val(s′,δ (qs′ ,σ))·val(δ (qs′ ,σ),δ (u,σ)) is max-

imum. By construction, P0(s
′,δ (u,σ)) ≥ P0(δ (q,σ),δ (u,σ))·val(s′,δ (q,σ)), since val(s′,δ (u,σ)) ≥

val(δ (q,σ),δ (u,σ))val(s′,δ (q,σ)). From Equation 5.

P1(s,u) ≥ ∑
s′∈succ(s)

P(s,s′)P0(δ (q,σ),δ (u,σ))val(s′,δ (q,σ)) (7)

Since f ∈ F⊕
s,α , ∑ri∈tm(α) ∑q∈gs(ri) aq,s′ = 1. Therefore:

P1(s,u)≥ ∑
s′∈succ(s)

P(s,s′)

(

∑
ri∈tm(α)

∑
q∈gs(ri)

aq,s′

)

·P0(δ (q,σ),δ (u,σ))·val(s′,δ (q,σ))

Since the configuration 〈s′,δ (q,σ)〉 is winning for Player 0, val(s′,δ (q,σ))≥ f (q,s′).

P1(s,u)≥ ∑
s′∈succ(s)

P(s,s′)

(

∑
ri∈tm(α)

∑
q∈gs(ri)

aq,s′

)

·P0(δ (qs′ ,σ),δ (u,σ))· f (s′,qs′)

We can distribute aq,s′ according to the following:

P1(s,u)≥ ∑
s′∈succ(s)

∑
ri∈tm(α)

∑
q∈gs(ri)

P0(δ (q,σ),δ (u,σ))·P(s,s′)aq,s′ f (s′,q)

≥ ∑
ri∈tm(α)

∑
q∈gs(ri)

P0(δ (q,σ),δ (u,σ))· ∑
s′∈succ(s)

P(s,s′)aq,s′ f (s′,q)

≥ ∑
ri∈tm(α)

∑
q∈gs(ri)

P0(δ (q,σ),δ (u,σ))·pi,qdri

≥ P1(α,u)

Assume now that the claim holds for all configurations triplets and for n steps. We consider the configu-

ration triplets 〈s,α〉, 〈α,u〉 and 〈s,β 〉 where α =⊕(r1, . . . ,rn) and u ∈U . As before, let f ∈ F⊕
α,s be the

function chosen by Player 0 at the configuration 〈s,α〉, with witnesses {aq,s′}q∈Iα ,s′∈S and d ∈ Dtm(α).

(For configurations with conjunction and disjunction, the matching paths are determined in their respec-

tive game by the strategies defined before.) We have:

Pn+1(s,u) = ∑
s′∈succ(s):∃q:aq,s′>0

P(s,s′)·Pn(s
′,δ (u,σ))

Pn+1(α,u) = min
ri∈tm(α)

∑
q∈gs(ri)

pi,qPn(δ (q,σ),δ (u,σ))

≤ ∑
ri∈tm(α)

∑
q∈gs(ri)

dri
pi,qPn(δ (q,σ),δ (u,σ))

(8)
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By induction hypothesis :

Pn(s
′,δ (u,σ))≥ Pn(δ (qs′ ,σ),δ (u,σ)) · val(s′,δ (qs′ ,σ)) (9)

Or,
Pn+1(s,u)≥ ∑

s′∈succ(s)

P(s,s′)val(s′,δ (qs′ ,σ))Pn(δ (qs′ ,σ),δ (u,σ))

Choose qs′ for each s′ such that val(s′,δ (qs′ ,σ))Pn(δ (qs′ ,σ),δ (u,σ) is maximum.

Pn+1(s,u) = ∑
s′∈succ(s)

P(s,s′)( ∑
ri∈tm(α)

∑
q∈gs(ri)

aq,s′)val(s
′,δ (qs′ ,σ))Pn(δ (qs′ ,σ),δ (u,σ))

≥ ∑
s′∈succ(s)

P(s,s′)( ∑
ri∈tm(α)

∑
q∈gs(ri)

aq,s′) f (qs′ ,s
′)Pn(δ (qs′ ,σ),δ (u,σ))

≥ ∑
ri∈tm(α)

∑
q∈gs(ri)

Pn(δ (q,σ),δ (u,σ)) ∑
s′∈succ(s)

P(s,s′)aq,s′ f (q,s′)

≥ ∑
ri∈tm(α)

∑
q∈gs(ri)

Pn(δ (q,σ),δ (u,σ))pi,qd(ri)

= Pn+1(α,u)

This concludes the proof.
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