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ABSTRACT.   Using the methods of recursive function theory we derive
several results about the degrees of unsolvability of members of certain  IT,
classes of functions (i.e. degrees of branches of certain recursive trees).
As a special case we obtain information on the degrees of consistent exten-
sions of axiomatizable theories, in particular effectively inseparable theories
such as Peano arithmetic,  P.   For example:   THEOREM 1. If a degree  a  contains
a complete extension of P,   then every countable partially ordered set can be
embedded in the ordering of degrees < a.    (This strengthens a result of Scott
and Tennenbaum that no such degree  a  is a minimal degree.)   THEOREM 2. //
T  is an axiomatizable, essentially undecidable theory, and if |anl is a countable
sequence of nonzero degrees, then   T has continuum many complete extensions
whose degrees are pairwise incomparable and incomparable with each  an.
THEOREM 3.   There is a complete extension  T  of P such that no nonrecursive
arithmetical set is definable in T.   THEOREM 4.  There is an axiomatizable,
essentially undecidable theory T  such that any two distinct complete exten-
sions of T  are Turing incomparable.   THEOREM 5-  The set of degrees of con-
sistent extensions of P is meager and has measure zero.

1.  If Rix) is a recursive predicate of one free number variable, the class of

all number-theoretic functions / satisfying ix)Rifix)) is called a  IT.   class.   Sets

of numbers will constantly be identified with their characteristic functions, and

thus a class S  of sets is a II.   class just if the corresponding class of charac-

teristic functions is a II,   class.   A class S  of functions is called recursively

bounded (r.b.) just if there is a recursive function which bounds every / £ S on

all arguments.   In particular, any class of sers is r.b.   Our purpose is to study

r.b.   II,   classes.   Each such class may be thought of as the set of (infinite)

branches of a special finitely-branching recursive tree, and thus our arguments

will combine standard methods from recursion theory with Ko'nig's lemma for trees.
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In particular, we shall be concerned with the following two special sorts of n,

classes of sets which were pointed out by Shoenfield in [22, Theorems 3 and 4].

(1.1).   The class of sets  C which separate a given disjoint pair of r.e. sets

(A, B),  i.e. contain A   and are disjoint from  B.

(1.2).   The class of consistent (or complete) extensions of a given axiomat-

izable theory.

In regard to (1.2), we shall especially study Peano arithmetic, and throughout

the paper the notation   P  will be used for the set of all formulas provable in

(first-order) Peano arithmetic.   In general, a "theory" is simply a deductively

closed set of formulas in a propositional or first-order language, and the termin-

ology of [25] will be used for theories.
Terminology and notation will be given at the close of this section, but first

we summarize the rest of the paper.

In  § 2 we generalize the Kreisel-Shoenfield basis theorem [22, Theorem 2]

by proving that any nonempty r.b.  II.   class has a member / whose degree  f

satisfies   f   = 0 .   A similar argument is then used to show that every such class

also has a member / whose degree contains no hyperimmune sets.   Finally, we

prove that given any axiomatizable, essentially undecidable theory T,  and any

degree   a > 0,   there are  2   °  degrees, mutually incomparable, and incomparable

with  a,  which are the degrees of complete extensions of T.   This extends the

result of Scott and Tennenbaum [21] that there is at least one such degree if T

is  P and a = 0 .
In  § 3 we study, largely on the basis of earlier results, the sets definable in

complete extensions of P.   We show that there is a complete extension T  of  P

such that no nonrecursive arithmetical set is definable in T  and obtain a similar

result for various levels of the arithmetical hierarchy.   Also we study the "expan-

sion" of r.e. sets when their definitions are interpreted in various complete ex-

tensions of P and relate this phenomenon to hypersimplicity.

In § 4 we prove that if a  is the degree of a complete extension of T,  then

every countable partially ordered set is embeddable in the upper semilattice of

degrees below  a.   We accomplish this by first using a priority argument to con-

struct a recursive sequence  {(A ., B )\ of disjoint pairs of r.e. sets such that any

sequence of sets  i Ci,  where C. separates  (A., B .),  is recursively independent.

We also construct an infinite r.b.  U.   class  S all of whose members are mutually

Turing incomparable.

In  § 5, we prove that the upper cone of degrees generated by any  n,   class

S without recursive members is meager (in the sense of Baire category), while

the measure of the set of degrees generated by  S may be either 0 or  1   even if

o is r.b.   It follows that the set of degrees of extensions of P is meager and has

measure zero.
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In § 6 we make some observations which- allow immediate extensions of some

of the earlier results.   For instance, theorems on complete extensions of  P are

extended to arbitrary consistent extensions of any theory in which the provable

and refutable formulas are effectively inseparable.   Also existence theorems for

r.b. II,   predicates can be sharpened to existence results for predicates of the

special form (1.2) mentioned earlier.

We now consider notation.   The set of natural numbers is denoted by N,   and

a string is a partial function from a finite initial segment of N  into  N.    The vari-

ables p, o, r will be reserved for strings, and  X will stand for the set of all

strings whose range is contained in  JO, 1 (.   If a is a string,  Ihia)  is the cardi-

nality of its domain.   The notation  o * r is used for the string obtained when  r

is adjoined to the right-hand end of a.   (Here o and  r are viewed in the obvious

way as finite sequences.)   If i  is a number,  a * i  is the string obtained by ad-

joining the term  i to the right-hand end of a.

Let cp and xfj be partial functions.   We say that  cp and xp are compatible if

they agree on the intersection of their domains and that  cp extends  xp  icp D_ ip)

if the graph of cp  contains that of ip.   This latter notion is used especially when

cp and  xp are either strings or (characteristic functions of) sets.   We write

dorn icp) tot the domain of cp.

A set T  of strings is called a tree it whenever it contains a string o it also

contains all strings extended by a.   We assume that the set of all strings is

Gödel-numbered so that we may speak of a recursive tree, etc.   A tree T is called

recursively bounded (r.b.) if there exists a recursive function / such that, for

every string o £ T and every x £ dom(cr), oix) < fix).   If  T  is a tree,   T* is the

set of all total functions  / such that every string extended by / is in  T.   It fol-

lows from Kó'nig's lemma [17, p. 157] that, if T  is r.b., then  T* is nonempty iff

T is infinite.   It is easily seen that a class o of functions is a  [r.b.] IT,   class

iff S = T* tot some [r.b.]  recursive tree  T.    If T  is a tree and a is a string,

Tio) is the set of all strings in  T which extend o,  and  T  io) is the set of all

functions in  T* which extend  a.   Observe that we use the notation  T  for trees

and T for theories.
The notation   "ieS (x) = y"  (where  a is a string and  e, s, x, y  ate numbers)

has the usual meaning, i.e. roughly that the eth recursive reduction procedure,

given input x  and oracle information  o,  reaches output y  within s   steps.   We

write |ei°Xx) = y  as an abbreviation for <e!/Lfcr1(x) = y   ar>d so we have (as in

[23, p. 540])
(1.3) If \e\  ix) = y  and  r extends  o,  then  \e\ ix) = y.

(1.4) The predicate   "\e\ ix)  is defined"   is a recursive predicate of e, a,

and x.
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Assume that the class of finite subsets of N  is Gödel-numbered, and let D

denote the finite set with index zz.    If A   is a set and f is a recursive function,

we say that D ..  . witnesses A   nonhyperimmune if D ..  . O A  is nonempty for

every x,   and  D,,  ,  is disjoint from  D .,   . whenever   x / y.    We write   ( u, v )' fix) ' 7(y)
for the image of (u, v) under a recursive pairing function from  N     onto  N.   If a

is a degree,  a    is the jump of a; 0  is the degree of the recursive sets.   We write

W    fot the eth r.e. set under some standard indexing of the r.e. sets, and A   for

N - A.    For sets A, B,   we define A   join  B to be J2n: 72 £ A\ L) {2n + 1; n £ B \.
For unexplained terminology the reader is referred to [17].

2.  In [22, Theorem 2] Shoenfield extended a basis result of Kreisel by proving

that any nonempty II,   class of sets has a member of degree a < 0 .   We extend

this result further by proving that a  can even be chosen so that a   = 0 , and there-

fore any consistent axiomatizable theory (in particular Peano arithmetic  P) has a

complete extension of such a degree.    (It is worth noting that the results of this

section apply to any  Ü,   class which contains a recursively bounded function,

since each such class has a nonempty r.b. n,   subclass.)

Theorem 2.1.   // o  z's a nonempty r.b.   II.   class,  § contains a function  f

whose degree  { satisfies   f   = 0 .

Proof.   Let  T.  be a r.b. recursive tree such that S = TÎ.   We shall define a

decreasing sequence of infinite recursive trees  ¡T   I   eN  and choose /

eN  ^*   1^e tree T    1   w'^ have the property that {e\8(e) is defined for all

or no g £ T* ,.° e + 1
Assume that tree  T    has been defined.   Let  U    = {a\ {e\ (e)  is undefinedl.e e '

It is easy to see from stipulations (1.3) and (1.4) on relative computability that

U    forms a recursive tree.e
Case 1.  T   Of/     is finite.   Let T     , - T .e e e +1 e
Case 2.  T    C\ U     is infinite.   Let  T     , = T    C\ U   ,  which is clearly a re-e e e + 1 e e *

cursive tree.

Since S is nonempty,   TQ   is infinite.   It follows by induction that  T     is

infinite for all e £ N,   so by König's lemma (i.e. the compactness theorem for

finitely branching trees [17, p. 157]),  T*  is nonempty for all e £ N.    Therefore,

fr €N  T*  is nonempty because it is the intersection of a decreasing sequence of

nonempty closed sets (in the compact space S = T*). Choose any function  /

£ I I   €N  T*.   (In fact,  / is unique.)   We claim that f   = 0 ,  because the entire

construction can be carried out recursively in 0 .   It is easily seen that Case 1

applies in the definition of T     .   just in case

(2.1) (372)(Vct)[ct e T   & lh(a) = 72 => {e\cr(e) is defined].
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Since   T     is r.b. (by the same function bounding  TQ),  we can find recursively

all a  £ T    of length  ra uniformly in n.   Hence, (2.1) is a predicate of the form

(dra)R(ra),   where  R  is a recursive predicate whose index can be computed effectively

from  e  and an index of  T .    Therefore, we can decide recursively in 0    whether

Case 1 holds, and after that we can recursively find a Gödel number for  Te+1-

Furthermore,   \e\'ie)  is defined <$> Case 1 applies in defining  Tg   ,,  because if
Case 1 applies then  {eSCT(e) is defined for all sufficiently long  a £ T    by (2.1),
so  \e\> ie) is defined; and if Case 2 applies,  \e\' ie) is undefined since   / € U*.

Since we can determine recursively in  0   uniformly in   e  which case applies

in defining   T     .,  it follows that  f    < 0   .   Since  0    < f     always holds, we have
f =0'.

The proof of Theorem 2.1 can easily be modified to yield the stronger result

that for any nonempty r.b.   IT,   class  ö with no recursive member and any degree

a >^ 0    there is a function / £ S such that  f   = f U 0   = a.   In the proof of Theorem

2.1, first choose effectively from  Tg   ,   two incompatible strings  o     ., o"     ,.

(These exist since   T*   .   is nonempty and has no recursive member.)   Then replace

Te   .  by the subtree of those strings  o £ T     .   which are compatible with  o    A\ •

where A  is a fixed set of degree  a.   The proof that  f   = f U 0   = a for the func-
tion / thus obtained is very similar to that of the Friedberg completeness criterion

[3] or [17, p. 265], of which the present result is a generalization.

Corollary 2.2.   Any consistent axiomatizable theory iin particular P) has a

complete extension of degree whose jump is  0 .

Proof.   By (1.2).

Corollary 2.3. Let T be a consistent axiomatizable theory. Then T has a

model in which the domain is a set of natural numbers, and the predicates are of
a degree whose jump is 0.

Proof.   As in [22, Theorem 5].
A degree  a is called hyperimmune-free it no hyperimmune set has degree  a.

The existence of nonzero hyperimmune-free degrees was proved by Miller and

Martin [13, Theorem 2.1].   The following extension of their result is proved by

combining their methods with those in the proof of Theorem 2.1.

Theorem 2.4.   // ö  z's a nonempty r.b.    ITj  class,   § contains a function f
whose degree  lis hyperimmune-free .

Proof.   We find / £ o such that for every function g recursive in / there is a

recursive function  h  such that hix) > g(x) for all  x.   Once this is done it follows

immediately from [16, Theorem 21 ] that the degree f is hyperimmune-free.

Let O = T*,  where   TQ is a r.b. recursive tree.   As in Theorem 2.1, we construct
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a descending sequence of recursive trees   ¡T   !   ,.,,  and choose  7 £ I  I   ,.. T*.ft       -i <    e'ecN' ' e eN     e
We now arrange that je!g  is total for all or no g £ T*   ,.   Assume that  T    has

been defined.   Let

Ux = {a\\e\a(x)  is undefined!.
e '

Case 1.   For all x, T    O Ux  is finite.   Let  T     , = T .
e e e + 1 e

Case 2.  For some x, T   C\ U     is infinite.   Let x    be the least such x  andz? e e
define  T     , = T    O í/x<?,   which is a recursive tree just as in Theorem 2.1.e + l e e '

As in Theorem 2.1, choose (the unique) function  7 £ I I  ... T*.   Fix a number* ' e £ /V      e
e  and consider the function  je!'.   If Case 2 applies in the definition of T     .,

then  {e\' (x  ) is undefined, so  jei'   is not total.   If Case 1 applies, we define a

recursive function h  (x) which bounds  je! .   To compute h (x),  first find a num-

ber k     such that  je |   (x) is defined for every  a £ T    of length  &  .   The number

k    exists because Case 1 applies, and k     can be found effectively uniformly

in x  because T     is r.b.   Therefore the following function is both total and re-

cursive:

bg(x) = maxJieHx): o £ Tg &. lh(a) = kj.

Clearly b  (x) > jei'(x) because je!' (x) = !eiCT(x)  for some a £T     of length

k  .   Therefore, by the remarks at the beginning of the proof, the degree of / is

hyperimmune-free.    (It follows from our proof that each degree  a < f is also hyper-

immune-free but this is automatically true by [13, Theorem l.l].   The degree  f

also satisfies  f      =0     .)

Theorem 2.5.   Given any nonempty r.b.   IJ,   class o which has no recursive

members, and any countable sequences of nonrecursive degrees  ja.!, a has   2

members f,   mutually Turing incomparable, such that the degree  f is incomparable

with each  a ..
z

Our proof combines the standard technique(7 for constructing  2        mutually

incomparable degrees with the following Lemmas 2.6 and 2.7 which enable the

construction to be carried out within S.   Given an infinite recursive tree  T,   de-

fine the (nonrecursive) tree of extendible finite branches of T,   denoted  TeKX,   to

consist of all a £ T  fot which  T*(cr)  is nonempty.   If T is r.b., then by Konig's

lemma,  a £ Text   jUst if T(a) is infinite.

Lemma 2.6 (Splitting Lemma).   For every infinite recursively bounded recur-

sive tree  T and index e either

(2)   The construction of  2   ^  mutually incomparable degrees was first given by Sacks
[l8, p. 13].   We use a modification due to T. G. McLaughlin (unpublished).
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(1) there exists an infinite recursive tree   T. C_ T  such that, ¡or every  f

£ Tí,  \eV   is recursive or not total; or

(2) for every  o £ Text,   there exist  T..T-, £ Textio) such that, for some

x,   \e\ Kx) and \e\ 2ix) are defined and unequal.

Proof of Lemma 2.6. Fix T and e, and assume that (1) and (2) fail. Fix

o £ Text which is a counterexample to (2). We will get a contradiction by de-

fining a recursive function  gix)  such that

(/)[/ e T*ia)=^\e\f is total & \e\< = g\.

Choose any argument x   .   Since (1) fails, there are only finitely many  r £ T

for which  je} (x  ) is undefined.   (An infinite set of such  r would constitute an

infinite subtree  S Ç T,   and S  is clearly a recursive tree.)   Hence, there exists

ra     such that, for all  r £ Tia)  of length n  ,   \e\ ixA is defined.   But since (2)

fails for x   ,  there are no two extendible strings  p, r £ Tier) of length ra.   such

that  jer (x.) 4 \e\ ixA-   Hence, by Ko'nig's lemma there exist w. >_ n     and  s

such that, for all  p, r £ Tia) of length  mn,   \e\p ix)  and  \e\r   (x.) are definede 0 SQ s0     0
and equal.   Since s.  and m.   exist they can be computed recursively.   (We use

the fact that Tia) is r.b. in order to compute recursively all  r e Tio) of length

n, uniformly in  ra. )   Having computed s     and m  ,   we choose any  r £ Tio)  of

length Z72.   and define gix A) = \e\    ix A.   Now for any / £ T*io), \e\'ixA)  is de-

fined and equal to gixA by the continuity of the functional \e\.

Lemma 2.7.   // T  is a r.b. recursive tree, and T* has members but no re-

cursive members, then for every  o £ Text,   there exist two incompatible strings

rx,r2£Te:ltio).

Proof of Lemma 2.7.   This lemma is obvious but can be thought of as the

special case of Lemma 2.6 in which  \e\ is the identity operator.

Proof of Theorem 2.5.  Choose a r.b. recursive tree  T.   such that T* = cS,

the given r.b.  IT,   class.   To simplify the details we will construct the functions

/ incomparable with a single nonrecursive degree  a,  but it will be clear how to

generalize to countably many nonrecursive degrees   (a.!   simply by considering

ja., • • • , a   | at stage ra  in place of just a.   Let h £ 2     be some function of

degree  a.

A rooted tree is an ordered pair (o~, S) where  o is a string,  S is an infinite

recursive tree, and S = Sio).   (If   S   is r.b. then clearly a £ Sext by König's

lemma since  Sin) is infinite.)   If (o_, S A, (ct., S A  ate rooted trees we say that

(ct., S A extends  (ct., S A it ct.   extends ct    and S . C S   ;  and that (ct., S A and

(ct., S A ate incompatible if ct.  and ct.  are incompatible.   We say that / belongs to

(ct, S) it f e S*.
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We must define a sequence  jiR   !   ,..   such that each 9{     is a set of  2"  pair-
77    72

wise incompatible rooted trees and each rooted tree in  j\     has exactly two in-

compatible extensions in  ÍR     j.   Furthermore,  ÍRQ = ¡(0, TA\,  where  0 is the

empty string and  Tn  is the given recursive tree, and  9\     .   satisfies the follow-

ing conditions for all functions /, g:

(2.2) If / belongs to a rooted tree in ß     j   then   {nv / h.

(2.3) If / and  g   belong  to different rooted trees of 5\     ,   and  e <_n,   then

ieK/g.
It is sufficient to define such a sequence ß     because once this is achieved,* 72 '

we may define C  to be the set of functions which belong to some rooted tree in

3\     for each 72 and which are not recursive in h.   Then  C is contained in the
77

given class o by definition of the ß  ,  and (? contains a continuum of functions

by the condition that each member of j\    has two incompatible extensions in

in     .,  and because only countably many functions are recursive in  h.   Finally,

it follows from (2.2) that h  is not recursive in any member of (?,   and from (2.3)

that any two distinct members of (?  are Turing incomparable.

We now define the sequence  j^   ! by induction.   Let ÍR. = j(0, T.)!,  and

assume that ß    has been defined.   To insure that each member of ß    has two
72 72

incompatible extensions in  ,K     ,   we fitst choose, for each member of 3?  ,   a?2yV 72+1 ' 77 '

two incompatible extensions.   This may be done by   Lemma 2.7.   Let Ü?     .  de-
^ + î

note this set of  2"       rooted trees.   These may be thought of as "candidates"

for ß     ,.   We must now keep extending each candidate in successive substages

until we have insured that (2.2) and (2.3) hold for the extended collection.   Thus,

each member of ß     ,   will be an extension of one of the original candidates.   We
72 + 1 "

shall not carry out this extension procedure in complete detail but shall indicate

how each condition is attacked.

To satisfy condition (2.2), consider any rooted tree  (a, S) in  (?     .   and apply

Lemma 2.6 to S  with e ■= n.    If (1) of Lemma 2.6 holds, extend (a, S) to (a, S A
where J. C J  is given by Lemma 2.6.   If (2) of Lemma 2.6 holds, choose r., r

£ S ext  and x such that  jzz! !(x) and  {n\T?(x) are defined and unequal.   At least

one of these, say  J72! Kx),  must differ from  h(x), in which case we extend  (a, S)

to  (7, S(r.)).   Whichever case of Lemma 2.6 applies, our construction clearly

guarantees that for all / in the extension of (a, S) we have  J72!' ^ h.   (In the first

case, the nonrecursiveness of h is used.)   By applying this procedure to every

rooted tree in  C.     ,,  we get  2"+    rooted trees each of which extends some72 + 1' &

member of (?    ,  and which satisfy (2.2).   Denote this collection by C     ,.
72+1 ' ' 72 + 1

To satisfy (2.3), we choose any two distinct members of (:       .,   say  (a , S A

and  (a,, S A, and any Gödel number e <^n.   Apply Lemma 2.6 to  (a., S A).   If (1)
holds, extend  (a , SA  exactly  as before, and leave  (a., S A unchanged.   If (2)
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holds, let  r , r , x be such that \e\Tlix) and  \e\ 2(x) are defined and unequal,

and r,, r. eS"1,   Extend (if necessary) ct,   to any  ct2  £$"'  suchthat ct2(x)

is defined.   Choose i £ JO, 1Î  such that  je f!'(x) / ct2(x).   Extend  (ctq, S q) to
(r., S(r.))  and extend (ct., S x)  to  (ff,, 5,(ct.)).   Clearly, in either case, if / and

g  belong to the extensions of (ct., S A and  (ctj, S ¡) respectively, then  \e\' / g.

To satisfy (2.3), we repeat the above procedure for the extensions correspond-

ing to every pair of distinct members of C '   ,   and every Gó'del number e < n.

(Of course, if (ct., S A  and  io,, S,)  in Ç '   ,   extend different elements in ,ft0       0 l       l zz + l " zz
and if /. belongs to (ct., S.) fot i - 0 and 1, then /. and /, are already incom-

parable with respect to all Go'del numbers e < ra by definition of j\ . In this case

one need consider only Go'del number  e = ra.)

The rooted trees resulting from all these extensions form  .ft     .,   and satisfy
" rz + 1' '

our requirements.   Theorem 2.5 now follows as previously indicated.

The following corollary generalizes a result of Scott and Tennenbaum [20].

Corollary 2.8.   Given any axiomatizable, essentially undecidable theory  T,

and any degree a > 0,  there are   2   °  degrees, mutually incomparable, and in-

comparable with   a,   which are the degrees of complete extensions of T.

Proof.   This follows from Theorem 2.5 immediately by (1.2). '
The following corollaries do not use the full strength of Theorem 2.5 and

accordingly they have direct proofs which are somewhat simpler than that for

Theorem 2.5.

Corollary 2.9. // S z's aray nonempty r.b. IT. class, then S contains functions

f and g whose degrees  f and g have greatest lower bound 0.

Proof.   We may assume that cS has no recursive members since otherwise the

result is immediate.   Let / be any member of S.   Apply Theorem 2.5 to obtain a

function g £ § of a degree incomparable with each of the (countably many) non-

zero degrees  < f.

The next corollary, due to A. H. Lachlan, strengthens Corollary 6.6 of [8]

and was stated without proof at the close of [8].

Corollary 2.10 (A. H. Laehlan).  // A   is an r.e. set whose complement A   is

introreducible (i.e. recursive in each of its infinite subsets), then A   is either

recursive or hypersimple.

Proof. Assume the corollary is false for A and that j is a recursive function

such that \D, . A witnesses that A is nonhyperimmune. Define S to be the class

of all subsets of A which intersect every D .. .. Then S is a nonempty ITj class

of sets and A is recursive in every member of S. It now follows from either The-

orem 2.5 or Corollary 2.9 that A  must be recursive.

The next corollary is a consequence of the proof of Theorem 2.5 and will be
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useful in  § 3.   For each tz,   let  0       be a set of degree 0     .

Corollary 2.11.   Let  {A .! be any countable sequence of sets, and let C be a

set such that A. is recursive in C,   uniformly in  i.   Let a be any nonempty r.b.

u.   class.    Then  o has a member f,   recursive in  C join 0     ,   such that no non-

recursive A . is recursive in  f.

Proof.   The proof of Theorem 2.5 yields a "binary tree"  B  of functions

/ £ a such that no nonrecursive A . is recursive in /.   (More precisely,  B  is the

set of all strings extended by any string in   U   f„ J(  .)   The effectiveness of the

proof allows  ß   to be made recursive in  C  join  0(   '.   Thus  B  has a branch /

recursive in  C  join  0(      because every string in  B  extends to an (infinite) branch
of B,   i.e.  B = ßext.

3.  If A   is a set and T  is a theory, we say that A   is definable in T  if there

is a formula u(x) of one free variable in the language X of T such that A =

{k: u(k) eT|.   (We assume that £ has  a numeral   k  corresponding to each k £ N.)

The results of § 2 easily yield complete extensions of Peano arithmetic in which

the definable sets are rather pathological.   Throughout this section we use  J   to

denote the r.b.  n.   class of complete extensions of Peano arithmetic.

Corollary 3. 1.   There exists a theory  T £ J   such that every set definable in

T  is either recursive or nonarithmetical.

Proof.   By Theorem 2.5, there is a theory T £ J  whose degree is incompar-

able with each of the (countably many) nonzero Turing degrees of arithmetical

sets.   Since each set definable in T  is recursive in T,  the corollary follows.

Corollary 3.2.   For each n >  2 there exists a theory T £ J  such that every

nonrecursive set definable in T  is recursive in  0    ' but not r.e. in  0 '.

Proof.   Let 77 >_ 2  be given, let  C = 0*"',  and let A. he the z'th set r.e. in
0 ,  under some standard indexing.   It follows from Corollary 2.11 that there

is a theory Tu,  recursive in  C  join  0(   '  and thus in  0("',  such that no non-

recursive A . is recursive in  T.   As before, the corollary now follows from the

fact that each set definable in  T is recursive in T.

We would like very much to know whether the previous corollary holds for

ft m   I.

We now narrow our attention to definitions for r.e. sets.   For each  e,

let Cl  (x)  be the formula of Peano arithmetic which expresses   "(3 y)T(e, x, y)",

where T is Kleene's T-predicate [12, p. 281].   We assume that the r.e. sets

{W   \ ate indexed so that 8.    defines  W     in Peano arithmetic.   If T  is a theory,

let
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WT =\k-.a  (k) eT|.e e

If T  extends Peano arithmetic, then  W    C W   .   We say that the theory T

blows up  W    if W     is cofinite.   (Note that this definition really depends on the

index  e,   not just the set W  .)   The remaining results of this section show that

the hypersimple and cofinite sets are precisely the r.e. sets which can be blown

up with respect to all of their indices, while every r.e. set can be blown up with

respect to at least one index.

Corollary 3.3.   There is a theory  T £ J  which blows up every hypersimple

set  W .e

Proof.   By Theorem 2.4 and the remarks at the close of its proof, there is a

theory T £ J   such that no hyperimmune set is recursive in T.   If  W    is hyper-

simple, then   W     is contained in  W     and so must be hyperimmune or finite.   The

former case is impossible since  W     is recursive in T.

Proposition 3.4.   Let  A  be r.e. but neither hypersimple nor cofinite.   Then

there exists  e such that A = W    and no consistent extension T of Peano arith-e '
metic blows up  W  .r       e

Proof.   Let  f be a recursive function such that D ,,  ,  witnesses that A   isf(x)
nonhyperimmune.   We may assume without loss of generality that  \J    D,.  . = N.

Choose some recursive enumeration of A   and let As  be the finite subset of A

obtained after s   steps of this enumeration.    Let Cl(x) he the formula

(3s)(3y)[x £Asn Df(v)8t D/(v)iAs].

By the normal form theorem,  u(x) can be expressed as u  (x)  for some e.

Then A = W    since all the  D ,,  ,  intersect A   and  U    D ,,  , = N.    If T  is a con-e f(x) x     f(x)     _
sistent extension of Peano arithmetic, all the  D,,  ,  intersect  W   ,  so  W     isf(x) e ' e
coinfinite.

Proposition 3.5.   For any r.e. set A   there  exist  a number e anda theory

Te? such that A = W    and WT = N.e e

Proof.   Suppose the assertion is false for some r.e. set A.   Let  K  be any

r.e. nonrecursive set, and let / be a recursive function such that

lie)

N    it e £ K,

A     otherwise.

We claim that, for all  e,
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eeK*["l(V*)fl/(f)(xï|iP.

Recall here that P   is Peano arithmetic and  thus r.e.;  hence the claim, once

established, yields the  desired  contradiction by implying  that  K  is r.e.

To prove the claim, first assume that   "1 (\/x)u...   .(x) £ P.   Then it follows

from thç co-consistency of   P   that U..   ,(k) £ P  for  some k £ N.   Thus  W,, , / N

and so  e £ K.    For the converse, assume that   ~~1 ( \/x)Cl,,   .(x) ^  P.   Then by

Lindenbaum's lemma [6, p. 162] there is a theory  T 6/   containing the formula

(Vx)u..  .(x).   Since theories are deductively closed,   ^,,   . =   N  fot this theory

T,   and hence A / W,,.  by our original assumption.   Thus we may conclude that

e £ K.    This completes the proof of the claim, and the proposition  follows.

4.  Scott  and Tennenbaum announced [20] that if a is the degree of a complete

extension of Peano arithmetic  P  then  a is not a minimal degree.   The main pur-

pose of this section is to considerably generalize this result by proving that if  a

is such a degree then any countable partially ordered set is embeddable in the

upper semilattice of degrees below  a.   We accomplish this by first combining a

priority argument with techniques used in constructing   an infinite set with no

subset of higher degree [24] in order to prove Theorem 4.1.

We define the (recursive) join of a sequence of sets JA   !   £N to be the set

J(t2, x): x € A   \.    We say that  the  sequence of sets  JA   !   ,M  is recursively in-72 72   72 fc7\ J

dependent if for each 72 > 0, A^  is not recursive in the join of the sequence AQ,

A   , • • •, A      y 0, A       , • • -.   If [(An, Bn)\n £N  is a sequence of disjoint pairs of

sets, then a sequence of separating sets is a sequence of sets  JC   !   eN   such that

C     separates  (A  , B  ) fot all n £ N.

Theorem 4.1.  There is a recursive sequence of disjoint pairs of r.e. sets

{(A  , B  )!   £N,,   such that any sequence of separating sets  {C   \   €N  is recursively

independent.

Proof.   We will define a partial recursive function  if/,  taking only values  0

and  1,   such that the sequence of disjoint r.e. sets  j(A  , B  )\   eN  satisfies the

theorem where we let A    = jx: if/((n, x)) = lj,  and S    = jx: <f/((n, x)) = 0}.   We

will define   i/z  as the limit of a recursive sequence of finite functions   ip  ,  where

if)     , 7 "Z1  •   Each  ifi    naturally determines  a recursive tree

T    = Jct: a £ X & a compatible with i/>   !.

Since   ifi     , D  i/z  ,  clearly  T     . C T  .   If we define  S = (I   ,., T* ,  then S  is^S + l   —    rs, J s + l   —        s sf/V S'
clearly a r.b.   IK  class and

ö = l/:/ is compatible with ift\.
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For any  f £ 2   , we define the functions  n./ = Ax[/((z, x))],   and  A./,   where

a   /// ■      \n      Í f^i> x'}    if Í¿ »'■A/«/, *» = /
(0 if ,/i.

(Think of 77.  as a projection operator and A .  as a deletion operator.)   For partial

functions such as strings  ct £ S,   the partial functions zt.ct and  A .ct  are defined

similarly on domcr  and are undefined off dome.

For each  i, e £ N,   we define a requirement denoted  R . ,   which asserts that* ie

(/)[/eS -+*.f /\e\á''].

We say that  R.    has higher priority than  R .,   just if {i, e) <  ( /, k).

To prove the theorem it clearly suffices to construct ip  such that the result-

ing class  ö satisfies  R.     for all   i, e £ N,   because as  / ranges through  a, it-f

ranges through all separating sets of the pair (A., B .)  and A / ranges through all

recursive joins of separating sets of (A .,  S .)  for /' / i.   (Recall that we identify

sets with their characteristic functions.)

In order to reveal the intuition behind the construction, we use Rogers' term-

inology [l7l, and begin by designating the set \\i, x): x £ N\  as the z'-list.   On

the ¿-list we place an infinite sequence of "markers"  JA.   J arranged in as-

cending order according to subscript e. The integer occupied by A . at stage s

(denoted x ii, e) from now on) will not be in dotnip but may later enter domxp ,

t > s, in order to satisfy R . or some requirement of higher priority, in which

case A. is moved to some y ^ dorn xp . As in Yates' maximal set construction

(see Rogers [17, p. 235]), every element not covered by a marker at s is enumer-

ated in domii . Hence, A. comes to rest on the (e + l)th element of the z'-listT s '      ie

which is not in (.4. U B ■)•
z z

Since  R.    can move all markers except those A.,   for {j, k) < \i, e),   it is

appropriate to think of  R .     as the conjunction of 2    ,e     "subrequirements"   R.

for sets  DC D.  ,   where—     ze'

|A„: (/, k)   <   (i, e)\V*
For  DC D.  ,  the subrequirement   R .    is defined  as the assertion that requirement

—      ze?' 7 ie *

R .    holds for those  / £ ö  such that fix) = 1  if x is occupied by a marker in  D,

and fix) = 0 if x is occupied by a marker in  D.   — D.

Fix a requirement  R .  ,  a set  DC  D.  ,   and a stage  s.    Let  w be the finite

function

wixAi> k))
1 if Afk £ D,
0 if A'., £ D .]k ze
undefined     otherwise.
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(Note that w  depends upon s  as well as upon  D, i,   and  e.)

We say that   R       is satisfied at stage  s   if there is a string a £ T     such that

(4.1) a extends w;
(4.2) (x) [x e (doma - dorn w) =^ x £ dorn if/ ];  and

(4.3) (3x)[jei    ,cr(x)  and  tt.ct(x)  are defined and unequal].

(Condition (4.2) insures that any f £ T*  which extends  tzz  also extends  if/   ,  while

(4.3) insures that any such / satisfies  R . .   Notice also that if for some s,   every

subrequirement of  R .     is satisfied then  R .    holds for all f £ T* .)^ ze te 's
We say that subrequirement   R .     requires attention at stage s  if  R .    is not

satisfied at stage s,   and there exists a string a £ T     which extends  w  and such

that
(4.4) jeí*í*(xs(¿, <?))  is defined.

In this case we also say that requirement  R .    requires attention at stage s.

We now define the finite functions  if/   , s £ N.   Define  tfj. = 0,  and place

marker A.     on integer (i, e).   Thus  xAi, e) = (i, e).

Stage s >  0.  Choose the requirement of highest priority, say  R . ,   which re-

quires attention at s.   If no such exists, set xb     , - xb  ,  and x     ,(/, k) = x (j, k).
1 , ~ .s + 1 TS -S +1   ' S   '

Otherwise, choose  D   so that  R      requires  attention   at s; let w be the correspond-

ing  finite  function;  let a £ T     extend iv  and satisfy (4.4).   Define

l-{e^(y)     ify = xs(z, e),

</7 + 1(y) =   { °iy) if y £ dorn a - (dorn w U dorn if/ ) & y ¿ x (i, e),

ifj (y) otherwise.

(Note that subrequirement   R       is now satisfied at s + 1   because we have insured

that there is a  r £ T which agrees with a except perhaps on x  (z, e),  so that

A.O" = At,  and such that  r satisfies (4.1), (4.2) and (4.3).)
Beginning with  k = 0,  any marker A.,   which now lies on some y £ dorn if/     .

is moved to a new integer in the /-list,  L.= {(/', k): k £ N\.   Namely, we define

for each  / € N,

xs+i^' 0) = wb e L,: & y i dom t/7+1],

xs + 1(/, k + 1) = py[y eL.Siy> xs+l(j, k) Sty \ dom </>s+,].

(Notice that if y £ dom a — dom tz/  is occupied by a marker  A .,   at s,   then

(/, k) ->_ (i, e)  by definition of tz'.    This insures that  R.    moves only those markers

A.,   for which  (/, k) >   (i, e).)
JK.

This completes the construction at stage s.    To complete the construction,

define  ifi = lim    if/  ,  which exists because  xfj     , 7 0  •   Furthermore,  ifi  is partial

recursive because our procedure at stage s   is recursive.   Hence, o  is a r.b.  W.

class, where we define § = I I     .. T*■.s eN     s

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] IT"  CLASSES AND DEGREES OF THEORIES 47

Lemma 4.2.   For all i, e £ N,   requirement  R.    requires attention only finitely

often.

Proof.   Fix  R .  ,  and assume by induction that all requirements of higher

priority have required attention for the last time before some stage, say s..    Then

for each ;'  and k,   where ( /', k) < (z, e), we know that x  (/', k) = x    (;', ze)  for all
D S-    ■ S°s > s_.   Hence, once a subrequirement   R .    has been  satisfied at some s > s„,0 ' ' ze 0

it remains satisfied at all t >_ s.   Hence,  R.    requires attention at most  2    '

times after s,0

Lemma 4.3.   For all i, e € N,   requirement  R .    holds for o.

Proof.   Fix  R . .    By Lemma 4.2, we can choose s.   so that every requirement

of priority  R .    or higher has required attention for the last time before sn.   Hence,

for all s > s   ,  and all (/, k) < (i, e),   we have x  (/, k) = xsAj, k) which can

thus be denoted simply by xij, k).
To show that  R.    holds, assume by contradiction that there exists  f e S. ze ' ' '

such that ff./ = je!  ' .   Let  w be the finite subfunction of / with domain  jx(;', k):

all (;', k)< (i, e)\, and let  D CD.    correspond to w  as explained earlier.   Then

there exists some initial segment o oí j,  a extending w,   and some s > s.   such

that  jei    '   ix  ii, e)) is defined.   But then   R .    requires  attention at s  contrary

to the assumption on s   .   This completes the proof of Lemma 4.3 and hence that

of Theorem 4.1.

Corollary 4.4. // a is the degree of a complete extension of Peano arithmetic

then any countable partially ordered set is embeddable in the upper semilattice of

degrees below  a.

Proof. Our proof uses Scott's theorem [19] which implies that given any non-

empty ITj class o of sets and any complete extension T of P, § contains a mem-

ber which is recursive in T.   Let T  be a complete extension of  P  of degree a.

Let  j(A   , B  )|   ,..  be given by Theorem 4.1, and let S be the class of sets de-zz        n    n (N o i '
termined by this sequence as in the proof of Theorem 4.1.   Namely,

S= jC: in)[nnC separates  (An,  Bjli,

where the projection operator 77    is extended to sets via their characteristic func-

tions.   Since S  is a nonempty Vr.   class of sets, Scott's theorem implies that S

has a member, say  C,   whose degree  c  satisfies  e .< a  (in fact c .< a).   But the

sequence  J77 C\  ,..   is recursively independent.   Therefore, Sacks' technique
1 zz      n czv J L

[18, p. 53] can be directly applied to the sequence  ¡77 Ci to embed any count-

able partially ordered set in the upper semilattice of degrees below  c.

Corollary 4.5. For any degree a, there is a nonempty r.b. ITj class which has

no members of degree  a  or 0.
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Proof.   Given  j(A   , B   )!   ...  by Theorem 4.1   define two r.b.  IT   classes
72 77      72 t/V y 1

S   = JC: C separates  (A ,  B  )\,       n = 0, 1.72 r 72 77       '

Now every member of eL   is Turing incomparable with every member of «7.   Thus

either oQ  or 07, has no member of degree  a.

In [lO] we generalize this corollary by constructing disjoint pairs of r.e. sets

(Aq, BAI and  (A., B A  such that if C  separates  (An, BAi and D   separates

(A., By) then  C  and D   form a minimal pair (i.e.  C  and  D   are nonrecursive and

any set recursive in both  C  and D   is recursive).   Corollary 4.5 is thus general-

ized to the assertion that, for any nonrecursive degree a,  there is a nonempty r.b.

IT,   class which has no members of degree >_ a  or of degree 0.   This answers a

question suggested by G. E. Sacks which arose as follows.   There is a certain

analogy between r.b.  IJ.   classes and arbitrary  II,   classes when one changes

"recursive" to "hyperarithmetic," "degree" to "hyperdegree," etc.   H. Friedman

has shown [4] that the analogy of the generalization of Corollary 4.5 holds precisely

for those hyperdegrees not above the hyperdegree of Kleene's  0.

The techniques in the proof of Theorem 4.1 can be easily modified to prove

Theorem 4.6.   There exist disjoint r.e. sets A  and B  such that A \j  B  is

coinfinite, but for any two sets   C, D  which each separate  (A, B),  C and D are

Turing incomparable unless their symmetric difference  CAD  is finite.

We omit the proof which is an easy variation of the former method.   Naturally

in Theorem 4.6 the separating set C  cannot be made incomparable with all other

separating sets  D   since there are clearly such sets  D  whose symmetric difference

with  C is finite.   If we are willing to consider more general r.b.  II,   classes, how-

ever, we can strengthen the conclusion of Theorem 4.6 so that all members are

incomparable.

Theorem 4.7.   There is an infinite r.b.   IJ,   class  0 such that if f, g £ 0 and

f 4 g,   then f and g are Turing incomparable.

Proof.   Recall from the introduction that  2  is the set of all strings with range

C_ JO, 1!  appropriately Gödel numbered.   We will define a recursive sequence

{tfj  !   «.,  of total recursive functions from  S to  S such that, for all a £ ¿,^s s(N ' '
(4.5) if/ (o*l) and  if/  (a*0) ate incompatible extensions of xfj  (a) for all

s £ N;
(4.6) range (if/     AC^tangedf/  ) for all  s £ N;
(4.1)   lim   ifj (a) exists.
Each  if/    determines a recursive tree

T    = |r: (3o")[i/r  (a) extends  r]\.

(These functions  if/     ate similar to those used by Shoenfield in [23].)   Condition
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(4.6) guarantees that  T     . C_ T   .   If we define S = I 1 T* ,   then S  is clearly
a nonempty r.b.  IL   class.   The theorem thus follows if we define the functions

ip     such that the class o they determine satisfies for all e £ N  the requirement

R     which asserts thate

(/)[[/ £ S & [e]1 total & \e\l 4 f] => \e\> 4 S].

For any  o £ 1.,  let o(ct)  denote the set of those f £ e (if any) which extend

ct.   We think of requirement  R     as the conjunction of  2e+     "subrequirements."

For each  ct £ S of length e + 1,  we define a subrequirement, denoted  R   ,  which

asserts that

(/)[[/ 6 SGA(ct)) & \e\l total & jeK ¿ /] =£> \e\f ä S].

If jei (y) is defined for all y < x,   we define  jei  (x) to be the string  jei  (0),

■■■,\e\Tsix-l).

We say that subrequirement R     is satisfied at stage s  if there is an  x  such

that jei  (x)  is defined and   k T  ,   where  r denotes  i/V  (ct).   Note that if all sub-
5 T       s s

requirements  R     of a given requirement R     ate satisfied at some stage  s,   then

R     clearly holds for  T*  and hence for S,  because any  f £ T*  extends  xp (ct)

for some ct of length  e + 1.

We define the functions xp     as follows:
T s

Stage s = 0.  Define ipAo) = a fot all a £ S.
Stage s + 1.  We say that subrequirement R     requires attention at  s + I

(and thus requirement  R     requires attention at s + 1) if R     is not satisfied at

s + 1,  and there exists  ct' extending ct such that if r denotes  ip (ct'),  then there

exists an x  such that

(4.8) jei  (x)  is defined and incompatible with  t;  and

(4.9) jei  (x) extends  ip  ip*i) tot some p of length  e + 1,   and some  i

ej0, 1[.
If no subrequirement requires attention at s + 1,  let  ip     . = ip  .   Otherwise,

let  R     be the first subrequirement (in lexicographic ordering first on  e  and then

on the well ordering of ct e 2) which requires attention at s + 1,  and let ct', p,

and  i  satisfy (4.8) and (4.9).
Define

Xp   (ff' * A)       it   V = CT *V   ,~ s

xp     ,(v)=   ixp ip *(z ■=- 1) *v)     if v = p * V ,

xp iv)     if v does not extend either ct or p.

(Notice that for any f £ T*   ,,  the first clause insures that if / extends

ip (ct) then  / extends  ip (ct') = r, and hence  jei'   extends  jei (x).   However,
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je! (x) | T     ,   because je¡r(x)  extends   ifj (p), but if p = a, jeîr(x)  extends  if/ (a)

and is incompatible with  if/     j(o) = r;  if p ^ a then  je! (x)  extends if/  (p*i) which

is incompatible with  ip     Ap) = if/ (p*(i — 1)).   In either case subrequirement  R

is satisfied at  s + 1.)
This completes the construction at stage s + 1.   We complete the construction

by defining S = f 1   eN T* .   The functions  if/    clearly satisfy (4.5) and (4.6).   To
see that (4.7) holds, fix a e 2  of length  e + 1   and assume by induction on the

length of strings that  lim    if/ (r) exists for all  r of length  e  or less.   Let all these

limits be obtained by  sQ,  and let ct = r*z,   where  r has length  e.    (Possibly  e = 0

so that r= 0.)   For t > s > s.,   if/ (t) = if/ (r),  and hence  if/ (a) extends  if/ (a).

But then once the subrequirement  R     is satisfied at  s > s0,   it is satisfied at all

¡ >  i.   Hence, requirement  R     requires attention at most  2e+    times after sn.

But if  lh(a) = e + 1,  then  if/     Aa) 4 <A M fot s > sQ  only when  R     requires at-
tention at s + 1.   Thus,  lim    if/ (a) exists for all a of length  e + 1,   and  R     te-

quites attention only finitely often.

Finally, for all  e £ N,   S meets requirement  R   ,  because if / e ü were a

counterexample to  R   , then / £ 0(if/(a)) tot some a of length  e + 1,   so that R

would require attention at some arbitrarily large  5  contrary to the above proof that

R     requires attention finitely often.

5.   If S is a class of functions, let Jj(S) be the collection of all sets Turing

equivalent to some function in  v,  and let IKS) be the collection of all sets to which

some function in  ¿> is Turing reducible.   In this section we investigate measure

and category (as defined in [18, p. 153]) for SKo)  and   ll(o)  when  s isa II.   class.

Theorem 5.1.   // o is any Ft,   class of functions (not necessarily r.b.) which

has no recursive member, then ll(o)  (and hence ju(o)) is meager.

Proof.   Assume that ö is a  II,   class and   U(ö)  is not meager.   Then for some

number e,  0    is not meager, where  t>   = JC: je!     is total and  je!     £ h\.   Hence

for some string a £~î-,  every string  r e S extending a can be extended to a set

A  £ 0 ,  since otherwise o    is nowhere dense.   Fix such  e  and o,  and let  T bee' e
a recursive tree such that « = T*.

Note that if  r extends a and  je! (O), • • • , je! (/)  are all defined, then the

string je! (O), • • • , je! (/) is in the tree T  since otherwise  r could not be extended

to a set A   with  je!     £ T*.   Given such a  r,  there exists  T  extending  r such that
i

je!   (/' + 1)  is defined, since otherwise  r could not be extended to a set A   such

that je!     is total.   By iterating these observations co  times, one easily constructs

a recursive function f £ T* = 0.   This establishes the theorem.

The above theorem shows in particular that the degrees of theories extending

Peano arithmetic form a meager set.
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Corollary 5.2.  Suppose  h is a class of functions having no recursive member

and either
(i)   o is an  F    set in  N   ,   or

(ii)   ¿i is a S,  set of functions.

Then 11(5)  is meager.

Proof,  (i)   It clearly suffices to treat the case where  o is closed.   In this

case,  o= T* for some tree  T,   and the proof of Theorem 5.1 applies since the

recursiveness of T  was never used in the proof.

(ii) It  suffices to treat the case where  o is IL.   Then by Theorem 3.1 of

[9], there is a IT°   class  S' such that  S)(S) = 3XS') (and hence 11(5) = 1|(S')).   But
IKS')  is meager by the theorem.

It follows from (i) of the corollary that ll(jAi)  is meager for A  nonrecursive,

as was first proved by Sacks [18, p. 158].   If S is the class of all recursive func-

tions, then part (ii) yields Shoenfield's result [2l] that o is not a IT,   class.   On

the other hand,  N    — S is both  G g and  IL   so that Corollary 5.2 is, in a sense,

best possible.

We now turn to measure where, as the next two theorems show, the situation

is slightly less straightforward than that for category.   If J   is a measurable sub-

set of  2   ,  ¡iij)  is the measure of J.   If ct £ S,  the "conditional probability"

pjS) is  2" .fiCf O   §((/)),  where ra = /¿(ct)  and §(ct)  is the collection of all sets

which extend ct.   For each ct £ 2, ¡i    is a measure on   2   .

Theorem 5.3.   // A  and B  are disjoint recursively inseparable sets and S z's

the collection of all sets which separate  A and B, then ¡iÇuic)) = 0.

Proof.   Assume that //(ll(S)) > 0.   Then for some number e,  pi& ) > 0,  where

S   = jC: jei     is total and  jei     £ $\.   Thus for some string ct £ S, u (S ) > 2/3.e ° r er    e

(This is easily seen from the fact that each Borel set in 2 can be approximated

by a finite union of basic open sets $(ct) to within arbitrarily small positive mea-

sure.)   We fix such  e  and ct.   Now, for i = 0  or  1,   let

C.-ln: pai\C: \efin) = i\)> l/3i.

Since

{iai\C: \e\Cin) defined and  jeic(n) £ JO, iii) > 2/3     for each  ra,

CQ xj  C x = N.   Thus by the reduction principle applied to the r.e. sets  C., C.,

there are disjoint r.e. sets E., E.   such that E. C C_,   E. C C„ and E.UE.=
N.   We claim that  E.   is a recursive set separating A   and B. E.   is clearly re-

cursive.   If ra £ A,   then  /n^iJC: jei   (ra) = 1 !) > 2/3 by choice of ct,  and hence

ra t\. C.   because pai^   ^ ~ ^'   Thus A C C     C E. = E..   Similarly,  B C E..    This
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contradiction to the assumption of recursive inseparability completes the proof.

The above proof is analogous to that for Sacks' theorem [18, p. 154]  that

p(U(JA !)) = 0 for A  nonrecursive.   Indeed, our theorem coincides with Sacks' in

the case where  B - A.

Corollary 5.4.   // o  is the collection of all consistent extensions of Peano

arithmetic, then pOll(S)) = 0.

Proof. Apply the theorem with A as the set of theorems and 73 as the set of

refutables of Peano arithmetic.

Theorem 5.3 shows that certain r.b.  II,   classes o (namely classes of sep-

arating sets for disjoint r.e. sets) must, if they have no recursive member, satisfy

p(2Xö)) = 0.   The next theorem demonstrates that this is not true of r.b.  IJ,   predi-

cates in general.

Theorem 5.5. (i) There exists a simple set A such that /z.(2X§)) = 1, where S

is the collection of all subsets of A.

(ii) There exists a recursively bounded II. class 0. without recursive mem-

bers such that pxj(0y)) - 1.

Proof,  (i)   We construct such a set A C 2..   Of course,  A  can be thought of

as a set of natural numbers via a Gó'del numbering of 2.   The construction of A

follows Post's simple set construction [11, § 5].   We write  W     for the eth r.e.

subset of  X.   For each  e,   enumerate  W    until the first time (if ever) a string a

appears in  W     such that  lh(a ) > e.   Let A   be the set of all strings a    thus ob-

tained.   If  W    is infinite,  a    exists and so  W    D A 4- 0.   Also A   contains ate '      e _   e
most  e  strings of length  e  for each  e,   so A   is infinite and thus A   is simple.

For each set  X  and number k,   let S¿(X)  be the set of strings in  S  of length

^ k  extended by X.   Clearly,  S AX)  always has the same degree as  X.   We now

obtain an upper bound on the measure ttz,   of {X: S AX) f\  A 4 0K   For each ?2,

let m,       he the measure of  JX: S,(X) C\ A   4 0!,  where A     is the set of strings
k,n k 72 72 °

in A   of length 72.   Since A   contains at most 72  of the   2"   strings of length n,

772,      < n/2".   Also,  772,      =0  for 72 < k.   Thusk.n ■— k,n

mk^ Z^,72<ZW/2"-

It follows that  lim^, m, = 0,  and so for almost every set X,   S AX) C A

for some k.   Therefore, the measure of J-(0) is   1,  where § is the collection of

all subsets of A.
(ii) Choose k so that JX: S AX) C A\ has positive measure, where S AX)

and A are as defined in part (i). Let w. be the class of all sets B such that

B C_ A  and  B   contains exactly one sequence of length 72  for each n >_ k.   Then
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0.   is a IT,   class of sets and has no recursive member because A   is simple.   If

S AX) C A,  then  S, (X) e Sj,  so  3)(ö.)  has positive measure by choice of k.   Hence

it follows from the  0-1   law [2, p. 122] that ¿t(2XS,)) = 1  because o,   is closed
under finite symmetric differences.

6.  In this final section we note some relationships between r.b. IT,  predicates

in general and the two special types of such predicates mentioned in  § 1.   These

relationships are then used to improve some earlier results such as Corollary A.A.

We also point out that many important theories coincide with respect to the degrees

of their complete extensions.   The notations J , X, and   ll  from the first paragraphs

of §§ 3 and 4 will remain in force.   We will also use Ç to denote the class of all

sets which separate some effectively inseparable pair of disjoint r.e. sets.   Since

the provable and refutable formulas of P   are effectively inseparable,  J C^(z.   Of

course, the reverse inclusion does not hold, but the following proposition is a

weakened form of the reverse inclusion.

Proposition 6.1. 11(0 C Wi9).

Proof.   Let  C  be any set in  C.   It is sufficient to construct a complete ex-

tension T of Peano arithmetic which is recursive in  C.    This is done by the

well-known method of Lindenbaum's lemma [6, p. 162].   It is possible to make T

recursive in  C  because, by the universality property of effectively inseparable

pairs, there is an effective procedure which, when given indices of any two dis-

joint r.e. sets A, B,   yields an index of a recursive function / such that /"   (C)

separates A  and B.    We omit the details.

Corollary 6.2.   // a  is the degree of any set in  C,   then every countable par-

tially ordered set can be embedded in the degrees  < a.

Proof.  Immediate from Corollary 4.4 and Proposition 6.1.

In particular, the conclusion of Corollary 6.2 holds for any degree  a  which

contains a consistent extension (complete or not) of any effectively inseparable

theory, i.e. any axiomatizable theory in which the provable and refutable formulas

are effectively inseparable.   Of course, many important theories, besides  P,  such

as ZF   set theory and the theories  Q, N,   and  R  of [25], are effectively insep-

arable.   The next proposition gives further information on such theories.

Definition 6.3.   If 5.   and §2  are subsets of N   ,  then  S.   and S-  are said

to be degree-isomorphic if there is a degree preserving   1-1  map of o,   onto §2.

Proposition 6.4.   // T,   and T,  are any two effectively inseparable theories

and e>,, o.,  are the classes of all complete extensions of T,, T,,   respectively,

then  o,   and b7  are degree-isomorphic.

Proof.   By a theorem of Pour-El and Kripke [15], there is a "deduction pre-
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serving" recursive permutation  / which takes  Tj  onto   T2  and preserves both ne-

gation and implication (and hence modus ponens and tautologies).   Thus complete

extensions of T.   are carried to complete extensions of A2, and every complete

extension of  T'    is the isomorphic image of a complete extension of  Tj.

We do not know whether the degrees of theories in  J   form a "final segment"

of the degrees, i.e., whether  3Xj) = ll(/).   However, it is rather easy to show, with

the aid of Proposition 6.1, that 2X?) = IK?) iff  SKf ) = 3X0, and we suspect this
latter formulation of the problem may be more tractable.

The following proposition combines the method of Ehrenfeucht [l, p. 19] with

results by Janiczak [7].

Proposition 6.5.  If o is any nonempty r.b.   W    class, then there exists an

axiomatizable theory T having a single nonlogical constant such that o  is degree-

isomorphic to the class of all complete extensions of T.

Proof.   Let  o be any nonempty r.b.   IJ,   class, and let  T be a r.b. recursive

tree such that  o = T*.    Our theory,   T,  contains one nonlogical constant, a binary

relation symbol   R,  and contains axioms asserting that   R is an equivalence rela-

tion.   Let  $(t2, k) be the statement that there are exactly  k equivalence classes

of  R consisting of exactly  72 members.   For string  a, let  Pa denote the conjunc-

tion   A !$(tz, ct(t2) + l): 72 < lh(a)\.   As further axioms of T, adjoin for all  t2 > 0
the disjunction   V {P^'.o £ T ¡U  lh(a) = n\.

Clearly  T is consistent and axiomatizable.   It follows from [23] that every

sentence   f of T is equivalent in  T to a boolean combination of the  <J>(t2, k), and

this boolean combination is computable from  W.   Clearly,  <5(t2, k) is inconsistent

with   $(t2, 7)  if  k 4- 7-   If / <= 0,  let  H(/) be the unique complete extension of  T
generated by the statements  J$(t2, /(t2) + l): n £ 7V|.

It is easy to check that H maps S 1-1 onto the family of complete extensions of
T in a degree preserving way, as required.

The above proposition, when combined with Theorems 4.7 and 5.5, immediately

yields the following extensions of those earlier results.

Corollary 6.6.   There exists an axiomatizable, essentially undecidable theory

T such that any two distinct complete extensions of T are Turing incomparable.

Corollary 6.7.   There exists an axiomatizable, essentially undecidable theory

T such that, if 0  is the family of all complete extensions of T,   3XS) has measure
one.

A consistent theory  T is called separable if the provable and refutable for-

mulas of  T are recursively separable.    It follows from Theorem 5.3 that every

theory which satisfies the conclusion of Corollary 6.7 is separable.   Hence we
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obtain the result of Ehrenfeucht [l,   §2] that there exists an axiomatizable, es-

sentially undecidable, separable theory.   Note that since   T of Proposition 6.5 has

only a finite number of constants, our result is stronger than Ehrenfeucht's and

thus in fact answers his question [l, p. 18].   (This question was first answered

by Hanf [5], who by a more difficult argument proved the stronger result that there

is a finitely axiomatizable example of such a theory.)
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