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ABSTRACT. Using the methods of recursive function theory we derive
several results about the degrees of unsolvability of members of certain HO
classes of functions (i.e. degrees of branches of certain recursive trees).

As a special case we obtain information on the degrees of consistent exten=
sions of axiomatizable theories, in particular effectively inseparable theories
such as Peano arithmetic, P. For example: THEOREM 1. If a degree a contains
a complete extension of P, then every countable partially ordered set can be
embedded in the ordering of degrees € a. (This strengthens a result of Scott
and Tennenbaum that no such degree a is a minimal degree.) THEOREM 2. [f

T is an axiomatizable, essentially undecidable theory, and if {a,} is a countable
sequence of nonzero degrees, then ‘T has continuum many complete extensions
whose degrees are pairwise incomparable and incomparable with each a,,
THEOREM 3. There is a complete extension T of P such that no nonrecursive
arithmetical set is definable in T. THEOREM 4. There is an axiomatizable,
essentially undecidable theory T such that any two distinct complete exten-
sions of T are Turing incomparable. THEOREM 5. The set of degrees of con-
sistent extensions of P is meager and has measure zero.

1. If R(x) is a recursive predicate of one free number variable, the class of
all number-theoretic functions [ satisfying (XR(f(x)) is called a H(; class. Sets
of numbers will constantly be identified with their characteristic functions, and
thus a class & of sets is a H(l) class just if the corresponding class of charac-
teristic functions is a H(l) class. A class & of functions is called recursively
bounded (r.b.) just if there is a recursive function which bounds every f €8 on
all arguments. In particular, any class of sets is r.b. Our purpose is to study
r.b. H(l) classes. Each such class may be thought of as the set of (infinite)
branches of a special finitely-branching recursive tree, and thus our arguments

will combine standard methods from recursion theory with Kénig’s lemma for trees.
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34 C. G. JOCKUSCH, JR. AND R. I. SOARE [November

In particular, we shall be concerned with the following two special sorts of H(l)
classes of sets which were pointed out by Shoenfield in [22, Theorems 3 and 4].

(1.1). The class of sets C which separate a given disjoint pair of r.e. sets
(A, B), i.e. contain A and are disjoint from B.

(1.2). The class of consistent (or complete) extensions of a given axiomat-
izable theory.

In regard to (1.2), we shall especially study Peano arithmetic, and throughout
the paper the notation P will be used for the set of all formulas provable in
(first-order) Peano arithmetic. In general, a “‘theory’’ is simply a deductively
closed set of formulas in a propositional or first-order language, and the termin-
ology of [25] will be used for theories.

Terminology and notation will be given at the close of this section, but first
we summarize the rest of the paper.

In § 2 we generalize the Kreisel-Shoenfield basis theorem {22, Theorem 2]
by proving that any nonempty r.b. H(I) class has a member [/ whose degree f
satisfies / = 0'. A similar argument is then used to show that every such class
also has a member / whose degree contains no hyperimmune sets. Finally, we
prove that given any axiomatizable, essentially undecidable theory T, and any
degree a > 0, there are 2%o0 degrees, mutually incomparable, and incomparable
with a, which are the degrees of complete extensions of T. This extends the
resule of Scott and Tennenbaum [21] that there is at least one such degree if T
is P and a=0".

In §3 we study, largely on the basis of earlier results, the sets definable in
complete extensions of P. We show that there is a complete extension T of P
such that no nonrecursive arithmetical set is definable in T and obtain a similar
result for various levels of the arithmetical hierarchy. Also we study the “‘expan-
sion’’ of r.e. sets when their definitions are interpreted in various complete ex-
tensions of P and relate this phenomenon to hypersimplicity.

In § 4 we prove that if a is the degree of a complete extension of T, then
every countable partially ordered set is embeddable in the upper semilattice of
degrees below a. We accomplish this by first using a priority argument to con-
struct a recursive sequence {(A o Bl.)} of disjoint pairs of r.e. sets such that any
sequence of sets {CiL where Ci separates (Ai' Bi)’ is recursively independent.
We also construct an infinite r.b. H(l) class & all of whose members are mutually
Turing incomparable.

In §5, we prove that the upper cone of degrees generated by any H(l) class
S without recursive members is meager (in the sense of Baire category), while
the measure of the set of degrees generated by & may be either 0 or 1 even if
8 is r.b. It follows that the set of degrees of extensions of P is meager and has

measure zZero.
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In § 6 we make some observations which allow immediate extensions of some
of the earlier results. For instance, theorems on complete extensions of P are
extended to arbitrary consistent extensions of any theory in which the provable
and refutable formulas are effectively inseparable, Also existence theorems for
r.b. H? predicates can be sharpened to existence results for predicates of the
special form (1.2) mentioned earlier.

We now consider notation. The set of natural numbers is denoted by N, and
a string is a partial function from a finite initial segment of N into N. The vari-
ables p, 0, 7 will be reserved for strings, and X will stand for the set of all
strings whose range is contained in {0, 1}. If o is a string, /h(0) is the cardi-
nality of its domain. The notation o *7 is used for the string obtained when r
is adjoined to the right-hand end of 0. (Here o and r are viewed in the obvious
way as finite sequences,) If i is a number, 0 *{ is the string obtained by ad-
joining the term i to the right-hand end of o.

Let ¢ and ¢ be partial functions. We say that ¢ and i are compatible if
they agree on the intersection of their domains and that ¢ extends ¢ (¢ D o)
if the graph of ¢ contains that of . This latter notion is used especially when
¢ and Y are either strings or (characteristic functions of) sets. We write
dom (@) for the domain of ¢.

A set T of strings is called a tree if whenever it contains a string o it also
contains all strings extended by o. We assume that the set of all strings is
Godel-numbered so that we may speak of a recursive tree, etc. A tree T is called
recursively bounded (r.b.) if there exists a recursive function [ such that, for
every string 0 € T and every x € dom({a), o{x) < f(x). If T is a tree, T* is the
set of all total functions [ such that every string extended by [ is in T. It fol-
lows from Kénig's lemma [17, p. 157] that, if T is r.b., then T* is nonempty iff
T is infinite. It is easily seen that a class & of functions is a [r.b.] H? class
iff & = T* for some [r.b.] recursive tree T. If T is a tree and o is a string,
T(o) is the set of all strings in T which extend o, and T™(0) is the set of all
functions in T* which extend 0. Observe that we use the notation T for trees
and T for theories.

The notation "{eig(x) =y’ (where o is a string and e, s, x, y are numbers)
has the usual meaning, i.e. roughly that the eth recursive reduction procedure,

given input x and oracle information o, reaches output y within s steps. We
o

Ib(o,)(x) =y and so we have (as in

write {e}”(x) =y as an abbreviation for {e}
[23, p. 540])

(1.3) If {el%(x) =y and r extends o, then fe}(x) =y.

(1.4) The predicate ‘{e}’(x) is defined’’ is a recursive predicate of e, o,

and x.
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36 C. G. JOCKUSCH, JR. AND R. I. SOARE [November

Assume that the class of finite subsets of N is Gddel-numbered, and let Du
denote the finite set with index u. If A is a set and [ is a recursive function,

we say that D witnesses A nonhyperimmune if D N A is nonempty for

f(x)

every x, and D/(x) is disjoint from Df(y)

for the image of (u, v) under a recursive pairing function from N% onto N. If a

f(x)
whenever x £ y. We write (u, v)

is a degree, a’ is the jump of a; 0 is the degree of the recursive sets. We write
W_ for the eth r.e. set under some standard indexing of the r.e. sets, and A for

N - A. For sets A, B, we define A join B tobe {2n: n e Alui{2n+ 1: n € B}.
For unexplained terminology the reader is referred to [17].

2. In [22, Theorem 2] Shoenfield extended a basis result of Kreisel by proving
that any nonempty H? class of sets has a member of degree a < 0’. We extend
this result further by proving that a can even be chosen so that a’ = 07, and there-
fore any consistent axiomatizable theory (in particular Peano arithmetic P) has a
complete extension of such a degree. (It is worth noting that the results of this
section apply to any H? class which contains a recursively bounded function,

since each such class has a nonempty r.b. Hg subclass.)

Theorem 2.1. If & is a nonempty r.b. H? class, § contains a function |

whose degree { satisfies =0’

Proof. Let T, be a r.b. recursive tree such that S= Tz- We shall define a
decreasing sequence of infinite recursive trees {Te}e en 2nd choose /
€ ﬂeeN TS The tree T, will have the property that {e}8(e) is defined for all
orno g € Te*+l.
Assume that tree T has been defined. Let U, = {o| {e1%(e) is undefined}.
It is easy to see from stipulations (1.3) and (1.4) on relative computability that
U, forms a recursive tree.
Case 1. T_N U _ is finite. Let T =T,
e e e+l e
Case 2. T_N U is infinite. Let T =T NU_, which is clearly a re-
e e e+l e e
cursive tree,

Since § is nonempty, T, is infinite. It follows by induction that T is

infinite for all e € N, so by Io(c'inig’s lemma (i.e. the compactness theorem for
finitely branching trees [17, p. 157]), T% is nonempty for all e € N. Therefore,
n'e eN T: is nonempty because it is the intersection of a decreasing sequence of
nonempty closed sets (in the compact space & = Tz). Choose any function f

€ ﬂe N T:‘. (In fact, { is unique.) We claim that - 0’, because the entire
construction can be carried out recursively in 0. Itis easily seen that Case 1

applies in the definition of T just in case
e+l

(2.1) In) Vo) o ¢ T, & Ib(0) = n => {el(e) is defined].
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Since T, is r.b. (by the same function bounding T ), we can find recursively
all 0 €T, of length n uniformly in n. Hence, (2.1) is a predicate of the form
(3n) R(n), where R is a recursive predicate whose index can be computed effectively
from e and an index of T,_. Therefore, we can decide recursively in 0/ whether
Case 1 holds, and after that we can recursively find a G&del number for T_,,.
Furthermore, fe}e) is defined <> Case 1 applies in defining Te+1, because if
Case 1 applies then {e}%(e) is defined for all sufficiently long o € T, by (2.1),
so {e}/ (¢) is defined; and if Case 2 applies, {e}f (e) is undefined since f € UL,

Since we can determine recursively in 0’ uniformly in e which case applies
in defining Te+1, it follows that f/ < 0’. Since 0/ Sf’ always holds, we have
' =0’

The proof of Theorem 2.1 can easily be modified to yield the stronger result
that for any nonempty r.b. H? class & with no recursive member and any degree
a> 0/ there is a function f €8 suchthat f/=fu 0’ - a. In the proof of Theorem
2.1, first choose effectively from Te+1 two incompatible strings 02+1, O’el+1.

(These exist since T:+1 is nonempty and has no recursive member.) Then replace

T, ,, by the subtree of those strings o € L ; ; ?S).
where A is a fixed set of degree a. The proof that f' ={ U0’ = a for the func-

tion f thus obtained is very similar to that of the Friedberg completeness criterion

which are compatible with o

[3] ot [17, p. 265], of which the present result is a generalization.

Corollary 2.2. Any consistent axiomatizable theory (in particular P) bhas a
complete extension of degree whose jump is o

Proof. By (1.2).

Corollary 2.3. Let T be a consistent axiomatizable theory. Then T has a
model in which the domain is a set of natural numbers, and the predicates are of

a degree whose jump is 0.

Proof. As in [22, Theorem 51.

A degree a is called hyperimmune-free if no hyperimmune set has degree a.
The existence of nonzero hyperimmune-free degrees was proved by Miller and
Martin [13, Theorem 2.1]. The following extension of their result is proved by

combining their methods with those in the proof of Theorem 2.1.

Theorem 2.4. If Sisa nonempty r.b. M9 class, 8 contains a function f
whose degree f is byperimmune-free.

Proof. We find f € 8 such that for every function g recursive in [ there is a
recursive function b such that A(x) > g(x) for all x. Once this is done it follows
immediately from [16, Theorem 21] that the degree f is hyperimmune-free.

Let &= T’(';, where T is a r.b. recursive tree. As in Theorem 2.1, we construct
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38 C. G. JOCKUSCH, JR. AND R. L. SOARE [November

cen» and choose f € ﬂem

We now arrange that {e}® is total for all or no g € T* ,. Assume that T has
e+ e

a descending sequence of recursive trees {T_}

been defined. Let

Uz = {olle}” (x) is undefined}.

Case 1. Forall x, T, AU} is finite. Let To1=Te

Case 2. For some x, T, N U’e‘ is infinite. Let x_ be the least such x and
define T, R =T, N Ux , which is a recursive tree just as in Theorem 2.1.

As in Theorem 2. 1 choose (the unique) function f € ﬂe eN T:. Fix a number
e and consider the function {e}/. If Case 2 applies in the definition of Te+l,
then {e}/(xe) is undefined, so {e}/ is not total. If Case 1 applies, we define a
recursive function be(x) which bounds fe}/. To compute be(x), first find a num-
ber k_ such that fel7(x) is defined for every o € T, of length k£ . The number
k_ exists because Case 1 applies, and k _ can be found effectively uniformly
in x because T is r.b. Therefore the following function is both total and re-

cursive:

be(x) = max {{e}”(x): 0 € T, & Ih(o) = kxi.

Clearly b_(x) > fe¥ (x) because e} (x) = {e}°(x) for some o € T, of length
k.. Therefore, by the remarks at the beginning of the proof, the degree of [ is
hyperimmune-free. (It follows from our proof that each degree a < { is also hyper-
immune-free but this is automatically true by [13, Theorem 1.1}. The degree f
also satisfies f'7=0''))

Theorem 2.5. Given any nonempty r.b. H class & which has no recurszve
members, and any countable sequences of nonrecursive degrees {a L S has 2 Ko
members f, mutually Turing incomparable, such that the degree f is incomparable

with each a_.

Our proof combines the standard technique(?2) for constructing 2 X0 mutually
incomparable degrees with the following Lemmas 2.6 and 2.7 which enable the
construction to be carried out within 8. Given an infinite recursive tree T, de-
fine the (nonrecursive) tree of extendible finite branches of 7, denoted T ™!, to
consist of all ¢ € T for which T*(0) is nonempty. If T is r.b., then by Kénig's

lemma, o € T €** just if T(o) is infinite.

Lemma 2.6 (Splitting Lemma). For every infinite recursively bounded recur-

sive tree T and index e either

(?) The construction of 2%0 mutually incomparable degrees was first given by Sacks
(18, p. 13]. We use a modification due to T. G. McLaughlin (unpublished).
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(1) there exists an infinite recursive tree T1 C T such that, for every [
€ T";, {e}f is recursive or not total; or

(2) for every o € T®*, there exist Ty» T, € T ¢* (o) such that, for some
x, 1e¥ Ux) and {e}"2(x) are defined and unequal.

Proof of Lemma 2.6. Fix T and e, and assume that (1) and (2) fail. Fix
o € T °*" which is a counterexample to (2). We will get a contradiction by de-

fining a recursive function g{x) such that
(Nl € T *(o)=>1{el is total & {e}f = gl.

Choose any argument x .. Since (1) fails, there are only finitely many 7€ T

o
for which {e{’(x) is undefined. (An infinite set of such 7 would constitute an
infinite subtree S C T, and § is clearly a recursive tree.) Hence, there exists

79

fails for x, there are no two extendible strings p, 7 € T(o) of length nq such

such that, for all r € T(0) of length n, {e}’(x;) is defined. But since (2)

that {ei'a(xo) # {e}'(xo). Hence, by Kénig’s lemma there exist m; > n, and s,
such that, for all p, r € T(0) of length m, {e}fo(x) and {e}io(xo) are defined
and equal. Since s, and m; exist they can be computed recursively. (We use
the fact that T(o) is r.b. in otder to compute recursively all 7 € T(9) of length
n, uniformly in n.) Having computed s, and m, we choose any r € T(o) of

length m and define glx ) = tell (x;). Now for any /€ T*(0), {e}/(xo) is de-

fined and equal to g(xo) by the continuity of the functional {e}.

Lemma 2.7. If T is a r.b. recursive tree, and T* has members but no re-
cursive members, then for every o € T €*Y, there exist two incompatible strings
ext
T2, €T (o).

Proof of Lemma 2.7. This lemma is obvious but can be thought of as the
special case of Lemma 2.6 in which [e} is the identity operator.

Proof of Theorem 2.5. Choose a r.b. recursive tree T such that TF = S,
the given r.b. H? class. To simplify the details we will construct the functions
/ incomparable with a single nonrecursive degree a, but it will be clear how to
generalize to countably many nonrecursive degrees {ai} simply by considering
{al, seey an} at stage n in place of just a, Let b € 2V be some function of
degree a.

A rooted tree is an ordered pair (0, S) where o is a string, S is an infinite
recursive tree, and § = S(g). (If S is r.b. then clearly o € S°*' by Kénig's
lemma since §(o) is infinite.) If (00, SO), (01, Sl) are rooted trees we say that
(0, §,) extends (o, S;) if 0| extends o and §; C S; and that (0, S,) and

(o,, S,) are incompatible if o, and o, are incompatible. We say that [ belongs to
r°1 P 0 1 pa y
(o, S) if [ € S*
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We must define a sequence {?n}n ey Such that each ﬂ{n is a set of 2" pair-
wise incompatible rooted trees and each rooted tree in fRn has exactly two in-
compatible extensions in g(m_l. Furthermore, fRo = {(g, TO)}, where @ is the
empty string and T is the given recursive tree, and ?m-l satisfies the follow-
ing conditions for all functions f, g:

(2.2) If f belongs to a rooted tree in .(R ,1 then {nlf £ b

(2.3) If { and g belong to different rooted trees of 3{ 41 and e < », then
teV # .

It is sufficient to define such a sequence ?n because once this is achieved,
we may define C to be the set of functions which belong to some rooted tree in
Rn for each n and which are not recursive in . Then C is contained in the
given class & by definition of the ﬁ(n, and C contains a continuum of functions
by the condition that each member of ﬁn has two incompatible extensions in
Rn“, and because only countably many functions are recursive in bh. Finally,
it follows from (2.2) that b is not recursive in any member of C, and from (2.3)
that any two distinct members of C are Turing incomparable,

We now define the sequence {?n} by induction. Let 9(0 = {(@, TO)}, and
assume that ?n has been defined. To insure that each member of Rn has two
incompatible extensions in R 41 We first choose, for each member of R 2 any
two incompatible extensions. ThlS may be done by Lemma 2.7, Let C‘) R de-
note this set of 2”*! rooted trees. These may be thought of as candxdates
for ‘(Rn+1'
until we have insured that (2.2) and (2.3) hold for the extended collection. Thus,

We must now keep extending each candidate in successive substages

each member of ﬁn“ will be an extension of one of the original candidates. We
shall not carry out this extension procedure in complete detail but shall indicate
how each condition is attacked.

To satisfy condition (2.2), consider any rooted tree (o, §) in €n+l and apply
Lemma 2.6 to § with e =n If (1) of Lemma 2.6 holds, extend (o, $) to (o, Sl)
where §, C § is given by Lemma 2.6. If (2) of Lemma 2.6 holds, choose T Ty
€S °*' and x such that {#}"1(x) and {#}"2(x) are defined and unequal. At least
one of these, say {#}'1(x), must differ from h(x), in which case we extend (o, §)
to (rl, S(rl)). Whichever case of Lemma 2.6 applies, our construction clearly
guarantees that for all { in the extension of (g, §) we have {n} £ b. (In the first
case, the nonrecursiveness of b is used.) By applying this procedure to every
rooted tree in (?”1, we get 2"+! rooted trees each of which extends some
member of (" 1 and which satisfy (2.2). Denote this collection by @r’f“.

To satlsfy (2.3), we choose any two distinct members of €' ne1? S3Y (00, So)
and (01, Sl)’ and any Gédel number e < n. Apply Lemma 2.6 to (0 So). If (1)
holds, extend (00, SO) exactly as before, and leave (01, Sl) unchanged. If (2)
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holds, let 7., 7,, x be such that fel"1(x) and fe}"2(x) are defined and unequal,
and 7,7, 658’". Extend (if necessary) o, to any o, ES;” such that Uz(x)
is defined. Choose i € {0, 1} such that {e}i(x) £ az(x). Extend (00, SO) to
(Ti' S(ri)) and extend (01’ Sl) to (02. Sl(az)). Clearly, in either case, if { and
g belong to the extensions of (00, So) and (01, Sl) respectively, then fedf £ 8.
To satisfy (2.3), we repeat the above procedure for the extensions correspond-
ing to every pair of distinct members of @’;H and every Gdédel number e < n.
(Of course, if (00, SO) and (01’ Sl) in er;+1 extend different elements in ‘(Rn
and if /. belongs to (01,, Si) for i =0 and 1, then f; and f, are already incom-
parable with respect to all G&del numbers e < by definition of fRn. In this case
one need consider only Gédel number e = n.)
The rooted trees resulting from all these extensions form .‘Rn+l, and satisfy
our requirements, Theorem 2.5 now follows as previously indicated.

The following corollary generalizes a result of Scott and Tennenbaum [20].

Corollary 2.8. Given any axiomatizable, essentially undecidable theory T,
and any degree a >0, there are 280 degrees, mutually incomparable, and in-

comparable with a, which are the degrees of complete extensions of T.

Proof. This follows from Theorem 2.5 immediately by (1.2). "

The following corollaries do not use the full strength of Theorem 2.5 and
accordingly they have direct proofs which are somewhat simpler than that for
Theorem 2.5.

Corollary 2.9. If § is any nonempty r.b. H? class, then & contains functions

[ and g whose degrees { and g have greatest lower bound 0.

Proof. We may assume that & has no recursive members since otherwise the
result is immediate. Let [ be any member of 8. Apply Theorem 2.5 to obtain a
function g € of a degree incomparable with each of the (countably many) non-
zero degrees < f.

The next corollary, due to A. H. Lachlan, strengthens Corollary 6.6 of [8]

and was stated without proof at the close of (8].

Corollary 2.10 (A. H. Lachlan). If A is an r.e. set whose complement A is
introreducible (i.e. recursive in each of its infinite subsets), then A is either

recursive or hypersimple.

Proof. Assume the corollary is false for A and that [ is a recursive function
such that {D/(x)i_wimesses that A is nonhyperimmune. Define & to be the class
of all subsets of A which intersect every D/(x). Then § is a nonempty H(l) class
of sets and A is recursive in every member of d. It now follows from either The-
orem 2.5 or Corollary 2.9 that A must be recursive.

The next corollary is a consequence of the proof of Theorem 2.5 and will be
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useful in § 3. For each n, let 0 be a set of degree 00,

Corollary 2.11. Let {Ai! be any countable sequence of sets, and let C be a
set such that A, is recursive in C, uniformly in i. Let S be any nonempty r.b.
H(l) class. Then S bas a member [, recursive in C join 02, such that no non-

recursive Ai is recursive in f.

Proof. The proof of Theorem 2.5 yields a ‘‘binary tree’’ B of functions
{ € 8 such that no nonrecursive A, is recursive in f. (More precisely, B is the
set of all strings extended by any string in Un N 9{".) The effectiveness of the
proof allows B to be made recursive in C join 02). Thus B has a branch f
recursive in C join 0(?) because every string in B extends to an (infinite) branch
of B, i.e. B =B*®*',

3. If A is a set and T is a theory, we say that A is definable in T if there
is a formula ((x) of one free variable in the language £ of T such that A =
{k: @(k) € T}. (We assume that £ has a numeral k corresponding to each & € N.)
The results of § 2 easily yield complete extensions of Peano arithmetic in which
the definable sets are rather pathological. Throughout this section we use ¥ to

denote the r.b. H? class of complete extensions of Peano arithmetic.

Corollary 3.1, There exists a theory T € P such that every set definable in

T is either recursive or nonarithmetical.

Proof. By Theorem 2.5, there is a theory T € P whose degree is incompar-
able with each of the (countably many) nonzero Turing degrees of arithmetical

sets. Since each set definable in T is recursive in T, the corollary follows.

Corollary 3.2. For each n > 2 there exists a theory T € P such that every

nonrecursive set definable in T is recursive in 0" but not r.e. in 0= 1,

Proof. Let » > 2 be given, let C = 0¢), and let A, be the ith set r.e. in
0”7=1) under some standard indexing. It follows from Corollary 2,11 that there
is a theory T € 9, recursive in C join 0{?) and thus in 0", such that no non-
recursive A is recursive in T. As before, the corollary now follows from the
fact that each set definable in T is recursive in T.

We would like very much to know whether the previous corollary holds for
n=1,

We now narrow our attention to definitions for r.e, sets, For each e,
let ('fe(x) be the formula of Peano arithmetic which expresses ‘(3 y)T(e, x, y)”’,
where T is Kleene’s T-predicate [12, p. 281]. We assume that the r.e. sets
{W_} are indexed so that Cfe defines W in Peano arithmetic. If T is a theory,

let
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wT —{k: @ (k) e Tl
e e

If T extends Peano arithmetic, then W, C W:. We say that the theory T
blows up W, if WZ is cofinite. (Note that this definition really depends on the
index e, not just the set W_.) The remaining results of this section show that
the hypersimple and cofinite sets are precisely the r.e, sets which can be blown
up with respect to all of their indices, while every r.e. set can be blown up with

respect to at least one index.

Corollary 3.3. There is a theory T € ® which blows up every hypersimple

set W ..
e

Proof. By Theorem 2.4 and the remarks at the close of its proof, there is a
theory T € ? such that no hyperimmune set is recursive in T. If W _ is hyper-
simple, then W'er is contained in We and so must be hyperimmune or finite, The

former case is impossible since WZ is recursive in T.

Proposition 3.4. Let A be r.e. but neither bypersimple nor cofinite. Then
there exists e such that A =W _ and no consistent extension T of Peano arith-

metic blows up W _.
(-4

witnesses that A is

= N.
f(x)
Choose some recursive enumeration of A and let A be the finite subset of A

Proof. Let { be a recursive function such that Df(x)

nonhyperimmune. We may assume without loss of generality that Ux D

obtained after s steps of this enumeration. Let ((x) be the formula
s
(3)@[xea*n D, ,&D, 1A 1.

By the normal form theorem, (}(x) can be expressed as @e(x) for some e.
Then A = W, since all the D/(x) intersect A and Ux Df(x) =N. If T is a con-
sistent extension of Peano arithmetic, all the D/(x) intersect WZ, so W'er is
coinfinite.

Proposition 3.5. For any r.e. set A there exist a number e and a theory

Te® such that A = We and W'er=N.

Proof. Suppose the assertion is false for some r.e. set A, Let K be any

r.e. nonrecursive set, and let / be a recursive function such that

4N if e €Kk,

Wier= .
A otherwise.

We claim that, for all e,
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e e K[ (V)A, (x)]eP.

f(e)

Recall here that P is Peano arithmetic and thus r.e.; hence the claim, once
established, yields the desired contradiction by implying that K is r.e.

To prove the claim, first assume that 71 (Vx)@/(e)(x) € P. Then it follows
from the w-consistency of P that @/(e)(k) ¢ P for some & € N. Thus ey N
and so e € K. For the converse, assume that 71 (Vx)@/(e)(x) ¢ P. Then by
Lindenbaum’s lemma [6, p. 162] there is a theory T € # containing the formula
(Vx)@l(e)(x). Since theories are deductively closed, W};e) = N for this theory
T, and hence A # W (ey by our original assumption. Thus we may conclude that

e € K. This completes the proof of the claim, and the proposition follows.

4. Scott and Tennenbaum announced [20] that if a is the degree of a complete
extension of Peano arithmetic P then a is not a minimal degree. The main pur-
pose of this section is to considerably generalize this result by proving that if a
is such a degree then any countable partially ordered set is embeddable in the
upper semilattice of degrees below a. We accomplish this by first combining a
priority argument with techniques used in constructing an infinite set with no
subset of higher degree [24] in order to prove Theorem 4.1.

We define the (recursive) join of a sequence of sets {A } .\ to be the set
Kn, x): x € A_}. We say that the sequence of sets {A } _\ is recursively in-
dependent if for each n> 0, A is not recursive in the join of the sequence A,
Ap e DA,
sets, then a sequence of separating sets is a sequence of sets {Cn}n en Such that

eee. If {(An, Bn)}n ¢N 1S a sequence of disjoint pairs of

C, separates (A , B ) for all n € N.

Theorem 4.1. There is a recursive sequence of disjoint pairs of r.e. sets
{(An, Bn)}an‘ such that any sequence of separating sets {Cn}n eN IS recursively

independent.

Proof. We will define a partial recursive function ¢, taking only values 0
and 1, such that the sequence of disjoint r.e. sets {(4_, B )} .y satisfies the
theorem where we let A= fx: Yy({n, x)) =1}, and B, = {x: Y({n, x)) =0} We
will define ¥ as the limit of a recursive sequence of finite functions !/ls, where

¢

D ¥_. Each ¢_ naturally determines a recursive tree
s+l — s s

T_=lo: 0 € 2 & o compatible with  _}.

If we define § = (__, T*, then § is

s°

Since ¥ 2 ¢, clearly T, CT
clearly a r.b. 119 class and

S =1{f: | is compatible with 1.
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For any f € 2V, we define the functions 7f=Ax [/({i, x))], and A, where

j/((j, X)) if 4

0 if 744

Al/(<]' x)‘ =

(Think of 7, as a projection operator and A; as a deletion operator.) For partial
functions such as strings ¢ € 2, the partial functions w0 and Alo are defined
similarly on domo and are undefined off domo.

For each i, ¢ €N, we define a requirement denoted R, , which asserts that

(I €S = nf £1e}*,

We say that R, has bigher priority than R, justif (i, e) < (j, k).

To prove the theorem it clearly suffices to construct ¢ such that the result-
ing class S satisfies R, forall i, e € N, because as [ ranges through 3, 7,/
ranges through all separating sets of the pair (Ai’ Bi) and A,f ranges through all
recursive joins of separating sets of (4 i B,') for j# i. (Recall that we identify
sets with their characteristic functions.)

In order to reveal the intuition behind the construction, we use Rogers’ term-
inology [17], and begin by designating the set {{i, x): x € N} as the i-list. On
the i-list we place an infinite sequence of ‘‘markers’’ {Aie}e en arranged in as-
cending order according to subscript e. The integer occupied by A at stage s
(denoted xs(i. e) from now on) will not be in domy_ but may later enter dom U,

t> s, in order to satisfy R, or some requirement of higher priority, in which
case A;, is moved to some y ¢ domy/,. As in Yates’ maximal set construction
(see Rogers [17, p. 235]), every element not covered by a marker at s is enumer-
ated in domys . Hence, A, comes to rest on the (e + 1)th element of the i-list
which is not in (4, U B)).

Since R, can move all markers except those Ajle for {j, k)< (i, e), itis
appropriate to think of R, as the conjunction of 24t ‘‘subrequirements’’ R?e

for sets DC D, , where

D, = A, G k) < (i, o)l

For DC D, , the subrequirement Rﬁ, is defined as the assertion that requirement
R, holds for those f € S such that f(x) = 1 if x is occupied by a marker in D,
and [(x) = 0 if x is occupied by a marker in D,, — D.
Fix a requirement Rie’ a set DC D, and a stage s. Let w be the finite
function
1 if A;’k €D,
wlx (7, k) = {0 if A, €D, —D,

undefined otherwise.
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(Note that w depends upon s as well as upon D, i, and e.)

We say that R?e is satisfied at stage s if there is a string 0 € T _ such that

(4.1) o extends w;

(4.2) (x) [x € (domo ~ dom w) => x € dom (//S]; and

(4.3) (3% [fﬂ:io(x) and 7,0(x) are defined and unequall.

(Condition (4.2) insures that any f € T% which extends w also extends ¢, while
(4.3) insures that any such [ satisfies R, . Notice also that if for some s, every
subrequirement of R is satisfied then R, holds for all [ € T% D)

We say that subrequirement R?e requires attention at stage s if RZ.De is not
satisfied at stage s, and there exists a string 0 € T _ which extends w and such
that

(4.4) 1e}2i%(x (i, e)) is defined.

In this case we also say that requirement R, requires attention at stage s.

We now define the finite functions l//s, s € N. Define (/Io = @, and place
marker Aie on integer {7, e). Thus xo(i, e) = (i, e)

Stage s > 0. Choose the requirement of highest priority, say R, , which re-
quires attention at s. If no such exists, set ¢ __, =y, and xs“(j, k) = x _(j, k).
Otherwise, choose D so that R?e requires attention at s; let w be the correspond-

ing finite function; let 0 € T_ extend w and satisfy (4.4). Define
a; . .
1= {elslg(y) if y= xs(z, e),
l/ls+l(y) = { aly) if y € dom o - (dom w U dom (/IS) &y # xs(z', e),
l/ls(y) otherwise.
(Note that subrequirement Rl.De is now satisfied at s + 1 because we have insured
that there isa r € T__,

Aia = A7, and such that 7 satisfies (4.1), (4.2) and (4.3).)

Beginning with k = 0, any marker A, which now lies on some y € dom ¢

which agrees with o except perhaps on xs(i, e), so that

s+l
is moved to a new integer in the j-list, L]. = {(j, k): k € N}. Namely, we define
for each j € N,

x$+1(j, 0)=wly € L, &y ¢ dom ¢r_ ],

x“l(j,k+1)=/xy[y€Lj&y>xS+1(j, k) & y ¢ dom ¢

s+1

).

(Notice that if y € dom 0 — dom w is occupied by a marker A;’k at s, then

s +1

(j» k) > (i, e) by definition of w. This insures that R,  moves only those markers
1'\].,c for which (7, ) > (i, e).)

This completes the construction at stage s. To complete the construction,
define ¢ = lim_ ¢ _, which exists because ¢s+1 2 ¢ . Furthermore, ¢ is partial
recursive because our procedure at stage s is recursive. Hence, & is a r.b. H?

class, where we define o = N T*.
seN s
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Lemma 4.2, For all i, e € N, requirement R, requires attention only finitely

often.

Proof. Fix R, , and assume by induction that all requirements of higher
priority have required attention for the last time before some stage, say s . Then
for each j and k, where (j, k) < (i, e), we know that xs(j, k) = xso(j, k) for all
s > s, Hence, once a subrequirement R:?e has been satisfied at some s > Sor
it remains satisfied at all ¢ > s. Hence, R requires attention at most (i)

times after S

Lemma 4.3. Forall i, e €N, requirement R,  holds for S.

Proof. Fix R,,. By Lemma 4.2, we can choose s so that every requirement
of priority R, or higher has required attention for the last time before s,. Hence,
forall s > s,, and all (7, k)< (i, ), we have x G, k) = xso(j, k) which can
thus be denoted simply by x(j, k).

To show that R holds, assume by contradiction that there exists [ € §
such that 7/ = {e}Ai/-. Let w be the finite subfunction of [ with domain {x(j, &):
all (j, k)< (i, e)}, and let D C D, correspond to w as explained earlier. Then
there exists some initial segment o of f, o extending w, and some s > s, such
that {e}: i%(x (i, €)) is defined. But then Rz requires attention at s contrary
to the assumption on s.. This completes the proof of Lemma 4.3 and hence that

of Theorem 4.1.

0°

Corollary 4.4. If a is the degree of a complete extension of Peano arithmetic
then any countable partially ordered set is embeddable in the upper semilattice of

degrees below a.

Proof. Our proof uses Scott’s theorem [19] which implies that given any non-
empty H(l) class § of sets and any complete extension T of P, & contains a mem-
ber which is recursive in T. Let T be a complete extension of P of degree a.
‘Let {(An, Bn)}n en be given by Theorem 4.1, and let & be the class of sets de-

termined by this sequence as in the proof of Theorem 4.1. Namely,
S= {C: (n)[nnC separates (An, Bn)]i,

where the projection operator 7 is extended to sets via their characteristic func-
tions., Since & is a nonempty H(l) class of sets, Scott’s theorem implies that &
has a membet, say C, whose degree ¢ satisfies ¢ < a (in fact ¢ <a). But the

sequence {7 C} is recursively independent. Therefore, Sacks’® technique
q n y P

n€N
[18, p. 53} can be directly applied to the sequence ;wnC}n en to embed any count-

able partially ordered set in the upper semilattice of degrees below c.

Corollary 4.5. For any degree a, there is a nonempty r.b. “(1) class which bhas

no members of degree a or 0.
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Proof. Given {(An, Bn)fneN by Theorem 4.1, define two r.b. H(IJ classes
Sn =1{C: C separates (4, B )}, =7=0, 1.

Now every member of 50 is Turing incomparable with every member of 51. Thus
either 50 or Sl.has no member of degree a.

In [10] we generalize this corollary by constructing disjoint pairs of r.e.