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P-Complete Geometric Problems'
Mikhail J. Atallah l Paul Callahan' Michael T. Goodrich§

Summary of Results

In this paper we show that it is impossible to solve a number of "natural"

2-dimensional geometric problems in paIyIog time with a polynomial number of

processors (unless P = NC). Thus, we disprove a popular belief that there are no

natural P-complete geometric problems in the plane. The problems we address

include instances of polygon triangulation, planar partitioning, and geometric

layering. Our results are based on non-trivial reductions from the monotone

circuit value and planar circuit value problems.

1 Introduction

In sequential computation theory one of the primary measures of a solution's efficiency is

that it run in time that is proportional to a polynomial in the size of the input. A problem

solvable by such a sequential algorithm is said to be in the class P [2, 21]. An analogous

notion of efficiency in parallel computation theory is that a solution run in polylog time

using a polynomial number of processors. A problem solvable by such a parallel algorithm

is said to be in the class NC [22, 24, 27, 31]. (The reader is referred to [24] for other notions

of efficiency and related complexity classes.)

•A preliminary announcement of this research appeared in Proc. £nd A eM Symp. on Parallel Algorithms

and Architectures, 317-326, 1990.
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It is a long-standing open question as to whether all problems solvable in polynomial

time sequentially are solvable in polylog time using a polynomial number of processors, i.e.,

whether P = NC or not. It is strongly believed, however, that P i= NC, much as it is

strongly believed that P #- NP. As in the theory of NP-completeness, there is an analogous

method for proving that establishing the membership of a particular problem in NC is as

hard as showing that P = NC. This method is to show that each problem in P admits an

NC-reduction to the problem at hand. Such problems are usually said to be P-complete

[22,27]. Most of the problems shown to be P-complete to date are essentially combinatorial

problems, dealing with problems defined on graphs and algebras (see [22, 27], for example).

Geometric problems in the plane, as a rule, admit more structure than purely combi­

natorial problems, however. This structure usually allows one to apply parallel divide-and­

conquer methods to obtain fast algorithms. In fact, all the well-known 2-D geometric struc­

tures, including convex hulls, Voronoi diagrams, and line arrangements, can be constructed

in polylog time using a polynomial number of processors [1,4,5,6,8,14,15,16].

Even the otherwise P-complete problem of linear programming can be parallelized when

restricted to the plane (see [11, 12] for the P-completeness result). In addition, using the

algebraic cell-decomposition framework of Kozen and Yap [23, 34], there are a host of less

well-known geometric problems in the plane that can also be computed in parallel. Because

of this, a general belief seems to have developed that llnatural" geometric problems in the

plane tend to be parallelizable.

The class NC consists of those problems that can be solved by a uniform family of

polynomial size boolean circuits with polylog depth. This is usually taken to be equivalent

to the set of problems that can be solved in polylog time with polynomially many processors

in some "reasonable" model, such as a PRAM. However, in the case of geometric problems

we need to be careful, because we often require infinite precision arithmetic operations, and

these are not in NC.

One way to resolve this is to define a new complexity class, such as NC· or NC+ [1, 34]

that allows infinite precision arithmetic as a basic operation. We consider NC to be a more

natural class for the discussion of complexity issues, so we take a different approach.

In most common geometric problems, all arithmetic operations can be encapsulated

within oracles that provide yes or no answers. For example, Voronoi diagrams can be con­

structed using only discrete operations, provided we have an oracle that, given four points,

can answer whether the first lies within the circle passing through the remaining points.

Additionally, the number of possible oracle queries tends to be bounded by a polynomial (in
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the previous case O(n4
)).

Hence, for present purposes, we assume that an instance of a geometric problem includes

the answer to all possible oracle queries. Given this representation, it now becomes reason­

able to pose the problem in terms of formal languages, and discuss whether it lies in NO or

is P-complete.

In this paper we show that a number of simple geometric problems are in fact P-complete.

Each of these problems involves a collection of line segments in the plane. The problems we

address are as follows:

• Plane-sweep triangulation. One is given a simple n-vertex polygon P (which may

contain holes) and asked to produce the triangulation that would be constructed by the

following sequential algorithm: sweep the plane from top to bottom with a horizontal

line L, such that each time L encounters a vertex 11 of P one draws from 11 all diagonals

of P that do not cross previously drawn diagonals. This problem is a special case

of the well·known polygon triangulation problem (see [13, 26, 32]). Contrast the P­

completeness of this problem with the fact that so many problems solvable by plane­

sweeping have recently been shown to be in NC [1,4, 6, 14, 16, 17, 18] (with solutions

that use a small number of processors).

• Weighted planar partitioning. One is given a collection of n non-intersecting segments

in the plane, where each segment s has a distinct weight w(s), and asked to con­

struct the partitioning of the plane produced by extending the segments in order of

their weights. The extension of a segment "stops" at the first segment (or segment

extension) that is e'hit" by the extension. This problem has applications to art gallery

problems [28], as was shown by Czyzowicz et al. [10]. We show it to be P-complete even

if there are only 3 possible orientations for the line segments. It is straightforward to

solve this problem sequentially in O(nlog
2

n) time (using the dynamic point-location

data structure of [33]), and in O(nlog n) time by a more sophisticated method [10].

• Visibility layers. One is given a collection of n non-intersecting segments in the plane,

and asked to label each segment by its "depth" in terms of the following layering

process (which starts with i = 1): compute the upper envelope of the segments (i.e.,

those visible from (0, +00)), label each segment with a piece in this upper envelope as

being at depth i, remove each such segment, increment i, and repeat until no segments

are left. This is an example of a class of problems in computational geometry known

as layering problems or onion peeling problems [7, 26, 29], and we show it to be P-
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complete even if all the segments are horizontal. It can be solved in O(n log n) time

sequentially [30]. Hershberger [20J independently developed a P-completeness proof for

this problem.

Our methods are based on non-trivial reductions from the monotone circuit value problem

(MCVP) and planar circuit value problem (PCVP), which are known to be P-complete [19,

24, 27]. The main difficulty in these reductions is showing how to use geometry to simulate

a circuit just by using the relative positions of objects in the plane. As is often the case with

completeness results, we expect the techniques (and perhaps even the problems themselves)

to be useful in showing other geometric problems to be P-complete.

In the sections that follow we outline our reductions for each of the above problems in

turn. For pedagogical reasons, we present our proofs as NO-reductions, but we could have

just as easily presented them as logspace-reductions (which is an alternate framework for

P-completeness proofs, e.g., see [22, 31]).

2 A Framework For Geometric Reductions

We show the first two problems to be P-complete using reductions from the planar circuit

value problem (PCVP). Because our constructions are geometric, particular care must be

taken in the routing of values. We will handle routing within a general framework in which

we insert our constructions as components.

We will assume an instance of PCVP is given as a circuit composed of V gates and

inverters that is embedded in a grid. Inputs are placed at the top, and the circuit is organized

as an alternating sequence of routing layers and logic layers. In each row, certain columns

are assigned to the value of gates in the circuit. One can easily show that PCVP remains

P-complete under these assumptions.
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2.1 Routing

We describe the routing layer in terms of 4 components: vertical wires, right shifts, left

shifts, and fan-out gates. These components are shown below:

r--2---:, ,, ,, ,, ,
"- -----"

left shift

r-s;--------:
, ,, ,, ,, ,
"----- --- -,

fall-out gate

r-s---:, ,, ,, ,, ,
"----- -,

right shift

'-1-'
, ,, ,, ,
, ,, ,, ,
"- -,

vertical wire

Each figure is simply a Uwiring" diagram, and when two figures are placed with their

wires touching, a value is transmitted through each wire in the natural way. Values can only

be transmitted down in the vertical direction, though they may be transmitted either left or

right horizontally.

We construct a routing layer using a geometric placement of these components in which

their bounding rectangles (shown dotted) do not overlap. This restriction is significant,

because the objects in our geometric problems must not intersect. To formalize the idea of

routing, we define a column value assignment, and a class of functions, called planar routing

functions, which transform one column value assignment to another.

Because we use a grid embedding, we need to assign boolean values to columns in the

grid. To make routing possible, we also need to leave some columns empty. We give empty

columns the value *. A column value assignment is an n-tuple (VI, ... ,vn ) E {O,l, *}n, where

o and I represent boolean values, and * stands for "unassigned."

A routing function r is a function from column value assignments to column value assign­

ments (of equal size) and is represented by an n-tuple C = (CII ..• ,en) E {O, ... ,n}", with

the following interpretation.

V'i = { *
V Ci

ifc;=O

otherwise

Intuitively, such an r represents the interconnections from outputs on one level to inputs

on the next level. It is more general than a permutation, because values can be duplicated ,

and not all columns need to be connected.
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A planar routing function is a routing function represented by C = {Cl"'" cn.}, such that

for all 1 ::; i < j :; n, if Ci, Cj =f 0 then Ci :; Cj.

Intuitively, a routing function is planar if it can be embedded in the plane as a network

of non-crossing wires. The formal restriction above insures that values transmitted across

such a network appear in the same order on output as on input, and it is easy to see that

this is equivalent to the non-crossing restriction.

Lemma 2.1: Suppose T is a planar routing function represented by C = (Cl I "" c,,), where

I{i: Ci = O}I 2: n/2. Then T can be realized using an n-column routing layer consisting of

vertical wires, left shifts, right shifts, and fan-out gates, such that the bounding rectangles of

tllese components do not overlap. Moreover, the problem of constructing tbis routing layer

is in NC.

Proof. The restriction I{i: Ci = O}I 2: n/2 is merely to insure that we have enough empty

space to fit our routing components. We perform routing in a naive manner, because we

need only guarantee that the size of the instance in the geometric framework is a polynomial

function of the size of the original circuit instance.

We construct the routing layer in three phases. For example, suppose we wish to route

the function r, where C = (l,3,O,3,O,O,3,6,O,O). First, we spread values to allow enough

room for fan-out gates:

2 3 4
,,, ,, ,, ,, ,, ,

,- -., ,, ,
· ,
· ,, ,, ,, ,.-

5678910

" - - - ~ - - ~ - - - . ,,,,,,,_.

Second, we perform the fan-out:

1 2 3 4 5 6 7 8 9 10
-, ,- ---------. ,- -,, , , ,, , · ,, , , ,, · , ,, , , ,, · · ,, , , , ,-. "---T- -.- -~-------+- -,, , , , ,, , , · ,, , , · ,, , , , ,, , , , ,, , , , ,, , , , ,_. .- -~----- _.- _.
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Finally, we place values in the appropriate columns:

2 3 4 5 6 7
,,,,,,, ,

-+---+-,,,,,,,

-~----- - .. -,,,,,,,
-.---+- -----+-

8 9 10
, ,
, ,
, ,, ,, ,, ,, ,_.- -.,,,,,,,

The first and third phases consist of the same operation: routing wires without crossing

or branching. The second phase is an even simpler process of copying values into adjacent

columns to the right. We describe its operation first.

To perform fan-out, we assume that each column corresponding to a value has at least

2(m -1) empty columns to its right where m is the number of copies of that value produced

by the routing function (this is why we need I{i: c; = O}I ~ n/2). Using these empty columns,

we make m - 1 new copies of the value using m - 1 levels of gates. At each level, a fan-out

gate is placed beneath the rightmost copy, and a vertical wire is placed beneath all other

copies. Note that each fan-out gate takes up two columns to the right of its predecessor.

Thus, 2(m -1) empty columns are sufficient.

It is easy to see that in this scheme the placement of each fan-out gate and vertical wire

can be precomputed using a simple formula. Therefore, this phase can be computed in NC.

We perform the routing of the first and third phases in a naive manner in order to keep

the computation simple. We split the set of values into three categories: those to be routed

to the left , those to be routed to the right, and those to be routed straight down.

We route each value to its destination column in the most obvious way: we use a sequence

of shifts in the desired direction. While one value is routed, all other values are passed along

using vertical wires (note that our illustration of the third phase deviates from this naive

approach in order to save space). At any stage in the routing, the leftmost value to be routed

to the left, and the rightmost value to be routed to the right may each be routed in this way.

(any value which blocks such a routing must cross the value being routed, and this violates

the planarity restriction).

To perform the routing, we order the values to be routed to the left from left to right,

and those to be routed to the right from right to left (these orderings may be interleaved

arbitrarly). We then route each value successively in the obvious manner. From this ordering,

the column containing each value prior to the routing of a particular value can clearly be

computed in NC. Given this information, the placement of each shift and vertical wire can
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be computed according to a simple formula. Therefore, the fust and third phases can be

computed in NC. 0

2.2 Inputs and gates

We also introduce the following components for inputs and gates:

: 0 :, ,

--FL-------., ,, ,, ,

l__ ~ j

v gate

: 1 :, ,

r-S----j, ,, ,, ,, ,
"----- -,

inverter

We use input components to realize an initial column value assignment and gate compo­

nents to realize a logic layer function.

Definition. A logic layer function 1 is a function from column value assignments to

column value assignments of equal size. It is represented by a column gate assignment,

9 = (9t, ... ,9n) E {V",*}n where each, is preceded by at least one *, and each V is

preceded by at least two *'s. Intuitively, this is to make room for the input columns. It is

interpretted as follows.

{

Vi_2 V Vi_1 if 9i = V

, ifv i = 'Vi_t 9i = ,

* otherwise

It follows immediately from the definition that we may realize a logic layer function in

terms of logic components. This realization is a simple matter of local replacement, and

hence it is in NC.

2.3 Specifying an instance of PCVP

We will assume that an instance of PCVP is given as an input assignment (VI, ... I V n ), an

alternating sequence (rl' 1t, ... , T m , 1m ) of planar routing functions and logic layer functions,

and a distinguished column i , called the output. We may pose this instance as a decision

problem by asking the following question.

8



Let (V'll ••. I Vin) denote the result of

The POVP has been shown to be P-complete for the basis of boolean functions {VI'}

[19], and it is easy to see that an instance of PCVP specified in any "reasonable" format is

NO-reducible to an instance in the above format.

As an example of the reduction to the geometric framework, consider the following in­

stance of PCVP:

1 ° Input: (1.l,*.·.O....*.*)

r1 : (1,2,0,2,5,0,0,0)

11: (*.*.v.*.*.v,*;')

r'2 : (0.O,3.0,O,6.0,O)

1'2: (*.*.*." *.*",*)

r3: (0,0,0,0,4,7,0,0)

13: (*.*.*.*.*.*.v.*)

Output: column 7

It is represented in the geometric framework as:

12345678

1 : 1 : 0 :
" ,

- -,- _._------ - -

v

-------,-,,
,,,,
,
'---T-

v

.":-c:-:-:l . :... ,
, ,, ,
, ,, ,, ,, ,

" ,_._--<----- -,, ,
, ,, ,, ,, ,
, ,, ,_.- -----,,,

,
v :

,
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Using the framework developed above, we will now show our first two geometric problems

to be P-complete. Our third problem will require some modifications to this framework ,

which we will develop when needed.

3 The Plane-Sweep Triangulation ProbleIll

We consider the problem of triangulating a simple n-vertex polygon P, which may contain

holes. We recall that the plane-sweep triangulation is the one constructed by the following

sequential algorithm: sweep the plane from top to bottom with a horizontal line L, such

that each time L encounters a vertex v of P one draws from v all diagonals of P that do not

cross previously drawn diagonals.

It is easy to see that this problem can be solved using only discrete operations if we assume

an oracle that accepts two line segments as input and determines whether they intersect. We

need only perform queries on line segments between points in the given polygon, so there

are O(n4
) possible queries. Hence, we can assume the input to this problem consists of the

suitably encoded polygon, along with the answers to all oracle queries.

The problem of finding some arbitrary triangulation is known to be in NC (see [14, 17]).

In this section, we prove the following theorem.

Theorem 3.1: The plane-sweep triangulation problem is P-complete.

Proof. Given the observations of the preceding section) and Lemma 2.1, it is sufficient

to construct "gadgets)) for each of the components needed to embed a planar circuit. We

present each gadget as the object one would see within a rectangular window placed over the

corresponding part of the polygon. These gadgets fit together in precisely the same manner

as the components in our geometric framework. We will first prove the correctness of our

gadgets , and we will then show how to express the resulting polygon in a standard encoding

scheme.

We encode each value in the circuit by the presence or absence of a corresponding edge

in the triangulation. The presence or absence of an edge will represent 1 or 0, respectively.

All edges that correspond to an input or output value of a gate will be vertical. The

correspondence between edges and column values follows from the geometry.
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The gadgets for the left shift and right shift, respectively, are:

The gadget for the fan-out gate and vertical wire, respectively, are:

The gadgets for the V gate and inverter, respectively, are:

. ~ .

. .

0,···,··········.1 !
: ,,.. I

' ..~

..... ~,

The shapes of our constructions may appear mysterious at first, but the ideas governing

them are quite simple. We construct logic gates by making use of the interaction between

crossing pairs of line segments. These interacting edges are shown as dotted lines. Any

polygon we form will introduce spurious edges in the triangulation graph. We must be

careful to construct our gates to prevent these edges from altering the meaning of edges that
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encode logic functions. We show how this is done by considering some general features of

gates.

In each construction we add several new vertices to the polygon (shown with dots). These

may be considered 1800 corners. We will call these vertices targets, because the output of

each gate will be computed by attempting to draw a line segment to each target from some

vertex above.

In every gate, the input edge is a vertical line segment passing through an opening made

sufficiently small to insure that only one vertex above the opening is visible from the target

directly below. This opening can be made as small as necessary by the placement of two

reflex corners. The maximum width of this opening depends on the length of the longest

vertical line segment leading to a target, and it can easily be computed given the placement

of the gadgets.

Functionally, most gadgets work in two phases corresponding to "events" in the plane

sweep. The first phase corresponds to sweeping past the highest vertex and determining if

its target is visible. It will be visible unless some input edge is blocking it. In this case, one

would add the edge connecting the highest vertex to its target. The second phase corresponds

to sweeping past the next highest vertex (or vertices in the case of the fanout gate), and

"attempting" to add a vertical edge from it to its target in some gate below. This is possible

iff the edge of the first phase was not added. As one sweeps past the rest of the construction,

one may add other edges, but these will not affect the output edges, since they have already

been added.

An exception to the above description is the inverter, which works in three phases. In

each phase, the edge interactions are the same as those above. To invert a value we must use

an odd number of such interactions. After one interaction, we always change the orientation

of the edge encoding the value. Thus, we need at least three interactions to invert a value

while maintaining the orientation of the edge encoding it. The treatment of spurious edges

is somewhat more complicated in this gadget, but its operation is easily verified.

We form inputs by closing off the openings of the top row of gates with gadgets that

insure the presence of an edge in the case of a 1, or the absence in the case of a 0, as follows:

]

~
We close off the output of the circuit usmg the same gadget that encodes I, placed
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upsidedown. The vertical edge connecting to the lowest vertex in this gadget will be in the

triangulation iff the output of the corresponding circuit is 1.

To show that this polygon can be constructed in NC, we assume that it is encoded as a

set of sequences of points in the plane. Each sequence is a boundary of the polygon (either

the outer boundary or a hole contained within), and points are given in the order obtained

by traversing the boundary either clockwise or counterclockwise from an arbitrary starting

point back to itself.

We assume that gadgets other than the vertical wire are given as a graphs in which each

vertex corresponds to a corner) and each edge corresponds to a side connecting two corners.

For the vertical wire, we introduce two dummy vertices corresponding to each side) and use

the resulting graph (with no edges) to represent the gadget. We construct a graph for the

whole polygon by introducing edges between any two vertices adjacent to incomplete sides

that "touch" in the geometrical placement.

The construction of the above graph requires only local replacement. Encoding the

polygon as a set of sequences can be done by using list ranking [3] and parallel prefix [25J

and then compressing out the dummy vertices. All of these steps can be done in NC. It is

easy to see that the results of all possible oracle queries can be computed in NC as well. Thus,

the plane-sweep triangulation problem is P-complete, by an NC reduction from PCVP. 0

4 The Weighted Planar Partitioning Problem

In tills section we consider the weighted planar partitioning problem, showing it to be P­

complete. We recall that in this problem, one is given a collection of n non-intersecting

segments in the plane, where each segment s has a distinct weight w(s). One is asked to

construct the partitioning of the plane produced by extending the segments in order of their

weights. The extension of a segment "stops" at the first segment (or segment extension)

that is "hit" by the extension.

We begin our discussion by noting that a line segment can only block another of unequal

slope. Thus, a natural restriction is to limit the number of possible slopes of line segments

to some constant k. We will call tills restricted problem the k-oriented weighted planar

partitioning problem.

As in the preceding section, our oracle will answer segment intersection queries. However,

the segments may not always be from the input set, since they may be extensions of the

original line segments. The reader may easily verify that each line segment has O(n) possible
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extensions in each direction, so the number of possible oracle queries is again polynomial.

Theorem 4.1: The 3-oriented weighted planar partitioning problem is P-complete.

Proof. As in the proof of Theorem 3.1, we construct components for routing and logic.

Throughout our proof, only 3 distinct slopes are used. In fact, with the exception of a

single line segment used in the construction of the inverter, only horizontal and vertical line

segments are used.

These gadgets work on principles similar to those of the preceding problem. Specifically,

line segments are considered in a particular order, and if they are added, they block the

placement of other line segments to be added later. In the preceding problem, however, a

blocked line segment is not placed at all, whereas in this problem a blocked line segment is

extended up to the intersection with the one that blocks it. It is easy to verify that this does

not affect the behavior of the gadgets in terms of the logical functions they are designed to

perform, however.

In this problem, unlike the preceding, the ordering of the line segments does not depend

on the geometry, but is imposed separately by the weights. Thus, we need to specify an

ordering along with the line segments to make our construction work. Our figures are not

as self-explanatory as those of the preceding section.

Each line segment in a figure is labelled with either a number or 00 (dotted lines represent

extensions). The numbers indicate the order in which the line segments fall with respect to

the weights of other line segments within a particular gadget. We order gadgets in a manner

corresponding to the sequential evaluation of the instance of PCVP. One such ordering is

row by row from the top, with an arbitrary ordering among elements in a row. We may

then order the complete list of numbered line segments by combining these orderings (via

a parallel prefix computation), with the latter being the most significant. We place line

segments labelled 00 after all other line segments in the final ordering. Their order with

respect to each other is arbitrary. Intuitively, line segments labelled with 00 are placed to

force numbered line segments to be extended in only one direction, or to prevent a segment

from being extended beyond the gate to which it belongs. We do not care how these blocking

line segments are extended.
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The gadgets for the left shift and right shift, respectively, are:

,

.i.-

The gadget for the fan-out gate is:

.i.-

...-.1-+,

I :
oj-~, ,

.i.-

- -
12 1

3

'["I+-

I

There is no explicit gadget corresponding to a vertical wire. A value is transmitted

vertically as the extension of a line segment within some gate. The gadgets for the V gate

and inverter, respectively, are:

I ;oj-,.

1,

oj" i
ooI..1..·~~>,,; ..--...-l .. ~

'"" !
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We assign inputs by using the following gadget to represent 1:

There is no explicit gadget for 0, since it is represented by the absence of an extension.

The correctness of these gadgets is easily verified, including the fact that we may insert

them into our general framework. The computation of the weight for each line segment is

clearly in NC, as is the computation of oracle queries. The remainder of the reduction consists

of local replacement. Therefore, the weighted planar partitioning problem is P-complete. 0

5 The Visibility Layers Problem

In this section we will show that the visibility layers problem is P-complete. We recall that

in this problem, one is given a collection of n non-intersecting segments in the plane, and

asked to label each segment by its "depth" in terms of the following layering process (which

starts with i = 1): compute the upper envelope of the segments (i.e., those visible from

(0, +00», label each segment with a piece in this upper envelope as being at depth i, remove

each such segment, increment i, and repeat until no segments are left.

In this case, the problem is fully specified by the ordering of line segment endpoints

and the partial ordering of line segments according to "aboveness." Hence, we can dispense

entirely with arithmetic operations by assuming that these relations are given along with

the input.

As with the previous two constructions, the primary consideration is in the routing.

However, in this case we will not be restricted to planar routing functions. We introduce

a more powerful routing construction, which we call a crossing fan-out gate. This allows

a very general fan-out in which we may copy the value of any column i to any subset of

columns, including i. We allow this gate to cross any number of columns without affecting

them. This permits the realization of arbitrary routing functions. An example of such a gate

is the following:

I-xI: I: 1-:I,
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Our reduction is from the monotone circuit value problem (MCVP). As we did for PCVP,

we assume that an instance of MCVP is given as an input assignment (VI, ... , vn ), an al­

ternating sequence (TIl Ill"" T....,I.... ) of routing functions and logic layer functions, and a

distinguished column i, called the output. In the case of MCVP, however, we do not insist

that the routing functions Ti be planar. The logic layer functions Ii are similar to those used

for PCVP, except that their column gate assignments are drawn from the set {A, V, I ,*},

where I is the identity function. We define these logic layer functions as follows.

Let (V'I, ... ,V',,) = I( (VI, ... ,vn)). Then, for all i,

,
Vi =

Vi_2 V Vi_l if gi = V

Vi_2 A Vi_l if gi = A

Vi ifgi=I

* otherwise

For convenience, we assume that the value of a column is never reassigned. We formalize

this notion as a restriction on routing and logic functions (an intuitive explanation is given

afterwards).

Suppose Ti = (Cl, •• " en) is a routing function in which Cj fj {O,j}. Then the following

must be true:

• Vj = *

• For all Tk = (c~, ... , c~) such that k < i, cj = o.

• For all h = (gl'" "g,,) such that k < i, gj = *.

Analogously, suppose Ii ::::: (91, .. ' ,9n) is a logic function in which gj fj {*,I}. Then the

following must be true:

• Vj = *

• For all Tk = (Cl, ••• , en) such that k :::; i , Cj = o.

• For all h = (9~," ',9~) such that k < i, gj = *.

The above restrictions insure that once the value of a column has been assigned by a gate

or an input, it may only be propagated straight down or discarded (note that we introduced

the identity function I to allow values to be propagated straight down through a logic layer).

In no event can a new value be assigned to a column that has had a value assigned to it
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at a higher level. The need for this restriction will become apparent when we discuss our

construction. It is easy, however, to see that this does not limit the kinds of circuits we can

describe, and that an instance of MCVP in any "reasonable" form is NO-reducible to this

form.

Theorem 5.1: The visibility layers problem is P-complete.

Proof. We divide our construction into levels, so that at each level i the values 0 and 1 are

represented by the layer numbers 4i and 4i + 1, respectively. Note that the O-valued layer

always comes before the I-valued layer (this is crucial to the correctness of our constructions).

Intuitively, each level will consist of 4 visibility layers.

Our mechanism for assigning columns is capable of changing a 1 to a 0, but not vice

versa. Thus, columns whose value is initially unassigned in our input (based on our general

framework) will be represented by 4i +1, the same as 1.

Because our values must be synchronized precisely, we need to be especially careful about

placement. In order to determine the placement of our gadgets, we will consider the plane

to be a discrete set of unit square cells, each centered at coordinates (i, j). We interpret

these coordinates so that i is the row number, increasing from top to bottom, and j is the

column number, increasing from left to right. Note that this not the standard interpretation

of cartesian coordinates. It is more like the interpretation of matrix subscripts. The latter

scheme is more natural, since layer numbers roughly increase with respect to row numbers.

In the two preceding sections, we could point to specific geometric objects which each

represented a value by its presence or absence. In this case, however, our encoding scheme

is more subtle. In particular, there is no explicit object that transmits a value vertically.

Intuitively, information seems to travel down the layers in a wave spread across the whole

set of line segments. It is somewhat surprising that we can, in fact, produce the effect of a

distinct value propagating down each column.

For this purpose, we introduce a set of n + 1 blockers. Each blocker is a stack of line

segments placed above the grid (the set of cells containing routing and logic) to insure that

segments passing through each grid cell are only visible through a narrow column in the

center. We will call this column the aperture. There must be enough line segments in each

blocker to insure that this condition remains until all non-blocker line segments have been

given layer numbers. An upper bound on this number can be computed after placing all other

line segments in the construction, by finding the maximum number of such line segments

stabbed by a vertical line.
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For the purpose of evaluating the layer numbers of non-blocker line segments, we need not

concern ourselves with those parts of line segments that pass beneath the blockers. These

will never be visible as we evaluate the gadgets corresponding to Oill' circuit.

We place the blockers as follows:

~ -rOl- ~ - r 1 ~ 2 T ~, , ,
, , ,, , ,, , ,
~_---_ ..... _----"

~ - ( l ~ n T ~, ,
, ,, ,, ,
~_---_~

In order to form the routing component, we need to construct a crossing fan-out gate.

The gadget corresponding to the crossing fan-out gate shown earlier is:

.---------.---------.~--------.---------.---------.
, , IDpU" , ,,---, ,---, ,,=, ,=, ,, , , , ,
I I I , ,, , , . ,

'---' '---' '---'
: oU'pu. 1 : c,ouiDI : oUlpu. ~ : «OUiDI ; oU'pu' J :

The gate will extend across an entire row of the grid. Its main component is the conduit,

which consists of two long line segments, placed so that they pass across the apertill'es of all

cells in the row. The idea is that as soon as a line segment in the conduit becomes visible

through the aperture of the input column) it is removed. The effect of this removal is then

transmitted to the output columns.

We construct the input and output columns of a crossing fan-out gate by placing either

taps or crossovers in the appropriate cells. A tap consists of two line segments below the

conduit, entirely within the cell, passing across the aperture. A crossover is similar , but

consists of four line segments above the conduit. In general) if the ith column is the input

or one of the outputs , we place a tap in the ith cell. Otherwise we place a crossover.

Intuitively) the pill'pose of a crossover is to prevent the value above an aperture from

affecting the value of the conduit. By Oill' encoding scheme) we are guaranteed that at least

one of the line segments in a crossover will persist until after both line segments of the

conduit have been removed. Thus, a value entering at a column with a crossover will not

affect the value of any of the outputs. A tap simply resynchronizes the layer numbers to

preserve our encoding scheme by adding 2 to the layer number. Note that the conduit also

adds 2.

From this construction it may appear that we are not distinguishing the input from

outputs. However l this distinction comes from the fact that we do not reuse columns. The

input will always be from a column whose value has aheady been assigned) and the output
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will always be to a column that has not yet been assigned. By oUI encoding scheme, the

only column that can possibly be 0 is the input column.

The gadget for the 1\ gate is:

r-~~~-T-~~C-T-----'

I I I I

I I I I

I I I I

I I I I

I I I Gllll'lll I

~-----~-----~-----~

and the gadget for the V gate is:

r-~~~-T-~~C-T-----'

I I I I

I I I I

I I I I

I I I I

I I I Gll'Pll' I

~-----~-----~-----~

The correctness of the 1\ gate follows from the fact that the output is the minimum of

the two inputs plus 4. The V gate is slightly more complicated.

We verify its operation by considering the layer numbers of the segments in the output

column. The top two segments are assigned layer numbers that depend on the value entering

at input 2, and the middle two depend on input 1 in a similar manner. The bottom two

segments will not be removed until all those above them have been removed, so they depend

on the maximum layer number of those above. Each pair of segments adds two to the value

it depends on, so the final output is the maximum of the two inputs plus 4.

We assume that the output column is unassigned above each gate. This is to insure that

the output depends only on inputs 1 and 2, and not on some value above the output column.

In keeping with the definition of the logic layer function, we declare the input columns to be

unassigned below the gate.

The construction for the identity function is the same as the construction for the crossover

in the crossing fan-out gate. The only difference is that there is no conduit that it must cross.

Its only effect is to add 4 to the layer number.

We construct oUI input component above the blockers, by placing a single line segment

across the aperture of a column to represent 1 or unassigned. We represent 0 by the absence

of such a line. It is easy to see that this assigns appropriate initial values to the layers

immediately below.

We consider the output of the circuit to be the bottom line segment in the output column

designated in the original instance of MCVP.

All of the steps in the preceding reduction can clearly be done in NC. Therefore, the
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visibility layers problem is P-complete, by an NC reduction from MCVP. 0

6 Discussion and Open Problems

We have shown three simple geometric problems in the plane to be P-complete. Thus, these

problems cannot be solved with a polynomial number of processors in polylogarithmic time

(unless P=NC). Two of the problems were decomposition problems and the third was a

layering problem.

A important layering problem whose membership in NC remains an open problem is the

well-known convex layers probleml [7]. This problem is analogous to the visibility layers

problem, but the input is a set of points, and we remove the points of the convex hull at

each step of OUI iterative procedure.

Some other open problems in this domain include the following:

• Suppose we restrict plane-sweep triangulation to polygons without holes. Does the

problem remain P-complete? We suspect that this restriction places the problem in

NC.

• Consider 2-oriented weighted planar partitioning. Is this problem P-complete? In fact,

this problem can be reduced to a case of MCVP with a very restricted (though not

planar) topology, but it is not clear that this places it in NC.

• Suppose we restrict visibility layers to horizontal line segments of unit width. This

makes it impossible to form crossovers. Does the problem remain P-complete? We

suspect that it does not, but so far no NC algorithm has been found.
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