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P-CONVEXITY AND B-CONVEXITY IN BANACH SPACES

BY

DEAN R. BROWNi1)

ABSTRACT. Two properties of ß-convexity are shown to hold for P-convexity:

(1) Under certain conditions, the direct sum of two P-convex spaces is P-convex.

(2) A Banach space is P-convex if each subspace having a Schauder decomposi-

tion into finite dimensional subspaces is P-convex.

0. Introduction. In the previous paper [l] the question of whether all B-convex

spaces are reflexive was discussed. The concept of a P-convex space was intro-

duced by C. Kottman [4] as follows:

Definition. For a positive integer n, let P(t2, X) be the supremum of all num-

bers r such that there is a set of 72 disjoint closed balls of radius r inside U(X) =

{x: ||x|| < 1}. X is said to be P-convex if P(t2, X) < % tot some 72. Kottman showed

that all P-convex spaces are both B-convex and reflexive. Therefore the question

"Is there a B-convex space that is not P-convex?" is of interest.

Many properties of B-convex spaces are not known for P-convex spaces. In

this paper we consider two of these properties and prove partial analogs of them

for P-convex spaces: The first property is that direct sums of B-convex spaces

are B-convex [2]. The proof of this fact for B-convex spaces rests on the invariance

of B-convexity under isomorphism, but it is not known whether P-convexity possesses

this invariance. Two partial analogs of the direct sum property are obtained,

Theorems 1.3 and 1.5, using Ramsey's theorem of combinatorics. The second prop-

erty is that a space is B-convex if each subspace having a basis is B-convex [l].

A partial analog of this is proved, Theorem 2.1, using one of the direct sum results.

We will use the following characterization of P-convexity from Remark 1.4 of

[4]: Let a set of 72 elements be called S separated of order 72 provided the distance

between any two elements of the set is at least 5. Then a space X is P-convex

if and only if for some positive integer n and some positive number e < 2 there is

no 2 — f separated set of order 72 in U(X).
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78 D. R. BROWN

I. Direct sums. The results of this section are based on the following theorem

proved in 1930 by Ramsey [6].

Theorem (Ramsey).  Let p, q, and r be integers so that p, q >r> 1. Then

there is a number n(p, q, r) having the following property. Let S be a set having

n(P, <l, T) or more elements. Let the family of all r-subsets of S (where an r-sub-

set is a set having r elements) be divided into two disjoint families, a and ß. Then

either

(1) there is A C S, a subset with p elements, so that any r subset of A is

in a, or

(2) there is B C S, a subset of q elements, so that any r subset of B is in ß.

We use this theorem to prove the following lemma.

1.1 Lemma. Let A and B be sets, PA a property which a 2-subset of points

(a., a.) in A may have, and Pß zz property on2-subsets of points (b.,b.) in B.

Suppose there is an integer NA so that if a .,•••, a , n > NA, are distinct points

of A, then there is i, j so that (a., a.) has P., and there is N„ with the corre-

sponding property for B. Then there is an integer NAß so that if n > NAß, a.,

' • •, a    distinct points of A, b., • • •, b    distinct points of B, then there is i, j

so that both (a, a.) has P.  and(b.,b.) has Pa.

Proof. Let NQ = max(NA, Nß) and let NAB = n(NQ, NQ, 2) from Ramsey's

theorem. For n > NAB let S = il, • • •, n]. Given \a. }"_j, let

a = j(z, /): (a., a.) does not have PA],

ß = \(i, j): (b., b¡) does not have PB; (i. j)4 »!•

Now suppose there is no i, / as asserted in the lemma. Then a \j ß is the set of

all pairs of elements of S. Also a O ß = 0, so Ramsey's theorem applies. If

Conclusion 1 holds, there is {i  !    , C S so that each (z , i  ) e a. Thus la. ]    ,
71   71 = 1 71        771 1„   rt=l

is a set of NA or more points, no pair of which has P., which is a contradiction.

Conclusion 2 yields a similar contradiction.

Lemma 1.1 will be incorporated into the following lemma for ordered pairs

(a, b) eAxB.

1.2 Lemma. Let A, B, PA, Pß, N., Nß, NAB be as in Lemma 1.1 with the

additional property that a pair having the same first and second elements of A,

(a., a.), always has P., and the corresponding property for B. Then if \ia., b.)]n. .

is a set of distinct pairs from Ax B ii.e., any two pairs differ in the first or

second entrief, or both) and n > N.jN.iy», then there is i, j so that both (a., a.)

has PA and (b., b.) has P„.

Proof.  Let a , a ,•••, a      be the distinct values of izz. P - and write the

sets r

i(zz(., b): a{ = a1], {(«,, bA: a, = zz2|, • • • , {(a., bA: a¡ = aA].
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If one of these sets, say the Kth, has Nß or more pairs, then for these pairs \b. :

a. = a \ ate distinct and so there is z, /' so that (b., b.) has Pß. By hypothesis

(a., a A = (a   , a   ) has P.   so the conclusion of the lemma holds. Otherwise each
z        7 "

of the sets has less than Nß pairs, so that the total number of pairs in all of the

sets is 72 < NßrA. Since N¿BNANB < n, we have rA > N^g/V^. By choosing one

pair from each of the sets, we get a family of pairs Ka", b. .A]    , having distinct

first elements, i.e., if 72 4 m then a" 4 am. Now let b , b , • • •, bTB be the dis-

tinct values of \b., A    , and write the sets
z (n) n=l

If any of these sets has N.  or more elements, say the Xth, then ja": b.. . = b   \

ate distinct and there is no /', k so that (a7, a ) has P.  and (&...., b.,,A =
K     K h

lb  , b  ) has Pg. Since (a', b...A and (a , &.,,.) were in the original set of pairs

l(a., b AX1,  the conclusion of the lemma holds. Otherwise each of the sets has

less than N A pairs, so that the total number of pairs in all the sets is rA < r„NA.

Since we showed N._N, < r.  we have r„ > N .„. Take one pair from each of

the sets to get |(a"(j', tV)î.fj, a subset of Ka., r>.)i"_j, so that if j4 k then

a»(7) ¿ a»(*) and ¿> ¿j,*. Thus I^O)^  and jè,j77j   are distinct points 0f A

and B. Applying Lemma 1.1 to these pairs concludes the proof.

Theorem 1.3.  Let Y and Z be subspaces of X so that X = Y © Z. If Y is

finite dimensional and Z is P-convex then X is P-convex.

Proof. Since Z is P-convex there is tzz, 5 so that if jz.}"_,  are distinct

points in U(Z) and 72 > »z then there is z, 7 such that ||z. - z . \\ < 2 - 5. Since

Y is finite dimensional, U(Y) is compact and there is 72y so that if \y. !"_. are

distinct points in U(Y) and 72 > 72„ then there is t, j such that \\y. - y. || < 5/2.

Let U(Y) = A, say (yry) has PA it \\y. - y.\\ < 8/2, and let NA = ny. Let

U(Z) = B, say (z ., z .) has P„ if \\z. - z .|| < 2 — 5, and let N„ = n~. Let

!y. + z. I^j be distinct pairs in U(X), n > NABNANg. Then \y .Y¡=1 C A and 1*$^ C B.

By Lemma 1.2 there is i, j so that (y., y.) has PA; i.e., ||y. - y.|| < 5/2, and

(*., z .) has Pß; i.e., ||z. - z . || < 2 - 5. Thus

\\(y. + 2.) - (y. + 2;)|| < ||y,. - y,.|| + ||z. - z;.|| < 2 - 5/2.

Corollary 1.4.  // X is not P-convex, and Y is a subspace of X of finite codi-

mension, then  Y is not P-convex.

The following theorem can be proved for direct sums of infinite dimensional

Banach spaces.

Theorem 1.5.   Let Y © Z be the direct sum of two P-convex Banach spaces

normed by  ||(y, z)|| = max(||y||, ||z||).  Then  Y<ÖZ is P-convex.
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Proof. Since Y is P-convex, there is ny, fy so that if {y. i"=1 are distinct

points in U(Y) and n>ny we have some z, / so that ||y. - y. || < 2 - f y. Similarly

there is nz, fz with this property for points in U(Z). Let A = U(Y). Say (y., y.)

has PA it \\y. - y\\ <2 - e, where f = min(fy, fz). Let NA = ny.  Similarly let

B = U(Z) and define Pß and Nß. Let \(y., «,.)È"bJ be distinct pairs in UiY®Z),

72 > NABNANB. Then \y. ]ni=l C A, \z. !?sl C B. By Lemma 1.2 there is i, j so that

(y.,y;.) has PA; i.e., \\y. -y;.|| <2 -f and(z¿,z;.) has Pß; i.e., |js¿ - z;. || <2 -f

and thus

||(y¿>2¿)-(y7,Zy)|| = ||(y;.-y;,2i.-Z.)||<2-f.

2. Subspaces. We will use the following

Definition. A sequence ÍM.i of closed subspaces of a Banach space X is a Schauder

decomposition of X if every element u of X has a unique, norm-convergent expansion u =

S°°, zz., where zz. e M. for i = 1, 2, • • •.
1=1       l' 17

Grinblyum [3] has characterized Schauder decompositions as follows.

Theorem. A sequence ÍM.i of closed subspaces of X is a Schauder decom-

position of X if and only if there is a constant K such that for all integers m, n

and all sequences  \u .]  with u.  eM. we have  ||S"_j zz. || < kWZ"*™ u.\\.

The following theorem is the P-convex analog to the B-convex subspaces with

basis property.

Theorem 2.1. // X is not P-convex, it contains a subspace having a Schauder

decomposition into finite dimensional subspaces which is not P-convex.

Proof. Let iS. | and if. ! be sequences of positive numbers less than one tend-

ing toward zero. Let \k.] be a sequence of integers tending to infinity. A sequence

pirn) of integers and a sequence {x. Î of vectors will be constructed with the fol-

lowing properties:

Let L denote the closed span [x.] and let L    = [x.]^m +:'  j, then

(1) For each 772 = 1, 2, • • •   there is a 2 — f     separated set of order k    in
771 * 771

UiL  ).
m

(2) For any integers nt q and any \u. i, u. € L ., we have HS7^, u .|| <

il + 8n)\\2^u.\\.   '

By property (1) L is not P-convex and by property (2) ÍL   ! is a Schauder

decomposition of L.

The construction is by induction on 772 as in the B-convex Theorem-2.3 of [l].

Let 772 = 1. Since X is not P-convex it contains a 2 — e,  separated set of order

k.. Let L.  be the span of this set; let ix. !?_}   be a linearly independent set

spanning L,. Choose \f. ]qrA C UiL*) by Lemma 2.1 of [l] and extend to X so

that if x e L.,
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P-CONVEXITY AND ß-CONVEXITY IN BANACH SPACES 81

||x||<(l + 8i)max,/iU):i=l, ••• , qiDl

Let Aj = HfJ^ /¿""'(O). Let Pj be the projection from Lj © Aj —> Ly Then

llalli 5 * + ^i* Since A   _ j is of finite codimension, it is not P-convex by Corol-

lary 1.4, so that the induction step can be carried out. Property (2) follows from

the fact that IIP   II .< 1 + 5   .
11   m " — m
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