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_________________________________________________________________________________ 

ABSTRACT— In this paper, we introduce the notion of P-coretractable module . Some basic properties of this class 

of modules are investigated and some relationships between these modules and other related concepts are introduced .  

Also , we give the notion of strongly P-coretractable and study it comparison with P-coretractable , moreover the 

mono-P-coretractable concept are introduced and studied .  
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_________________________________________________________________________________ 

1. INTRODUCTION 

Throughout this paper all rings have identities and all modules are unital right R-modules . A module M is called 

coretractable if for each a proper submodule N of M, there exists a nonzero R-homomorphism f:M/N→M [1] , and M is 

called strongly coretractable module if for each proper submodule N of M , there exists a nonzero R-homomorphism 

f:M/N→M  such that Imf+N=M [2],[8] . It is clear every strongly coretractable module is coretractable but it is not 

conversely. This work consists of three sections , in section one , we introduce the notion of purely-coretractable or P-

coretractable module where an R-module M is called P-coretractable if for each proper pure submodule N of M , there 

exists a nonzero homomorphism f HomR(M/N,M) also we give some examples and remarks about it . Some basic 

properties of P-coretractable modules are given . In section two , we introduce the notion of mono-P-coretractable . In 

section three , we introduce and study the notion of strongly P-coretractable module and we compare its properties with 

properties of P-coretractable module .  

2. PURELY-CORETRACTABLE (BRIEFLY P-CORETRACTABLE) 

      In this section, we introduce the concept of P-coretractable module and give some properties of this class module . In 

the beginning , we recall  a submodule N of an R-module M is a pure , if for every finitely generated ideal I of R , 

IM N=IN [3] . 

Definition(1.1): An R-module is called purely-coretractable (Briefly P-coretractable)  if for each proper pure 

submodule N of M, there exists a nonzero homomorphism f Hom(M/N, M).  

     Equivalently , M is a P-coretractable module if for each proper pure submodule N of M , there exists g EndR(M) , 

g 0 and g(N)=0 . A ring R is called P-coretractable if R is P-coretractable R-module .  

Examples and Remark(1.2):  
(1) Every coretractable module is P-coretractable . But the converse is not true in general and we shall give an 

example later after Corollary(1.13) . 

(2) Every semisimple module is P-coretractable module but the converse is not true in general . For example , M=Z4 

as Z-module is not semisimple module , but M is P-coretractable module since 0 is the only proper pure submodule of M.  

(3) Every pure simple R-module is a P-coretractable . Where an R-module M is called pure simple module if the 

only two pure submodules are 0 and M [4] .  

     The converse of this Remark is not true in general . For example Consider M=Z2 Z2  as Z-module is P-coretractable 

module but not pure simple module .        

(4) Every pure split module is P-coretractable module . Where an R-module M is called pure split if every pure 

submodule is a direct summand of M [5] . In particular Z8Z2 is pure split , so it is P-coretractable . 
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(5) Let P be the set of all prime numbers and M=  (That is M=Z2×Z3×Z5×… ) . Then we shall show that M 

is not P-coretractable module . Let K=  , then K is a pure submodule of M by [6, Lam. 4.84(d)] . Then by using  

the same argument of proof of  [1,Example(2.9)] . Let f HomR(M/K, ) for some p P , M/K = PM+K/K=P(M/K) kerf , 

so f=0 . Hence Hom(M/K,M) = 0 , then M is not P-coretractable module . However  (for any p 

 P) is P-coretractable module . 

(6) Let M M' where M is a P-coretractable R-module . Then M' is a P-coretractable R-module . 

Proof : we shall introduce the proof in section three by more generally. See Proposition(3.3) .                                                      

(7) P-coretractability is not preserved by taking submodules , factor modules and direct summands since for any R-

module M and a cogenerator R-module C , C  M is a cogenerator and so is a coretractable module and so P-

coretractable , but M need not be coretractable module . 

(8) Let R be a PID , M is an R-module . If M is C-coretractable , then M is P-coretractable . Where an R-module M 

is called C-coretractable module if for each proper closed submodule N of M , there exists a nonzero homomorphism 

f HomR(M/N,M) . A ring R is called C-cortractable if R is C- cortractable R-module [8] . 

Proof : Let N be a proper pure submodule of M . By [6,Lam, Exc.15,P.242], N is closed . As M is C-coretractable , then 

there exists f EndR(M) , f≠0 and f(N)=0. Thus M is P-coretractable .                                             

(9) Let R be a PID , M is an R-module . If M is coquasi-Dedkend , then M is P-coretractable . Where an R-module 

M is coquasi-Dedekind module if for each f EndR(M), f≠0 , f is an epimomorphism  . [7 ,Theorem(2.1.4) ,P.33] . 

Proof: By [7,Theorem(2.1.15)] , M has no proper nonzero pure submodule , that is M is pure simple . Thus M is P-

coretractable by part (3)  

(10) Let M=  as Z-module is P-coretractable and injective . Then M= Mi (Mi=M) is P-coretractable since M 

is C-coretractable by Example (2) after Theorem(1.10) ) in [8] ,  and Z is a PID . But M is not coquasi-Dedekind . 

     Recall that an R-module M is called purely extending if every submodule is essential in pure submodule  . 

Equivalently , M is purely extending if and only if every closed submodule is pure in M  [9] . 

Proposition(1.3):  Let M be a purely extending R-module , if M is a P-coretractable, then M is a C-coretractable 

module . 

Proof: Let K be a proper closed submodule of M . Since M is a purely extending module , then K is pure submodule . 

But M is a P-coretractable module , so there exists f EndR(M), f 0 f(K)=0, then M is a C-coretractable module .                                                                           

     Recall that an R-module M is said to be regular (or F-regular) if R/ann(x) is regular ring for all nonzero x M   

[10,P.29] .  

    Equivalently , an R-module M is said to be regular (F-regular) if every submodule of M is a pure submodule 

[10,Theorem (1.7), P.35] . 
Corollary(1.4):  Let M be an F-regular R-module , then if M is a P-coretractable module , then M is a C-coretractable 

module . 

Proof: It is clear since every F-regular is purely extending module  and hence by Proposition(1.3) the result holds .                                                     

Proposition(1.5): Let M be an F-regular R-module , then M is a coretractable if and only if M is a P-coretractable . 

Proof : ( ) It is clear .  

 ( ) Let N be a proper submodule of  M . Since M is F-regular module , so N is pure submodule . But M is P-

coretractable module , hence there exists f  EndR(M) , f  0 and f(N)= 0 , then M is coretractable module . 

     Recall that an R-module M is called a purely lifting if for every submodule N of M , there exists a pure submodule K 

of M such that K N and N/K is small in M/K [11]. An R-module M is called a V-module if for every factor module N of 

M , Rad(N)=0 [12] . 

Corollary(1.6): If M is a purely lifting V-module . Then M is a P-coretractable if and only if M is a coretractable 

module .  

Proof : Since M is V-module and M is purely lifting . Then M is an F-regular module [11,Proposition(2.2.4),P.40]. 

Hence we get the results by Proposition(1.5) .  

     Recall that  an R-module  M is called quasi-Dedekind if every proper nonzero submodule N of M is quasi-invertible 

where a submodule N of M is called quasi-invertible  if  HomR(M/N,M)=0 [13] . A nonzero ideal ( right ideal) I of a ring 

R is quasi-invertable ideal (right ideal) of R if I is quasi-invertable submodule of  R . Also M is a quasi-Dedekind R-

module if for any nonzero f  EndR(M) , f is monomorphism ; that is kerf= (0) [13,Theorem(1.5) , P.26] .                    

Proposition(1.7): Let M be a P-coretractable quasi-Dedekind R-module. Then M is a pure simple .  

Proof : Let N be a proper pure submodule of M .Then there exists f EndR(M), f≠0 and f(N)=0. As M is quasi-Dedekind 

module , hence f is monomorphism . Thus N=0 and hence M is pure simple module.                                    

      Recall that an R-module M is called purely Rickart if for all f EndR(M) , kerf is pure submodule of M  [14] . 
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Theorem(1.8): Let M be a purely Rickart R-module . Then M is coretractable module if and only if for all proper 

submodule K of M , there exists a pure submodule W of M such that  K W and M is P-coretractable. 

Proof : ( ) Clear that M is P-coretractable module because M is coretractable module . Now, let K be a proper 

submodule of M . Since M is coretractable module , then there exists a nonzero R-homomorphism  f:M M , f(K)=0 , so 

K kerf . But M is purely Rickart module , so kerf pure submodule of M . As f≠0 hence kerf≠M and hence kerf  is a 

proper pure submodule such that K W M (Where W=kerf) . 

 ( ) Let K be a proper submodule of M . By hypothesis there exists a pure submodule W of M such that  K W . Since 

M is P-coretractable , hence f EndR(M) such that f(W)=0 ,f ≠0 implies to f(K)=0 . Then M is coretractable module .                                                                        

     Recall that , let M be a right R-module and S = EndR(M). Then M is said to be dual-purely Rickart (shortly, dual 

purely Rickart) module if the image in M of any single element of S is pure in M . That is for each α ∈ S, Imα is pure 

submodule in M  [14] . 

Proposition(1.9): Let M be a mono-coretractable R-module . Then M is dual purely Rickart module , if M is purely 

Rickart module. 

Proof : Let f EndR(M) . Since M is mono-coretractable module , then there exists g EndR(M) such that Imf=kerg . As 

M is purely Rickart module , if kerg is pure submodule of M . Thus Imf is pure submodule of M and so M is dual purely 

Rickart module . 

     Recall that an R-module M is called finitely presented if any finite generated submodule of M is direct summand [6] . 

Proposition(1.10): Let M be a Noetherian finitely presented R-module. Then M is a P-coretractable module .  

Proof : Let N be a proper pure submodule of M . Since M is Noetherian module . Then N is finitely generated . As M is 

finitely presented , so N is direct summand submodule by [6,Lam.Exc.32,P.163]. Then N W=M for some a submodule 

W of M , so M/N W . Then M is P-coretractable . 

Proposition(1.11):Let M be a Noetherian projective R-module . Then M is a P-coretractable module. 

Proof  : Let N be a proper pure submodule of M . Since M is Noetherian module , N is finitely generated . Hence by 

[15], N is a direct summand , then M=N W for some a submodule W of M , then there exists an isomorphism 

f:M/N→W and let i:W→M be the inclusion map , therefore i◦f:M/N→M , i◦f≠0 . Thus M is P-coretractable module  .                    

     Now , we can present an example of P-coretractable but not coretractable . 

Example(1.12):  Consider M=Z Z as Z-module , M is Noetherian and projective and so M is P-coretractable by 

Proposition(1.11) , but M is not coretractable module . 

    The following result follows by Proposition(1.11) , Since R is projective 

Corollary(1.13): Let R be a Noetherian ring . Then R is a P-coretractable ring . The ring of integers Z is Noetherian , so 

It is a P-coretractable , but Z is not coretractable ring . Recall that a submodule N of an R-module M is called fully 

invariant if f(N) is contained in N for every R-endomorphism f of M [16] and a submodule N of an R-module M is called 

stable if for each f Hom(N,M) , f(N) N where an R-module M is called fully stable if every submodule of M is stable 

[17] .                  

Proposition(1.14):Let N be a direct summand submodule of a P-coretractable R-module M . If N is fully invariant 

submodule of M , then N is P-coretractable  . 

Proof : Since N is a direct summand submodule , so there exists a submodule W of M such that N W=M . Let K be a 

proper pure submodule of N , we have K W is apure submodule in N W=M ( Since K is pure in N  and W is pure in 

W ) . Since M is a P-coretractable  module, so there exists f EndR(M) , f≠0 , f(K W) =0 . suppose that g is the  

restriction map  of f from N into M , g≠0 . Also N is fully invariant direct summand . Then N is stable submodule . So 

g(N) N . Therefore g EndR(N), g≠0 . g(K)=fN(K)=0 .Thus N is P-coretractable  module . 

Corollary(1.15):  Let N be a direct summand submodule of a P-coretractable and duo R-module M , then N is P-

coretractable . where a module M is duo if every submodule is fully invariant  [12] . 

Proof : It is clear since every submodule if fully invariant in duo module .    

      Recall that an R-module M is called cogenerator if for every nonzero homomorphism f:M1→ M2 where M1 and M2 

are R-modules ,  g:M2→M  such that g◦f ≠ 0 [6, P.507] and [3, P.53] . 
Proposition(1.16): Let N be a direct summand of a P-coretractable  module M . If N is cogenerates M . Then N is P-

coretractable  module . 

Proof : Suppose N is cogenerates M , so there exists g HomR(M,N) , g≠0. Let K be a pure submodule  of N . Since N is 

direct summand of M, then N W=M for some a submodule W of M . So K W is pure in N W=M. Then there exists 

f EndR(M), f ≠0 , f(K W)=0 . Hence g◦f≠0 , Let h be a restriction map of g◦f on N , so h EndR(N) and 

h(K)=g(f(K))=0 . Therefore N is P-coretractable  module .                                                

     For an R-module M . Recall that a module M has the pure intersection property (briefly PIP )  if the intersection of 

any two pure submodules is again pure [9] .  

Theorem(1.17) : Let { Mα : α I } be a family of P-coretractable  R-module  if for any α , β  I , M α is Mβ–injective  

and M=  has PIP , then M is P-coretractable  . In particular , if M is quasi-injective P- coretractable  and satisfy 

PIP , then =  is P-coretractable for any index I , Mα =M for all α I . 
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Proof : Let K be a proper pure submodule of M , then there exists β  I such that Mβ K . Since K is pure in M and Mβ is 

pure in M and M satisfies PIP,  so K Mβ  Mβ , and it is a proper pure submodule in Mβ.Therefore there exists a 

nonzero homomorphism f: Mβ/ K  Mβ→Mβ and let g:Mβ/(K Mβ) →M/K ( Which is defined by g(x+(K  Mβ))=x+K for 

all x Mβ M) , then g is a monomorphism . As Mβ is Mα-injective for any I by hypothesis , Mβ is M/K–injective by 

[3, proposition16.13], so there exists h: M/K→Mβ such that h◦g=f . Hence 0≠i◦h  HomR(M/K,M) , where i: Mβ→M is 

the natural inclusion .                                                         

Theorem(1.18): Let M=  such that   be a P-coretractable  module α I . If every pure submodule in M is 

fully invariant , then M is P-coretractable module .  

Proof : Let N be a proper pure submodule of M . By hypothesis N is fully invariant , N=  . 

Put =  for all α I , since N  N , then  is pure submodule in N , but N is pure in M , then  pure in 

M . As ≤  , we get  is pure in  . Also since N is a proper submodule of M , there exists at least one I ,  

proper submodule of  . But  is P-coretractable , so there exists : Mα/ Nα → Mα and fα≠0 . As M/N  / 

Nα) . Define h:M/N→  by h(m+N)= ( + ) for any m= M . Then h≠0 and g=i◦h:M/N→M , g≠0 .  

 

3. MONO-P-CORETRACTABLE MODULES 

 
     In this section , we introduce the notion of mono-P-coretractable module and study some properties of this class 

module . 

Definition(2.1): An an R-module M is called mono-P-coretractable if for all a proper pure submodule of M , there 

exists f EndR(M) , f≠0 and N=kerf . Equivalently , A module M is mono-P-coretractable if for each proper pure 

submodule N of M , there exists a monomorphism f from M/N into M .  

    Recall that an R-module M is called co-epi-retractable if it contains a copy of any of its factor modules [18] . However, 

for more convenient , we call it mono-coretractable module. 

Examples and Remarks (2.2): 
(1) Every pure split module is a mono-P- coretractable . 

(2) Every mono-coretractable module is mono-P-coretractable .  

(3) Every pure simple module is mono-P-coretractable .  

(4) Every mono-P-coretractable module is P-coretractable .  

(5) Every semisimple module is mono-coretractable and hence it is mono-P-coretractable module by part(3) .  

(6)   Let M be an R-module . If M is a quasi-Dedekind mono-P-coretractable , then M is a pure simple  . 

Proof : Let N be a proper pure submodule of M . Since M is mono-P- coretractable, so there exists f EndR(M) , f≠0 , 

f(N)=0 and N=kerf , but M is quasi-Dedekind , hence kerf=0 . Thus N=0 and hence M is pure simple  module . 

     Let M be a right R-module and let S = EndR(M) . Recall that an R-module M is called a Rickart module if the right 

annihilator in M of any single element of S is generated by an idempotent of S . Equivalently ,  M is called Rickart 

module if for all f  S , kerf M [19].                                                                                                 

Proposition(2.3):  Let M be a Rickart R-module . Then M is a mono-P-coretractable if and only if M is a pure split .                                                         

Proof : ( ) Let N be a proper pure submodule of M . Since M is mono-P- coretractable , then there exists  f EndR(M) , 

f≠0 and N=kerf  , but M is a Rickart , hence kerf is a direct summand of M for each f EndR(M) and so N is direct 

summand of M . Thus M is pure split module . 

 ( )  It follows by Examples and Remarks(2.2 (1)) .                       
    Recall that an R-module M is called a strongly Rickart if and only if kerf = rM (f) is a fully  invariant direct summand 

in M for all f EndR(M) [20] .     
    We introduce the following definition : An R-module M is called P-fully stable if every pure submodule is stable . It is 

clear that every fully stable is P-fully stable but not conversely .  

Proposition(2.4):  Let M be a strongly Rickart R-module . Then M is a mono-P-coretractable if and only if a P-fully 

stable and pure split .                                                          

Proof : ( ) Let N be a proper pure submodule of M . Since M is mono-P- coretractable , then there exists  f EndR(M) , 

f≠0 and N=kerf  , but M is a strongly Rickart , hence kerf is a stable direct summand of M for each f EndR(M) and hence 

N is a stable direct summand of M . Thus M is P-fully stable pure split module . 

 ( )  It is clear .                                                                                  
      Recall that an R-module M is called mono-C-coretractable if for each proper closed submodule of M , 

there exists f EndR(M) , f≠0 and N=kerf [8] . 

Proposition(2.5):Let M be a purely extending . If M is a mono-P-coretractable module , then M is a mono-C-

coretractable .   

Proof : It is clear since if N is a proper closed submodule of M , then N is a pure . As M is a mono-P-coretractable , so 

there exists f EndR(M) , f≠0 , f(K)=0 and K=kerf and hence M is a mono-C-coretractable  .                        
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Proposition(2.6):Let M be a mono-P-coretractable and P-fully stable module . Then every nonzero pure submodule of 

M is also mono-P-coretractable .  

Proof : Suppose that  N is a nonzero pure submodule of M . Let K be a proper pure submodule of N , so K is pure 

submodule of M . But M is mono-P-coretractable module . Then there exists  f EndR(M) , f≠0 , f(K)=0 and K=kerf , so if 

f(N)=0 , then N kerf =K so N=K which is a contradiction . Thus f(N) ≠0 . Let g be a restriction map from  N into M . 

Since M is P-fully stable , so g(N) N . Hence g EndR(N) and g≠0 since g(N)=f(N)≠0 . Hence g(K)=f(K)=0 . Thus 

K kerg kerf =K . Then K= kerg .   

 

4. STRONGLY-P-CORETRACTABLE MODULES 

     In this section, we define a new concept concerned directly with pure  submodule called strongly P-coretractable 

module as one of generalization the concept strongly coretractable module see [17], also we introduce some properties 

and related with this concept .    

Definition(3.1): An R-module is called strongly P-coretractable module if for each proper pure submodule K of M , 

there exists a nonzero homomorphism f Hom(M/K,M) and f(M/K)+K=M . Equivalently , M is strongly P-coretractable  

R-module if for each proper pure submodule K of M , there exists g EndR(M) , g(M/K)+K=M, g 0 and g(K)=0 . A ring 

R is called strongly P-coretractable  if R is strongly P-coretractable  R-module . 

Examples and Remarks(3.2):  

(1) Every strongly coretractable is a strongly P-coretractable module but the converse is not true in general , for 

example the Z-module Z4 is strongly P-coretractable , but it is not strongly coretractable , where an R-module M is 

called strongly coretractable module if for each proper submodule N of M , there exists a nonzero R-

homomorphism f:M/N→M such that Imf+N=M [2],[8] . 

(2) Every semisimple module is a strongly coretractable and hence strongly P-coretractable . 

(3) Every pure simple R-module is a strongly P-coretractable module .  

(4) Every pure split module is a strongly P-coretractable module .  

(5) Every strongly P-coretractable module is a P-coretractable . 

Proposition(3.3): Let M M' , where M is a strongly P-coretractable R-module . Then M' is a strongly P-coretractable 

R-module. 

Proof : Since M M' , so there exists  f:M M' be R-isomorphism . Let W be a proper pure submodule of M' . Then 

N=f
-1

(W) is proper pure submodule of M . Since M is strongly P-coretractable module, so there exists a nonzero R-

homomorphism h:M/N  M such that h(M/N)+N=M .  

     Define g:M'/W M' , g(f(m)+f(N))= f(m1)  where h(m+N)=m1 M . To prove g is well-defined , suppose that 

f(m)+f(N)=f(x)+f(N) where m,x M. Then f(m)–f(x) f(N) , so f(m-x) f(N) and so m-x  N . Then m +N = x+N . 

Therefore h(m+N)= m1= m2= h(x+N) (Since h is well-defined ) which implies g(f(m)+f(N))= f(m1)=f(m2) = g(f(x)+f(N)) 

( Since f is well-defined )  . Therefore  g is well-defined , also g is an R-homomorphism . 

    To prove  g(M'/W) +W = M' = f(M) . Let m'  M' , then m'=f(m) for some m M . But m=h(m1+N)+n1 for some 

m1 M and n1 N . Let h(m1+N)=m2 , so m=m2+n1 . But g(f(m)+f(N))+f(n1)= f(m2)+f(n1)= f(m2+n1) = f(m) =m' . 

Therefore  M' =Img+W, we get M' is a strongly P-coretractable R-module .                                                                      

Proposition(3.4): Let M be a strongly P-coretractable R-module and N be a proper pure submodule of M ,then M/N is a 

strongly P-coretractable module . 

Proof : Let W/N be a proper pure submodule of M/N . Since N is pure submodule of M , so W is pure submodule of M . 

But M is strongly P-coretractable module Then there exists a nonzero R-homomorphism g:M/W M such that  

Img+W=M . But (M/N)/(W/N) M/W . Set f= ᵒg   where  is the natural epimorphism from M into M/W . Then  f( ) + 

  = (g( )) +   = +   =    =    =     , and f ≠0 ( because if f is a zero mapping , then M/N=W/N 

which is a contradiction ) , we can get M/N is also strongly P-coretractable .           

Corollary(3.5): Let M be an R-module . If M is a strongly P-coretractable module. Then any direct summand 

submodule of M is a strongly P-coretractable module . 

Proof : Since N is direct summand submodule of M , so there exists W is pure submodule of M such that N W=M . 

Thus M/W is strongly P-coretractable module by Proposition(3.4) . But M/W N so that N is also strongly P-

coretractable module by Proposition(3.3)                 

Proposition(3.6): Let M=M1 M2 , where M is duo module (or distributive or annM1+annM2 = R) . Then M is a 

strongly P-coretractable module if and only if M1 and M2 are strongly P-coretractable modules . 

Proof : ( ) It follows directly by Corollary(3.5) . 

( ) Let N be a proper pure submodule of M . Since M is duo (or distributive or annM1+annM2 = R)  , then N=(N M1) 

(N M2) . Thus N=N1 N2 for some N1 ≤ M1 and N2 ≤ M2 . Thus each of N1 and N2 are pure submodules in M2 and M2 
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respectively . Thus  By the same argument proof of Theorem(2.7) in [2] , we can get M is a strongly P-coretractable 

module .                                   
     Compare the following Propositions with Proposition(1.3) , Proposition(1.5) and Proposition(1.8) respectively . 

Proposition(3.7):  Let M be a purely extending R-module , if M is strongly P-coretractable module , then M is strongly 

C-coretractable . 

Proposition(3.8): Let M be an F-regular R-module , then M is strongly coretractable module if and only if M is 

strongly P-coretractable module . 

Proposition(3.9):  Let M be a purely Rickart R-module . Then M is strongly coretractable module if and only if for all 

proper submodule K of M , there exists a pure submodule W of M such that  K W and M is strongly P-coretractable .   

Proposition(3.10): Let M be a Noetherian finitely presented R-module. Then M is a strongly P-coretractable module .  

Proof : Let N be a proper pure submodule of M . Since M is Noetherian module . Then N is finitely generated . As M is 

finitely presented , so N is direct summand submodule by [6,Lam.Exc.32,P.163]. Then N W=M for some a submodule 

W of M , so M/N W . Consider (i◦f)(M/N)+N= W N=M . Then M is strongly P-coretractable module .                                          

     By a similar proof Corollary(1.6) , Proposition(1.14) and Theorem(1.18) , we can get the following result .  

Corollary(3.11):If M is a purely lifting V-module. Then M is a strongly P-coretractable if and only if M is a strongly 

coretractable module .  

Proposition(3.12): Let M be a Noetherian projective R-module . Then M is a strongly P-coretractable module . 

Theorem(3.13): Let { Mα : α I } be a family of strongly P-coretractable  R-module  if for any α ,β  I, M α is Mβ–

injective  and M=  has PIP , then M is a strongly P-coretractable  . In particular , if M is quasi-injective P-

coretractable  and satisfy PIP , then M is P-coretractable for any index I . 

Proposition(3.14): Let M be a quasi-Dedekind R-module , then the following statements are equivalent : 

(1) M is a strongly P-coretractable ; 

(2) M is a P-coretractable ; 

(3) M is a pure simple  ; 

(4) M is a mono-P-coretractable . 

Proof : (1) (2) It is clear by Examples and Remarks(3.2(5)) . 

 (2) (3) It follows by Proposition(1.7) since M is a quasi-Dedekind module. 

 (3) (4) It follows by Examples and Remarks(2.2 (3)) . 

(4) (1) Let M be a mono-P-coretractable . It is clear that M is P-coretractable. As M is quasi-Dedekind , so again M is a 

pure simple  by Proposition(1.7) and hence M is strongly P-coretractable by Examples and Remarks(3.2(3)) . 
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