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ABSTRACT An IT system generates messages for other systems or users to consume, through direct

interaction or as system logs. Automatically identifying the types of these machine-generated messages

has many applications, such as intrusion detection and system behavior discovery. Among various heuristic

methods for automatically identifying message types, the clustering methods based on keyword extraction

have been quite effective. However, these methods still suffer from keyword misidentification problems,

i.e., some keyword occurrences are wrongly identified as payload and some strings in the payload are

wrongly identified as keyword occurrences, leading to the misidentification of the message types. In this

paper, we propose a newmachine language processing (MLP) approach, calledP-gram, specifically designed

for identifying keywords in, and subsequently clustering, machine-generated messages. First, we introduce

a novel concept and technique, positional n-gram, for message keywords extraction. By associating the

position as meta-data with each n-gram, we can more accurately discern which n-grams are keywords of

a message and which n-grams are parts of the payload information. Then, the positional keywords are used

as features to cluster the messages, and an entropy-based positional weighting method is devised to measure

the importance or weight of the positional keywords to each message. Finally, a general centroid clustering

method, K-Medoids, is used to leverage the importance of the keywords and cluster messages into groups

reflecting their types. We evaluate our method on a range of machine-generated (text and binary) messages

from the real-world systems and show that our method achieves higher accuracy than the current state-of-

the-art tools.

INDEX TERMS Machine-generated messages, positional n-gram, clustering.

I. INTRODUCTION
Machine-generated messages are automatically generated by

a computer process, application, or other mechanism without

the active intervention of a human. For example, IT sys-

tems generate highly structured messages and store them

in log files. These log files are based on scripts and are

crucial for system security audits. IT systems also generate

and exchange formatted messages with each other according

to certain communication protocols. These messages follow

some defined formats, i.e., specific sequences of fixed key-

words interleaved with dynamic data fields (the ‘‘payload’’).

One application system or communication protocol often

The associate editor coordinating the review of this manuscript and
approving it for publication was Waldemar W. Koczkodaj.

involves multiple types of messages. The problem of clus-

tering those machine-generated messages is to segregate the

messages into structurally similar message clusters, which

correspond to message types with different formats. In data

analytics applications, such as log analysis, network commu-

nications analysis and system response emulation, the under-

lying formats of messages are often not available a priori.

Separating messages according to their types is a critical step

to any further analysis.

Keyword extraction methods using Frequent Pattern

Mining (FPM) [6], [8] and Natural Language Process-

ing (NLP) [23], [25] have been developed to cluster

machine-generated messages. Examples found in recent liter-

ature includeDiscoverer [8], ReverX [2], AutoReEngine[15],

ProDecoder [22], [27], and the HsMM-based method
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proposed by Cai et al. [7]. These methods have been proven

very useful, but still have major limitations in keyword iden-

tification and thus message clustering: (1) some keywords

appear multiple times in messages, but they are considered

only once by existing methods; (2) some payload fields that

contain the same string as a certain message keyword are

wrongly treated as keyword occurrences; (3) some keywords

are missed due to their being part of other longer keywords.

These issues are particularly pronounced in binary messages

where critical keywords can be very short. For example,

the message type keywords in the Lightweight Directory

Access Protocol (LDAP) have only one Byte [18].

In this paper, we propose a new Machine Language

Processing (MLP) approach, called P-gram, specifically

designed for the clustering of machine-generated messages.

P-gram leverages the positions of keywords in the template

structure of machine-generated messages to extract message

keywords more accurately. It is based on the observation

that message keywords appear at relatively fixed positions in

machine-generated messages.

The proposed P-gram consists of four main steps. Given

a set of machine-generated messages, in Step 1, we intro-

duce our new concept, positional n-gram, and identify

frequent positional n-grams with different n lengths in mes-

sages. In Step 2, we extract the longest common positional

n-grams and the shorter but significant positional n-grams as

position-specific keywords (or positional keywords) from the

frequent positional n-grams of the previous step. To reduce

the impact of variable-length payloads on keyword position,

in Step 3, we analyze the variation of the positions of each

keyword, calculate the position window(s) for each keyword,

and merge the positional keywords within their windows. In

Step 4, we use the merged keywords as features for message

clustering. To numerically weigh each feature in messages,

we exploit the position information of keywords and derive

a ‘‘positional weighting’’ for each feature using a variability

weighting technique, namely, entropy analysis. The features’

positional weightings are then used by a general centroid

clustering method, K-Medoids, to group the messages into

clusters reflecting message types.

P-gram effectively addresses the aforementioned keyword

mis-identification issues faced by existing methods. First,

P-gram can identify the repetitive occurrences of keywords

in messages by analyzing the probability density of keywords

at different positions (or position windows). Second, it can

effectively filter out from the candidate keywords noise that

is part of message payload. Third, by using the proposed

independent frequency, P-gram can effectively distinguish

short keywords from those longer ones that contain the short

keywords as sub-strings, whereas existing methods cannot

because they solely rely on the generic frequency of strings.

In summary, we make the following major contributions:

• By introducing P-gram we effectively address the

keyword mis-identification issues commonly afflicting

existing methods in the clustering of machine-generated

messages.

FIGURE 1. An example of a machine-generated message.

• Theorems are provided to prove the effectiveness of the

proposed P-gram in message keywords extraction.

• P-gram is based on the statistical characterization of

machine-generated messages, and it assumes no knowl-

edge of the underlying IT system. Accordingly, it can be

applied to both text- and binary-based messages.

To evaluate the effectiveness of the proposed approach,

we compare P-gram with existing state-of-the-art message

clustering methods, including ProDecoder [22],

AuoReEngine [15], Modified Needleman-Wunsch [9], and

a baseline algorithm (an NLP-style ‘‘vanilla’’ n-gram

approach). Eight message data sets generated from real-world

systems and protocols are used for our evaluation, including

both textual and binary messages. The experimental results

show that P-gram achieves more accurate clustering than any

of the other methods.

The rest of the paper is organized as follows: Section II

introduces the structural features of machine-generated mes-

sages and our goals. We provide the technical details of

P-gram in Section III and present the implementation details

and experimental results of P-gram in Section IV. Related

work is discussed in Section V. Finally, Section VI presents

some concluding remarks and proposes future work.

II. MACHINE-GENERATED MESSAGES AND OUR GOAL

Machine-generated messages follow a template structure

and are constructed according to message templates/formats.

Given a set of messages, there may be of different types,

where each message type follows a particular format. A mes-

sage consists of fixed fields (keywords, that are repeated in

messages of the same type) and variable fields (containing

payload data), as shown in Figure 1. In the context of this

paper, the concept of a keyword is similar to but broader than

its usual meaning in machine languages. That is, a keyword

is a maximum consecutive sequence of bytes or characters

that is reserved by and has a special meaning in a machine

language, which is either compulsory (occurs in all messages

of a given type) or optional (occurs in only some messages of

a given type). In general, the type of a message is determined

by the keywords it contains.

Figure 2 gives an example list of messages from interacting

with a system. It follows a fictional directory service protocol

similar to the widely used Lightweight Directory Access Pro-

tocol (LDAP), but is simplified to make our running example

easier to follow.

Each message shows a number of fields. Manually,

we can identify the keywords, such as ‘‘id:’’, ‘‘, op:B’’,
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FIGURE 2. An example list of 6 messages following the fictional
Lightweight Directory Access Protocol (LDAP). There are two types of
messages covered in this example: op:B and op:S. The op:S messages
present 5 keywords: ‘‘id’’, ‘‘cn’’, ‘‘ou’’, ‘‘ou’’ and ‘‘c’’. Note that, (i) ‘‘ou’’ is a
repetitive keyword with 2 occurrences; (ii) the keyword ‘‘c’’ is a sub-string
of the keyword ‘‘cn’’; (iii) the payload Haycne in message 4 has the same
sub-string of the keyword ‘‘cn’’.

‘‘, op:S,cn:’’, ‘‘, ou=’’, and ‘‘, c=’’. Note that there

are two types of messages, which are determined by the

keywords ‘‘, op:B’’ and ‘‘, op:S,cn:’’.

Our goal is to design a method that, given a set

of machine-generated messages, separates messages into

type-specific clusters as determined by their keywords.

Previous clustering methods often suffer from keyword

mis-identification issues. Taking the messages in Figure 2

as an example, ‘‘ou’’ can be identified as a keyword in

existing methods, as it has a high frequency of occurrence.

However, it will only be considered as having appeared in

a message, ignoring its multiple occurrences in a message.

Another example would be ‘‘cn’’, which can be identified as

a keyword by existing methods. However, the short keyword

‘‘c’’ will be ignored, because ‘‘c’’ is a sub-string of ‘‘cn’’ and

it will be merged into ‘‘cn’’ by existing methods. In addition,

the ‘‘cn’’ from payload ‘‘Haycne’’ is often wrongly treated

as a keyword in the message by existing methods. In this

paper, we seek to address these issues with a new keyword

identification method and achieve better clustering accuracy

for machine-generated messages.

III. P-GRAM CLUSTERING

In this section, we introduce our clustering method, P-gram,

for machine-generated messages. It considers the positions

of various words in messages in determining whether or not

they are keywords, achieving greater accuracy in identify-

ing keywords and message clusters. As shown in Figure 3,

P-gram has four major steps: in Step 1, we identify frequent

position-specific words (or positional n-grams) in the mes-

sages; in Step 2, we extract the position-specific keywords

(or positional keywords) from the message words of Step 1; in

Step 3, we further refine the keywords by taking into account

their positional variations; finally in Step 4, the messages

are clustered based on the identified features—positional

keywords. We present these steps in turn in the following

subsections.

A. POSITIONAL N-GRAM GENERATION (STEP 1)

In this step (see Algorithm 1), we introduce a new concept

and technique, positional n-gram. A traditional n-gram is a

subsequence of n elements contained in a given sequence of

at least n elements. Hence, n denotes the number of consec-

utive elements that are joined together. For example, the first

message ‘‘id:1,op:B’’ in Figure 2 contains the follow-

ing 4-grams (with the element being a character): ‘‘id:1’’,

‘‘d:1,’’, ‘‘:1,o’’, ‘‘1,op’’, ‘‘, op:’’, and ‘‘op:B’’.

In contrast to traditional n-grams, we particularly focus on

the position of each n-gram relative to the beginning of the

message. Formally, we define a positional n-gram as follows.

Definition 1 (Positional n-gram): Given a set M of mes-

sages, we use (xm0 xm1 · · · x
m
lm−1

) to denote the m-th mes-

sage, where xmi is the i-th character in message m and lm is

the length of message m. We use tmi,n = xmi x
m
i+1 · · · x

m
i+n−1

to denote a positional n-gram of length n at position i in

message m.

Based the above definition, we see in Figure 2 that the

positional 3-gram ‘‘id:0,3’’ appears at position 0 in all mes-

sages, and the positional 5-gram ‘‘, op:B4,5’’ appears at

position 4. Similarly, other keywords appear at/around fixed

positions.

To identify frequent positional n-grams, we use the follow-

ing definition to count the number of messages that contain a

given positional n-gram.

Definition 2 (Frequency): Given a set M of messages, for

an arbitrary positional n-gram ti,n, we define

f (ti,n) =
∣

∣{tmi,n|ti,n = tmi,n, 1 ≤ m ≤ |M |}
∣

∣ , (1)

as the frequency of the positional n-gram ti,n, where |M | is

the cardinality of setM .

Suppose that ρ is the frequency threshold for selecting

candidate keywords. The following set G gives all frequent

positional n-grams:

G =
{

ti,n|
∣

∣f (ti,n)
∣

∣ ≥ ρ|M |
}

. (2)

Algorithm 1 presents the details of positional n-gram

generation for a given set M of messages. We (1) initial-

ize an empty set G = ∅ and a minimum length n = 1

of positional n-grams; (2) break every message down into

consecutive positional n-grams and save them in a tempo-

rary set Gn; and (3) count the frequency for each posi-

tional n-gram in Gn. For an arbitrary positional n-gram ti,n(∈

Gn), if its frequency f (ti,n) ≥ ρ|M |, we add ti,n into G.

Then, we increase n by 1 and get back to step (2) until

there is no positional n-gram with frequency greater than

ρ|M | identified. Set G returns all the frequent positional

n-grams.

An illustration of Algorithm 1 is given in Figure 3. Here,

the 6 messages in Figure 2 are used as an example service

trace, and we set the threshold ρ = 1/3. After apply-

ing Algorithm 1 (Positional n-gram Generation), we obtain

a set of frequent positional n-grams. For example, the 3-

grams, such as ‘‘id:0,3’’, ‘‘, op4,3’’ and ‘‘cn:10,3’’, are

extracted as frequent positional n-grams as their frequencies

are greater than or equal to 2 (i.e., 6 × 1/3 = 2); but

some 3-grams, such as ‘‘d:11,3’’ and ‘‘d:21,3’’, are not

extracted as frequent positional n-grams as their frequen-

cies are less than 2. Similarly, the 4-grams ‘‘, ou=16,4’’
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FIGURE 3. Architecture of the proposed P-gram. The messages in Figure 2 are used as an example service trace, and the results of the four main steps of
P-gram working on the example trace are illustrated in each block of this figure.

Algorithm 1 Positional n-gram Generation

1: Inputs: A message set {(xm0 x
m
1 · · · x

m
lm−1

)|1 ≤ m ≤ |M |}

and a threshold ρ.

2: Output: A set G of frequent positional n-grams and their

frequencies {f (ti,n)|ti,n ∈ G}.

3: Initialize: G = ∅, and theminimum n-gram length n = 1.

4: repeat

5: Initialize an empty set Gn = ∅ to store positional n-

grams of length n.

6: for (m ∈ {1, · · · , |M |}) do

7: Split message m into positional n-grams Pm :=

{tmi,n}.

8: for (tmi,n ∈ Pm) do

9: if (ti,n /∈ Gn) then

10: Gn = Gn ∪ {ti,n}.

11: f (ti,n) = 1.

12: else

13: f (ti,n) = f (ti,n)+ 1

14: end if

15: end for

16: end for

17: G = G ∪ {ti,n|f (ti,n) ≥ ρ|M |, ti,n ∈ Gn}.

18: fmax = max{f (ti,n)|ti,n ∈ Gn}.

19: n = n+ 1.

20: until (fmax < ρ|M |)

with frequency 2, ‘‘, ou=19,4’’ with frequency 2, and ‘‘,

ou=28,4’’ with frequency 4, are also extracted as frequent

positional n-grams. In contrast, the 2-gram ‘‘cn16,2’’ embed-

ded in payload Haycne in message 4 will not be extracted

as an keyword, as its frequency is less than 2. In particular,

the longest frequent positional n-gram extracted from the

example trace is the positional 9-gram ‘‘, op:S,cn:4,9’’.

In the next step, we will identify positional keywords from

the frequent positional n-grams extracted in Algorithm 1.

B. POSITIONAL KEYWORD IDENTIFICATION (STEP 2)

In this step (seeAlgorithm2), we extract the longest common

positional n-grams and significant short positional n-grams

Algorithm 2 Candidate Positional Keywords Identification

1: Inputs: Threshold ρ, a set G of frequent positional n-

grams, and their frequencies {f (ti,n)|ti,n ∈ G}.

2: Output: A set S of candidate positional keywords and

their independent frequencies {f ′(ti,n)|ti,n ∈ S}.

3: for (ti,n ∈ G) do

4: f ′(ti,n) = f (ti,n).

5: for (ti′,n′ ∈ G) do

6: if (ti′,n′ ⊐ ti,n) then

7: f ′(ti,n) = f ′(ti,n)− f (ti′,n′ ).

8: end if

9: end for

10: end for

11: S = {ti,n|f
′(ti,n) ≥ ρ|M |, ti,n ∈ G}.

based on the set G of frequent positional n-grams identified

in Step 1.

Note that, all the positional sub-strings of a selected fre-

quent positional n-gram in set G are also included in set G,

because all these sub-strings have at least the same frequency

as the enclosing positional n-gram. For example, the posi-

tional 2-gram ‘‘cn10,2’’ and its positional sub-string ‘‘c10,1’’

both have a high frequency, 4(> 2), in Figure 2. Since

‘‘c10,1’’ and ‘‘cn10,2’’ have the same starting position, then

we can calculate the frequency of the independent ‘‘c10,1’’

by subtracting from its own frequency the frequency of the

longer positional n-grams which contain the shorter ‘‘c10,1’’.

Then, we get the frequency of the independent ‘‘c10,1’’ being

0. Hence, ‘‘c10,1’’ will not be a potential/candidate keyword.

By using this strategy, therefore, we can extract the longest

frequent positional n-grams at specific positions. Moreover,

we can also keep those short positional n-grams whose inde-

pendent frequency is above a given threshold. Theorems are

provided below to formalize these assertions.

In the following, we present our strategy more formally.

We first give the definitions of a super positional n-gram for

a given positional n-gram.

Definition 3 (Super-gram): For an arbitrary positional

n-gram ti,n = xixi+1 · · · xi+n−1, any positional sub-string
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ti′,n′ = xi′xi′+1 · · · xi′+n′−1 (if exists) of ti,n, where i ≤ i′ and

i′+n′ ≤ i+n, then ti,n is called a super-gram of ti′,n′ (denoted

as ti,n ⊒ ti′,n′ ), and ti′,n′ is called a sub-gram of ti,n (denoted

as ti′,n′ ⊑ ti,n).

Based on the above definitions, we can obtain the following

theorem.

Theorem 1: For an arbitrary positional n-gram ti,n ∈ G,

if there exists a sub-gram ti′,n′ ⊏ ti,n (i.e., ti′,n′ ⊑ ti,n but

ti′,n′ 6= ti,n), then

f (ti′,n′ ) ≥ f (ti,n), and, ti′,n′ ∈ G. (3)

Theorem 1 is easy to obtain, so we do not provide the proof

here. Therefore, for an arbitrary positional n-gram ti,n ∈ G,

any sub-gram ti′,n′ (if exists) is a frequent positional n
′-gram

in G.

We then give the definition of the independent frequency

for an arbitrary positional n-gram in set G.

Definition 4 (Independent Frequency): For an arbitrary

positional n-gram ti,n ∈ G, we define

f ′(ti,n) = f (ti,n)−
∑

{ti′,n′∈G|ti′,n′⊐ti,n}

f (ti′,n′ ), (4)

as the independent frequency of ti,n.

The following theorem gives our fundamental strategy for

candidate positional keywords identification.

Theorem 2: Given a positional n-gram ti,n ∈ S, where S is

defined as follows,

S =
{

ti,n ∈ G|f
′(ti,n) ≥ ρ|M |

}

, (5)

we have,

• if f ′(ti,n) = f (ti,n), ∄ a super-gram of ti,n in set G;

• if f ′(ti,n) < f (ti,n), ∃ a super-gram ti′,n′ ⊐ ti,n, such that

ti′,n′ ∈ S.

Proof: Since ti,n ∈ S, we have ti,n ∈ G and f ′(ti,n) ≥

ρ|M |. Based on the definition of f ′(·), we have f ′(ti,n) ≤

f (ti,n). If f
′(ti,n) = f (ti,n), from Eq. (4), we know that there is

no super-gram of ti,n in set G. This proves the first result of

the theorem.

If f ′(ti,n) < f (ti,n), based on Eq. (4), there exist super-

gram(s) ti′,n′ of ti,n. We use T = {ti′,n′ |ti′,n′ ⊐ ti,n, ti′,n′ ∈ G}

to denote the set of all super-grams of ti,n, and use tĩ,ñ =

argmax ti′,n′∈T
{|ti′,n′ |} to denote the longest sup-gram in set

T . Note that, f ′(tĩ,ñ) = f (tĩ,ñ). Therefore, we have tĩ,ñ ∈ S.

This proves the second result of the theorem.

Therefore, for an arbitrary positional n-gram ti,n ∈ G,

if f (ti,n) = f ′(ti,n), then ti,n itself is the longest positional

n-gram for all of its sub-grams in G. Hence, ti,n is a potential

keyword. If f ′(ti,n) < f (ti,n), then there exist other longer

positional n-gram(s) in G. Note that, if f ′(ti,n) ≥ ρ|M |,

the independent ti,n itself is also a potential keyword. There-

fore, S returns a set of potential keywords, which can be

either longest positional n-grams or short frequent indepen-

dent positional n-grams.

Algorithm 2 presents the details of identifying candidate

positional keywords based on Theorem 2. We initialize an

empty set S = ∅. For each positional n-gram ti,n ∈ G,

we first initialize its independent frequency f ′(ti,n) as the

generic frequency f (ti,n) of ti,n. Then, we subtract f
′(ti,n) the

frequencies f (ti′,n′ ) of the super-grams ti′,n′ (⊐ ti,n). Finally,

for an arbitrary positional n-gram ti,n ∈ G, if its independent

frequency f ′(ti,n) is greater than ρ|M |, we add it into set S.

Set S returns all the candidate positional keywords.

As illustrated in the Candidate Keywords Identification

step in Figure 3, there are 8 positional keywords extracted

from the frequent positional n-grams in Step 1. In particular,

the positional 5-gram ‘‘, op:B4,5’’ contains sub-strings:

positional 3-grams ‘‘, op4,3’’, ‘‘op:5,3’’ and ‘‘p:B6,3’’,

and the positional 4-grams ‘‘, op:4,4’’ and ‘‘op:B5,4’’.

Hence, ‘‘, op:B4,5’’ is kept as a positional keyword,

while all the sub-strings are removed. Similarly, the posi-

tional 9-gram ‘‘, op:S,cn:4,9’’ is kept as a positional

keyword, while all of its sub-string (e.g., ‘‘, op:S4,5’’

and ‘‘op:S,5,5’’) are removed. The positional 4-grams ‘‘,

ou=16,4’’, ‘‘, ou=19,4’’ and ‘‘, ou=28,4’’ are kept as

positional keywords as they are the super-grams of them-

selves. Note that, ‘‘, ou=’’ is a repetitive keyword. More

specifically, ‘‘, ou=16,4’’ and ‘‘, ou=19,4’’ correspond to

the first ‘‘, ou=’’ keyword, and ‘‘, ou=28,4’’ corresponds

to the second ‘‘, ou=’’ keyword. In the next step, we intro-

duce an approach to merge these positional keywords through

analyzing their position variations.

C. MERGING POSITIONAL KEYWORDS THROUGH

VARIATION ANALYSIS (STEP 3)

Note that, due to the variable length of payloads, the exact

position of message keywords may vary in a certain ‘‘win-

dow’’ (range). Therefore, we should consider all the occur-

rences of a keyword at different positions of a window as one

positional keyword that has the aggregate frequency at these

different positions. For keywords with multiple occurrences

in a message, their positions may vary in multiple windows.

In this step, we analyze the variation of the positions of each

keyword in set S, and merge the positional keywords within

their windows, to reduce the effect of payloads with variable

lengths.

Figure 4 gives an example of the position distribution of a

word in messages. As we can see, the word shows high den-

sity in the intervals [0, 10) and [40, 50], but low density in the

intervals [10, 20), [20, 30) and [30, 40). Intuitively, a high-

density window (interval) is more likely to contain a keyword,

while the low-density window may contain noise (false key-

words) from payloads. To identify those high-density win-

dows, we adopt the Parzen-Window Density Estimation [3]

to estimate the window size of keywords.

For an arbitrary candidate keyword t ∈ S (without posi-

tion), we use X = {x
∣

∣tx,n = t, tx,n ∈ S } to denote the set of

all the possible positions of t . Given a window size δt , we can

split X into ⌈ xmax−xmin
δt
⌉ windows, where xmax and xmin are the

maximum and minimum positions in X . For each window,

say [x, x + δt ), we can calculate the probability density of t
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FIGURE 4. Example of the position distribution of a word in messages.

in the window as follows,

p(t, x) = f ′x (t)/(δt · Vt ), (6)

where Vt is the volume of all of t’s possible positions in

X , and f ′x (t) is the total independent frequency of t’s posi-

tional n-grams in the window [x, x + δt ), i.e., f
′
x (t) =

∑

i∈[x,x+δt )
f ′(ti,n). Thus, to analyze the position variation of

t is to find its optimal probability density function. In other

words, we need to find out the optimal window size δt . As

suggested by [3], we set the window size as

δt = 1.06 · σt · V
−1/5
t , (7)

where σt is the standard deviation of t’s positions. Note that

the smaller the standard deviation, the smaller the size of the

window.

To filter out noise positions of t in X , we set a probability

density threshold ǫ(t) for t . Particularly, we set ǫ(t) as half

of t’s average probability density over all windows:

ǫ(t) =
1

2N (t)
·
f ′(t)

δt · Vt
, (8)

where N (t) is the number of t’s position windows, and f ′(t)

is the total independent frequency of t’s positional n-grams

with positions in X . Then, for each window, say [x, x + δt ),

if p(t, x) ≥ ǫ(t), we use the first positional keyword txmin,n
in the window to represent all possible variations of t in the

window, and aggregate the independent frequencies in the

window to txmin,n as follows:

f ′(txmin,n) =
∑

i∈[x,x+δt )

f ′(ti,n), (9)

and put txmin,n into a new set K (to store merged positional

keywords); if p(t, x) < ǫ(t), we skip to the next window.

Hence, we can

Algorithm 3 presents the details of merging positional

keywords based on the above position variation analysis. We

initialize an empty set K = ∅, and sort candidate positional

keywords in S alphabetically, so that ∀ t ∈ S, we can easily

retrieve all the positions of t . Then, we calculate window

size δt and the probability density threshold ǫ(t) for t . Then,

we examine each window and get the probability density p of

t in the window. If p ≥ ǫ(t), we put the candidate positional

keyword of t with the lowest position in the window into

Algorithm 3Merge Positional Keywords via Variation Anal-

ysis

1: Inputs: A set S of candidate positional keywords and their

independent frequencies {f ′(ti,n)|ti,n ∈ S}.

2: Output: A set K of merged positional keywords and their

windows 1 = {δt }.

3: Initialize: K = ∅, 1 = ∅, and sort S alphabetically.

4: repeat

5: t = S(0).keyword , retrieve t’s all positions: X =

{x
∣

∣tx,n = t, tx,n ∈ S }.

6: Calculate window size δt using Eq. (7).

7: Calculate the probability density threshold ǫ(t) using

Eq. (8).

8: Sort X in ascending order, j = X (0).

9: while (j < |X |) do

10: for (k = (j+ 1)..(|X | − 1)) do

11: if (X (k)− X (j) > δt ) then

12: Get p(t, j) in window [X (j),X (k)) using

Eq. (6).

13: if (p(t, j) ≥ ǫ(t)) then

14: K = K ∪ {tX (j),n}, 1 = 1 ∪ {X (k −

1)− X (j)}.

15: f ′(tX (j),n) =
∑

i∈[X (j),X (k))

f ′(ti,n).

16: end if

17: break;

18: end if

19: end for

20: j = k .

21: end while

22: S = S\{tx,n|x ∈ X}.

23: until (S = ∅)

set K , record its window size, and update its independent

frequency to the aggregated independent frequency of all t’s

positional keywords in the window; otherwise, we skip to the

next window of t . Set K returns all positional keywords.

As illustrated in the Variability Analysis step in Figure 3,

the positional 4-grams ‘‘, ou=16,4’’ and ‘‘, ou=19,4’’ are

merged to one keyword ‘‘, ou=16,4’’ with independent fre-

quency 4, and the positional 4-gram ‘‘, ou=28,4’’ is kept

as an individual keyword. Now, we will explain the detailed

computation in merging the first two positional 4-grams.

First, it is easy to get the volume V = 12 (i.e., 28 − 16)

of ‘‘, ou=’’, and the standard deviation of its positions:

σ = 6.245. Then, we can use Eq. (7) to calculate the window

size δ = 4.0, and subsequently get 6 windows for ‘‘, ou=’’:

[16, 20), [20, 24), [24, 28), [28, 32), [32, 36) and [36, 38].

By using Eq. (6), we obtain the probability densities for ‘‘,

ou=’’ in these windows as: 0.0828, 0, 0, 0, 0, and 0.0828.

Meanwhile, we obtain the density threshold ǫ = 0.0138 using

Eq. (8). Hence, we obtain two effective windows [16, 20)

and [36, 38] for ‘‘, ou=’’. Finally, we use ‘‘, ou=16,4’’

to represent the ‘‘, ou=’’ keyword in window [16, 20)

and ‘‘, ou=28,4’’ to represent the ‘‘, ou=’’ keyword in
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window [36, 38]. Similarly, the positional 3-grams ‘‘,

c=36,3’’ and ‘‘, c=40,3’’ are merged to one keyword ‘‘,

c=36,3’’ with the independent frequency updated to 4.

D. MESSAGE CLUSTERING (STEP 4)

In this step, we use the positional keywords in set K as

features for message clustering. Hence, we canmapmessages

into a feature vector space and apply a clustering algorithm,

such as K-Mediods, on the vectors to cluster messages.

We use |K | to denote the cardinality of set K , So, there are

|K | positional keywords (features) merged in Algorithm 3.

Now, we can construct a |K |-dimension vector for each mes-

sage, say m:

vm = [w(ti,n)]1×|K |, 1 ≤ m ≤ |M |, (10)

where w(ti,n) is the weight of feature ti,n in messagem. For an

arbitrary feature ti,n, we check the existence of ti,n in message

m by examining if ti,n is covered by the positional sub-string

xmi x
m
i+1 · · · x

m
i+δt−1

in messagem, where δt ∈ 1 is the window

size of ti,n. If ti,n ⊑ xmi x
m
i+1 · · · x

m
i+δt−1

, we need to assign

a weight w(ti,n) for ti,n; otherwise, set w(ti,n) = 0. In the

following, we introduce a entropy-based positional weighting

method to measure the weight w(ti,n).

As some strings from payloadsmay be extracted as features

in set K (due to their high occurrence), we wish to assign a

greater weight to the structural features (such as operation

type) of the message and a lower weight to noise (extracted

from payload). To do so, we make use of the observation that

structure features are more stable than payload data. We use

entropy as a measurement of variability, and use it as the basis

to calculate a weighting for each byte position. The Shannon

Index entropy is adopted to measure the variability [9],

Ej = −

R
∑

i=1

qjilog qji, (11)

where Ej is the Shannon entropy for the characters at the j-th

position, qji is the ratio of the i-th character in the character

set of position j, and R is the total number of characters in the

character set. The less diversity of characters at a position,

the lower entropy that position has.

Then, we calculate the variability of a feature by adding up

the entropy of the positions covered by the feature. Hence, for

a feature ti,n, its entropy is:

E(ti,n) =

i+n+δt−1
∑

j=i

Ej. (12)

To assign a high weight to stable keywords and a low weight

to dynamic noise, we invert the entropy for each feature by

applying a scaling function of the form given in the following

weight equation

w(ti,n) =
1

[1+ b · E(ti,n)]c
, (13)

where b and c are positive constants. As suggested by [9],

we set b = 1 and c = 10 in our experiments.

Algorithm 4Message Clustering

1: Input: A message set {(xm0 x
m
1 · · · x

m
lm−1

)|1 ≤ m ≤ |M |},

positional keywords in set K and their window sizes in

set 1.

2: Output: Message clusters {c1, c2, · · · , cL}.

3: Initialize: A zero matrixW ∈ R
|M |×|K |.

4: for (ti,n ∈ K ) do

5: Calculate the weight w(ti,n) for ti,n from Eq. (13).

6: end for

7: for (k ∈ {0, · · · , |K | − 1}) do

8: ti,n← K (k); get ti,n’s window size δt from set 1.

9: for (m ∈ {1, · · · , |M |}) do

10: if (ti,n ⊑ xmi x
m
i+1 · · ·

m
i+δt−1

) then

11: Set W (m, k) = w(ti,n).

12: end if

13: end for

14: end for

15: Apply K-Medoids on matrix W and obtain clusters

{c1, c2, · · · , cL}.

Finally, we get a |M |× |K | weight matrix,W = [wmk ], for

the given message set, where, if the k-th feature appears in

the m-th message, we put wmk at the corresponding position

in matrix W , where wmk is the inverse entropy weight in

Eq. (13). Then, we adopt K-Medoids to do the clustering on

matrix W . Algorithm 4 gives the details of message cluster-

ing. Please refer to the Message Clustering step in Figure 3

for an illustrative example, where the ‘‘op:B’’ messages and

the ‘‘op:S’’ messages are separated correctly.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed P-gram,

we have applied it to eight datasets of machine-generated

messages from eight real-life systems. They include

3 system log files (Asgard [10], Logparser SOSP and

Proxifier [12]), 2 binary protocol traces (LDAP [18] and

IMS [14]), and 3 text protocol traces (LDAP, Bank SOAP [5]

and Twitter REST [20]). All the datasets can be found in

https://github.com/JiaojiaoSwin/datasets. Table 1 lists the

basic statistics of these datasets. Note that, the message clus-

ters of these datasets are imbalanced (see the Gini indexes).

A lower Gini index means the message clusters are more

equally distributed. IMS and SOAP present relatively low

Gini indexes, while LDAP, SOSP and Proxifier present very

high Gini indexes. The ratio of the smallest cluster in each

dataset is also presented.

Below, we first define the evaluation metrics, then intro-

duce the competitor techniques, and finally present the exper-

imental results and sensitivity analysis.

A. EVALUATION METRICS FOR EFFECTIVENESS

We use two standard evaluation metrics, Precision and Recall

to quantitatively evaluate and compare the effectiveness of

P-gram for message clustering. The following formulas give
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FIGURE 5. Precision of message clustering.

TABLE 1. Statistics of the datasets.

the definitions of Precision and Recall:

Precision =
TruePositive

TruePositive+ FalsePositive
, (14)

Recall =
TruePositive

TruePositive+ FalseNegative
, (15)

TruePositive is the number of messages whose types are

accurately identified.FalsePositive is the number ofmessages

whose types are incorrectly identified as the type concerned,

and FalseNegative is the number of messages whose types

are not identified as the type concerned but should be. We

compute these TruePositive, FalsePositive and FalseNegative

using the method in [16].

B. THE COMPETITOR TECHNIQUES

We compare P-gram with two existing state-of-the-art tools

(Prodecoder [22], and AutoReEngine [15]), one of our previ-

ous works (Modified Needleman-Wunsch) [9], and one base-

line (i.e., Vanilla n-gram).

ProDecoder [22] identifies keywords by adopting Latent

Dirichlet Allocation (LDA) models [4] used for Natural

Language Processing (NLP). Messages are then clus-

tered according to their semantics (different combinations

of keywords) using the Information Bottleneck clustering

algorithm [19]. As suggested by [22], we set the number of

‘‘topics’’ as 40, the number of ‘‘top words’’ as 100, α =

0.1, β = 0.01, and the number of iterations as 2000 in

ProDecoder.

AutoReEngine [15] adapts the Apriori algorithm [1] to

identify keywords. Then, the variation of keywords’ positions

are calculated. Those with variations lower than a given

threshold are kept as keywords, and others are filtered out as

noise. Finally, keywords are sorted into vectors, andmessages

are clustered by the groups of keyword vectors. We set the

threshold as 0.07 for keyword identification and keyword

group extraction. The same threshold is used for the proposed

P-gram in the keyword identification step.

Modified Needleman-Wunsch (MNW) [9] is one of our

previous works. It first builds a distance matrix by cal-

culating the entropy-weighted Needleman-Wunsch distance

between pairwise messages. Then, the Visual Assessment of

Tendency (VAT) clustering algorithm is applied to group

messages into clusters.

Vanilla n-gram is the baseline of our work. It has been

widely used in statistical NLP. In contrast to positional

n-gram, the Vanilla n-gram ignores the positions of n-grams.

All the other strategies of Vanilla n-gram are the same as

P-gram.

C. RESULTS ON EFFECTIVENESS

In all experiments, we set ρ = 0.07. We set the minimum

n-gram length n = 1 for binary messages in Algorithm 1.

For text messages, as keywords are often with longer length,

we set the minimum n-gram length n = 3; this can also

save computational cost. We assume the number of clusters
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FIGURE 6. Recall of message clustering.

is prior knowledge. This is also used for all the competi-

tor techniques except AutoReEngine, which estimates the

number of message types during clustering. Figures 5 and 6

show the Precision and Recall of the clustering results of our

method and other techniques. As we can see, overall, P-gram

outperforms the other techniques in terms of both Precision

and recall over all datasets. More specifically, it achieves

100% Precision and Recall on both IMS and SOAP datasets.

It shows a relatively low Precision (87%–98%) and Recall

(78%–99%) on other datasets.

We see from Figure 5 that, compared to other meth-

ods, Vanilla n-gram shows the worst performance in Pre-

cision on all datasets except on Twitter REST. This is

due to the mis-identified keywords by Vanilla n-gram,

which only considers the frequency of n-grams but fails

to utilize the structural feature of machine-generated mes-

sages. This easily introduces noise into keywords. Hence,

directly applying NLP approaches such as Vanilla n-gram

on machine-generated messages fails to achieve good per-

formance for MLP. As the Twitter REST datasets involves

many natural language texts, Vanilla n-gram shows a slightly

better performance than some other methods. Similar per-

formance of Vanilla n-gram in terms of Recall can be

observed in Figure 6. This, from another angle, justifies

the effectiveness of our P-gram, which utilizes the metadata

of machine-generated messages—the position of message

keywords.

From Figures 5 and 6, we see that ProDecoder outper-

forms the Vanilla n-gram in terms of Precision and Recall

over all datasets except IMS and Twitter REST. ProDecoder

adopts the topic-model approach from NLP to extract ‘‘top-

ics’’ (i.e., keywords) from messages. The ‘‘topic terms’’ are

those highly related 4-grams [22]. ProDecoder utilizes the

hidden features (i.e., the co-occurrence of 4-grams) of MLP.

Therefore, it achieves a better performance than Vanilla n-

gram on most datasets.

AutoReEngine utilizes the variation of keywords’ posi-

tions to filter out noises from potential keywords. Overall,

it shows a better performance than the previous two meth-

ods in terms of Precision (see Figure 5). However, due to

its message clustering strategy (i.e., messages that have the

similar keyword sequence are clustered in one group) without

using the prior knowledge of the number of clusters, it often

generates more clusters than the ground truth clusters. Hence,

as we can see in Figure 6 that, AutoReEngine shows lower

Recall values than ProDecoder on some datasets, including

LDAP, Twitter REST, SOAP, Asgard, and SOSP. Meanwhile,

as we observed in Figures 5 and 6 that, Vanilla n-gram

shows the worst performance in terms of Precision on most

datasets. and it also shows poor performance in Recall on

many datasets. However, on some databases, such as binary

LDAP and Twitter REST, AutoReEngine shows even worse

Recall than Vanilla n-gram.

The performance of the Modified Needleman-Wunsch

(MNW) is close to P-gram. However, P-gram is better overall.

In particular, for the IMS messages, P-gram achieves 100%

Precision, but MNW has only 92% Precision (see Figure 5).

For the REST messages, P-gram achieves around 93% Pre-

cision and Recall, but MNW has only around 65%. This

is because MNW uses the Needleman-Wunsch distance to

measure the similarity between messages. It could involve

substantial noise from payloads when extracting message

keywords. In contrast, P-gram effectively filters out noise by

using the position information. Therefore, P-gram achieves

better performance than MNW.

Furthermore, note that the proposed P-gram shows much

better performance (100% Precision and Recall) on the IMS

and SOAP datasets than on other datasets. This is because the
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FIGURE 7. Sensitivity to the minimum length of n-grams.

FIGURE 8. Sensitivity to the threshold ρ.

distribution of message types in these datasets are relatively

even (i.e., the smallest cluster accounts for 12.5% and 14.1%,

respectively), while other datasets are very imbalanced (see

the Gini index in Table 1). Hence, the keywords in these two

datasets can be properly extracted by using the threshold ρ =

0.07, while the keywords for other datasets may be missed

by this threshold. Later, we discuss the sensitivity of P-gram

to the distribution of message types (i.e., the threshold ρ) in

detail.

In summary, P-gram achieves better clustering

performance by addressing the keyword mis-identification

problems faced by existing methods. Therefore, similar

to considering semantic information in Natural Language

Processing (NLP), for machine language processing

(MLP), we need to consider the structural features of

machine-generated messages.

D. SENSITIVITY ANALYSIS

In our experiments, P-gram involves two parameters: the

threshold ρ and the minimum length n of positional n-grams.

Here, we analyzes the sensitivity of P-gram to these two

parameters. We have chosen two datasets, SOSP logs and

text LDAP protocol messages, for sensitivity analysis, as they

show uneven distribution of messages over their types (see

Table 1) and hence have a greater impact on ρ and n.

In Figure 8, we fix the minimum length n to 3 and analyze

the sensitivity of P-gram to ρ. In general, a very low threshold

ρ would introduce substantial noise from the payloads, but

a very high threshold ρ would miss keywords. As we can

see in Figure 8, on the SOSP dataset, P-gram presents a

relatively stable performance when ρ ∈ [0.05, 0.08], and the

Precision and Recall decreases when ρ < 0.05 or ρ > 0.08.

On the LDAP dataset, P-gram presents a relatively stable

performance when ρ ∈ [0.06, 0.09], and the Precision and

Recall decreases when ρ < 0.06 and ρ > 0.09. Hence, in our

experiments we set ρ = 0.07.

In Figure 7, we fix the threshold ρ = 0.07 and analyze the

sensitivity of P-gram to the minimum length n of n-gram. As

we can see, for a fixed ρ, the Precision and Recall of P-gram

increase with n. P-gram presents a low performance when

the minimum length n is very low (e.g., n < 3), especially

on the text LDAP dataset. This is because, in text messages,

the keywords (a maximum consecutive sequence of common

bytes or characters) are often quite long. When n is very low,

P-gram would introduce substantial noise from the payloads

into potential keywords, resulting in message mis-clustering
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and eventually low Precision and Recall of clustering per-

formance. In our experiments, we set n = 3 for text mes-

sages. In addition, for binary message, we particularly set the

minimum length of n-grams as n = 1, this is because some

keywords in binary messages (such as LDAP messages) are

in single bytes.

V. RELATED WORK

There are many studies that focus on the clustering of

texts/messages. For example, in the area of Bioinformat-

ics, many advanced methods [11], [26] have been proposed

for the clustering of unstructured biomedical texts so as

to construct the domain knowledge graph, assemble DNA

sequences, etc. In the area of social media information extrac-

tion, many effective methods [17], [28] have been developed

for the clustering of (generally short) user posts so as to

discover trending events, identify rumors/false information,

etc.

In this paper, we focus on the clustering of machine-

generated messages. Many methods from Bioinformatics

and social media information extraction can be applied

to machine-generated messages. However, due to the spe-

cific nature of machine-generated messages (using message

formats/templates), directly applying those methods cannot

achieve satisfactory results [15], [25]. Hence, in the follow-

ing analysis we only focus on the methods for clustering

machine-generated messages.

Regarding the clustering of machine-generated messages,

existing methods that are based on keyword extraction have

been proven to be quite effective. They tend to split messages

into keywords and other (payload) fields using n-grams [25]

and/or delimiters [8]. A standard clustering technique is then

performed by comparing keywords to find similar messages.

In the following, we examine some representative works in

keyword-based message clustering.

Cui et al. presented Discoverer [8], which uses a recursive

clustering approach on tokenized messages. Messages are

broken into shorter tokens based on a predefined set of delim-

iters. Then, tokens are compared from left to right. If two

messages have the same token properties or are very similar,

then those two messages are placed in a message type cluster.

Finally, similar message types are merged. The technique

proposed byWang et al. [24] also uses delimiters to divide the

messages into tokens. It identifies message keywords by fil-

tering out the infrequent tokens using the Jaccard index [13].

However, the prior knowledge about delimiters used to break

the messages into tokens makes these approaches inapplica-

ble where such prior knowledge about the messages is not

available. Moreover, it often splits a single message type into

multiple clusters, due to the conservatism that messages in

the same cluster have only very limited variations.

Wang et al. [21] proposed Biprominer targeting binary

messages. It uses variable length pattern recognition to

find distinguishing message keywords. It first recursively

identifies frequent binary patterns of arbitrary length, called

n-grams (where n denotes the number of bytes in the pattern),

in messages. Then, the probability of a keyword following

another keyword is determined. Each keyword has a tran-

sition probability associated with other keywords. Finally,

the messages with labeled patterns are converted into a

transition probability model. Later, Wang et al. [25], [27]

proposed ProDecoder, targeting both textual and binary mes-

sages by exploiting the semantics of messages. ProDecoder

uses Latent Dirichlet Allocation (LDA) models taken from

natural language processing to detect the n-gram keyword

patterns and probable keyword sequences. Instead of using a

keyword transition matrix, ProDecoder uses keyword tuples

as features in an information bottleneck (IB) [19] clustering

approach. IB sorts messages into clusters, with each clus-

ter representing a different message type. Both Biprominer

and ProDecoder measure the probability of each n-gram

appearing in the message, and identify keywords by using

a probability threshold. Then keywords are associated with

specific messages for message clustering. They only consider

the probability of n-grams in messages without taking into

account the template structure of machine-generated mes-

sages, which is an essential feature of machine-generated

messages and one of the main difference between machine

languages and natural languages. Often, these methods put

different types of messages into one cluster, leading to mes-

sage mis-clustering.

Luo and Yu [15] proposed AutoReEngine. They first adapt

the Apriori algorithm [1]

to find frequent n-grams as keywords in messages. Then,

they filter out the ‘‘noisy’’ keywords by using positional vari-

ance referenced from the beginning and end of messages. The

keywords that have large variation of positions are filtered

out as noise. Finally, messages are clustered based on the

intuition that different types of messages contain different

sequences of message keywords. As AutoReEngine adopts

the Apriori algorithm to extract keywords from n-grams,

it often treats parts of payloads as keywords, leading to many

false keywords extracted. As it only considers the frequency

of n-grams when using Apriori for keywords identification,

it fails to distinguish short keywords from those longer key-

words that contain the short keywords as sub-strings. Mean-

while, the multiple occurrences of keywords in a message is

ignored when constructing keyword sequences in the process

of message clustering. Hence, messages of different types are

often mixed in one cluster.

Our technique, P-gram, takes advantages of the template

structure of machine-generated messages. From the above

analysis, we see that existing keyword extraction based

methods for message clustering faced with the keyword

mis-identification issues, in particular with keyword repeti-

tion, noise (false keywords) from payloads, and the omis-

sion of short keywords covered by other longer keywords.

Compared to these methods, P-gram successfully addresses

these issues by considering the position of keywords in mes-

sages. Experiments on various textual and binary messages

demonstrate the effectiveness of the proposed P-gram for

clustering machine-generated messages.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel approach, P-gram,

to effectively cluster machine-generated messages. A new

concept and technique, positional n-gram, is developed

to identify message keywords. It addresses the keyword

mis-identification problems suffered by existing message

clustering methods. In particular, P-gram considers the posi-

tions at which message keywords appear, so as to distinguish

the multiple occurrences of the same keywords in a message,

filter out noise from keywords, and separate short keywords

from those that contain the short keywords as sub-strings.

The position-based density analysis of positional keywords

further delineate keywords from the samewords’ occurrences

in payload fields. Furthermore, we have presented theorems

that prove the advantages of our proposed approach. We have

demonstrated the benefits of the proposed approach by apply-

ing it to a range of machine-generated message datasets

collected from real-world systems, including both textual and

binary messages. The experimental results have shown the

superior performance of our approach over existing state-of-

the-art methods.

Based on the work in this paper, we plan to investigate

general techniques to automatically extract accurate message

formats from message traces. Then, we will further discover

the control and data dependencies that exist inmessage traces.

These control and data models will provide critical support

for system security inspection and application behavior anal-

ysis.
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