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p - H a r m o n i c  Obs tac l e  P r o b l e m s  (*). 

PA~T I :  Pa r t i a l  Regular i ty  Theory .  

:~r I~UCttS 

Summary. - We develop an interior partial regularity theory ]or vector valued Sobolev ]unctions 

which locally minimize degenerate variational integrals under the additional side condition 

that all comparison maps take their values in the closure o] a smooth region of the target space. 

Our results apply to the case o] p-energy minimizing mappings X --> Y between Rieman. 

nian mani]olds including target mani]olds Y with non-void boundary. 

O. - Introduction. 

In  this paper  we investigate the  par t ia l  regular i ty  properties of vector  valued 

functions u: ~Q--~ R s defined on some n-dimensionM region ~ which locally mi- 

nimize var ia t ional  integrals of the  form 

(0.1) E~(u, ~ )  :=f]Dul~ 

under  a smooth side condition in the  image space. Here  p ~ [2, n] is a fixed real 

number  and the  side condition is formulated as Im  (u) c M, where we consider the 

following three  different cases: 

a) M is a smooth bounded open subset of Eucl idean space R s or 

b) a smooth bounded subdomMn of a k-dimensionM submanifold :Y of R s 

such t ha t  M c In t  (17) or 

e) a compact  submanifo!4 of R N. 

In  a) and b) we are confronted with an obstacle problem, e) is the extension of the 

harmonic mapping problem studied by  SC~OE~-U~LE~]~ECK in IS, U1, 2] to  the  

p-harmonic  case which we included since the  par t ia l  regular i ty  theory  in the  un- 

constrained Riemannian ease e) follows from our results concerning obstacle problems 

by  simplification of the  arguments.  

(*) Entrata in Redazione il 29 luglio 1988. 
Indirizzo dell'A. : Mathematisches Institut der Universiti~t Dtisseldorf, Universit~tsstraBe 1, 

D-4000 Dfisseldorf. 
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In t roducing  the  Sobolev space 

our main results (see A, B, C, D in section 1) can be summarized as follows: 

I] u~H~.~(s has the property E,(u,  [2)<E,(v, Q) ]or all v ett~,~(T2,_M) 

such that spt (u -- v) cc f2, then there is a closed subset Z o] f2 such that u e C ~ ( ~ X )  and 

(0.2) 

l H -- dim (Z) < n -- [ p ] - - i  

is discrete 

2:=r 

for n > p ~ l ~  

for n - - l < p < : n  

for p = n .  

(The conformally invar iant  case p - -  n is a l ready t rea ted  in [Go].) 

In  a series of papers  [D], [D, F1,  2], [F1-F6] (compare also [F, W] and [W]) 

we proved (0.2) for quadrat ic  obstacle problems (i.e. p = 2) bu t  none of the  methods  

used there  ex tend  to  exponents  p > 2: F o r  example in case a) a minimizer 

u ~ H~,v(~2, _g) is a weak solution of a system of the  type  (see Theorem 2.1) 

L(u) :~- -- D(IDuI~-2Du) = R ( . ,  u, Du) 

with a r ight-hand-side R suppor ted  on the  coincidence set [u e 3M] and growing 

of order p in Du. Obviously the  differential operator  J5 is l inear only for p ---- 2 and 

our previous proofs used 

Z(u ~) -~ L(u) in the  sense of distributions if 

u ~ -~ u weakly in HI, r or 

L(u~) = (Z(u))O for mollifications. 

Since bo th  s ta tements  fail to  hold for p > 2 we had  to develop completely new 

arguments .  

The first approach to  p-harmonic  obstacle problems is due to  Ig. Fusee  and the  

au thor  IF, F] bu t  res t r ic ted to a ve ry  special case: Assuming tha t  M is diffeomorphic 

to a ball we could show (using s tandard  arguments  f rom [G]) t h a t  local minimizers 

satisfy Caccioppoll's inequal i ty  which gives D u eL lo  r for some q > p .  Then a proper  

extension of the  ideas in [F, H1, 2] and [G, M] proves (0.2) for this simple situation. 

1Koreover we obta ined (0.2) for a larger class of functionals t h an  the p-energy intro- 

duced in (0.1). Bu t  for general nonconvex  sets M it is impossible to  get Caccioppoli's 

inequal i ty  along the  known lines. The hear t  of our new part ia l  regular i ty  proof is 

an extension theorem 
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for maps defined on the sphere S ~-~ with values in M. In Theorem E below we show 

that  if the p-energy and the mean oscillation of a function v e HI,~(S ~-~, M) are small 

enough then v can be extended to a function ~ e H~,~(B ~, M) satisfying proper decay 

estimates. Since this construction is rather complicated it will be given in a sepa- 

rate paper (part II). With the help of Theorem E we construct suitable comparison 

functions to get a substitute for Caccioppoli's inequality (->hybrid inequality in 

Theorem 2.3) : 

I] u e  H~,~(~M) is locally minimizing and i/ /or some ball r~ ~ ]DuI~<~e 

(----- a small absolute constant), then ~(~) 

f D  ~ 1 [ u, <~ f ]Dul~q- Cr-~ f lu--(u)~]~ 

Combining this result with the monotonicity formula for the scaledp-energy (-+ Theo- 

rem 2.4) we can prove a partial higher integrability theorem saying that  Du~ Lq(B~l~(x)) 

for some q > p if the scaled p-energy on the ball B~(x) is small enough. 

In section 3 of the paper we show how to combine this information with the 

Euler system to get the following partial regularity criterion: 

(0.3) r ~ f  ]DuI~<~e =>u is continuous near x .  

/4(~) 

Here and before e denotes a small positive constant depending only on dimensions 

and the geometry of M. ~rom (0.3) we immediately deduce (-~ Theorem A) 

H--~(27) = o 

for the singular set 2: of the minimizer q~. 

In order to get the better estimate (0.2) for 27 we replace (0.3) by a smallness 

condition on the mean oscillation: 

0.4)  

ndx) 

For unconstrained problems (or obstacle problems with convex set M) (0.4) trivially 

follows from (0.3) using Caccioppoli's inequality, here we have to use Theorem E 

again. Clearly (0.4) is stable under weak convergence and we deduce the following 

compactness property of sequences (u~) c HI,~(D, M) of local Ep-minimizers: 

I] u~--> Uo weakly in HI,~(~, R~), then uo is regular up to a closed set Xo with 
H"-~(27o) = O. 
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This enables us to carry out the standard dimension reduction (see [l~e], [S], [S, UI]) 

by the way proving (0.2); the de~ails are given in section 4. 

A final resul~ deals with ~he case n - - l < p  < n: following ideas of Giusti [Gi] 

we show in Theorem D below ~hat near a singular point $0 a minimizer locally behaves 

like ( x -  xo)/lx-- Xot. 

We wish to remark %hat our ~heorems may be useful for Che study of p-harmonic 

problems as ~hey occur for example in [B~ C, L] and [~vVh]; moreover they may apply 

to constrained problems in nonlinear elasticity. Some applications (homotopy of 

maps in ~he Sobolev class H~,~(/2, M)~ free boundary value problems) are contained 

in part II~ section 3, (compare also [F6]) ~nd in part I I I  we combine our previous 

results with a boundary regularity theorem to prove the existence of ~ sm~ll ~> 

p-harmonic maps between l~iemannian manifolds. 

1. - N o t a t i o n s  and results.  

In this section we fix our assumptions and give a survey of the main theorems. 

In the Riemannian ease let ~ denote a bounder open subset of a n-dimensional 

t~iemanniaa manifold, n>~2. Y~ is a k-dimensional submanffold of Euclidean space 

R ~ containing a bounded open region M with the following properties: 

~M is a n o n v o i 4  C a submanifol4 of Y ,  

the closure of M is compactly contained in Int  (IZ). 

Since 1~ is also a close4 subse~ of R ~ the space 

H~.~(~, M) : :  (q~ ~ HI,~(g2, RN): ~(x) e M for H~-almost x e ~} 

is a weakly closed subclass of HI,~(~, RN). ~ere p is a fixed real number in the in- 

terval [2, n] and H ~ stands for the n-dimensional Hausdorff measure on ~. 

~or rune%ions u ~ H~,v(Q, R N) we introduce the p-energy (on I2) 

(1.1) :E~(q~, :=flDui dm, 

and u e H~,v(~, M) is locally E~-minimizing under the side condition Im (u)c M iff 

(1.2) E~(u, ~2) < E~(v, ~9) 

holds for all functions v e HI,~(~, M) such that  spt (u -- v) cc g2. Condition (1.2) 

states that  u has least energy among all functions agreeing with u outside some 

compact subset of Q and respecting the obstacle Y~M.  
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In  the Euclidean case ~ is a bounded subdomain of R% M c R ~ denotes a bounded 

smooth region. Suppose furSher tha% for g~ fi = 1~ ..., n, i, ~ ~ 1, ..., _h r we are given 

functions 

of class C ~ satisfying the elliptieity condition 

(1.3) ! a a ~ ( x ) ~  >#~ / , x e ~ ,  ~ER" , Y, ~ R  ~ ,  

for some positive constant  #o. Here and in the sequel we use s tandard summation 

convention: greek (l~tin) indices repeated ~wice are summed from 1 to n(N). 

The definition of the  space Hx,~(~, M) is as above and for functions in this space 

we introduce the splitting functional 

(1.4) r~(u, ~) :=f (a~B"(., u)D~uiD~uO~/2dx. 
D 

The notat ion of a F fmin imiz ing  function in the class HI,~(~, M)  is completely 

analogous to (1.2). 

Final ly  we define the regular and singular set of u ~ H~,~(f2, R ~) 

Reg (u) : =  {x e D: u is continuous in a neighborhood of x} , 

Sing (u) : =  12 \Reg  (u) . 

Obviously the regular set is open and the following theorems give informations on 

the size of Sing (u) if u is locally minimizing in HI,~(Q, M). 

TKE0~E~ A (]irst estimate o] the singular set). - Suppose t ha t  u e H1,~([2, .3i) is 

locally E~-or F~-minimizing. Then 

Sing (u) {x E g :  l imin fr~-~  f [Duj~> O} , 
~'--+0 Br(~) 

especially H"-~(Sing (u)) = 0 and Sing (u) = 0 for p = ~. 

T~EORE~r B (optimal interior regularity). - Under the assumptions of A we have 

(i) H-dim (Sing (u)) < n  -- [p] -- 1 if n > p -~- 1, 

(ii) Sing (u) is discrete for n - -  l < p  < n. 

([p]: : =  max { l ~ N :  l <p } )  
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TttEOEEhI (~ (higher regular i ty) .  - Local E~- or F~-minimizers u e H~,~(D, 2h r) are 

of class C 1'~ on the  regular  set for some e < 1 ; in the  quadrat ic  case p = 2 we have  

u e H~,~(Reg (u)) for all finite q. 

TttEOtCE~ D (behaviour at isolated s ingular i t i es ) .  - L e t  p e [n - -  1, n)  and suppose 

t ha t  u e HI,~(SP, 2~ r) is locally E,-  or F~-minimizing. Then,  if Xo e D is a singular 

point  we have 

lira sup IDu(x) l l x  - -  xo] < ~ . 

CO~SZE~TS. - 1) Our theorems generalize the  results obta ined in the quadrat ic  

ease p = 2 for which we refer the  reader  to the  papers  [D], [D~ ~'1, 2], [F1-5] and 

IF, W]. Bu t  as a l ready ment ioned in the  in t roduct ion  none of the  methods  developed 

for p = 2 extends to larger exponents .  

2) lVor unconst ra ined quadrat ic  problems A-D can be found in [G, G1, 2] 

and [S, U1, 2]. A regular i ty  theory  for free 2~-minimizers is due to  FUSC0-tIUTCn~N- 

SON [F, i 2 ]  and GIAQUINTA-~C[ODIO• [GiV[]. 

3) In  the  l~iemannian case the  regular i ty  propert ies of free E~-minimizers 

(i.e. of local E~(-, D)-minima in the  class HI,~(D, Z) for some compact  submanilold Z 

of R ~) are not  well analyzed. An inspection of our arguments  however  shows (in 

the absence of the obstacle all calculations become much easier): 

TKEO~EhL -- Le t  f2 denote  an open par t  of some n-dimensional manifold and 

suppose tha t  u ~ HI,,(D, Z) is locally E~-minimizing. Then 

I H - -  dim (Sing (u)) < n -- [ p ] - - I  if n > p  nUl and 

I Sing (u) is discrete for n -- 1 < p  < n .  

The compactness  of Z can be replaced by  the  condition tha t  the minimizer takes 

its values in a bounded  subset of Z so t h a t  we are in the  si tuat ion studied by  SC~0EN- 

LTIILENBEC~ [S, U1, 2]. 

4) I n  [D, F2] and IF2] we extended the  boundary  regular i ty  theorems of [J, M] 

and IS, U2] to quadrat ic  obstacle problems. For  general p > 2 an analogous result  

is also t rue  bu t  since the  details are ra ther  complicated we shall give a proof of 

boundary  regular i ty  in a separate P a r t  I I I .  

5) In  the Eucl idean case and for sets M diffeomorphie to the  iV-dimensionM 

bail we can improve Theorem B by  showing 

H - -  dim (Sing (u)) ~< n -- [p -~ el -- 1 

for certain positive e depending on absolute data.  The proof of this fact  is based on 
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a Caccioppoli inequal i ty  which holds for the restr icted class of obstacles. The details 

can be found in the joint  paper  IF, F] but  the techniques outlined there  do not  carry 

over to general sets M. 

6) The following simple example shows tha t  singularities are n~tural  in the  

context  of obstacle problems: Assume p < n and let  

t9 : =  B~(0), M :=: {y e R~: �89 < [Yt < 2} ,  Uo(X) := x/Ix I . 

Since uo is in the  space H1,*(~9, 217) the  problem 

E~(-, Y2) --+ min in H~,~(Y2, d~) 

for boundary  values u0 has at  least one solution u with Sing (u)v~ 0 by  the  1go 

Ret rac t ion  Theorem. In  the special case n ~ 3, p ---- 2 we infer f rom the  theorems 

in [D, 1~2] tha* the  singularities of u form a finite subset of ~ .  

In  connection with this example we mention the everywhere regular i ty  theo- 

rems obtained in [F3, 4], [F, W] and [W] under  reasonable restric*ions on the 

geometry  of M. In  a for thcoming paper  we shall give similar results for the  p-case. 

7) Once having shown (partial) regular i ty  theorems for obstacle problems one 

should t r y  to describe the topological and analyticM properties of the  coincidence 

set (at least for simple geometries) as it  is done for p ~- 2 and IY = 1 in [A, C], [Fr] 

and [K, S]. The paper  [F7] contains some first results in  this direction. 

2. - B a c k g r o u n d  m a t e r i a l .  

For  obstacle problems with convex set M the min imum proper ty  can be trans- 

formed in a variat ional  inequal i ty  using the fact  t ha t  u ~ t ( v -  u) is admissible for 

0 < t < l  if u is a min imum poinr and v denotes any funct ion having boundary  val- 

ues u and respecting the obstacle. For  general sets M it is not  obvious how to linear- 

ize the  min imum proper ty .  This problem was solved for the first t ime in [F1] and 

in [D], [D, F2], [F2-4] we improved the technique of linearization. Here  we present  

the  final version for p-harmonic  obstacle problems. 

The second par t  of this section contains the basic Extens ion Theorem E which 

is used for the proof of the  hybr id  inequali ty.  

Let  us stare with the Euler  system for local minimizers. Firs t  we analyze the 

Eucl idean case and introduce some 

lqom)~'Io~s. - Since ~M is smooth the distance funct ion d(z) : ~  dist (z, ~M) is 

regular for z ~ M near ~M; by  negative reflection we extend d to a smooth funct ion 
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on a t ubu la r  ne ighborhood U of ~M and define t he  vector  fields 

v(z) : =  grad  d(z) , v(x, z) := B-a(x, z)(~,(z)) 

for x ~ ~ and  z e U, B -~ denot ing the  inverse of (B~)~<~,~<s: On 3M v is jus t  t he  in- 

ter ior  uni t  no rmal  vector  field. 

Tm~oaE~X 2.1. - Assume t h a t  u ~ H~,~(~2, M) is locally ~ - m i n i m i z i n g  where the  

funct ional  s is defined in (1.4) bu t  now we allow coefficients a ~  ~- a ~ :  ~ • R s -~ R 

of class C ~ sat isfying (1.3). Then  there  exists ~ Lebesgue measurable  densi ty  func- 

t ion 0: ~ -+ [0, 1] such t h a t  for all tes t  vectors  T ~ C~(~, R s) the  following equa- 

t ion  holds:  

(2.1) fpa( . ,  ~, Du)A~( . ,  u)D~u~D~q~'dx @ 

t2 

a(., u, D u ) D ~ A ~ ( . ,  u)D~u~D~uJq~dx : ? ~ 0 v(u) .~ pa(. ~(u).v(., u) , u, Du)" 
[ueaM] 

�9 x~3(., u/~)~u~D~(v~( ., u l )+g/)~ ~(. u / D ~ l ) ~ v ~ ( ,  u/ dx, 

~nd the  funct ion {...} is non negat ive  on [u e ~M]. Here  we abbrev ia ted :  [u ~ 3M] :-~ 

= (~v ~ tg: u(x) ~ ~M} and 

A~,B(x , y) :~- a~(x, y) B~(x, y) , a(x, y, Q):-~ (A~(x,  y)Q~,Q~)~/~-~ 

PROOF. - F r o m  (1.3) we infer 

v(z).v(x,z)>0, x E ~ ,  z e U ,  

so t h a t  for U ~ C~(Q), 7 9 0 ,  and  small  posi t ive t the  var ia t ion  

u~:~- u ~- t~h~(d(u))v(', u) 

is admissible. Here  ha: [0, c~ ) -~  [0, 1] is a fixed smooth  funct ion wi th  h~(s)= 1 

0 for 0<s~<s ,  ha(s) -~ 0 for s>2s and  h~< . 

The min ima l i ty  of u gives 

lira i {i~(u~, ~)- F,(~, f2)} > 0  

and  b y  the  Riesz Represen ta t ion  Theorem we find ~ R a d o n  measure  g~> 0 on 
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such tha t  

(2.2) 
f p a (  ~ 

~J 

u, Da)A~( . ,  u)D~u~(Uh~(d(u))v(., ~)~)dx -~ 

Clearly 2 is independent of the parameter  ~ (for e=/= e' use the variation u ~- 

tu[h~(d(q~))-- h,(d(u))]v(., ~) which is admissible for It] <<1). In  order to get 

a bound for ~ we fix ~ > 0  and pass to the limit ~ --> 0 in (2.2). The first integral on 

the left-hand-side of (2.2) splits into three parts for which we get: 

fpa(. ,  u, Du)A~( . ,  qz)D~u~D~h~(d(~))v( �9 , u)Jdx "------>~o 
Q 

-~ fp~ ( . ,  ,~, D , ~ / ~ ( . ,  ~ /B"( ' ,  ~/(B-~( ", ~ /~ , ( ,~ / ) '~ ,~Z~  e~ = 
[u~OM] 

= fpa(., ~, D~)a~a(., u) v~(~)D~ u~D~u dx = 0 
[u~OM] 

since v(u)~D~u ~ = D~(d(u)) = 0 on the set [u e 3M], 

fpa( . ,  u, Du)A~( . ,  u)D~ u~D~(h~(d(u)))~v(., q~)J dx ---- 

= f pa( ., u, Du) h: (d(u) ) a~(.  , u) B~J( . , u)v(. ,  u)~ D~ ~* D~(dou)u = 
~2 

=fpa( . ,  u, Du)h:(d(u))va~(. , u)D~u~V~D~u~v~dx<~ O , 
s 

f p  ii . a( . ,  u, Du)A~z( , u)D~u~rlh~(d(u))D~(v(., u)J) dx ,--,o )- 
~2 

- .  f pa(., u, Du)A~( . ,  q~)D~u~vD~(v(., u)~) dx.  
[ u e ~ M ]  

Combining these results with (2.2) the l~adon Nikodym Theorem gives the existence 

of ~ density function 0:~2 --> [0, 1] such tha t  2 can be writ ten as 

(2.3) i J  . = ZmeaijOpa(., u, Du)(A~:( , q~)D~q~iD~(v( ., q~)J) ~- 

+ ~v~_ ,~  ~ I., u)D~u~DouJv(., u)~} L L ~ 

Especially the expression {...} is non negative on [u e 3M] and formula (2.3) shows 

tha t  (2.2) is also valid for U ~/~1,~ (~ L~(s 
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Consider now a vector  field T:  R a - +  R ~ suppor ted  in ~ smull ball  centered a t  

~M with  the  p rope r t y  / ' . ~  = 0. I f  r  denotes the  flow of T then  v t : :  

: =  qS(t~lh~(d(u)) , u) is admissible ~or V e r und !t[ small. F r o m  the  min imul i ty  

of u we infer 

(2.~) pa(  o 

T2 

u, D u ) A ~ (  , 

t~ 

~ 0 .  

F ina l ly  we cover ~M with  small  bulls B~ : BR(y~J, Yke ~M, k - ~  1, ...~ L, such 

that  B~,(y~) cc U and  choose a par t i t ion  of the  un i ty  {T~} with  the  proper t ies  

spt  (Tk) CC B2~(yk), 
L L 

~(pi:=1 on UB~a~M. 
k = l  k=l 

Let  T~,I, ... ~T~.,~_~ denote vec tor  fields such t h a t  

spt  (T~,~) c c  Bs~(y~) , Tk,~" T~,j = ~,,j , Tk,,'~ -~ 0 on B~R(yk) �9 

For  k e (1, .o., L} fixed we wri te  % T~ ins tead of ~ ,  T~.~. A tes t  vector  ~ e C~(/2, R ~) 

has the  decomposi t ion 

2r 

~(u)~ = vv(', u) + ~ ViT~(u) 
i = 1  

with coefficients 

(2.5) 
v = ~(u) ~.~(u)/(~(u).v(. ,  u)) 

w = ~(u) i , ,(u). ~ - vv(-, u). T,(u) 

of class H 1,, ,'~ L ~ compac t ly  suppor ted  in $2. Using (2.2) und (2.Q we see 

(2.6) pa( .  

.O 

§  P-~ a( ., u, D u ) D ~ A ~ ( ' ,  u)D~u~D~u j" 

D 

9 
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Remember ing the decomposition (2.5) and introducing the index k again (2.6) reads 

(2.7) fpa( . ,  u, Du)A~( . ,  u)D~u~D~(q~k(u)h~(d(u))~flJ)d,x + 
~Q 

-~ f P? a(., u, Du)D~A~( .., u)Dc, u~DzuJcfk(u)h~(d(u))F~dx = 
E2 

= f  w" ~(u)l(~(u). v(., ~1) ~(u) d~ . 

15 

Obviously we can arrange ~ ~v~ = 1 on the set where h~od=/= 0 so t h a t  (2.1) fol- 

lows from (2.7) by  first taking the  sum with respect ~o k and then  adding the ident i ty  

d 
dt]o/~(w~, O) = O, ~ :  = ~ + t [1  - h 4 d ( u ) ) ]  V ,  

to She resulting equation. [] 

We turn  to the Riemannian version of Theorem 2.1: Le t  d r denote the l~ieman- 

nian distance of points y, z in :Y and p ( z ) : =  dy(z, ~M) for z r  near ~M. B y  

negative reflection we extend Q to a smooth function in a tubular  neighborhood U 

of ~M in Y. I f  we let v(z) gTady ~(z), then the same calculations as be~.ore give 

0 0 

for a Radon measure 2~>0 on ~ being of the form 

;~ = p O z : ~ j  Idul~-~du~.d(~(u)) L H~, 

0 denoting a H ' -measurable  density funct ion / 2 - +  [0, 1]. Here  du ~ is the gradient  

of u ~ with respect to the metr ic  on /2. 

Similar arguments  as in the Euclidean ease imply N -  1 tangent ia l  equations 

and we arrive at  

for vector  fields q~ef:t~,p(/2, R ~) n L  ~ along u. I f  H :  (Y)~-§  is the smooth 

nearest  point  re t ract ion def ined on a suitable tubular  neighborhood of :Y and if 

~f ~ C~o(~Q, R ~) is arbi t rary,  then  ~ : ~  DIII~(~ ) is a field along u for which (2.8) 

holds and one easily shows 



138 3/~T~w F u c k s :  .P-harmonic obstacle problems, I 

THE0rCEh~ 2.2. -- Suppose tha t  we are in the  Riemannian  case and tha t  u is locally 

E~-minimizing in the  space H~,~(~9, M). Then there  is a H~-measurable densi ty func- 

t ion  0 : / 2  --~ [0, 1] such t ha t  

fpld< - {du .dW + d ~  .dq~Z:D~r ~} d H  n = f pov. I ul -   t i. ~H. 

[u~M]  

holds for all ~o ~ 1~,~(~, R N) (~ L ~. 

RE,AUK. -- The quadrat ic  case of Theorem 2.2 is t r ea ted  in [D]. [] 

The regular i ty  t heo ry  for free /~ -min ima  is heavi ly  based on the  Caccioppoli 

inequal i ty  (compare IF, H I ,  2], [G], [G, G1, 2], [G, M]). ]~ut if one considers mini- 

misat ion problems for mappings taking values in some prescribed non convex set 

(a m~nifold or smooth subregion of ~ manifold) it  is not  clear if Caceioppoli's inequal- 

i ty  cont inues to  hold. The following Theorem E is the  basic tool  for overcoming 

this difficulty since it  enables us to construct  suitable comparison functions which 

we use to prove  a weak form of Caccioppoli's inequal i ty  near  points with small 

scaled p-energy.  Since the  proof of Theorem E is ra ther  involved it  will be given in 

P a r t  I I  of the  paper.  

THEORESI ~E (extension theorem). - Suppose t h a t  M is a smooth bounded region 

of the  type  described in section 1. Then there  exist constants ~ = y(p) e (0, 1] and 

so, ~, q, ~t~ Co depending on the  dimensions, on p and the  geometry  of ~M (and I z) 

with the  following proper ty :  Le t  u ~ tt~,~(S ~-~, M) and u * ~  R N be given such tha t  

for some 0 < e<eo;  t hen  we find ~ ~ HI,~(B,-M) with boundary  values u and 

E~(~, B) < Vo(e/~.(u, S~ + ~-~W.(u, S"-~)), 

WA~, B)< Q e-~ W~(u, S"-I) . 

Here  and in the  sequel we use the  nota t ion  

A A 

for functions ]: A - - > R  ~. S "-1 is the  (n - -1 ) -d imens iona l  s tandard  sphere and B 

the  uni t  ball in R n. 

By  a simple scaling argument  we see 
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CeRebrAllY. - I f  u ~ H~.~(S~ -~,/IF) satisfies 

-~(U,  ~n--1)Wt~(@, L~n-1)~<aq(~'+lr(l+?)(n-1)-~0 ' 

then we find an extension ~ ~ H~.~(B~, .~) such that 

) + E~(@, B,) <. Co(stEm(u, ~-1 

W~(~, B~) < Co s-~rW~(u, S~-1) . 

Theorem E enables us to  prove 

THEOREM 2.3 (hybrid inequality). - Assume th a t  D c R ~ is a bounded domain 

and t ha t  ]: D X R ~ x R~N-+ R is a CarathSodory function satisfying 

koIQ[~<](x,y,Q)<kl[Qt ~, x e D ,  y e R  ~,  Q e R  ~zr 

with positive constants ko, kl. Moreover, let M denote a region as described in 

section 1 and assume tha t  u ~ HI, v(D, M) locally minimizes the  functional  G(v, D) :~  

:=f](.,v, Dv)dx in the  class HI.~(D,/]7). Then there  is a constant  r 

: =  G(n, N, p, M, ko, k~) (and also depending on :Y if M r Y) with the  following 

proper ty :  I f  

B~(x)) : =  ~ = " ~ ( u ,  B~(x)) : =  ~ ,  j (  IDuI,< C;~;, o~(~+" qS(u, 
a t  

for some 0 < ~ < i, then 

*(u ,  B,/~(x)) < ~ * ( u ,  B~(x)) § G~ -~ ~ [u --  (u),[~dz, 
~t 

where (u)a is the  mean value of u on BR(x) and q, ~, ? denote the  constants in Theo- 

rem E. 

REMARKS. -- 1) Obviously Theorem 2.3 extends to  locally Er-minimizing maps 

u: Q --> M if /2 and M are subdomains of Riemannian manifolds. In  this case we 

introduce local coordinates on zQ and get a functional  of type  G with bounds ko, k, 

depending on the  metric of f2. 2) %'or unconstrained quadrat ic  problems Theorem 2.3 

is due to HARDT-KINDERLEHRER-LIN [H, K, L]. 

PROOP OF ~IEOREM 2.3. -- For  simplicity we assume x ~ 0 and denote all con- 

s tants  depending only on n, hT, p an4 the  geometry  with the  symbols el, e,, ..... 

Moreover we suppose tha t  

r  B~) < r 
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holds with C~ being specified later. According to Fubini~s Theorem and [Me], 

Theorem 3.6.1 (e), there is a radius r ~ [R/2, R] such that  

./8 
E~(u, ~B~)~.-~ E~(u, B~) , W~(u, ~Br) < ~ W~(u, B~); 

here we cMculate W~ with respect to u* : =  (u)R. From Poincar6's inequality we 

deduce 

< cz q)(u, BR)I + r < e2 C~ I-v 2 q . 

Introducing s :-= 2# we see 

r~-(n-1)(r+l)E~(u, ~B~) W~(u, ~Br)'z <~ (v.2C:I-v# - ' )  e ~ , 

and if we assume (~ being defined in Theorem E) 

(2.9) ceC~l -v# -q< 5v+1 ~ C1 > (eel.t-q)l/(l+~) ~-1 

~he scMed version of Theorem E gives the existence of ~ e H~, * (B,, M) with boundary 

vMues u and 

Since u is loeMly G-minimizing we have 

q~(u, B~)  < e~ k~ ~/~-~ G(u, B~) < e~ k~ ~ G(~, B~)/~-'~ < 

ks k~ f < c~ -- er B~) -t- e-~ 

B~ 

We now define # : ~  e~(ko/k~) (by enlarging e~ we may assume #<so with eo taken 

from Theorem E, especiMly e<eo); this gives 

~]  2-~ f [u - -  (u)~], dz . 
b 

Observing (2.9) ~he statement of the theorem ~ollows if we take 

[ lcY'+~l 
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We finish this section with 

T~EO~E~ 2.4 (monotonicity /ormula). Assume tha t  M is a domain in Euclidean 

space and tha t  u ~ H~.~($2, M)  is locally s Then there is a constant  C~ 

depending on n, N, p, the modulus of ellipticity of the coefficients and their  Lipschitz 

constants on $2 • B~(0), L : = sup { [z] : z e M}, such tha t  for all balls B~(x) c B~(x) c $2, 

(2.10) ~(u,  B~(x)) : =  r~ ]Du[, < C~r B~(x)) . 

~ (  ~ ) 

The proof of Theorem 2.4 is a direct consequence of [F, H2], Lemma 8.2, since 

all variations used by Fusee-Hutchinson respect the obstacle. For  a Riemannian 

version of Theorem 2.4 one has to introduce local coordinates on $2, in this case the 

constant  C2 also depends on the  metric of $2. 

3. - First  e s t i m a t e  on  t h e  s ingu lar  set.  

We star t  with the proof of Theorem A for the Euclidean case: Assume tha t  

u ~ H1.~($2, M) is locally /~-minimizing and tha t  there is a ball BRo(Xo) cc $2, •o<1, 

such that 

(3.1) ~(u,  B~.(xo)) : =  ~ ~ IDu]~dx < e~ 
$ $  

B~o(Xo) 

for some positive e being determined later. The monotonici ty formula (2.10) com- 

bined with (3.1) gives for x e B~om(Xo) and 0 < r<Ro/2:  

q5 (u, Br(x) ) • C~ q5 (u, B~j2(x) ) < 2 ~-~ C~ q5 (u, BR.(xo) ) < 2"-~ C~ e ~ . 

With q, gt, C~, y from Theorem E we let 

then the above inequality rereads 

~(u, Br(x)) < C ~  2 ~/(~+ ~) 

and from Theorem 2.3 we infer 

~(u,  B~(x) )  < ~ ( u ,  B~(x)) + C,~-~ ~ lu --  (u~)I" 

B~(~) 
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We fix 2 : =  �89 -~ or equivalent ly  

f lDu[~<~ 1 ~ [Du[~+ clr-~ f l u - -  (u)~l~ 
(3.3) Bq2(~) B~(z) ~r(~) 

x ~ B~~ r e (0, ~o/2] 

for a suitable absolute constant  cl. The second integral  on the  right-han4-side of 

(3.3) c~a be handled  by  the  Sobolev-Poincar6 inequality~ and according to  [G], V, 

Proposi t ion 1.1, there  is an exponent  t > p (depending on absolute data) ann a 

constant  c~ such t ha t  

D~ ~ ~L(B~o(~O), m ~) 

a~cl 

(3.4) {~]~(~) IDul~ dz]~'t~ c2 l~,~) ~ IDuI~ dz} ~lv 

or balls B~(x) as in (3.3). Thus we have  shown a partial higher integrability result:  

Near  points with sufficiently smnll scale4 p-energy the  gradient  of ~ minimizer is 

integrable for some exponent  > p. 

In  or4or to  procee4 fur ther  we fix a ball B~@), r< Ro/2, 2 e BRo/~(xo), and abbreviate  

](x, y: Q) :=- (a~(x)B~J(x, y)Q~Q~)~m, 

According to  (2.1) the  Euler  sys tem for u can be wri t ten  as 

(315) f D,/(., u, Du)" Dvdx -~ fg(', u, Du)'qJdx 
t) t) 

for all ~ e / ~ / . ~  (3 L~(~Q~ R ~) with right-hand-side g: ~ •  ~ • ~v satisfying the  

growth condit ion 

(3.6) [g@, y, Q)i<r IDul~-~ ) 

Let  v e H~,p(B~/~(Y.)~ R ~) 4enote the solution of 

f ~ 
Jo(1)w) dx ~ rain in u + HI,,(B~/2@), R~). 

(3.2) 

an4 arr ive at  
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Since u is bounded a simple t ransformation argument  gives v e L~~ RN); 

moreover v is a solution of 

f ~ 

(3.7) De/o(Dv)'DqJ = O, cf e HI,'(B~/~(x), R~v) . 
~#2( ~) 

Combining (3.5) with (3.7) and choosing ~ : =  u -  v we arrive at  

( (D~/o(Du)- D~/~ (Du-- Dr)~x = 

= t[De/o(Du)-- Dp/(., u, Du)J.(Du-- Dv)dx--  t g(. , u, Du).(u--  7)) d x  . 

The integral on the left-hand-side is controlled with the help of [ ~  1~], Lemma 3.2~ 

estimate (3.2); this gives using (3.6): 

(3.8) e, ~ I D u -  Dvl~dx< ~ [De]o(Du)- D~](., u, Du)]. ( D u -  Dv)dx -~ 
Bq~(~,) .Br/..(X,) 

c~ f(ID l'+ ID~l'-~)'lu - vldx=:X + § I I .  

~or  the integral I I  we observe the following estimates: 

f ll)ul~Iu-vldx< ID~l'dx ~:' ]~ vl,:(~-~)dx} ~-~:' {f } ( :  
{ f [" /" "l :t-~/, dx [u IDu$~ dx r~ ]Du[~ dx 

(using the fact  tha t  obviously .E~(v, B~/~(2))<~cTE~(u, B~/~(~)) by the minimali ty  of 

the function v). 

According to Young's inequali ty we have for arbi t rary ~ > 0 

dx•es v ]Du[~dx v 1-~ lu dxj < 

r~ ]Du 

I f  we choose ~ = r, the second integral on the right-hand-side is absorbed in tho 

left-hand-side of (3.8) provided we require r<clo for a suitable positive constant.  

This shows 

(3.9) [ 
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Using the boundeduess of the first derivatives of the coefficients on compact subsets 

of ~ x R~, a simple calculation gives for the remaining integral I: 

IIl<el~ f (r -[- iu-- (~)~/~I)IDu?-IlD~-- Dvlax< 

~-" r iU -- (U).~i)'/(v-z)[DuI'dx}; <e,,{~ f l ,~--Dvt ,dx+ ~ f (  + 

inserting this estimate in (3.9) and choosing �9 small enough we deduce: 

f lD--- 
~,/~(~) 

dX 1-~lt f 

~'inally we use the reverse tISlder inequality (3.4) one more time to estimate the 

last integral on the right-hand-side in a standard way. Collecting our results we 

arrive at 

(3.!0) f ,Du-  .Dv,~dx<c~5 [ :  f ( 1  ~ ,Dup)dx] ~ ~,.Dul~ dx 

for a certain positive exponent s depending on p and t. Let us recall that  (3.10) 

is valid for all balls B,@), r < m i n  (Ro/2, clo), ~, e BR.:~(Xo) provided (3.1) is valid with s 

being defined in (3.2). 

With the help of the comparison inequality (3.10) we can now follow the argu- 

ments of [~, tt2]~ proof of Theorem 6.1: 

for 0 < z < 1 / 4  we see 

r247 

~-o : (1 e(u, B,(~)) 
Br 

t tere we have used the Uhlenbeek estimate 

[. 
sup [Dv? < c18 a r ll)vi, dx 

~,,(~) J 

which is an easy consequence of the results obtained in [U] (compare also IF, H2] 
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and [G, M], Theorem 3.1;  in order to apply these references one has to transform 

f ]o(Dw)dx into the functional f]DwI~dx by a suitable coordinate change in the 

domain of definition ~nd in the image space; this is possible since the coefficients of 

f /o (Dw)dx  are eonstar symmetric and elliptic.) ~ex t  we fix T : =  (~v~) ~/~ and 

require in addition to (3.1) 

(3.11) 

~0(~o) 

Cs being defined in Theorem 2A. This gives on account of (2.10) 

r B,(~)) < �89 r B.(~)). 

We apply this result inductively to r~:= �89 k e N, and get 

O(u,  B (~.)) <<. 2 -k qT)(u, BR~ <~ 2-k7: "/" C_,-~ ~ . 

~ow, if 0 < r<.<Ro/2 is given then the last inequality immediately implies the 

growth estimate 

~2 r / - (log 2)/log v 

r B.(2)) < T~/.2 t~J 

l~ecalling 1Viorrey's Dirichlet-Growth-Theorem (see [1~Io]) we have shown: 

(3.12) 

I log 2 
u e C~176 R ~ ' ) ,  ~ : . . . . .  

log T 
and 

l u ( x ) - - u ( y ) I < c o n s t ( R o ) [ X - - y l  ~ , x, yeBR~ 

for some constant which also depends on the radius. All our calculations are justified 

under the assumptions (3.1) and (3.11). 

According to (3.12) we see that  all points with small scaled p-energy belong to 

the regular set Reg (u). Finally we show that for ~ e Reg (u) the condition 

/ '  

(3.13) l imin f0  ~-~ [ [Dul~dx = 0 

holds which gives the final result: 

Reg (u) = {x 
B~(~) 
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e Reg (~) means by  4efinition 

osa u : =  ess sup  {lu(x) - -  u (y) l :  x, y e B~(2)} ~ 0 .  

Proceeding as before we intro4uce the  solution v of the frozen problem 

f ]o(Dw) dx ~ rain in u +/tl,~(BH~(~), R N) 

which satisfies (3.8). Bu t  now the  integrals I, I I  are es t imated as follows: 

/ 
2 ; : - ~  (r  

# IDu?dx :#~-~' f [Du Dv[~dx} 
t/3"/*(~) B~I~(~ ) ~1~(~) /~1~(~) 

for a rb i t ra ry  2, # > O. Since the  coefficients of f ]o(Dw)dx are eonstsnt ,  sym- 
B,#(~,) 

metric  an4 elliptic, we have  by  t ransformst ion  

ose  (u - -  v) < e ~  osc u ,  

an4 the  proper  choice of :l, /~ immedia te ly  implies: 

.Bq~(~) ~'#(x) ~q~(~) 

lgext we use the  Uhlenbeek est imate (~<r /2)  

~Q( ~) ~,1~ :.) ~,I~( ~) 

to get 

Since the  oseiil~tion of u becomes srbi tr~ri ly small if r goes to  0, we c~n ~pply [G], 

I I I ,  Lemm~ 2.1, to  4e4uce:  I~ n--p  < fl< n is given then  

~ )  ~,/~(~) 

for all g < r<r(fl). This proves (3.13). 
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We summarize our results in 

THEOREM 3.1. -- Assume thut  M and F~ are as described in section 1. Then there 

exists e~ > 0, R ~ < l  depending on the dimensions, on M, p and on boundo for the 

coefficients with the following property:  I f  u e H~.~(f2, 7~) is locally F~-minimizing und 

R ~-~ [Du[~dz < e 1 

for some ball Ba(x)cc[2,  R < R ~ ,  then  x e R e g  (u) and we find ~ e  (0, 1), e ( R ) > 0  

depending on absolute data  such tha t  [U(Y)- u(z)] < e ( R ) I y - z ]  ~ on B~/~(x). ~oreover  

l~eg (u) = {x e ~2: l im inf qS(u, B~(x) = O} 
r--c- 0 

and u e C~ (u)) for all fl < 1. 

:RE~AnK. - The l='iemannian version of Theorem A follows directly from the 

preceeding arguments by choosing local coordinates on ~9 in which the p-energy tukes 

the  form f(a~zD~u.Dzu) ~/2dx with smooth elliptic coefficients a ~ .  

The higher regulari ty theorem C can now be derived using the arguments of 

Fusco-t tutchinson [F, H2], Theorem 7.1, but  for later purposes  we need a more 

explicit description of the modulus of continuity of Du near regular points. 

So assume tha t  u ~ H~,~(f2, M) is locally F~-minimizing and tha t  

< 

holds for some ball B~o(Xo) in ~9 with e~ taken  from Theorem 3.1. ~or  0 < fl < 1 

we find a small radius Ro(fl) such tha t  

(3.15) r e(fl, 

is valid for points ~ e BRgd(xo) and radii 0 < r<R<Ro( f l ) .  (Compare the calculations 

after (3.13).) We introduce the quant i ty  

and let v denote the solution of 

D~ dx min 
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in ~he e/ass u + H~,:(B~/:(x), R~). According to [F, H2], Theorem 4.2, v satisfies 

(wi~h ~0 depending on absolute dat~) 

and we get using 

q~(v, B~(~)) < ee6(~'q~(v, B~/~(~)), a ~ (0, /4) ,  

I(Dv)~] ~ f ~ ~ ' " <c.z7 ]Dv] dx<c2s [Dul~ax: 

~I~(~) ~/~(~) 

q~(u, B,.(~)) <c29{q~(v, Bo.(x)) + ,(Dv)~.,'-2 f [Du--Dv]Zdx-~ f ]Dv--Dvl'dx}< 

- -  + [ D u  . + ID. D l d. T 

Using (3.14), (3.15) un4 ~he monotonicity formulu we have 

[(Dv)d/~Ig-2 ~ ca1 ( flDul, dx)l-~/~'<<.(3.15)< 
-BR(~) 

< Ca2(fl){R~(a-~)Ro(fl)-~r Bn.(a)(~))} ~-'-/~ < (2.10), (3.14) <va3(fi)R (~- 1)(~-~) . 

Collecting She estimates we 4educe 

~(u, B~(~))  <c3,(~). 

R (a-~)(~-~) IDu Dvl ~dx + ]Du dxa, 
~1~(~) ~/..(~) 

The quan~iCy ~(v, B~/~(~)) e~n be conCrolled in terms of ~(u, B~.(~)): 

Nex~ we recall inequality (3.10) 

[Du-- Dv]~gx<c~ R ~ (1 + [Pu]~) gx [Dul~gx< 

tr ; [Du l ~ ~x < (3.~5) < e~s(fl)/t~(~- ~) + ~, < 087 
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where we have used the inequality in front of (3.12) to estimate 

{...},<c,R~,. 

Collecting our results we arrive at 

(3.16) ~(~, B~(~))<C,o(~){~.~(~, B~(~)) + ~-"R~~ ~} 

with positive exponents ~ , q .  We finally fix fl such that  ~ - ( f l - - 1 ) q > 0  and 

choose ~ with the property edo(fl)~'~ Then (3.16) rereads 

V(u, B~(~)) < ~V(~7 B~(~)) + c, iR ~o 

a.nd we get by iteration 

~(~, B,(x))<c,~{(r/R)~'~(u, B~(x)) + R ~.} 

for all r<<.R<<.Ro(fl), ~eB~g~(xo) with positive exponents ~3, ~4. Quoting [G], III ,  

Lemma 2.17 we find an exponent ~ ' e  (07 1) such that  

q~(u 7 B,(2)) <<. c,,rV'(R-r'q~(u, B~(s + 1) 

or by the definition of ~0: 

~, ID~- (D~),l,~x<c~,~'(R-,'~(~, B~(~)) + !). (3.17) 

Br(X) 

We choose R ~ Ro(fl) on the right-hand-side of (3.17) and observe 

of(u, B~~ f <~c44 [DuI~dx<<.(assuming Ro(fl)<~Ro/2 and using (2.10)) 

c45Ro(fl) -~' O(u, URd.2(:~)) .~ c, oRo(fl) -~ q)(u, Ba.(xo)) < e4~Ro(fi) -~ e~ 

which finally gives the growth condition 

f ]Du -- (Du),[~ < (~.7 ~0(/~)) const ~ ' .  

~(~) 

Thus D~ is H61der continuous on the ball B,~ with exponent ~ :=  y'/p. Our 

calculations are summarized in the next theorem. 
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THEOtCEN 3.2. -- Suppose t h a t  the  assumpt ions  of Theorem 3.1 are satisfied for 

some ball  B~(x) cc  52. Then  there  are constants  F e (0, 1), b == b(R) > 0 depending 

on absolute  da ta  (as ~, N,  p, the  coefficients and  the  geomet ry  of M, b also depend- 

ing on the  radius R) such t h a t  

Du e C~ R~ ' )  , ]Du(y) -- Du(z)l<~ bty -- zt~ . 

Theorem 3.2 is the  Eucl idean  version of Theorem C. The I~iemannian case is a 

direct  consequence of the  preceeding calculations. 

4. - Opthnal interior partial regularity. 

I n  IF, F] we showed t h a t  for sets M diffeomorphic to  a ball  weak  limits of mi- 

nimizing maps  are again minimizing and  t h a t  the  l imit  poin t  of a sequence of singular 

points  is singular for t he  l imit  function.  Bo th  facts  entered the  dimension reduct ion 

a rgumen t  bu t  un fo r tuna te ly  their  proofs made  use of Caccioppoli 's  inequali ty.  For  

example ,  if Caecioppoli 's  inequal i ty  is valid,  then  it  is t r iv ia l  to  cheek t h a t  Theorem 3.1 

implies the  regular i ty  cri terion 

(4.1) f Iu - -  (u)~Fdz < e~ =>x e !~eg ( u ) .  

B~(x) 

For  general  sets M the  proof  of (4.1) requires more  work:  we have  to m a k e  use 

of the  Ex tens ion  Theorem E,  the  details are given in L e m m a  4.1 below. Ob- 

viously (4.1) is s table  under  weak convergence and  this enables us to  derive the  

following compactness  p r o p e r t y  of a sequence of minimizing maps :  the  weak l imit  

is not  necessary minimizing bu t  nevertheless  of class C 1 up to a set of vanishing 

H--v-me~sure .  Wi th  the  help of this s t a t emen t  it  is then  possible to car ry  out  the  

dimension reduct ion and  to p rove  Theorem B. We  wish to r e m a r k  t h a t  our argu- 

men t s  follow ideas of Sehoen-Uhlenbeck [S, U1], the  case of quadra t ic  obstacle pro- 

blems is t r e a t ed  in [D, F2]. 

I n  order to  avoid  no ta t iona l  difficulties we assume f rom now on: 

(~.2) 
M is a smooth  subset  of R N (as described in section 1) 

and  a~ a = ~ ,  B ~j = ~ ,  

so t h a t  E~(u, 5 2 ) =  F A u ,  52)=f lDul~dw.  The minor  changes which are necessary 

to  handle  the  more  general  funct ional  or the  R iemann ian  case are left to  the  reader.  
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LEZVi2gA 4.1. - Le t  (4.2) hold and  assume t h a t  B > 0 and  u * e  R ~ are given. 

Then there  exist  constants  

e2 = s~(B, n, 3T, p, M) ,  e =- c(n, N, M, p) and  ~ = ~(n, N, M, p) 

with the  following p rope r ty :  I f  u ~HI,~(B~, M) is locally minimizing with 

f " 
B~ 

then u e r176 R~) and lu (x ) -  ~(Y)I < c l x - - y l  ~ on B~I~. ~ 1 / 2  

PnooF.  - According to Theorem 3.1 we know t h a t  the  s t a t ement  of the l emmu is 

correct  if we require 

(4.3) .E~(u, B3/,) < ~ 

for a cer tain s~ ~ s~(n, N, M, p). As usually we use c~, c2, ... to denote  posit ive con- 

s tants  depending only on n, N, M,p .  By Fubini ' s  Theorem there  is a r~dius 

r ~ [3/4, 1] such t h a t  

E~(u, S,)<8E~(u, B~), W~(u, S~)<8W~(u, B~), 

S~ being the  s tandard  sphere of rad ius  r. Recalling Theorem E we find ~ e H~,~(B~, _/~) 

such t h a t  

p rovided  we know 

B y  the  choice of r we have  

E~(u, ,~) W~(u, S~)~ <c lB~ ~ 

and the  smallness condit ion in Theorem E is satisfied if 

(4.4) cl n ~ } ,  ~ ~:q (~1 + y 

Now, since u is minimal  we get 

E~(u,  B~) < E~(~, B~) < Oo(8B~ + 8~-%~) < c J B s  § s -~s~) ~ . 
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We choose s = s(~, N, M,p,  B) to  satisfy v2Bs~.~ 1 ~ 1  and fix e~ according to  (4.4) 

by  set t ing 

s~ < m i n  { (e~-  ~ B - ~ s q (~ ~ + ~ ) ~ ,  (e~- ~ e ~ �89 s~ )  ~'~} . 

Then all our c~lculations are justified, especially .E~,(u, B,)<e~,  ~n4 the  s ta tement  

of the  lemm~ follows f rom (4.3). [] 

The  nex t  temm~ characterizes the  behaviour  of weak limits of minimizing maps:  

LEMMA 4.2. -- Under  the  hypothesis  (4.2) let  (u , )cH~,~(B~,M) denote a se- 

quence of locally minimizing maps such t h a t  u,--> u weakly in HI,~(B~, R N) for 

some funct ion u in this space. Then there  is a closed (relative to  B~) subset X of B~ 

such t ha t  H'-~(X) = 0 and the  p roper ty  tha t  u is locally H61der continuous on B ~ Z .  

Hie r R x) and uniform con- l~orcover, we have  strong convergence ~--> u in ~,~ 

vergence on compact  subsets of B ~ Z .  

REMARK. -- I t  is t r ivial  to show th a t  the  limit funct ion u is locally minimizing on 

the regular set B , ~ Z  but  we do not  know if u is also locally minimizing on the  whole 

ball (compare [S, U1], remark  before Lem m a  5.2). 

I n - - .  P~ooF. - We have sup il u~llL~(~,)--. B < oo and after  passing to a subsequence 

we m a y  assume: u~-> u a.e. and in Z~(B~, R ~) so t h a t  ~ belongs to  the  sp~ce 

HI.~(B~, M). Let  us set Z : ~  B ~ R e g  (u) and consider a point  xo in B~/2 with the  

property 

(4.5) 

B,.(~o) 

for a ball B,(xo)c B1, s2:-s2(B) being 4efine4 in Lcmma 4.1. 

and (4.5) imply 

Xu,- (u,),?dx < ~ (4.6) 
I ]  

The Lv-convergence 

for i sufficiently large. On the  other  hand  we have by  (2.10) assuming r < 1 / 2 :  

Br(xo) ~1 

Combining this inequal i ty  with (4.6) we see t h a t  the  scaled functions U~(z):=- 

: z  ui(xodz rz), z e B1, satisfy the  hypothesis  of Lemma 4.1 (with s~ being defined 

for BC~2 ~-~ instead of B). Thus the  functions u~ are tt61der continuous on B~/~(x0) 
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with  H61der exponent  and Hblder  constant  independent  of the  index i. F r o m  

Arcela 's  Theorem we immedia te ly  get  ~ e C~ R ~) ~nd uniform convergence 

u~-~ ~ on B~/~(xo). Similiar calculations give: 

I f  l im inf ~ lu--(u)~l~dx ~ 0 for some point  y in B~, t hen  u is H61der con- 

t inuous in a neighborhood of y. 

Thus we h s v e  shown: 

so t h a t  H~-~(Z) = 0. ~Ve cover X ~ B~/~ with balls B ~ : :  B~,(x~) having  t h e  p rope r ty  

i ~ 
r ~ - ~ <  e for some posi t ive e. We let  U : =  ~ B~. Using the  monoton ic i ty  for- 

i= I  ~=I 

mula  we can control  the  energy of ~. on the  set U: 

f lDut d x < ~  fIDul dx<~ fC2 r? IDu[ dx<~CB2 ~P ] P  2 n--p g 2 

i = 1  
U ~ ~ 

I n  order to  show Z~-convcrgcnee Du~-+Du on B~/2~U we m a k e  use of the  Eulcr  

sys tem Theorem 2.1: 

j[ Du~I~-~Duj.D~'dx--fR(., %,Duj).~dx, ~ef/,,~n L~;  

b y  formula  (2.1) the  r ight-hand-side grows of order p in the  der ivat ive  Duj, the  

growth cons tant  being independent  of j. Using the  sys tem for j and  k, insert ing the  

t es t  vector  ~b : =  ~ ( u j - -  u,) for ~ e C~o(B~, [0, 1]), ~ =- 1 on B~,~U, spt  ~ n X ---- 0, 

subt rac t ion  of the  results gives af ter  a short  calculation: 

fq~lDu~- Dul:I~dx<const (% D~, ]]DuT~]l~, []Du~]l~ ) sup lu j - -  ukl 
sDt(~) 

for a cons tant  which can be controlled independent  of j and k. 

Combining our results we see t h a t  (Duj) is a Cauchy sequence in L~(B~/~) so t h a t  

us -+ u in H~,~(B~/~, R~). A tr iviM modification of the  a rguments  shows H~,~(B~, RN) - 
convergence for r < 1. [] 

I n  the  proof  of the  nex t  l emma  we make  use of the  following fact :  

PROPOSITION. -- Le t  (4.2) hold and assume t h a t  (w~) is a sequence of local mini- 

mizers in H~,~(B1, M) converging strongly in H~,~IB R ~) %o a funct ion w. 
foe ~ 1 ' 
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(i) I f  r  r ~ ~ IDwpdx< e~ for some ball  Bdy ) in B~ (with s~ 
s 

t aken  f rom Theorem 3.1), r h e a  there  exist  absolute constunts  ~, ~(r) such t h a t  

lw(x)- w(x')[ < ~ I x -  x't ~ 

(ii) Reg  (w) = {y ~ B~: l im  ~((o, B~(y)) = 0}. 
~'----> 0 

on B~/~(y). 

P~oo~.  - (i) is a direct consequence of Theorem 3.1 ~nd the  local Z~-convergence 

Dw~ --> Dw. 

(if) ~$ remains  to  show t h a t  for regular  points  y the  scaled p -energy  vanishes 

of one shrinks the  radius  of the  ball.  For  a fixed tes t  vec tor  ~ e H ~,~ n L~(B~, R ~) 

wi th  compac t  suppor t  we have  on account  of the  Euler  sys tem Theorem 2.1 

f l Dw ~[~-~ Dw , . D~ dx < c f ~l~ I ~x 
B~ Bj. 

with C independent  of i;  b y  s t rong convergence this inequal i ty  is val id for the  l imit  

funct ion w and we can proceed as in the  proof of Theorem 3.1. [] 

I n  a nex t  step we use L e m m a  4.2 to produce homogeneous  blow up  limits. For  

B >  0 we let  HB denote  the  H~,~-closure of all locally E~-minimizing maps  

u ~ HI,~(B~, M) with E~(u, B~)<B. 

LEi~L~A 4.3. - Le t  (4.2) hold and  suppose t h a t  u s  H s ,  xo ~ B~/2 and  a sequence 

ri--> 0 gre given. Then  there  is ~ subsequence (r'~) such thu t  the  scaled functions 

u~(x) : =  u(x o ~- r'~x), x ~ B~, converge weakly  to  some uo in H s .  The l imit  uo is radial ly  

independent  and  for the  singulgr set of uo we have  H~-~(Xo) ~ 0. The convergence 

us -~  us is uni form on compgct  subsets of B ~ X o  ~nd u~-~uo in H~;~(B~, Rs). 

P~ooF.  - We  first observe t h a t  for funct ions in the  class HB the monotonic i ty  

fo rmula  (2.10) is valid.  Therefore  

B~(u~, B,) - r  B~,(Xo)) < C ~ ( u ,  B~/~(Xo)) < C~2~-~E~(u, B1)< C~2~-~B 

and  we m a y  assume (replacing (ri) b y  a subsequence if necessary) t h a t  the  scaled 

funct ions u, have  a weak l imit  Uo in HI,~(B1, R~). 

Let  U j denote  a sequence of local minimizers such t h a t  E~(UJ, B1)<B and 

UJ-> u in HI,'(B1, R-v). ~Ve ~bbrevi~te  U~(z) :~- U~(xo ~ - r~z); for i fixed obviously 

~ (  U~, B 1) < C22~-~B 
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and UI is locally E~(., B~)-minimizing. l~inally, for each integer i we fix i(i) such t h a t  

iI ~7p)- u, l l ~ , . ~ < ] / i  �9 

This gives U~(~)-~ uo weakly in H~.~(B~, R N) and we m a y  apply Lemma 4.2 to see 

strong convergence in Hllo~ so t h a t  especially u~-~ uo strongly in u l , ~ n  R~). We 
$A- 1o0 ~ 1 ,  

show uniform convergence u~ ~ uo on compact  subsets of B~\Z0 .  Suppose tha t  y 

is regular for u0; then  according to the  Proposi t ion r  B~(y))< e~ for a small 

radius r and Du~-~ Duo in Z~o o gives the  same inequal i ty  for u~ provided i is large 

enough. We recall t ha t  u~ is the  strong limit of the sequence (U~)j~ of minimizers 

U~ so t h a t  by  par t  (i) of the Proposi t ion 

[u~(x) - u~(z)] < ~ ] x -  zl ~ 

for points x, z in B~/~(y) and i sufficiently large. Quoting Arcela's Theorem we arrive 

at  u~-+ u0 uniformly on B~l~(y ). 

I t  remains to  show tha t  uo is homogeneous of degree zero: f rom the  proof 

o f [F ,  H2], Lemma 8.2, we infer the  following strong version of (2.10): if 

w e H',~(B~, 2g) is locally minimizing, then  

i , s  

t > s ,  

(as already remarked the  proof in IF, HP] extends to obstacle problems). Since % 

is the  strong l imit  of minimizers the formula is valid for uo. Le t  L : =  lim ~(u, B~(xo)) ; 
then  we have  for t > 0: t-~o 

~(uo, Bt) = t~-~lim f IDu~]~dx -~ l im qs(u, Bt,~(xo)) --- Z 
i--.> c o  i - +  c o  

B ~  

and D, uo-~ 0 follows f rom the above formula.  [] 

We are now in the  position to  prove Theorem ]3: since the  arguments  appear  

in IS, U1] in a slightly different form we restrict  ourselves to  a 

S~CETC~ OF Tm~ PgooF oF T~E0gE~ B. - For  simplicity we assume t h a t  (4.2) 

is t rue  and t h a t  u is a local minimizer in tt1.~(B1, _M). We consider two cases: 

Case 1: n <p  + 1. Le t  Z denote the singular set of u and assume Y. gy~-+O 
for a sequence of singular points, x~:----yJ(4[y,I ) is singular for u~(z):= u(4[y~[z), 

z~B~7 and after  passing to  subsequences we m a y  assume x~-->x, Ixi-~ 1/4, and 

u~ -> uo for some funct ion uo having the  properties described in Lemma 4.3. x is not  

in the singular set Xo of uo since otherwise O-~ c Zo and therefore HI(Zo) ~ 0 contra- 

dicting H~-~(Zo) _~ 0. Bu t  x e l~eg (uo) implies l im qS(uo, Bt(x)) = 0 and using the  
b-~0 
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strong convergence Du~--> Duo we can arrange r B~(m~))< e~ for small radii r 

and i large enough. Thus x~ e Reg (u~). 

Case 2: n > p + l .  We assume tha t  H~,(X)>O for some s e [ 0 ,  n - - [ p ] )  (for 

definition of the  measure H~ see [Fe], 2.10.2) and tha t  the origin is a singular poin~ 

of u with the  proper ty  

0"~(0, H~ [ X) : =  l im supr-"H~(B~(O) ~ X) > O. 
~'--> 0 

Blowing up at  0 and using Lemma 4.3 we find a r~dially independent  funct ion Uo 

with singular set s and 

n:(_ro n B~(o)) > o .  

There are two possibilities : either we have s < 0 or there exists a point  xl e S~ -~ (~ Xo 

with 

0"~(~, ~ L ~o) > o .  

Blowing up uo at  xl-~ (1, 0, ..., 0) (after a coordinate t ransformation) we find a 

radially independent  map u~ with singular set Z~, D~u~-~ 0 and 

Hs n B~(0)) > 0 .  

I f  we repeat  this procedure m times we find maps ul, ...~ u~. such tha t  u j l ~ e H  ~ 

for a suitable B ~ O~ D ~ u j :  D u ~ :  O~ ~ ~ 1, ...~ j~ j -~ 1~ ..., m and 

H ~ ( ~  n B~(0)) > 0 .  

We can r e p e ~  this a rgument  unti l  we have s -  m < 0 .  I n  order to construc~ um 

we need s -  m ~- 1 > 0. This implies m ~< n -  [p]. For  m = n -  [p] it would follow 

z~  ~ R o - ~  • 2 ~ ,  H :  - (~-~ ' ' (2~  n BT(O)) > o 

and in conclusion H~-E~(Z~) : c~ contradict ing H~-'(X~) - -  0 (on account  of Lem- 

ma 4.3). Thus m • n - -  [ p ] - -  1 and therefore s < m < n - -  [ p ] -  1. This shows: 

Ht(X) = 0 for ~ll t > n -- [p] --  1 <:~ H - -  dim (X)< n -- [p] --  1 .  [] 

We finish this section with the 

P~ooF oF T ~ o ~ E ~  D. - For  simplicity we assume (4.2) and consider a local 

E~-minimizer u e HI,'(B1, M)  such tha t  0 e Sing (u), bu t  

lira ]x~f fDu(x~)l = ~o 
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for a sequence (x~) converging to  0. We  let  y~:----x,/(2[x~[) and u~(z ) : :  ~(2Ix~[z), 

z e B~. Then  the  functions u~ are locally minimizing and  

E~(u,, B~) -~ #(u ,  B~I~,I(0)) < C~qb(u, B~(0)) 

if BR(0) denotes u fixed b~ll such t h a t  2]x~] <R.  Quoting L e m m a  4.3 we can ~rrange:  

u~-~ u0 weakly  in H~,~(B~, R~v), strongly in ~ l , ~ n  R ~) and  uni formly  on compact  
~ l o c ~ "  1 ,  

subsets of B ~ Z o  where Zo denotes the  singular set  of the  l imit  funct ion Uo. Consider 

the  point  y : :  l imy~;  since H~(Xo)~ 0 (recall n - - l ~ < p ~ )  y belongs to  the  

regular  set of uo and  f rom the  Proposi t ion we infer:  

l ira ~b(u0, B,(y)) ----- O, 
~'--> 0 

hence:  ~)(u~, B~(y)) < e~ for a small  ball  B~(y) and i large enough. Here  e~ is defined 

in Theorem 3.1. 5low we app ly  Theorem 3.2 to see t h a t  the  sequence (Du~) is 

uni formly  H51der cont inuous on B~ld(y), and b y  Arzel~'s Theorem we get ,Du~-+ Duo 

on B,/4(y), especially: Du~(y~) --> Duo(y) contradic t ing the  choice of (x~). [] 

Note added in proo]. - After having finished the manuscript the author was informed 
that similar results have been obtained independently by HARI)'r-LIN (Mappings minimizing 
the LV-norm o] the gradient, Comm. Pure Appl. Math,, 11 (1987), 555-588) and LVCKHAUS 
(Partial HSlder continuity ]or minima o] certain energies among maps into a Riemannian 
mani]old, Ind. Univ. Math. J., 37, no. 2 (1988)). HAI~D~-LIz~ discuss the case of targets 
without boundary, the work of Luekhaus also includes the obstacle problem. 
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