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p-Harmonic Obstacle Problems (+).
PArT I: Partial Regularity Theory.

MArTIN Fuchs

Summary. — We develop an inlerior partial regularity theory for vector valued Sobolev functions
which locally minimize degenerate variational iniegrals wnder the additional side condition
that all comparison maps take their values in the closure of a smooth region of the target space.
Our resulls apply to the case of p-energy minimizing mappings X — ¥ between Rieman-
nian manifolds including target manifolds Y with non-void boundary.

0. — Introduction.

In this paper we investigate the partial regularity properties of vector valued
functions #: 2 - RY defined on some n-dimensional region £ which locally mi-
nimize variational integrals of the form

(0.1) B,(u, Q) := f |Du?
Q

under a smooth gide eondition in the image space. Here p €[2, %] is a fixed real
number and the side condition is formulated as Im (#) c M, where we consider the
following three different cases:

a) M is a smooth bounded open subset of Euclidean space R¥ or

b) a smooth bounded subdomain of a k-dimensional submanifold ¥ of R¥
such that M c Int (Y) or

¢) a compact submanifold of R¥.

In @) and b) we are confronted with an obstacle problem, ¢) is the extension of the
harmonic mapping problem studied by ScHOEN-UHLENBECK in [S, Ul, 2] to the
p-harmonic case which we included since the partial regularity theory in the un-
congtrained Riemannian case ¢) follows from our results coneerning obstacle problems
by simplification of the arguments.

(*) Entrata in Redazione il 29 luglio 1988.
Indirizzo dell’A.: Mathematisches Institut der Universitit Diisseldorf, UniversititsstraBe 1,
D-4000 Diisseldort.
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Introducing the Sobolev space
auw(Q, M) := {ve H»(Q, R¥): v(w) e M a.e. on 2}

our main results (see 4, B, C, D in section 1) can be summarized as follows:

If we Hw(Q, M) has the property E,(u, Q)<BE,(v, 2) for all ve Hw(Q, M)
such that 8pt (u — @) cC 2, then there is a closed subset X of Q such that uw € CHE\ ) and

j H—dim(X)<n—[pl—1 fora>p-+1,

(0.2) 2 is discrete for n—1<p<m,

2=¢ for p =mn.

(The conformally invariant case p == % i3 already treated in [Go].)

In a series of papers [D], [D, F1, 2], [F1-F6] (compare also [F, W] and [W])
we proved (0.2) for quadratic obstacle problems (i.e. p = 2) but none of the methods
used there extend to exponents p > 2: For example in case a) a minimizer
ue H1»(Q, M) is a weak solution of a system of the type (see Theorem 2.1)

L(u) := — D(|Dul*—*Du) = E(-, u, Du)

with a right-hand-side R supported on the coincidence set [ € 0M] and growing
of order p in Du. Obviously the differential operator L is linear only for p = 2 and
our previous proofs used

L(w?) — L(u) in the sense of distributions if
u* — 4 weakly in H%-? or
L{u?) = (L(u))¢ for mollifications.

Since both statements fail to hold for p > 2 we had to develop completely new
arguments.

The first approach to p-harmonic obstacle problems is due to N. Fusco and the
author [F, F] but restricted to a very special case: Assuming that M is diffeomorphic
to a ball we could show (using standard arguments from [G]) that local minimizers
satisfy Caccioppoli’s inequality which gives Due L{ for some q>p. Then a proper
extension of the ideas in [F, H1, 2] and [G, M] proves (0.2) for this simple situation.
Moreover we obtained (0.2) for a larger class of functionals than the p-energy intro-
duced in (0.1). But for general nonconvex sets M it is impossible to get Caccioppoli’s
inequality along the known lines. The heart of our new partial regularity proof is
an extension theorem

Hur(8>1, M) —> Hu»(B», M)
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for maps defined on the sphere S»~* with values in #/. In Theorem F below we show
that if the p-energy and the mean oscillation of a function v € H-#(8+1, M) are small
enough then v can be extended to a function 7 € Ht»(B=», M) satistying proper decay
estimates. Since this construction is rather complicated it will be given in a sepa-
rate paper (part I1). ‘With the help of Theorem E we construct suitable comparison
functions to get a substitute for Oaccioppoli’s inequality (~>hybrid inequality in

Theorem 2.3):

If we H»wW(Q, M) is locally minimizing and if for some ball f |Dufr<e
(= a small absolute constant), then Br(@)

[Du]ﬁ<-21— Jc [Duf? - Cr—» ][ [u — (u),]? .

Bya(e) Bi(z) Bl(z)

Combining this result with the monotonicity formula for the scaled p-energy (~ Theo-
rem 2.4) we can prove a partial higher integrability theorem saying that Dy € Lo(B,,(x))
£0T some ¢ > p if the scaled p-energy on the ball B,(#) is small enough.

In section 3 of the paper we show how to combine this information with the
Euler system to get the following partial regularity criterion:

(0.3) r? 4 |Dul?<¢ =~u is continuous near z .
By ()

Here and before ¢ denotes a small positive constant depending only on dimensions
and the geometry of M. From (0.3) we immediately deduce (— Theorem A)

H—(Z) = 0

for the singular set X of the minimizer #.
In order to get the better estimate (0.2) for X we replace (0.3) by a smallness
condition on the mean oscillation:

(0.4) JC v —(u),ff<e >z NT.
B,(2)

For unconstrained problems (or obstacle problems with convex set M) (0.4) trivially
follows from (0.3) using Caccioppoli’s inequality, here we have to use Theorem E
again. Clearly (0.4) is stable under weak convergence and we deduce the following
compactness property of sequences (w;) c H>*(2, M) of local F,-minjmizers: '

If w;— uy weakly in HY»(Q, R¥), then u, is regular up to o closad set X, with
Hr-»(%,) = 0.
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This enables us to carry out the standard dimension reduction (see [Fe], [8], [8, U1])
by the way proving (0.2); the details are given in section 4.

A final result deals with the case # — 1<p << n: following ideas of Giusti [Gi]
we show in Theorem D below that near a singular point z, a minimizer locally behaves
like (z— ®)/|® — @o]-

‘We wish to remark that our theorems may be useful for the study of p-harmonic
problems as they occur for example in [B, C, L] and [Wh]; moreover they may apply
to constrained problems in nonlinear elasticity. Seme applications (homotopy of
maps in the Sobolev class Hb7(L, ), free boundary value problems) are contained
in part II, section 3, (compare also [F6]) and in part III we combine our previous
results with a boundary regularity theorem to prove the existence of « small»
p-harmonic maps between Riemannian manifolds.

1. — Notations and results.

In this section we fix our assumptions and give a survey of the main theorems.
In the Riemannien case let £ denote a bounded open subset of a n-dimensional
Riemannian manifold, n>2. Y*#is a k-dimensional submanifold of Euclidean space
RY containing a bounded open region M with the following properties:

[ 9M is a nonvoid C® submanifold of ¥,

the closure of M is compactly contained in Int (Y).

Since M is also a closed subset of R¥ the space
Hu(Q, M) := {ue Hw»(Q, RY): u(w) e M for Hralmost e Q3
is a weakly closed subelass of Hu»({2, R¥). Here p is a fixed real number in the in-

terval [2, »] and H» stands for the n-dimensional Hausdorff measure on 2.
For functions # e HY({2, R¥) we introduce the p-energy (on £)

(1.1) B (u, Q) = f | Duj? dH»,
Q2

and » € H1»(Q, M) is locally H,-minimizing under the side condition Im (u)c M iff
(1.2} By(u, Q) < By(v, £2)
holds for all functions » € H2(Q, M) such that spt (u— »)cc Q. Condition (1.2)

states that u has least energy among all functions agreeing with « outside some
compact subset of 2 and respecting the obstacle Y\ M.
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In the Buclidean case Q is a bounded subdomain of R», M c R¥ denotes a bounded
smooth region. Suppose further that for «, f =1, ...,n, 4,j =1, .., N we are given
functions

dup=aps: 2 ~R, Bii=Bi:QxR"—+R
of class (! satisfying the ellipticity condition

@ap(®) Nanp > pholn|?
Bii(m, y)E1E > py |2

(1.3) , xef, neR", y,feRY,

for some positive constant yx,. Here and. in the sequel we use standard summation
convention: greek (latin) indices repeated twice are summed from 1 to n(N).

The definition of the space H-?(Q, M) is as above and for functions in this space
we introduece the splitting functional :

(1.4) Fo(u, Q) 1= f (@apBH(+, w) Dot Dpui)ol2 do .
o

The notation of a F,-minimizing function in the eclass HY»(Q, M) is completely
analogous to (1.2).
Finally we define the regular and singular set of u e HL»(£2, RY)

Reg (u) := {we 2: w is continuous in a neighborhood of #} ,

Sing (u) := N\ Reg (u) .

Obviously the regular set is open and the following theorems give informations on
the size of Sing (w) if % is locally minimizing in Hv»(Q, M).

THEOREM A (first estimate of the singular set). ~ Suppose that uwe Hu2(Q, M) is
locally FH,-or F,-minimizing. Then

Sing (u) — {x e @:limintr— [ [Dup > 0} ,

=0 B
especially H**(Sing (u)) = 0 and Sing (u) = § for p = n.

THEOREM B (optimal interior regularity). — Under the assumptions of A we have
(i) H-dim (Sing (u))<n— [p]—1 if n>p -1,

(ii) Sing (%) is discrete for n— 1<p < u.

([p]: := max {{e N: I<p})
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TaEoREM C (kigher reqularity). — Local E,- or F,-minimizers u € H»»(Q, M) are
of clags C%* on the regular set for some « < 1; in the quadratic case p = 2 we have
uw € H>*(Reg (u)) for all finite ¢.

THEOREM D (behaviour af isolated singularities). — Let p € [n — 1, n) and suppose
that » e HL(Q, M) is locally E,- or F,-minimizing. Then, if z,€ Q is a singular
point we have

lim sup |Du{x)

2>

r— 2| < oo

CoMMENTS. — 1) Our theorems generalize the results obtained in the quadratic
case p = 2 for which we refer the reader to the papers [D], [D, F1, 2], [F1-5] and
[F, W]. But as already mentioned in the introduction none of the methods developed
for p = 2 extends to larger exponents.

2) For unconstrained quadratic problems A-D can be found in [G, Gi, 2]
and [S, U1, 2]. A regularity theory for free #,-minimizers is due to Fusco-HUTCHIN-
soN [F, H2] and GraQuiNTA-MoDICA [GM].

3) In the Riemannian ease the regularity properties of free F,-minimizers
(i.e. of local H,(-, 2)-minima in the class H»(£2, Z) for some compact submanifold Z
of R¥) are not well analyzed. An inspection of our arguments however shows (in
the absence of the obstacle all ecalculations become much easier):

THEOREM. ~ Let £2 denote an open part of some n-dimensional manifold and
suppose that e HL2(0, Z) is locally F,-minimizing. Then

| H— dim (Sing (w))<n— [p]—1if n>p 41 and

i
| Sing (u) is diserete for n —1<p <.

The compactness of Z can be replaced by the condition that the minimizer takes
its values in a bounded subset of Z so that we are in the situation studied by ScHOEN-
UnienNBECK {8, Ul, 2].

4) In [D, F2] and [F2] we extended the boundary regularity theorems of [J, M]
and [8, U2] t¢ quadratic obstacle problems. For general p > 2 an analogous result
is also frue but since the details are rather complicated we shall give a proof of
boundary regularity in a separate Part IIL.

5) In the Buclidean case and for sets M diffeomorphic to the N-dimensional
ball we can improve Theorem B by showing

H — dim (Sing (u))<n—[p + ] —1

for certain positive ¢ depending on abgolute data. The proof of this fact is based on
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a Cacecioppoli inequality which holds for the restricted class of obstacles. The details
can be found in the joint paper [F, F] but the techniques outlined there do not carry
over to general sets M.

6) The following simple example shows that singularities are natural in the
context of obstacle problems: Assume p <<# and let

Q:=BY0), M:={yeR:i<lyl<2}, ulx):=a/lw.
Since u, is in the space H-»(Q, M) the problem
E,(-, 2) -»min in Hu-2(Q, })

for boundary values u, has at least one solution w with Sing (u)s= @ by the No
Retraction Theorem. In the special case n = 3, p = 2 we infer from the theorems
in [D, F2] that the singularities of % form a finite subset of Q.

In connection with this example we mention the everywhere regularity theo-
rems obtained in [F3, 4], [F, W] and [W] under reasonable restrictions on the
geometry of M. In a forthcoming paper we shall give similar results for the p-case.

7) Once having shown (partial) regularity theorems for obstacle problems one
should try to describe the topological and analytical properties of the coincidence
set (at least for simple geometries) as it is done for p = 2 and ¥ = 1 in [A, C], [Fr]
and [K, 8]. The paper {F7] contains some first results in this direction.

2. — Background material.

For obstacle problems with convex set M the minimum property can be trans-
formed in a variational inequality using the fact that « -+ ¢(v — ») is admissible for
0<?<1 if % is & minimum point and » denotes any function having boundary val-
ues # and respecting the obstacle. For general sets M it is not obvious how to linear-
ize the minimum property. This problem was solved for the first time in [F1] and
in [D], [D, F2], [F2-4] we improved the technique of linearization. Here we present
the final version for p-harmonic obstacle problems.

The second part of this section contains the basic Extension Theorem E which
is used for the proof of the hybrid inequality.

Let us start with the Euler system for local minimizers. First we analyze the
Euclidean case and introduce some

Norartons. — Since 9 is smooth the distance function d(z) := dist (¢, 0.M) is
regular for z € M near 0M; by negative reflection we extend d to a smooth functicn
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on 2 tubular neighborhood U of 0. M and define the vector fields
v(z) 1= grad d(z), o(,2) :== Bz, 2)(»(2))

for » € 2 and 2z U, B~* denoting the inverse of (B¥),_, .., On ¢M v is just the in-
terior unit normal vector field.

THEOREM 2.1. — Assume that » e Hu»(Q, M) is locally F,-minimizing where the
functional F, is defined in (1.4) but now we allow coefficients @as = ap.: @ x R¥ — R
of clags C* satisfying (1.3). Then there exists & Lebesgue measurable density funec-
tion 6: Q — [0, 1] such that for all test vectors ¢ € (3(Q, R¥) the following equa-
tion holds:

(2.1) fp“( "y Uy Du)Agﬁ(ﬁ u) Do Dpg? dw
Q

v(u) @

b, A (. i ol —
+f 5 a(-y w, Du)Dp A( -, w) Dati’ Dpul@t da f ] o) oy W)

2 [u€dM]

pa(-, u, Du):

; o AT o
-{Afx’ﬂ(», ) Daw Dp(v( -, u)) + ED,,IAM(-, ) Daww® Dguivl(-, u)}dw,

and the funetion {...} is non negative on [u € 9M]. Here we abbreviated: [u € 0.M]:=
= {we Q: uw)e oM} and

Ay y) 1= Gap(m, y) Bi(wy y),  olw, 4, Q) 1= (A¥(7, 1)@, Q%)
PrOOF., —~ From (1.3) we infer
(@) vim,2) >0, wel, zel,
so that for 5 € C%(R), >0, and small positive ¢ the variation
we:=u + tyhe{d(u))v(-, u)
is admissible. Here he: [0, 0o) —[0,1] is a fixed smooth function with ke(s) =1

for 0<s<sg, hy(s) = 0 for s>2¢ and h;<0.
The minimality of » gives

lim —tl- {Folusy Q) — Fylu, 2)} >0

=0+

and by the Riesz Representation Theorem we find a Radon measure >0 on ]
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such that

(2.2) fpa,(-, u, Da) Als(-, u)-Doc%i_Dﬁ('ﬂhs(d(u))U(', u)f)dm 4+

Q

—l—f 22-) a(*, %y Du) Dp Ap( -, w) Daw’ Dguinhe(d(w))v(-, w)ide = |y di.
&2

Q2

Clearly 1 is independent of the parameter ¢ (for e# ¢ use the variation w -+
-+ tn[he(d(u)) — h_(d(w))]v(-, ) which is admissible for || <<1). In order to get
a bound for 4 we fix >0 and pass to the limit ¢ — 0 in (2.2). The first integral on
the left-hand-side of (2.2) splits into three parts for which we get:

f pa(-, u, Du) A%(+, u) Dy Dyhe(d()) (-, w)! dw —>
2
- f Pa(-, u, DY ang(-, w) BY(-, u)(B-*(+, u)»(u))? Daw Dyry dor =
[ucdM]
= fpa(-, uy Du)asp(+, w)vi(u)Ds w Donde = 0

[uedM]
since »(u)! Do’ = Dy(d(u)) = 0 on the set [ue dM],
fpa(-, uy, Du) A+, u)Dau"Dﬁ(he(d(u))) (-, u)de =
’ = [pa(-, u, DuYR/(@(w)) aus(, W) B, w)o(-, u) D Do dowyy =
0

=fpa( *y Uy Du) b (A(w)) naxs( -, w) Dawivi Deuivide <0,
Q

e—>0

[pa(-, u, Duy 43y, ) D @) Do, w)’) s —>
Q

- fp“('y U, Du)AZjﬁ(" %)Da%inDﬁ(v(', 'u')]) dw .
[ued M]

Combining these results with (2.2) the Radon Nikodym Theorem gives the existence
of a density function §: Q — [0, 1] such that A can be written as

(23) A= YueomBpa(:, Du){Agﬁ('7 ) Do’ Dg(v(+, w)?) +
+ 3§D, A%+, u) Daw Dguiv(-, u)i} | L~.

Especially the expression {...} is non negative on [« € 9M] and formula (2.3) shows
that (2.2) is also valid for e H» N L=(Q).
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Congider now a vector field 7: R¥ — R¥ gupported in a small ball centered at
oM with the property T:» = 0. If @(s,2) denotes the flow of T then v,;:=
1= @(tnhs(d(u)), u) is admissible for # € C}(£2) and f| small. From the minimality
of u we infer

{2.4) fpa(“, wy, Du) As( -, u)DaufDﬁ(nhe(d(u)) Tf(u))dm -

2

+

2o I3

o+, uy Du) Dy A( -, w) Dot Dpuinhe(d(u)) Tu)do = 0.
&

Finally we cover oM with small balls B, = B(y:), yx€ oM, k =1, ..., L, such
that Bya(y,) cc U and choose a partition of the unity {g,} with the properties

L L
Spt ((Pk) cC BzR(yk) 9 Z (pk = 1 on U Bk D aM .

k=1 k=1

Let Ty, ..., Try— denote vector fields such that
spo (Tk,i) cC Bap(ys) Tk,i' Tk,j == 52‘,,- y Tlc,z"V = 0 on By(yz) -

For ke {1, ..., L} fixed we write ¢, T'; instead of g;, T},;. A test vector y € Ci(2, RY)
has the decomposition

N—-1

pu)yp = nu(-, w) + EﬁiTi(“)
i=1

with coefficients

l n = g(u)p-v(u)| (w(u)v(-, u))
(2.5)

ni= @(u) Ti(u)-p — no(-, u) T'(w)

of class Hu» N L= compactly supported in 2. Using (2.2) and (2.4) we see

_ N-1 ;
(2.6) fw(',% Du) A%y(-, w) Daw D[ ZlmTz<u>+nv<-,u>] he(d(u) }do +
0

+f g a’('y W,y Du)-DyhAicjﬁ(\'7 u)Da’M,’DﬁuJ
2

FN—1

l S g To(w) + ot~ u)]hhe(d(u)) dx zfn di.
!
&

=1
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Remembering the decomposition (2.5) and introducing the index %k again (2.6) reads

(2.7) f pa(-, u, Du) Alfs( -, w) Darw Do pu(w) he(d(w)) ) do +

2

—l—f 1—: a(+y u, Du) Dp Ais(+, u) Do’ Daulgy(u) he{d(u)) p* de =
2

=ffl)'1’(u)/(v(%) (s, W) gr(u)di .
2

L
Obviously we can arrange » ¢,=1 on the set where h,ods 0 so that (2.1) fol-
k=1 .
lows from (2.7) by first taking the sum with respect to ¥ and then adding the identity

a
o Do @ =0, wi=u 11— ()],

to the resulting equation. . O

We turn to the Riemannian version of Theorem 2.1: Let d, denote the Rieman-
nian distance of points y, z in ¥ and o(2) := dy (2, 0M) for z€ M near 0M. By
negative reflection we extend ¢ to a smooth function in a tubular neighborhood U
of M in Y. If we let »(z) := grad, o(z), then the same calculations as before give

fl’ld%[”‘2dui'd(ﬂha(g(u)) vi(u)) dH» =f11 di
Q Q

for a Radon measure A>0 on 2 being of the form -
A= pOyconn |dul 2 dui - d(vi(w)) L H",

0 denoting a Hr-measurable density function © —[0,1]. Here du’ is the gradient
of %* with respect to the metric on Q.

Similar arguments as in the Euclidean ease imply N — 1 tangential equations
and we arrive af

(2.8) f plduj-2du - dgt dH» = f @ v(u)d)
(2] 0

for vector fields (pEI?IM’(.Q, R¥)Y N L» along w. If IT: (Y).—> Y is the smooth
nearest point retraction defined on a suitable tubular neighborhood of ¥ and if
p e 0i(Q, RY) iy arbitrary, then ¢:= DII|,(y) is a field along u for which (2.8)
holds and one eagily shows
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THEOREM 2.2. — Suppose that we are in the Riemannian case and that « is locally
E,-minimizing in the space H%»(2, M). Then there is a H"-measurable density func-
tion 6: £ — [0, 1] such that

fp[du}l"z{dui dy' + du' - du* D} I (u) '} dH" = fpﬂgu-v[duip—z dut-d(v(u)') dH"
2

[ued M]

holds for all ye H12(Q, R¥) N L=

REMARK. — The quadratic case of Theorem 2.2 is treated in[D]. O

The regularity theory for free F,-minima is heavily based on the Cacecicppoli
inequality (ecompare [F, H1, 2], [G], [G, G1, 2], [G, M]). But if one considers mini-
misation problems for mappings taking values in some preseribed non convex set
(a manifold or smooth subregion of a manifold) it is not clear if Caccioppoli’s inequal-
ity continues to hold. The following Theorem E is the basic tool for overcoming
this diffieulty since it enables us to construct suitable comparison funetions which
we use to prove a weak form of Caccioppoli’s inequality near points with small
scaled p-energy. Since the proof of Theorem B is rather involved it will be given in
Part 1T of the paper.

TEROREM E (exiension theorem). — Suppose that M is a smooth bounded region
of the type described in section 1. Then there exist constants y = y(p) € (0, 1] and
20, 0, g, §, €y depending on the dimensions, on p and the geometry of M (and Y)
with the following property: Let w e H»(S*1, M) and u* € R¥ be given such that

B (w, Sy W (w, S~y < 26177

for some 0 < e<s,; then we find % € Hv»(B, M) with boundary values  and

By(@, B) < ColeB,(u, 8*-1) + e W,(u, 81},

W, (@@, B)< Co e W, (u, 871 .

Here and in the sequel we use the notation

B,(f, 4)i=[|Dfle,  Wlf, 4) =l — w4}
4 4

for functions f: 4 — R¥, 8= is the (n — 1)-dimensional standard sphere and B
the unit ball in R~
By a simple sealing argument we see
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COROLLARY. — If we Hu»(8" 1, I) satisfies
E;(u, S:'_l) W”(u, Sf_1)7<8a5y+1’r(1+y)(”_1)—”,
then we find an extension % e H%*(B,, ) such that

B,(@ B,) < Oo{erBy(u, 8;7") + & ri-2 W(u, 8,71},
W, (@, B,)< Cy E_aer(u, S:”—l) .

Theorem E enables us to prove

THEOREM 2.3 (hybrid imequality). — Assume that Dc R* is a bounded domain
and that f: D xR¥ x R»¥ - R is a Carathéodory function satisfying

kﬂlQIp<f(m7?/’Q)<k1lle; -’IUED, ?/GRN, QER"N,

with positive constants k,, k. Moreover, let M denote a region as described in

section 1 and assume that w € Hi#»(D, M) locally minimizes the functional G(v, D) :=

:=[f(,», Dv)dw in the class H%?(D, ). Then there is a constant Cy:=
D

:= Cy(n, N, p, M, ky, k,) (and also depending on Y if M c Y) with the following
property: If '

& (u, Bp(w)) := Rr—"H,(u, Ba(x)) := R» JC [Dujr < O71 20 +1)
Br(x)
for some 0 << 1 <1, then

D(u, Brp()) <AD(u, Be(w)) + C1 A7 f!u — (u)z|?dz,

Br(x)

where (u)z is the mean value of # on Bx(x) and g, §, y denote the constants in Theo-
rem E.

REMARKS. — 1) Obviously Theorem 2.3 extends to locally F,-minimizing maps
w: Q — M if Q and M are subdomains of Riemannian manifolds. In this case we
introduce local coordinates on 2 and get a functional of type @ with bounds k,, %,
depending on the metric of £2. 2) For unconstrained quadratic problems Theorem 2.3
is due to HARDT-KINDERLEHRER-LIN [H, K, 1.].

Proor or THEOREM 2.3. — For simplicity we assume 2 = 0 and denote all con-
stants depending only on #, ¥, p and the geometry with the symbols ¢, ¢, .....
Moreover we suppose that ’

D(u, Bp)< C7 1240+
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holds with €, being specified later. According to Fubini’s Theorem and [Mo],
Theorem 3.6.1 (¢), there is a radius r € [R/2, R] such that

Ezv(\uy aBr)< Ep(’“; BR) 9 Wﬁ)(u? 8B7)< Wp(“a BR);

=l o
=l

here we calculate W, with respect to w*:= (u)z. From Poincaré’s inequality we
deduce

p?= VOO (4, OB,) W,{u, 0B,)Y <o, R™YRP-=DGEDR (4 B W, (1, Br)’ <
< D(u, Bp)' "7 <0, 07 YA

Introdueing ¢:= iy we see

pr= DD (4, DB,) W(u, 0B,)7 < (6,07 "9t
and if we assume (6 being defined in Theorem E)
(2.9) e 077U I8 o 0> (eu )Y g1

the scaled version of Theorem E gives the existence of % € H» (B,, M) with boundary
values % and

B,(w, B,)< GO{E-REp(u, 0B,) + e 1 R*? W ,(u, 0B,)} .
Sinee u is loeally G-minimizing we have
D(u, Bppy) < kg R G u, B,) <e3ky* G, B,) R <

<ou BB, B < 05 2 Bon{el(u, By) + 5B Walu, B
0

0

0

<cs%a¢)(u, Bp) + ¢ %Z g4 f | — (u)zldz .
Br

We now define y = ¢5 Y(k,/k,) (by enlarging ¢, we may assume p<eg, with g, taken
from Theorem E, especially e<g); this gives

Eitr
D(u Bgp) < AD(u, Bp) -+ [05 ']'C‘l‘]q At J[ fu — (u)z|7dz .
° Bz
Observing (2.9) the statement of the theorem follows if we take

a1
(;:= max {6*1(02M—q)1/(7+1), (05 -;i—l)q } |
0



MArTIN FucHS: P-harmonic obstacle problems, I 141

‘We finish this section with

THEOREM 2.4 (monotonicity formula). — Assume that M is a domain in Euclidean
space and that u € H4»(2, M) is locally F,-minimizing. Then there is a constant O,
depending on n, N, p, the modulus of ellipticity of the coefficients and their Lipschitz
constants on 2 x B¥(0), L := sup {|¢|: z€ M}, such that for all balls B,(x)c Ba(z)c 2,
k<1

(2.10) D(u, B,(x)) := 1" :’( [Du? < O, D(u, B()) .
Br(x)

The proof of Theorem 2.4 is a direct consequence of [F, H2], Lemma 8.2, since
all variations used by Fusco-Hutchinson respect the obstacle. For a Riemannian
version of Theorem 2.4 one has to introduce local coordinates on £, in this case the
constant C, also depends on the metric of 2.

3. — First estimate on the singular set.

We start with the proof of Theorem A for the Eueclidean case: Assume that
we Hv»(Q, M) is locally F,-minimizing and that there is a ball Bg (1) cc 2, R,<1,
such that -

(3.1) D(u, Bg,(w,)) := R} J[ [Dufrdr < &

Bro(e,)

for some positive ¢ being determined later. The monotonicity formula (2.10) com-
bined with (3.1) gives for @ € By, ;5(2,) and 0 < r< R,/2:

D (uy B,(2)) < Oy P(u, By, o(#)) <272 0, D(u, B (%)) <277 Cye” .
With ¢, 4, C,,y from Theorem E we let
2l = {01 Ozgn—pep}(v-x-l)/a;
then the above inequality rereads
D (u, B (2)) < C7* 240+
and from Theorem 2.3 we infer

D(u, Byy(2)) <AD(u, B,(x)) + C1 A7 f lu — (u,)]? =
Br{x)
= f 10ulr<otn, 213 f10ulr+ Ouctn, i f fu— o
Byya() Br(x) Bi(z)
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We fix A:= Le(n, p)~* or equivalently

(3:2) & 1= 21705(Cy C) 7 (§ o(m, p)) 7 +P)

and arrive at

1
f ioue<g f 0w+ oire fru—qnp,
(3.3) Byja(a) Brl@) B/lw)
€T e Bsnlz(wo) ’ re (07 R0/2]

for a suitable absolute constant e¢;. The second integral on the right-hand-side of
{3.3) can be handled by the Sobolev-Poinecaré inequality, and according to [G], V,
Proposgition 1.1, there is an exponent {> p (depending on absolute data) and a
constant ¢, such that

DueLi (B (%), RY)

and.

(3.4) { ]f [Du[tdz}w<02{ Jf wul»dz}”p

Bryo{ec) Br(x)

or balls B.(2) as in (3.3). Thus we have shown a partial higher integrability resuls:
Near points with sufficiently small scaled p-energy the gradient of a minimizer is

integrable for some exponent > p.
In order to proceed further we fix a ball B,(&), r < R,[2, & € B j5(%,), and abbreviate

1,9, Q) 1= (a,5(2) BY(x, 9) Q105"
fol@) 1= (6,(®) BY(&, (w),2) QLQ%)"" -
According to (2.1) the Euler system for « can be written as

(315) [Du1C-, 4y Duy Dpdw = [g(-, v, Du)- g o
2 0

for all pe Hi»  Lo(Q, RY) with right-hand-side g: Q X R¥ X R"¥— R satistying the
growth condition

(3.6) l9(2, ¥, Q)| < os(| Dul? + | Dujr—?)

Let v e H»»(B,,(¥), R¥) denote the solution of

fo(Dw)dw — min in u 4+ H2(B,.(&), RY) .
Bryo(&)
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Since w is bounded a simple transformation argument gives ve L®(B,,(%), RY);
moreover v is a solution of

(3.7) [ Defo(Do)yDp =0, pelr*(Bu@), RY) .
Br/g(ﬁ)

Combining (3.3) with (3.7) and choosing ¢ := 4 — v we arrive af

[ {DetuDu) = Do (Do)} (Du— Do) do
Brya(T)
(D2 fo(Du) = Def(* thy Du)]* (D — Do) do— [ g(-, u, Du)-(u— v)dor.
Bryo(F) » Bryo( i)

The integral on the left-hand-side is controlled with the help of [F, F], Lemma 3.2,
estimate (3.2); this gives using (3.6):

(3.8) ¢ leu— Dordz< f[DPfo(Du) D, f(, u, Du)]-(Du — Dv)dw -
Br)o(E) Beya(E) »
+ 6 [ (1Dup+ |Dup)-jy— o] do—: I+ IL.

BA/A(&)

For the integral II we observe the following estimates:

it 1-pft
f [Dul? fu — v}dw<{ f lDultdx} { f | — p|tit=2 dw} <
B/z(x) 2(1?) B/z(i)
/
<(3.4)< iju pdm{ J£ [ —v{ﬁdx} f{Du]de{W f [Dul? dm} e
B:(E) Byyo(@) BryalF)

(usmg the fact that obviously E,(v, B.»(%))<¢,E,(u, B.;(¥)) by the minimality of
the function v
According 170 Young’s inequality we have for arbifrary 7> 0

leu}P-l ot — v[da}<cs{ f [Duf»dw 4 72 f[u—— 'u[ﬂdm}

Br/a(m) Br/z(x) Br/z(x)
<6 {r f [Du[*dx - 7297 f[l)u— Dv]pdw} .

Br/z(j) Br/z(ﬁ)

If we choose 7 = r, the second integral on the right-hand-side is absorbed in the
left-hand-side of (3.8) provided we require r<¢, for a suitable positive constant.
This shows

{3.9) f [Du — Dolrde <oy [r —{—(wo f |-Dul? dx)l_m] f |Dujrde 4 I .

Br/g(ﬁ) Br/z(i) Bi(w)
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Using the boundedness of the first derivatives of the coefficients on compact subsets
of O xRY, a simple calculation gives for the remaining integral I:

T < e, f (r 4 {u— ()e]) | Dulr—| Dy — Dv|de<
Bryo()

< 05 {r f |Du — Dojrde -+ 712 f (r 4 lu— (u)p))2e0 lDulf’dw};
Boa(®) Brya(®)

inserting this estimate in (3.9) and choosing 7 small enough we deduce:

1o/t
f [Du — Dol|Pda <4 {[W"T‘”J,—'(TP f | Dl da:) ’ ] f[Du{f’dm +

Br/g(ﬁ) Bf/z(ﬁ) Br(ﬁ)

4+ % — (u),p)?/0 | Dulp dw} .

Byyo(&)

Finally we use the reverse Holder inequality (3.4) one more time to estimate the
last integral on the right-hand-side in a standard way. Collecting our results we
arrive ab

(3.10) ][ [Du — DojPda < ey {1‘2’ f(l + |Dul?) dx]s JC [Duje do

Br/e(i;’) B(D) B(%)

for a certain positive exponent s depending on p and ¢. Let us recall that (3.10)
is valid for all balls B,(¥), r<min (Eo/2, ¢1), & € B ja(®,) provided (3.1) is valid with ¢
being defined in (3.2).

‘With the help of the comparison inequality (3.10) we can now follow the argu-
ments of [F, H2], proof of Theorem 6.1:

for 0 < T <<1/4 we see

D(u, B,,&)) <016{(77‘)T"‘" J. [ Dol da - (zr)e—» f [Du — Dul? dm}<

Brr(@) Br/z(f'))

<Oy T? {1 + [W’ JC (1 + |Dul?) dm]s} D(u, B,(&)) .

BA(E)

Here we have used the Uhlenbeck estimate

sup [DoP< ey, f [Doj? dx
Bor(X) -
Br/z(w)

which is an easy consequence of the results obtained in [U] (compare also [F, H2]
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and [G, M], Theorem 3.1; in order to apply these references one has to transform
[fo(Dw) de into the functional f |[Dw|rdz by a suitable coordinate change in the
domain of definition and in the image space; this is possible since the coefficients of
f fo(Dw)dx are constat, symmetric and elliptic.) Next we fix 7:= (}¢;})"* and
require in addition to (3.1)

(3.11) R? 1 4 [Dulp) de<eris292071, Ry<0y,
¢ 2

Bro(@s)

O, being defined in Theorem 2.4, This gives on account of (2.10)
D(u, B, (%)) <} D(w, B.(F)) .
We apply this result inductively to r,:= }v*R,, k€ NV, and get
D(u, B, (£)) <27*D(u, B, ,,(&) <27 *7"0;*.
ﬁow, if 0 <r<R,/2 is given then the last inequality immediately implies the

growth estimate

—(log 2){log =
D(u, B(F)) <72 {%}

0

Recalling Morrey’s Dirichlet-Growth-Theorem (see [Mo]) we have shown:
" 1log?2
AS] C°’”‘(BR,,/2($0), RA) y = —‘}5 Eg‘,'r ’
(3.12) and
Ju(x) — ’M(I’/)l < eonst (I) e — yl*, xye B, 12(%4)
for some constant which also depends on the radius. All our calculations are justified
under the assumptions (3.1) and (3.11).

According to (3.12) we see that all points with small scaled p-energy belong to
the regular set Reg (u). Finally we show that for # € Reg (u) the condition

(3.13) lim inf g#— f \Duj? dz = 0

>0 Bo(&)

holds which gives the final result:

Reg (1) = {m € ©: lim inf g#-» f \Dujr dz = 0}‘

o0
— Be(e)
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& € Reg (%) means by definition

]??g)u 1= 88 sup {|u(w) —w(y)|: @,y € B{&)} —=5> 0.
Lt

Proceeding as before we introduce the solution v of the frozen problem
f foDw)ds —>min  in  u -+ H(B, (&), RY)
ijz(w.‘)

which satisfies (3.8). But now the integrals I, IT are estimated as follows:

I <es {A j \Du — Dojrdn + 1 | (r + osc uple» jDuIPdw},
Br/z( ~) Br[a(i) Br/ﬂ(w)

]II]<020{ 08¢ (% — v) f | Dulrde + p f |[Du|? dow 4 rout—> f {Du——Dq)]Pdw}
Bry& Byald) Byp@ By(®)

for arbitrary A, > 0. Since the coefficients of f fo(Dw)dz are constant, sym-
Bryo(®)
metric and elliptic, we have by transformation

08¢ (4 — 1) <€y OSC %,
Br/z(ﬂ?) . Bf/z(ﬁ)

and the proper choice of A, 4 immediately implies:

| Dy — D@]de<022[r + ose u] | Du|?da .
By Bl g @)

Next we use the Uhlenbeck estimate (o<7/2)

f [ Dolr do < exs(of7)” f‘ | D[P dow < ea0(0/7)" f | Du» da
Bo(®) Br/z"(i) Brpa(E)
to get
f |Dulrda <ey,(r + osc u + (ofr)?) f | Dl da .

Bo(®) Brj2() Byl @)

Since the oscillation of u becomes arbitrarily small if » goes to 0, we can apply [G],
11T, Lemma 2.1, to deduce: If n— p < f<n is given then

leu]Pdw<025(g/o*)ﬁ f [Dule da

Be(d) BV/z(i)

for all o < r<r(f). This proves (3.13).
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‘We summarize our results in

TEEOREM 3.1. — Assume that M and F, are as described in section 1. Then there
exists ¢ > 0, R, <1 depending on the dimensions, on M, p and on boundo for the
coefficients with the following property: If w € H-»(Q, M) is locally F,-minimizing and

Ro-» f |Dujpdz < &
Br(z)

for some ball Bi(x)cc 2, E<R,, then weReg( ) and we find ae(0,1), ¢(R)>0
depending on absolute data such that [u(y) — u(z)| <e(E)|y— 2|* on Bm( x). Moreover

Reg (u {ao € Q: liminf @(u, B,(x) = 0}

>0

and u e O™ (Reg (u)) for all §<1.

REMARK. — The Riemannian version of Theorem A follows directly from the
preceeding arguments by choosing local coordinates on £2 in which the p-energy takes
the form f (@ap Dyt Dpu)*?de with smooth elliptic coefficients @xs.

The higher regularity theorem C can now be derived using the arguments of
Fusco-Hutchinson [F, H2}, Theorem 7.1, but for later purposes. we need a more
explicit deseription of the modulus of continuity of Du near regular pomts

So assume that u e H-»(2, M) is locally F,-minimizing and that

(3.14) D(u, B (7)) < &F

holds for some ball By (2,) in Q with &, taken from Theorem 3.1. For 0 <f <1
we find a small radius Ry(§) such that

(3.15) D(u, B.(#)) <0(B, Ro)(r/B)” D(u, Bx(@))

is valid for points & € By (%) and radii 0 < r< R< Ry(f). (Compare the calculations
after (3.13).) We introduce the quantity

@(u, Bp'®)) := |(Du)g[?? J[fDu — (Du)g|?dx + fjl)u — (Du)gf? dz
Br(T) Ba(Z)
and let v denote the solution of

[@ap(Z) B(&, (4)rs2) Dow Dgw |72 doz — min

Bryo(Z)
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in the class u + H Lo(Bgp(®), RY). According to [F, H2], Theorem 4.2, v satisfies
(with «, depending on absolute data)

9(v; Byp(®)) <0060p(v, Bpp(@), d€(0, /4),

and we get using

H{Dv)sg|? <z :I: |Dvj? Az < cog 4 |Dul? do:

Bryu(@) Bra(®)

@(u, Bsr(&)) <oz {tp(’l), Bsgp(x)) + I(Dv)mlﬂ"zf (Du — Dv]? dx -+ JC | Do — Duol? dw}<
= Bor(E) Bor(T)
[
< € {6‘”0(;)(@, Bypp(&)) + 0 [](Dv)mlf’—2 JE |Du — Dv[*dw + + |Du — Dol dm]} .

Bzya() By (8)
Using (3.14), (3.15) and the monotonicity formula we have
1-2/p
[(Dv)sr|"~2 < €5 f[Duli’dx) <(3.15) <

Br(T)
< Onal B{ BPE—D Ry (8) =27 D(u, B,/ &) )27 <(2.10), (3.14) < 035(B) RE- D=2,

Collecting the estimates we deduce

@ (v, Bag(#)) <csa(f)

»{a%(p(v, Brp(®) + 6 [R<ﬂ—n<v~2> 3( \Du — Dol*dw + ]f |Du — Doj? dw]} :

By (&) Bryo(&)
The quantity ¢(v, Bap(#)) can be controlled in terms of g(u, Ba(&)):
@(v, Brio(®)) <035 {(p(u, By(&)) -+ J‘: | Du —Dvjrde + [(Du)ylr—* f | Du — Dv|2dw} .
Br/a(E) Bry (&)
Next we recall inequality (3.10)

[Du — Dol da < csq {RP Jc(l + |Dufr) dw}s :!: [ Du|r da <

Bryo(E) Br(E) Ba(E)

<y R o+ [Dulr d < (3.15) < g f) RPP-D+

Br(Z)
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where we have used the inequality in front of (3.12) to estimate
{..}e< oz R .

Collecting our results we arrive at

(3.16) @(u, Byp(E)) <04o(ﬂ){5“°¢(“’ By(®) + 5""3“”(’3"1)“}

with positive exponents «,,q. We finally fix § such that «,+ (§— 1)g> 0 and
choose 6 with the property ¢,(f)d**<1/2. Then (3.16) rereads

@(u, Bsp(@)<}o(u, Bx(#) + ¢, R™
and we get by iteration

p(u, B, (%)) < {(r/R)*p(u, By(a)) + B3}

for all r<R< By(f), &€ By p(w,) with positive exponents oy, «,. Quoting [G], III,
Lemma 2.1, we find an exponent y’ € (0,1) such that

(P(“, Br(i)) <043"'y’(R_y,‘P(u7 BR(JE)) + 1)
or by the definition of ¢:
(3.17) Jf Dt — (Du),[? de < 0,577 (B g(u, Ba(@) +1).
B(E)
We choose R = R,(f) on the right-hand-side of (3.17) and observe

@ (%, Bp,5(®)) <c44-][|1)u]?dm<(assuming By(f)<Ry/2 and using (2.10))

Brya ()

045 Bo(B) P4, Br,j2(%)) <45 Bo(B)2 P(u, Bp,(0)) < 4sRo(f) 7
which finally gives the growth condition
[Du — (Du),| dz <const (Ry, By(f)) r*".

Thus Du is Holder continuous on the ball By u(%,) with exponent y :=y'/p. Our
caleulations are summarized in the next theorem.
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THEOREM 3.2. — Suppose that the agsumptions of Theorem 3.1 are satisfied for
some ball B(x)cc 2. Then there are constants y € (0,1), b == b(R) > 0 depending
on absolute data (as n, N, p, the coefficients and the geometry of M, b also depend-
ing on the radius R) such that

Du & 0% (Byu(w), R™), | Du(y) — Du(z)|<bly — 2|”.

Theorem 3.2 is the Euclidean version of Theorem €. The Riemannian case is a
direct consequence of the preceeding calculations.

4. — Optimal interior partial regularity.

In [F, F] we showed that for sets M diffeomorphic to a ball weak limits of mi-
nimizing maps are again minimizing and that the limit point of a sequence of singular
points is singular for the limit function. Both facts entered the dimension reduction
argument but unfortunately their proofs made use of Caccioppoli’s inequality. For
example, if Caccioppoli’s inequality is valid, then it is trivial to check that Theorem 3.1
implies the regularity criterion

(4.1) J[ [ — (u),[?dz < & = € Reg (u) .

Br(z)

For general sets M the proof of (4.1) requires more work: we have to make use
of the Extension Theorem E, the details are given in Lemma 4.1 below. Ob-
viously (4.1) is stable under weak convergence and this enables us to derive the
following compactness property of a sequence of minimizing maps: the weak limit
is not necessary minimizing but nevertheless of class O' up to a set of vanishing
H»—»-measure. With the help of this statement it is then possible to carry out the
dimension reduction and to prove Theorem B. We wish to remark that our argu-
ments follow ideas of Schoen-Uhlenbeck [S, U1], the case of quadratic obstacle pro-
blems is treated in [D, F2].

In order to avoid notational difficulties we assume from now on:

M is a smooth subset of R¥ (as described in section 1)

(4.2) e
and. @up= Gaps, B'= 0%,

so that E,(w, Q) = F,(u, Q) = f |Dulrdw. The minor changes which are necessary
0

to handle the more general functional or the Riemannian case are left to the reader.



MArTIN FUucHS: P-harmonic obstacle problems, 1 151

Levuma 4.1. — Let (4.2) hold and assume that B >0 and «*e RY are given.
Then there exist constants

&= &(B,n, N,p, M), ¢=c(n,N,M,p) and o= an,N,HM,p)
with the following property: If u e H»(B,, M) is locally minimizing with

Ey(u, B)<B, W,u,B):=[lu—u*fdo<e,
B

then u e C>*(B,,, RY) and |u(z) — w(y)|<e|s — y|* on By,.

Proor. — Aceording to Theorem 3.1 we know that the statement of the lemma is
correct if we require

(4.3) By (wy Byjg) < &8
for a certain & = g(n, N, M, p). As usually we use ¢, ¢,, ... to denote positive con-
stants depending only on =, N, M,p. By Fubini’s Theorem there is a radius
r€[3/4,1] such that

Ep(“, Sr)<8Em(u) Bl) ’ WI‘(M’ Sr)<8Wp(u7 Bl) ’

8, being the standard sphere of radius r. Recalling Theorem E we find % € Hv»(B,, M )
such that »

B, (i, B,) < CofeBy(u, 8,) + e W, (u, 8.}

provided we know

By (uy 8,) W,(u, 8,)"<ed?+t.
By the choice of r we have

Ey(u, 8;) Wy(u, 8,)"<ec, Bel”
and the smallness condition in Theorem E is satisfied if
(4.4) 0, Bel¥ <%t
Now, since 4 is minimal we get

By(w, B)) <B,(T, B,)< 0,(8Bs + 8c77¢2) < 0,(Be + e77s2) .
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We choose ¢ = &(n, N, M, p, B) to satisfy ¢,Be<}¢? and fix g, according to (4.4)
by setting

32<min {(cl—lB—l‘SQéV‘!‘l)l/ﬁy, (02_18?’%8’1’)1’”} .

Then all our caleulations are justified, especially F,(%, B,)<é?, and the statement
of the lemma follows from (4.3). O

The next lemma characterizes the behaviour of weak limits of minimizing maps:

LeMMA 4.2. — Under the hypothesis (4.2) let (u;)c H%(B;, M) denote a se-
quence of locally minimizing maps such that w,—>u weakly in H“?(B,, R¥) for
some function « in this space. Then there is a closed (relative to B,) subset 2 of B,
such that H*»(X) = 0 and the property that u is locally Hélder continuous on B\ 2.
Moreover, we have strong convergence u;—>u in Hy?(B,, R¥) and uniform con-
vergence on compact subsets of B\ 2.

REMARK. — It is trivial to show that the limit function # is locally minimizing on
the regular set B,\ ~ but we do not know if « is also locally minimizing on the whole
ball (compare [S, Ul], remark before Lemma 5.2).

PrOOF. — We have sup | Du|;u5,,=: B < oo and after passing to a subsequence
ieN

we may assume: %, —>% a.e. and in L#(B,, R¥) so that «» belongs to the space

Hv»(B,, M). Let us set X := B\ Reg (u) and consider a point #, in By, with the
property

(4.5) lu— (u), P do < &

Br(ao)

for a ball B,(w,) C B, &, = &(B) being defined in Lemma 4.1. The L7-convergence
and (4.5) imply

(4.6) [, — (), [P dw < &3

Br(zg)
for 4 sufficiently large. On the other hand we have by (2.10) assuming r<1/2:
pp—n f I_Duzlpdm< 0221z—ﬁf;Dui!?dw< Gzzn—pB .
Be(mg) B,

Combining this inequality with (4.6) we see that the scaled functions Uiz):=
:= u(w, -+ 72), 2 € B,, satisty the hypothesis of Lemma 4.1 (with & being defined
for B(,2» instead of B). Thus the functions u, are Holder continuous on B,;(w,)
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with Holder exponent and Holder constant independent of the index 4. From
Arcela’s Theorem we immediately get u € C%*(B,;(%,), R¥) and uniform convergence
w;— % on B,,(%,). Similiar calculations give:

If lim inf flu—— (w),|?dow = 0 for some point y in B;, then # is Holder con-
=0 B.(y)
tinuous in a neighborhood of .

Thus we have shown:

_ Z’C{y € B;: liminf f [ — (u),|?dx > 0}
r—>0

Be(v)

so that H*»(X) = 0. We cover X N By, with balls B,:= B, (;) having the property

> ¥ ?< ¢ for some positive e. We let U:=|J B,. Using the monotonicity for-
i=1 i=1
mula we can control the energy of #; on the set U:

f}Du,-fl’dw<z ffDu,—]de<z Co2mrynv | Du,lp diw <eCo B277 .
i i=1
U 1

B;

In order to show L#-convergence Du,— Du on B,,\ U we make use of the Euler
system Theorem 2.1:

J[Du,.;p—wu,.-mmm =|R(-,w;, Du,)-@dw, Dellrrn L=,
By B,

by formula (2.1) the right-hand-side grows of order p in the derivative Du,, the
growth constant being independent of j. Using the system for j and k, inserting the
test veetor & := @»(u;— u,) for p € O3(B,, [0,1]), » = 1 on F—Lz\U, sptop N 2 =@,
subtraction of the results gives after a short ealculation:

f ¢*|Du; — DuyJ? dw < const (g, Do, |Dux|,, | Duyl,) sup |u;— u,
spt(@)
B, .

for a constant which can be controlled independent of j and #%.

Combining our results we see that (Dw,) is a Cauchy sequence in L?(Byj,) so that
w; — w in HY?(By,, R¥). A trivial modification of the arguments shows H.»(B,, R¥)-
convergence for r<1. O

In the proof of the next lemma we make use of the following fact:

ProrosrrionN. — Let (4.2) hold and assume that (w;) is a sequence of local mini-
mizers in H*(B,, M) converging strongly in H:*(B,, R¥) to a function .
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(i) If @(w, B,(y)):=r? { |[Dw|rde <&} for some ball B.(y) in B, (with &
Br(v)
taken from Theorem 3.1), then there exist absolute constants «, £(r) such that

(@) — w@')|<blx— 2’| on Bpy).

(i) Reg (w) = {y € B;: lim @(w, Bi(y)) = 0}-

r—0

ProoOF. — (i) is a direct consequence of Theorem 3.1 and the local L*-convergence
Dw, — Dw.

(ii) It remains to show that for regular points y the scaled p-energy vanishes
of one shrinks the radius of the ball. For a fixed test vector ¢ € H»» N L*(B,, R¥)
with compact support we have on account of the Euler system Theorem 2.1

[\Dw. |2 D, Dpdw< € f \Dw, Plg| do
B: B,

with ¢ independent of 4; by strong convergence this inequality is valid for the limit
function w and we can proceed as in the proof of Theorem 3.1. [

In a next step we use Lemma 4.2 to produce homogeneous blow up limits. For
B>0 we let H, denote the Hur-closure of all locally E,minimizing maps
we Hw»(B,, M) with E,(u, B;)<B.

LEMMA 4.3. — Let (4.2) hold and suppose that « e Hy, 2, € B,;, and a sequence
r,— 0 are given. Then there is a subsequence (r;) such that the scaled functions
wi(x) 1= w(@, + 7'250), x € B, converge weakly to some u, in Hy. The limit u, is radially
independent and for the singular set of #, we have H»»(X;) = 0. The convergence
%;—>u, is uniform on compact subsets of B\Z, and wu,—>u, in H (B, R¥).

Proor. — We first observe that for functions in the class Hj the monotonicity
formula (2.10) is valid. Therefore

B (u;y By) = @(’”/7 Bri(mn)) <C, QD(% B1/2(xo)) < 0,272 B,(u, B;) < C,2%* B

and we may assume (replacing (r;) by a subsequence if necessary) that the scaled
functions %, have a weak limit u, in Hv?(B,, R¥).

Let U’ denote a sequence of local minimizers such that (U’ By)<B and
Ui—u in Hu»(B,, R¥). We abbreviate Ui(z) := Ui(w, + r;2); for ¢ fixed obviously

|0 = s> 0, > oo,

E (U}, B)<(,2"""B
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and U’ is locally B,(-, B;)-minimizing. Finally, for each integer ¢ we fix j(¢) such that
1T = w o<1/

This gives U — u, weakly in H%?(B,, R¥) and we may apply Lemma 4.2 to see
strong convergence in Hj:? so that especially w,— u, strongly in H}:*(B,, R¥). We
show uniform convergence u;—>u, on compact subsets of B\ 2,. Suppose that y
is regular for u,; then aecording to the Proposition ®(u,, B,(y)) < & for a small
radius r and Du,; — Du, in L7, gives the same inequality for w, provided ¢ is large
enough. We recall that «, is the strong limit of the sequence (UJ), .y of minimizers

U’ so that by part (i) of the Proposmon
[ui®) — wi(2)| < L)z — 2[®

for points @, z in B,,(y) and 7 sufficiently large. Quoting Arcela’s Theorem we arrive
at u;— u, uniformly on B,;(y).

It remains to show that w, is homogeneous of degree zero: from the proof
of [F, H2), Lemma 8.2, we infer the following strong version of (2.10): if
we H'»(B,, M) is locally minimizing, then

P(w, B)— Ow, B)> [|Dwfrlafrdo, t>s,
Bz\Bs

(as already remarked the proof in [F, H2] extends to obstacle problems). Since #,
is the strong limit of minimizers the formula is valid for %,. Let L :— hm D(u, B,(2,));
then we have for ¢ > 0:

®(uy, B,) = t-»1im f \DuJ» de = lim @ (u, By (z,)) = L

i—>00 o0

and D,u,= 0 follows from the above formula. LI

We are now in the position to prove Theorem B: since the arguments appear
in[S, Ul] in a slightly different form we restrict ourselves to a

SKETCH OF THE PROOF OF THEOREM B. — For simplicity we assume that (4.2)
is true and that « is a local minimizer in H%»(B,, M). We consider two cases:

Case 1: n<p - 1. Let X denote the singular set of u and assume X oy;— 0
for a sequence of singular points. @;:= y,/(4|y;]) is singular for w,(z) := u(4|y.[?),
z€ B,, and after passing to subsequences we may assume w;— , [wl = 1/4, and
%; — 1, for some function %, having the properties described in Lemma 4.3. x is not
in the singular set X, of u, since otherwise Oz c X, and therefore H*(Z,) > 0 contra-
dieting H*2(X;) = 0. But # € Reg (u,) implies 1}1_)1:{} D(uy, By(w)) = 0 and using the
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strong convergence Du, — Du, we can arrange @(u;, B.(z;)) <& for small radii »
and ¢ large enough. Thus ;€ Reg (u,).

Case 2: n>p -+ 1. We assume that H;(X)>0 for some se[0,n— [p]) (for
a definition of the measure H see [Fe], 2.10.2) and that the origin is a singular point
of « with the property

g%:(0, Hz, | &) :=lim sup 7= H& (B,(0) N X) > 0.

r—>0

Blowing up at 0 and using Lemma 4.3 we find a radially independent function #,
with singular set 2, and

H (Z,n BY0))>0.

There are two possibilities: either we have s<0 or there exists a point ;€ 877 N X,
with
0% (w,, H:, | 25) > 0.

Blowing up %, at ;= (1,0, ...,0) (after a coordinate transformation) we find a
radially independent map %, with singular set 2,, D,4,= 0 and

H: (X, N B*0))>0.

If we repeat this procedure m times we find maps u,, ..., 4, such that ;€ H,
for a suitable B> 0, D,u;= D u,= 0, a = 1,...,4, j =1,...,m and

He (2, N By0))>0.

‘We can repeat this argument until we have s — m<0. In order to consgtruct u,,
we need s — m -+ 1 > 0. This implies m<n — [p]. For m = n — [p] it would follow

ZoR™UINE . HE WS A B0)) > 0

and in conelusion H? "X ) = oo contradicting H~»(ZX,) = 0 (on account of Lem-
ma 4.3). Thus m<n — [p]— 1 and therefore s<m<n — [p]— 1. This shows:

HX) =0 forali>n—[p]l—1 <« H—dim(X)gn—[p]—1. O
‘We finish this section with the

Proor oF THEOREM D. — For simplicity we assume (4.2) and consider a local
B,-minimizer w e H>*(B,, M) such that 0 € Sing (u), but

lim jo,| [Du(@;)| == oo
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for a sequence (v;) converging to 0. We let y,:= x,/(2|x,]) and w.,(2) := u(22z),
z€ B;. Then the functions u, are locally minimizing and

By, By) = D(u, By, (0)) < CD(u, Ba(0))

if B(0) denotes a fixed ball such that 2|z,| < R. Quoting Lemma 4.3 we can arrange:
u; — u, weakly in H%»(B,, R¥), strongly in H{%(B,, R¥) and uniformly on compact
subsets of B\ 2, where X, denotes the singular set of the limit function #,. Consider

the point y := lim y,; since HY(X,) =0 (recall n—1<p<<n) y belongs to the

regular set of #, and from the Proposition we infer:

Him @(uoy Br(f’/)) =0 ’

>0

hence: ®(u;, B,(y)) < & for a small ball B,(y) and ¢ large enough. Here &, is defined
in Theorem 3.1. Now we apply Theorem 3.2 to see that the sequence (Duw,) is
uniformly Hélder continuous on B,,(y), and by Arzeld’s Theorem we get Du,; — Du,
on B,,(y), especially: Duy,) — Duy(y) contradicting the choice of (x,). 0O

Note added in proof. — After having finished the manusecript the author was informed
that similar results have been obtained independently by Harpr-Lin (Mappings minimizing
the L2-norm of the gradient, Comm. Pure Appl. Math,, 11 (1987), 555-588) and LucEHAUS
(Partial Holder continuity for minima of certain energies among maps into a Riemannian
manifold, Ind. Univ. Math. J., 37, no. 2 (1988)). Harpr-Lin discuss the case of targets
without boundary, the work of Luckhaus also includes the obstacle problem.
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