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Abstract. We define the extremal length of horizontal vector measures on a Carnot
group and study capacities associated with linear sub-elliptic equations. The coincidence be-
tween the definition of th-module of horizontal vector measure system and two different
definitions of thep-capacity is proved. We show the continuity property gf-enodule gen-
erated by a family of horizontal vector measures. Reciprocal relations betweprctmacity
andg-module(1/p + 1/g = 1) of horizontal vector measures are obtained. A peculiarity of
our approach consists of the study of the abovetineed notions in domains with an intrinsic
metric.

1. Introduction. The concept of the extremal length and the module of a family of
curves goes back to Grétzsch, Beurling, and Ahlfors [1, 16]. In 1957 Fuglede [14] has intro-
duced thep-module of a measure system. These notions play an important role and have a lot
of applications in analysis and potential thgokn interest to non-linear elliptic equations has
inspired a more general notion of the module of a family of curves and the capacity associated
with this type of equations [2, 19, 20, 21, 26].

Recently, analysis on Carnot groups (the simplest example of which is the Heisenberg
group) has been developed intensively. The fundamental role of such groups in analysis was
pointed out by Stein [34], in his address to the International Congress of Mathematicians in
1970, see also his monograph [35]. Briefly, a Carnot group is a simply connected nilpotent
Lie group, whose Lie algebra admits a grading. There is a natural family of dilations on the
group under which the metric behaves like the Euclidean metric under the Euclidean dila-
tion [7, 13]. An analysis on homogeneous groups is a test ground for the study of general
sub-elliptic problems arising from vector fieldg, ..., X; satisfying the Hérmander hy-
poellipticity condition [22]. An important motiv#n for the study of quasilinear sub-elliptic
equations of the second order comes from theoth of quasiconformal and quasiregular
mappings on stratified nilpotent groups [8, 15, 18, 31, 39]. Quasilinear sub-elliptic equations
generate the interest to a concept of the capamnd extremal length, associated with this
type of equations. The foundation of the thgof quasilinear sub-elliptic equations and non-
linear potential theory can be found in the papers [3, 4,5, 9, 12, 17, 28, 29] and the references
therein.

In the present work, based on ideas of [2], we define a horizontal vector measure on a
Carnot group. The non-Riemannian geometry of the group and the properties of sub-elliptic
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equations make us to introduce some natural modifications for the definition of measure sys-
tems. We prove the continuity property of thenodule of a family of curves, associated with

the p-module of horizontal vector measures. We show the equivalence of two different defini-
tions of thep-capacity, associated with sub-elliptic equations, and coincidence between them
and thep-module of a measure system. Other relations among the extremal length of hori-
zontal vector measures and capacity of a cosdeare considered. Our approach to defining
boundary values of functions on some ideal boundary, that differs from the Euclidean one,
is based on results of [37, 38]. This boundary is obtained as a result of completing the do-
main with respect to the intrinsic metric. This approach allows us to distinguish edges of cuts
and due to this fact th@-modules angy-capacities may take different values. In the next
paragraph the reader finds explicit definitions and detailed formulations of main results.

2. Definitionsand statement of theresults. Let G be a simply connected nilpotent
Lie group andj its Lie algebra. We identifg with T,G, the tangent space at the identity
in a natural way: A tangent vectof € 7,G corresponds to the left invariant vector field for
which X (¢) = L4, X, whereL, is the left translation by € G. Let us denote byU, V] the
subspace of generated by elementX, Y] = XY — Y X whereX € U, Y € V. We suppose
that the Lie algebra splits into the direct sum

QZV]_GBVZGB"'@Vm,

2.1
(2.1) Vi, Vil = Vi1, k=1,....m—1, [V1, V] = {0}.

We call the underlying spac¥,; the horizontal space. Let X131, ... X1,,, n1 = dimVy, be
a basis ofVy. It generates a basisX;;} of the Lie algebrag, X;; C V;,i = 1,...,m,
j=1...,n; =dimV;, according to (2.1).

It is known (see, for instance [13]) that for a simply connected nilpotent Lie gédup
with the Lie algebraj the exponential map expG — G is a global diffeomorphism. Thus
we can identify the elementsof the groupG with the elements of the algebraj, and so,
with x e RN, N = Y, dimV;, by the exponential map = exp(}_ x;; X;;). The numbers
x = (xj),1<i<m1l<j<dmV;, = n;, are called the coordinates of the paint
There is a natural group of dilations, which is defined by the 8Lite— (r"x,'.,'), 1<i<m,

1 < j <n;. The quantityQ = » ", i - n; is called thehomogeneous dimension of the group
G. Itis easy to see thak(s,x) = r2dx. If we denote bylx the Lebesgue measure 6nthen
dx oexpLis abiinvariant Haar measure @h We use the symbol me5s) to denote the Haar
measure of a measurable #£t G: mesE) = fE dx.

We fix a quadratic formi-, -) on V1, such that(Xy;(x), X1;(x)) = §&; at every point
x € G. For a vectort € V; we shall use the notatiofg| = (£, £)1/2. An absolutely
continuous curver : [0,b] — G is said to behorizontal if its tangent vector (if exist)
y'(2) lies in the horizontal space, i.e., there exist functienss), s € [0, b], such that
y'(s) = Z’;j':laj(s)le(]/(s)). A result by [6] implies that one can connect two arbitrary
pointsx, y € G by a horizontal curve. Then the length of a horizontal cyris defined by
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the formula

1/2

b b, M
I(y) = /0 '),y (s)Y?ds = /0 (Zlaj(snz) ds.
j=1

The Carnot-Carathéodory distanggx, y) is the infimum of the length over all horizontal
curves connecting andy € G. In fact, the Carnot-Carathéodory distance does not give a
metric, for it does not need to satisfy the triangle inequality, but satisfied only its weak form:
de(x,y) < C(d.(x,w) + d.(w, y)). Non-horizontal curves can be said to have infinite arc
length [24]. Thus, from now on, we work only with horizontal curves.

We call any smooth functiop | : G\ {¢} — (0, oo) satisfying|s,x| = r|x| andjx 1| =
|x|, ahomogeneous norm on G. The homogeneous norm defines the distancelyy) =
|x~1y|, which is equivalent to the Carnot-Carathéodory distance. We choose a homogeneous
norm that satisfies the triangle inequality.1y| < |x| + |y| (for the construction, see [35]).

ExamMpPLE 1. The Euclidean spade” with the standard structure is an example of
the Abelian group: the exponential mépthe identity and the vector fields; = 9/dx;,
i =1,...,n, have only trivial commutative relations and form the basis of the corresponding
Lie algebra.

ExXAMPLE 2. The simplest example of a non-Abelian group is the Heisenberg group
H”. The underlying space 1" is R?*+1 with the group law of multiplication defined as

n
x,H(x', th = (x +x't+1+ ZZ(x,H_jx} —x.,'x,;ﬂ-)) , x,x eR*, 1,/ eR.
i=1

The Lie algebraj of the Heisenberg grougd” is generated by the left-invariant vector fields
Xj=0/0xj 4+ 2x,4.;0/0t, Xy j = 0/0xp4j — 2x;0/0t, 1 < j < n,andT = 9/0t. There
are nontrivial commutative relation ;, X, ;1 = —47, 1 < j < n. The vector fields¥;,

j = 1,...,2n, form a basis of the horizontal vector spaiég spad7} = V», and the Lie
algebraG of the Heisenberg group is represented as the Gugm V1 & V2. The required
homogeneous norm is given by = ((Zf’;l x]2.)2 +1%)1/4. The homogeneous dimensi¢h
isequalto 2 + 2.

We define an absolutely continuous function on curves of the horizontal fibration. For
this we consider a familyt’ of horizontal curves that forms a smooth fibration of an open set
U c G. Usually, one can think of a curye € X as an orbit of a smooth horizontal vector
field X € V1. If we denote byp; the flow associated with this vector field, then the fiber is
of the formo(s) = ¢,(x). Here the poink belongs to the surfacg which is transversal to
the vector fieldX. The parameter ranges over an open intervale R. One can assume that
there is a measuip on the fibrationY of the setU ¢ G. The measurdp on X is equal to
the inner product of the vector field € V1 and a biinvariant volume forrdx. The measure
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do satisfies the inequality

0-1 0-1
komegB(x,R)) ¢ < / do <kimegB(x,R)) 2

0€X, oNB(x,R)#W

for sufficiently small ballsB(x, R) C U with constantscg, k1 that do not depend on a ball
B(x, R) (for more information see, for instance, [25, 36]).

DEFINITION 2.1. LetD be a domain (open connected set)@&nA functionu : D —
R, is said to beabsolutely continuous on lines (u € ACL(D)) if for any domainU, U c D,
and any fibration¥’ defined by a left-invariant vector fielldy;, j = 1, ..., n1, the function
u is absolutely continuous qn U with respect to thé{!-Hausdorff measure fafo-almost
all curvesp € X.

The derivativesXy;u, j = 1,...,n1, exist almost everywhere i for such func-
tion u [25]. If they belong toL,(D), p > 1, for all X1; € V3, thenu is said to be from
ACL,(D). A result from [27, 32] implies that adC L ,-function is absolutely continuous
on p-almost all horizontal curves.

A functionu : D — R, D C G, is said to belong to the Sobolev spabg(D) if
its distributional derivatives(1;u along the horizontal vector field€y;, j = 1,...,n1,
exist, i.e., the equality}, X1ju ¢ dx = [,uX1jpdx holds for allp € C3°(D) and the
seminorm|u | Ly(D)| = (5 [Voul” (x)dx)"7 is finite. HereVou = (X11u, ..., X1,,u)
is the horizontal gradient of u and|Vou| = (31, |X1;u|?)Y/2. If the functionu belongs to
L},(D), then there exists a functiane ACL,(D) such thait = v almost everywhere.

We define an intrinsic metriép(x, y) on D, x,y € D. We putdp(x, y) = inf{li(y);
wherey (¢) are horizontal curves such thatt) € D forall € [0, 1], ¥ (0) = x, y (1) = y}.
Consider the metric spad® = (D, dp) and the identical mapping : D — D, n(x) = x,

x € D. The sequence(x;), [ € N, is a Cauchy sequence in when{x;}, I € N, is such

in D. Therefore, the sequenadx;) converges to a point either inside or at the boundary
aD = D\ D of D (D is the closure oD). In the first case, the original sequence converges
to some pointx € D. In the latter case, the sequerfag}, [ € N, has no limit inD. By
Hausdorff’s theorem, we cacomplete the metric spac®. Let D be a completion; as a
result, we add taD some ideal elements which are the limits of Cauchylfinsequences
corresponding to the latter case. We call theast= D \ D theideal boundary of D and
assume this set to be compact. For a donfasuch that2 c D, the boundaries (the closure)
of £2 in the metric space&s, d(x, y)) and(D, dp(x, y)) coincide.

Together with the Sobolev space fPnwe define the Sobolev spaté(i)) on D as the
completion of the clas€' (D) N L} (D) with respect to the norri - | L1 (D)|. (HereC(D)
is the space of functions continuous Br) Obviously, the restrictions of functionsln},(i))
to D belong to the Sobolev clasz%(D). Formally this imbedding is induced by the identical
mappingi : D — D, i(x) = x, x € D, in accordance with the conventioh= f o i (see
the properties of the Sobolev spaces in [4, 5, 38]).



p-MODULE OF VECTOR MEASURES 557

Let 2 C D be an open subset in the complete metric spRoequipped with the in-
trinsic metricdp (x, y). It is possible that the closut@ coincides with the whole spad®.
Henceforth, the closur® is taken in the metridp (x, y) andd 2 is the boundary of2 in the
metric spaceD.

Let A(x) = (aij(x)), x € £2, be a positive definite symmetri@1 x n1)-matrix, with
measurable components (x), such that

(2.2) a tE| < (AE, AE)Y? = | AE| < alf]

foranyé € V1 C G and some constant > 1. Let B(x) = (b;;(x)) be the inverse matrix

to A(x). The matrix3(x) satisfies the inequality (2.2). One can associate with the matrix
A a second order sub-elliptic operaterdiv.42(x)Vy = — YL X, (x).A2(x) Vo, Where

Vou = (X11u, . . ., X1,,u) for any smooth functiom. If A is the unit matrix, then we obtain
the sub-Laplacian on the Carnot group.

We recall the definition of th@-module of a system of measures [14]. Lfebe a non-
negative Borel measurable function aade a non-negative Borel measure.(Ifdu > 1,
then we say that the functiofi is admissible for the measure Let £ be a system of non-
negative Borel measures. ffis admissible for all. € £, then we denote b M (£) the set
of admissible functions for the module of the system of meastir@he quantity

Mp(é‘)zinf{/f”dx; >0, fefM(g)}

is called thep-module of £.

Now we define thep-module of a system of vector measures which is related to the
stratified structure of the Lie algebra of the Carnot group..Letf (i1, ..., u,,) be a vector
measure whose components are signed measures defined for sets flem\e call these
measuresorizontal vector measures because the dimension of each vector measure is equal
to n1 and coincides with the dimension of horizontal vector spéce- G. We define the
total variation|u| of u by |u|(E) = suij(Zfil /Liz(Ej))l/z for Borel setsk, where the
supremum is taken over all finite partitions Bfinto Borel setsE;. The total variation |
is a non-negative measure. We give the definition of exceptional sets of horizontal vector
measures.

DEFINITION 2.2. LetM be a set of vector measurgs We put| M| = {|u|; JTS
M} If M,(|IM]) = 0, then we say that is p-exceptional. If a statement with respect to
vector measures fails only foraexceptional system\, then we say that it holdg-almost
everywhere.

Let D ¢ G and(D,dp(x,y)) be a complete metric space with the intrinsic metric
dp(x, y). Let £2 be a domain o, Ko andK1 be closed non-empty disjoint sets such that
KoN§2 # ¢andK1N 2 # @. Itis not excluded tha® = D. We call the triple{ Ko, K1; £2)
the condenser. Let, b] be an interval of one of the following typegt, b1, [a, b), (a, b], Or



558 I. MARKINA

(a, b). We let
I' =Ko, K1;2)={y; y(la,b)NK; #%, i =0,1, andy(t) € 2, t € (a, b))}

and callI" (Ko, K1; £2) the family of curves that connect the compag&is and K1 in the
domains2. Now we give two different definitions of thd ,-capacity of a condenser.

DEFINITION 2.3. Denote byFC (Ko, K1; §2) the class of admissible functioms
ACL,(£2)suchthat:(x) — Oasx — KoN 2 alongp-almost all curves froni" (Ko, K1; £2)
andu(x) — 1asx — K1 N 2 alongp-almost all curves froni” (Ko, K1; £2). We define the
Ap-capacity of the condenséko, K1; £2) to be

capAp(Ko, K1; 2) =inf { /ﬂ |AVou|? dx ; u € FC(Ko, K1; .Q)} .

DEFINITION 2.4. Let FC*(Ko, K1; £2) be the class of admissible functioms e
ACL,(£2) such thatu(x) = 0 on the intersection of2 with a neighborhood o&g and
u(x) = 1 on the intersection a? with a neighborhood ok’;. We define the4;,-capacity to
be

capj4p(K0, K1; 2) =inf { / |AVou|? dx ; u € FC*(Ko, K1; .Q)} .
2

We will prove the equivalence of Definitions 2.3 and 2.4 in domains with the intrinsic
metric.

THEOREM 2.1. Let £2 beabounded domaininacompletemetricspace(D, dp(x,y)),
D c G equipped with the intrinsic metric dp(x, y). Then,

capy, (Ko, K1; £2) = capy, (Ko, K1; £2) .

Capacities associated with sub-elliptic equations were studied in [4, 5, 9, 10, 28, 29, 30].
Now we give the definition of thel,-module of a system of horizontal vector measures
correlated with Definitions 2.3 and 2.4. Lgtx) = (¢1(x). ..., ¢ny (x)) be a vector valued
function. If [ |¢;|d|wi| < oo for all i, then we defing'¢du = Y%, [¢ini. We denote by
FM(w) aclass of functiong (x) such that/¢du > 1. If ¢ € FM(w) for all u € M, then
we write¢ € FM (M) and call (x) an admissible function for the systei.

DEFINITION 2.5. Letfé = (&1, ..., &,,) be a vector valued function and & denote
a family of complete horizontal vector measuresarc D. We define the4 ,-module by

Ma, (M) = inf {/ |AE|1P dx; & € FM(M) p-almost everywher}e.
2

We put the conditiorp-almost everywhere to avoid nonsense. For example, let us choose
some horizontal vector field1;, with orbit g;, and the Lebesgue measutg; on g;. We
fix an arcC c pg; of finite length. Let us consider the horizontal vector measure system
M={@O,...,dBilc,...,0),(0,...,—dBilc,...,0}. There is no admissible vector-valued
function& for M. However, sinceéVl, (| M]) = 0, the p-exceptional set coincides with,
and thereforeVIAp (M) =0.
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For a family I" of horizontal curves we naturally have horizontal vector measudes
and measurely| = (dy,dy)Y2. We writedI" = {dy; y € '} and|dI"| = {|dy|; v €
F}. More generally, for a positive definite, x n1)-matrix Q (x) = (g;; (x)) we put|Qdy| =
(Qdy, Qdy)"/?and|QdI'| = {|Qdy|; y € T'}.

We prove the next relations between thg-capacity and thed ,-module.

THEOREM 2.2. Let £2 be adomain in a complete metric space (D, dp(x, y)), D C G
equipped with theintrinsic metric dp (x, y). Then,

capy, (Ko, K1; 2) = M4, (dI7) = M,(IBdT'|) < oo for p el 00).

We consider another family of horizontal vector measures. Let us dend®y =
VoC* (Ko, K1; 2) = {Vou; u € FC*(Ko, K1; 2)}.

THEOREM 2.3. Letl/p+1/g =1 Ifcag4p(K0, K1; £2) > 0, then
cafy, (Ko, K1; 2)7/7 Mg, (VoCHY? = 1.

In the case when cap, (Ko, K1; £2) = Owe have Mg (VoC*) = oco.
Ap q

Later we 'wiII use the following notation. L&t and K1 be compact sets fron?, and
let K} and K/ be sequences of compact sets such #@n k0 = ¢, K} c intk{ ",
0 3 . .
Ki CintKi ", Ko =20 K§, andK1 = 720 K7 .
THEOREM 2.4. Suppose that B(x) is uniformly continuous in a bounded domain £2.
Then M, (|BdI"|) possesses the continuity property. Namely, if I'; = I'(K}, K{; £2), then

lim M,(|BdI;|) = M,(|BdT).
Jj—>00

3. Auxiliary lemmas. Here and in Sections 5 and 6 we will be working under the
assumption thako and K are disjoint non-empty compacts in the closi@®f a domains2.
Moreover, IetKé andK{ be sequences of closed sets such & K9 = ¢, Ké Cint K({’l,

K{ Cint K{_l, Ko =0 Ké, andky = (2o K{ We recall that notions of closure and
inner points are considered in the topology of the complete metric sPack)), D C G.

The next lemma in the case Bf = R" goes back to the work [33] and then has been

revised by Ohtsuka (see for instance [2]).

LEMMA 3.1. Letp € LP(D) be a positive lower semicontinuous function which is

continuousin 2 \ (Ko U K1), 2 C D. For each ¢ > 0 we can construct a function p’ on £2,
o' > p, with the following properties:

(i) [opPdx < [,pPdx+e.

(i) Supposethat for each j thereisy; € (K2, Ki’; £2) such that fy_, P I1Bdy| < a.
Thenthereexistsy € I' (Ko, K1; §2) that satisfies the inequality f); plBdy| <a+e.
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The proof of Lemma 3.1 on Carnot groups #rwhich is equal to the unit matrix
can be found in [27]. For the ca# # I and for domains with intrinsic metric the proof is
essentially the same.

LEMMA 3.2. Supposethat U is a bounded domainin G. Let f € L,(U) ande > 0.
Then there exists a continuous function f such that

If = F 1L, <e.

PROOF. SetU, C U, C U,+1 C U,y1 C --- C U the sequence of open sets that
exhaust the domaitr. We putU_1 = Up = @. For each: we find a positive functiot,, (x),
such thati, € C3°(Up+1 \ Up—2), [Vhy| < 1/6, |hy(x)] < 1/6 min{1, dist(x, 9U)}. Then
the functionn(x) = Y_o2; h,(x) has the following properties

1. V(x| =1/2,

2. 0<n(x) <1/2min{1, dist(x, dU)}.

Lety € G, |y| < 1,and O< r < min{l, C, C} where the constants, C will be made
more precise later. We define&°-map of the domai/ onto itself by7; , (x) = x - §,x)y-
We claim that7; , is a homeomorphism. 1§ = 0, thenT, g is identity map. Lety # O.
Since 0< 7n(x) < 1/2dist(x, dU) the mapT; , transformsU to U. Let us show thaf; , is
injective. Suppose that for somveandx’ in U we haveT; ,(x) = T; ,(x"). Applying the left
translation and dilatation for the domaihwe can assume that| = 1 andx’ = 0, where 0
denotes the unity oB. In this case we gets, )y = 8y OF X = 8,0 Y (Sryx)y) 1. A
homogeneous norm| and the Euclidean norif- | are connected by the inequaliy||x| <
x| < Ca2llx||¥™, x € U, whereCy, C> some positive constants (see, for instance [17]). We
deduce that

1X| = 1800 Y Grnyy) "2 < C2l80)y — Siyoyy 1™

(3.1)
< CotY™1(0) — n() Y™ | Pr—1(n(0), n(x), y, O™

Here P,,_1 is a polynomial of the ordern — 1, that depends on(x), #, and coordinates of
the pointy. Since|y| <1,0< 1t < 1and0< n(x) < 1/2, we havdg P,,_1| < C3, where the
constanC3 depends only om. We estimatén(0) —n(x)| < |x|/2 by the first property of the
functionn. Here|x| is the homogeneous norm of Taking into account these estimates we
conclude thafx| < CatY/™|x|¥™ from (3.1). Sincex| = 1 fort < Co = C,", we obtain
the contradiction.

Let us show thaf; , is surjection. We denote y(z) the curves;y. The intersection
w(t) N U is invariant under the maf , because of the second propertynof). This shows
that the map is surjection.

The Jacobian matrix of; ,(x) is equal tol + T, wherel is the identity matrix and
elements of the matrig depend om, x, y, Vi(x), n(x). Thus the Jacobiai(T; ,) is of the
form 1+ tH(, x, y, Vn(x), n(x)), whereH is a polynomial. The properties of function
the choice ofy, z, and the boundedness of the dom@inimply that maxcy |H| < Cs, where
the constanCs depends only om, and on the diameter df . If we chooseC = 1/(2Cs),
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then we have/(7;,) > 1 —1tCs > Ofort < C. This shows that the inverse mﬁpfyl is
defined and smooth.

Let ¢(y) be a nonnegative*°-function supported in the unit baly| < 1 such that
Jyi<19(dy =1.Forf € L,(U) we define

dz

filx) = J@ximy)e(y)dy = /Gf(z)w(é(,n(x))—l(xflz))w.

lyl<1
The functionf; (x) is aC®-function in the domair/.

We show that| /; — f | L,(U)|| = 0ast — 0. Using the fact that continuous functions
with compact support are denselin (U) we obtain

3.2 If(xy) = f) | L)l -0 as |y]— 0.

Since f;(x) — f(x) = f‘ykl(f(xém(x)y) — f(x)e(y)dy and applying the Minkowski in-
equality, we deduce

Iy = £ 1 Ly < /

Iyl<
It follows that || f; — f | L,(U)Il — 0 ast — 0 from the property (3.2), the inequality

| f(x8y)y) — fFx) | Lyl < 2|l f(x) | Lp(U)]l, and the dominated convergence theo-
rem. O

. ILf (8innyy) = f () | Lp(@)lle(y)dy .

THEOREM 3.1. Let 2 be a bounded domain in D, D C G. Let B(x) be uniformly
continuous on 2 \ (Ko U K1) and C ¢ FM(|BdTI'|) consist of continuous functions on
2\ (Ko U K1). Then,

(3.3) M = inf / AP (x)dx = M,(|BdT).
pe
2\(KoUK1)

PrOOF. We denote by the domain2 \ (Ko U K1). Lete € (0,1/2). We choose a
functionp € FM(|BdT'|) with

(3.4) / pP(x)dx < &+ M,(|1BdI)).

U
Then, by Lemma 3.2, we can find a continuous funcgipim the domainU such that
(3.5) / of (x)dx < & +/ P (x)dx .

U U

We claim that for a sufficiently small the function(1 + £)2p,(x) is admissible for
M(Bdr)).

The matrixB(x) is uniformly continuous. Ifx,y € £ \ (Ko U K1) andd(x,y) <
dp(x,y) < ¢c(¢), then|B(x) — B(y)| < «~le. Hence, we obtain
(3.6)  IB(»E| < IB)E|+ [Bx)E — B(yE| < IB)E| +a telg] < (1+ )| Bx)E|

from the property (2.2) for the matrig.
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We estimate

/ P () [B)dy| = / / P (Brnoy) ey |BG)dy]

(3.7) 4 y Jlyl<l

=/ w(y)dy/p(x&ny) [B(x)dy|.
lyl<1 y

Let us fixy fora moment and consider the integf9lp(x8,ny) |B(x)dy|. We denote by the
image of the curves under the may; ,(x)|,. We recall that the maf; , has the Jacobian
matrix of the form/ +:7', wherel is the identity matrix and elements of the matfixdepend
ont, x,y, Vn(x), n(x). The properties of the functiam the choice ofy| < 1, || < 1, and
the boundedness of the domdinimply that the norm off" is bounded by a constaft that
depends only om, and on the diameter df. It is obvious, that the curvg connects the
compactskg andK. If the curvey is not horizontal and therefore it is not locally rectifiable,
then

_ 1 o~
/yp(x&n)’) [B(x)dy| > o l/): pxdmy) ldy| > m /); p(y)|dy| = o0.

Herea is the constant from (2.2). If the curyeis horizontal, thery € I'(Ko, K1, £2). We
chooser sufficiently small to satisfylp (x, x8:5(x)y) = |x*1x8,,7(x)y| =1(x) < ¢(¢) and
t < ¢/C. Then we deduce

) Bx)d
/yp(x my) |1Bx)dy| > Tric

/: 0(2) |B(Tt,_yl(Z))dJ7|
14

>; v) |B dv| > ———
> (1+8)2Lp(y)l ((2)dy| = 11072

from (3.6).
since |, _, ¢(»)dy = 1in (3.7), we conclude thatl + £)2p;(x) € FM(|BdT]). We
obtain

M= inf | 5P(odx < (1+e)% / pf ()dx < (1+ &) (2 + M,(|BdT']))
pe 2

2

from (3.4) and (3.5). Sinceandp € FM(|BdI'|) were arbitrary, we ge¥ < M, (|BdI]).
The reverse inequality is obvious and we have (3.3) as desired. |

4. Proof of Theorem 2.2. We split the proof into two steps.
Sep 1. We show the inequalities

(4.2) M,(BdI')) < MAp(dF) < capAp(Ko, K1; 2) < 0.

The setFC (Ko, K1; £2) is not empty and hence, CQP(Ko, K1; 2) < oo. Let us choose
from FC (Ko, K1; £2). Since thep-module of a family of non-rectifiable curves vanishes [14],
we can assume that curves connecting comp&gtand K1 are parameterized by the arc
length parametes € I Cc R. We claimdu(y(s))/ds = (Vou(y(s)), y(s)). Sincey is
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horizontal, we have the equality:

ni
(4.2) p(s) =Y aj(s)X1;(y(s)).

j=1
In [23] one can find the following representatioki;; (y) = 8/dxij + _; ; Pijk(¥)d/dx1k,
i=1...,m,j=1,...,n;. HereP;;(y) are homogeneous polynomials of order i,
that possess the following properties:

1) P;ji(0) =0, 2) P;ji(y) =0 for I <i, 3) Pijx(y) does not depend on for!’ > 1.

Hence, for horizontal vector fields we have

(4.3) X0 =—+ Y P, 1k(y)—
8x1, oy}

Let us substitute in (4.2) the expression for; from (4.3). We then obtain

o= Y Vg — —Za(s>(x—+ZP1,lk(y(s))—>

U =2k

Comparing the coefficients &/ox,,, we deducez;(s) = y1j(s), j = 1,...,n1, and
Vpa(s) = 311 aj()P1j pg (vi(s), ... yp-1(s)) for p = 2. Herey; = (i1, ..., vin,) € Vi
Hence the tangent vectgis) has the formy (s) = (y1(s), 0, ..., 0) in the left-invariant basis
of the vector fieldsX;;,i =1,...,m, j =1,...,n;. We get

d -
Q) _ > —7/1, (s) + Z ypq(s>

ds
i 1 p>Zq

_Z—yl](s)+
_Z<

Hence we havgfy Voudy = [,(Vou(y(s)), y(s))ds = u(x1) — u(xo) = 1, wherexg € Ko,
x1 € K1, and the equality holds except for some exceptional family-ofodule zero. Thus,
Vou € FM(dT') for p-almost all curves ofl I", andM 4, (dT") < [ | AVou|? dx. Taking
the infimum with respect te, we obtain the second inequality of (4.1).

Now, leté € FM(dI') p-almost everywhere. Then we haveglfy Edy = [y AEBdy
< fy |AE||Bdy|. So|Ag| € FM(|BdAI|). Finally, we obtainM,(|BdI'|) < fg AP dx.
Since¢ € FM(dTI') was arbitrary, we have proved the first inequality of (4.1).

Sep 2. To show

71 (8) P1j, pg (¥ (5))

p>Zq

)J/lj (8) = (Vou(y(s)), y(s)) .

o o2

(4.4) capy, (Ko. K1: ) < M,(BdT')),



564 I. MARKINA

we choose a functiop € FM(|BdI'|). For eachx € 2 we assumé ' to be the family of
curves starting akp and terminating at. Let us define

(4.5) u(x) = inf /p|de|.
vely Jy

We will construct an admissible function frofiC (Ko, K1; £2) making use of (4.5). First,
we prove thai: possesses the following properties:

(i) ueACL,(£2).

(i) Theinequality

(4.6) |AVou(x)| < p(x)

holds for almost all points € £2.

(i) lim u(x) = 0 asx — Ko alongp-almost all curvey € I'(Kq, K1; £2).

(iv) liminfu(x) > 1 asx — K1 alongp-almost all curvey € I'(Ko, K1; £2).

We have
4.7) /P|Bd7/| < a/ pldy| < oo

14 14

from the property (2.2) for the matri8. The finiteness of the last integral fpralmost all
curves follows from the properties of the measure system [14]. By the definitioxdfve
get

(4.8) lu(x) — u(y) S/pIBdVI Sa/pldyl

Y Y
for arbitrary pointsy, y € y. Let us fix a horizontal vector fieldy; € Vi, j = 1,...,n1,
and denote by; an orbit of X1;. If we apply (4.8) tog;, we obtain that: is absolutely
continuous along-almost all curves of horizontal fibration. Thus the horizontal derivatives
Xyju, j =1,...,n, exist for almost all points if2 and satisfy the inequalityXy;u| < ap.
The assumptiop € L,(£2) implies thatVou € L,(£2).
To show (ii) we takex € £2, whereVou(x) exists, and a horizontal vector fielt(x),
|Y(x)| = 1. Then (4.8) implies
— lim u(x exphY(x)) — u(x)
h—0 h

(Vou(x), Y (x))

(4.9)
~ h—0
= p(x)|B(x)Y (x)]
for almost allx € £2. Now, choosing¥ (x) = A%Vou(x)/|A%Vou(x)|, we get
A?Vou(x) ‘ AVou(x) ‘ AVou(x)
S Bx)-T2 | = Randvl
|A2vou(x)|> = P CEgguco| = | a2vou ]
Since(A2Vou(x), Vou(x)) = | AVou(x)|2, we have the property (ii).
Using the arc length parametgmwe deduce G u(y () < [, p|Bdy| < « fo pldy| —
0 ass — 0from (4.5) and (4.7). Thus, lim(x) = 0 asx — Kg alongy.

h
< lim %/ p(xexptY (x))|B(xexptY (x))Y (x)|dt
0

<V0u(X),
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We prove (iv) by contradiction. Suppose that there exists a curvsuch thate =
lim infsﬁly1 u(y1(s)) < 1, wherel,, is the length ofy;. We fixe = 1 — ¢ > 0. By def-
inition, there issg € (0, 1,,) such thatju(yi(so)) — c| < &/3, andfsloyl pds < ¢/3a. We
consider the familyy with x = y1(s0). The definition of the functiom (x) implies that we
can findy, € I'y with fyz p|Bdy| < u(x) + ¢/3. Let us denote bys the arc of the curves
between the pointgy (so) andy1(l,,). Then,y> U y3 € I'(Ko, K1; £2), and by (4.8) we get

/ Bdy| < u(x) + = + fln ds<ctototo=1
plbdy| <u(x - tua pds <c+-+=-+=-=1,
y2Uys 3 50 3 3 3
which contradicts tp € FM(|BdI’'|). Hence (iv) holds.

To complete the proof of the Step 2, we denoteity) = min(u(x),1). Thenu €
FC(Kg, K1; £2) and we have cap, (Ko, K1; 2) < Jo |AVoil? dx < [, |AVoul|? dx <
Jo p? dx by the definition of theA ,-capacity and property (ii). Taking the infimum with
respect tqo, we obtain (4.4).

Theorem 2.2 follows from (4.1) and (4.4). O

5. Proof of Theorem 2.4. Lete € (0,1/2). By definition, there is a hon-negative
functionp such thap € FM(|BdTI'|) and|lp | L,($)|I” < M,(|BdI"|)+¢. We may assume
that p is strictly positive on2 \ Ko U K3. If this were not this case, we could consider the
cut-off-function maxp, 1/m) instead ofp. Moreover, we can suppose thais continuous
on$2 \ KoU K1 by Theorem 3.1.

Let o’ be as in Lemma 3.1. We show th@tp' |BdI'| > 1— 2¢ for y € I'(K}, K{; 2)
with sufficiently bigj. In fact, suppose the contrary. Then there would be a seqyéricand
curvesy;, € (K, K'lj’“; £2) such thatfm o' |BdI'| < 1—2¢. By Lemma 3.1 we would find
y € I'(Ko, K1; £2) with [}; p|BdI'l <1—2¢+¢=1-¢,contradictinge € FM(|BdI)).

Now we can finish the proof. Sin¢¢—2¢) 1o’ € FM,(|1BdT}|), I; = F(Ké, K{; ),
for sufficiently bigj, we have

M, (BdT)) < / [(1—26)™Lp/17 dx < (1— 2e) (M, (IBdT) + &) .
2\ KoUK1

Letting j — oo ande — 0O, we obtain limsup,, ., M,(I1BdT;|) < M,(|Bdr|). Since
M,(|BdI'|) < M,(|BdT;) for arbitrary j, we obtain the statement of Theorem 2.4. O

6. Proof of Theorem 2.1. Let Ké and K{ be sequences of compacts which were
described at the beginning of Section 3. We take 7C (Kj, K7; £2) and put

0 onkjnge,
u=131 onKi’ﬂQ,
u on 2\ (KJUK]).
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We haveu = 0 on p-almost all curves inKé N £ andu = 1 on p-almost all curves in
K-lj N £ by the definition of}"C(Ké, K-lj; £2). Henceu = u along p-almost all curves
in 2 andu € FC*(Kog, K1; £2). Therefore, capp(Ko, K1;2) < [o|AVoulPdx =
f_Q | AVou|? dx, and taking the infimum with respect g we obtain caRp (Ko, K1; £2) <
capAp(K{,', K{; £2). Theorem 2.2 implies the equalities g_gijé, K{; 2) = M,(|1BdT|)
and capy (Ko, K1; £2) = M,(|BdI'). M,(|BdT|) tends toM,(|BdI’|) asj — oo by
Theorem 2.4. Finally, c%}([(o, Kq1; 2) < capAp(Ko, K1; £2). The reverse inequality is
obtained from the inclusio®# C* (Ko, K1; £2) C FC(Ko, K1; 2). m]

7. Proof of Theorem 2.3. We use the idea of the proof in [2]. LefEC* =
FC*(Ko, K1; £2) be as in Definition 2.4 = {£(x) = (1(x), ..., &, (x)); fg |B&|7 dx
1}. We introduce the bilinear functional (1, &) = fQ(Vou,é)dx, which is defined on
FC* x T. SinceFC* is convex,T is a weakly compact convex set, add— ¥ (u, &)
is continuous with respect to weak topology1of The minimax theorem [11] implies that

IA

(7.2) inf sup | (Vou, &)dx = sup inf (Vou, &)dx .
ueFC*eer J @2 ger UueFC* J@

We will show that the left-hand side is equal (toa@\p(Ko, K1; Q))l/p and the right-hand
side is equal t4Mp, (VOC*))_l/q. Holder's inequality and the definition af imply that

1/p 1/q 1/p
/ (Vou, £)dx < </ |.AVou|pdx> (/ |BE | dx) < </ |.AVou|pdx>
17, 7] 17, 17,

forall £ € Y. The vectorr = ([, | AVou|? dx)=P/P . | AVou|P~2 . A2Vou belongs toY’,
becausd, |B¢|9dx = 1. Sincef,, (Vou, ¢) dx = ([, | AVou|? dx)¥?, we have

1/p
sup | (Vou, &)dx = </ IAV()ulpdx> .
EeT J2 2

Taking infimum over all: € FC*(Ko, K1; §2), we obtain the equality

(7.2) inf sup | (Vou, &)dx = (capy (Ko, K1; 2)"7.
ueFC* eer J P

If capj4p(K0, K1; 2) = 0, then inf,crcx [Q(Vou,g)dx < Oforall& € T. This means
that the setFM (VoC*) is empty andMBq(VoC*) = oo. Now, we assume that the capacity
cap:4p(l<o, K1; 2) is strictly positive. Let us observe that

—1/q
(s, %oc) e = (inf{ [ wertax; inf [ (von.1ax = 1))
Q ueFC* Jo

—1/q
= sup{(/ |B§|qu> ;inf (Vou, £)dx > 1}.
2

ueFC* Jo

(7.3)
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We claim

. _ .
sup{ uggo/g(vouxg)dx, /Q|B§| dx < 1}

-1/q
= sup{(/:2 |B$|"dx> ; uei?;c*/gwou’g)dx > 1}.

Let us denote by andg the left-hand side and the right-hand side of (7.4), respectively. If

a:sup{ inf /(Vou,é)dx; / |B$|‘1dx§1},
2 2

(7.4)

ueFC*

then the implication

(7.5) / |IB&|9dx <1 = inf (Vou, £)dx <«
Q ueFC* Jo

require the inequalityy > 1. The negation of (7.5)

inf (Vou, &Ydx >a = / |BE9dx > 1
ueFC* Jo Q

implies thatg = (jg |B&|9dx)~Y4 < 1. We deduce thgt = 1. In the same way we show
thatae = 1. We conclude that (7.4) holds.
Finally, we get

(7.6) sup inf (Vou, £)dx = (Mg, (VoC*)) Y4
ger ueFC* J@ q

from (7.4) and (7.3). Now Theorem 2.3 follows from (7.6), (7.2) and (7.1).
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