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Abstract 

Let Xi,X2,. • • ,Xn be a random sample of size n from a continuous distribution F 

and Y1}Y2,..., Ym be a random sample of size m from a continuous distribution G. 

One of the ways to test the hypothesis of equality of F and G against the alternative 

that F < G when both distributions are univariate is to perform a precedence test -a 

test that not only requires only a portion of the samples, but which is distribution-free 

under the null hypothesis. The initial purpose of this thesis was to extend the notion 

of a precedence test to higher dimensions. In doing so, we found two different tests 

that are appropriate for both partial and complete data sets. These tests are based on 

two different extensions of the usual definition of a procentile-procentile plot -which is 

closely related to the precedence test statistic on the line- to the plane. The first of the 

above mentioned extensions involves the contours formed by the distribution function 

F; the second of our tests uses the marginal quantiles of F. For both extensions of 

the empirical p — p plot, we have proven a Glivenko-Cantelli type of result. Also, we 

have developed their asymptotic convergence to Gaussian limits. The choice between 

tests based on these two plots depends on the kind of information that the data of 

our experiment generates. All the results presented here, although mostly presented 

for !ft2, are valid for 3?d-valued data. 

n 
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Chapter 1 

Introduction 

One of the most widely used statistical tools in the area of clinical trials is the test of 

equality of two distributions. In general, we have two separate samples and we want 

to find out if they come from the same distribution. Although there exist several ways 

to approach this problem, in the present text we will only discuss the precedence test 

since the original motivation for this thesis came from this very simple idea. 

Basically, a precedence test is a statistical test which counts the number of ob-

servations from one sample that occur prior to a certain observation from the second 

sample and then decides if the observations involved come from the same distribution 

or if one of the distributions is stochastically larger than the other. 

In addition to its very simple structure, a precedence test has two attractive 

features: first, the statistic is distribution-free under the null hypothesis; second, it 

is not necessary to have the entire samples in order to construct the test statistic, 

resulting in savings in both time and money. 

We can explain a precedence test in a more formal way: Given n observations 

from a distribution function F{x) and m observations from a distribution function 

G(y) we want to test H0 : F(x) = G(x) V x versus one of the following alternatives: 

# i : F(x) < G{x) V x, H2 : F(x) > G(x) V x or H3 : F(x) =£ G{x) for some x. 

HQ will be rejected in favor of H\ if we observe too many observations from G(y), 

say r, before the kth observation from F(x). H0 will be rejected in favor of H2 if 

1 



CHAPTER 1. INTRODUCTION 2 

we observe too many observations from F(x), say k, before the rth observation from 

G(y). Similarly, we will reject H0 in favor of H3 whenever we have either too many 

or too few observations of one sample before the kth or the rth observation of the 

second sample. In this thesis, we will primarily focus on the alternatives Hi and H%. 

The first time the phrase "precedence test" appeared in the literature was in [38]. 

Here, we can find tables for equal sample sizes up to 20 that tell us when to reject 

the null hypothesis, for both kinds of alternatives: one-sided (for levels of significance 

a = 0.05,0.025) and two-sided (for levels of significance a = 0.10, 0.05). 

As we mentioned earlier, precedence tests are distribution-free, so the underlying 

distributions only play a role when we are calculating the power of the test. Up until 

this point, the assumption when dealing with the power was that the underlying 

distributions were normal. But then, questions about how good the test was when 

normality could not be assumed arose. These questions were addressed in [18]: in 

light of the application to life-testing, it was assumed that the underlying distributions 

for the samples were exponential with unknown parameters 9X and 9y, respectively. 

The hypotheses then became H0 : 9X — 9y versus H\ : 9X < 9y, H2 : 9X > 9y or 

H3 : 9X y£ 9y. Eilbott and Nadler showed how to compute a, and that this calculation 

did not depend on the underlying distributions being exponential. 

Less than two years later [42] was published; this paper extended [18] in the 

following sense: the power calculations made for underlying exponential distributions 

were also true for a larger class of distributions. It was shown that since the power of 

a precedence test was unaffected by applying a strictly increasing continuous function 

to the data, the power calculated for the exponential distribution could be used for 

any distribution that can be transformed into an exponential by means of any such 

function. 

After [42], literature focused more on particular applications to life-testing and 

reliability theory. A notable exception was [26], where Gastwirth proposed the first-

median test: a precedence test that counted the number of observations of one sample 
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preceding the (first) median of the other sample. This test is actually a two-sided 

test, since our test statistic changes depending on which median observation occurred 

first. It also presented a heuristic proof for the asymptotic distribution of the test. 

The research on precedence tests blossomed in several directions: some researchers 

decided to focus on developing a test for the combined sample (see [45], [33], [34] and 

[48]), others wanted to develop the theory for the censored case (see [49], [44] and 

[11]), and yet another group decided to continue the exploration of the power and 

comparisons among several well-known tests. 

It was in [30] that a precedence test with maximized power -the best precedence 

test- was discussed in depth. This publication obtained powers for the precedence 

test using Lehmann alternatives (see [42]) with small sample sizes and then chose the 

test with the greatest power among them. It also presented some power comparisons 

between the precedence test and other tests, such as the Mann-Whitney-Wilcoxon 

(MWW) and the Savage test, in order to be able to understand how much power we 

must lose in favor of an early termination of the experiment. 

Interest in precedence tests was revived -as it happened with many other applied 

results- with the advance of technology. In 1993, Nelson published [39], a short paper 

explaining once again the basics of the precedence test. The new feature was a Basic 

computer program that analyzed the result of a precedence test and gave significance 

levels for some combinations of sample sizes. It was with the help of computers that 

the research of power calculations of this sort really took off. 

Lastly, we will mention [12] and [7]. Despite the fact that the innovative topic 

in [12] was confidence bounds, it contained a vast review of precedence tests, which 

is quite complete and very interesting by itself. On the other hand, [7] contains not 

only a review of what has been done in the past, but further extends the discussion 

of weighted, censored, three or more samples, maximal and other types of precedence 

tests and related topics. 

A natural question that arises is whether the concept of a test for equality of 
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distributions can be extended to data sets in higher dimensions in such a way that 

the distribution-free property can be maintained -at least to some degree- and that 

it is not necessary to have the entire samples in order to construct the test statistic. 

Our goal with the present work was to answer this question. We will go through 

the methodology behind the one-dimensional precedence test in order to pave the 

way for our multidimensional version of the test. We will also add a few notes and 

observations at some junctures of the test that may appear obvious in one dimension, 

but will be crucial in our generalization to two or more dimensions. 

Suppose that we have two sets of data and we want to know if they come from 

the same distribution. This situation could arise, for example, if we want to know 

which of two brands of bulbs would last longer, which gender is more likely to develop 

heart disease earlier in life or if two kinds of trees are equally distributed in a park. 

Formally what we have are n observations Xi,X2,... ,Xn from a distribution 

function F and m observations Y%, Y2,..., Ym from a distribution function G and we 

want to test H0 : F(x) = G(x) V x against any of the alternatives Hi : F(x) < G(x) 

V x, H2 : F(x) > G(x) V x, or H3 : F(x) ^ G(x) for some x; in other words, we want 

to determine if the two sets come from the same distribution or in the case of Hi and 

H2, if the distributions are "stochastically ordered", such as, for example, a shift in 

location of the same distribution. It is obvious that in the alternatives Hi,H2, we 

require the inequalities to be strict for some values of x. 

To be able to perform the test we need the order statistics from F, namely 

X(i) ,X(2) , . . . ,X(n), and Y(i),Y(2),... ,Y(m), the order statistics from G. Then, the 

only thing we need to know in order to make a decision is whether X^) < Y(r) or 

Y(r) < X(k), for some predetermined values k and r. To show the way that precedence 

tests work, we will focus our attention on the test of the form H0 : F(x) = G{x) V x vs 

Hi : F(x) < G{x) V x (equivalently, H0 : X =v Y vs Hx : Y < X). We will reject H0 

in favour of Hi if we find too many Y's before X^, i.e. if Yjy) < X^). Equivalently, 

we will reject H0 if Gm(Y{r)) < Gm(X{k)), where Gm(y) = ^ TT=i HYi < v) denotes 
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the empirical distribution function of G at the point y. It is at this point where the 

connection between precedence tests and p — p plots becomes clear. 

Let F~(p) = inf{a; : F(x) > p} denote the left continuous inverse of F, where 

F~(0) = limp_^0 F~(p) = F~(0+). Then, the procentile-procentile, or p — p plot of G 

against F, is defined as G(F~(j>)) for 0 < p < 1. Similarly, the empirical p — p plot 

of G against F is defined as Gm(F~(p)) for 0 < p < 1. For an extensive review and 

bibliography of p — p plots, q — q plots and other graphical methods in nonparametric 

statistics, see [23]. Going back to our test, an order statistic can be rewritten as 

X([np)) — F~(p), where \np~] denotes the smallest integer greater than or equal to 

rip. Therefore, it is straightforward that the statistic used in precedence tests can be 

regarded as a snapshot of the empirical p — p plot of G against F a t a single point 

V—\- Not only do we have the advantage that we require only a portion of the data 

points, but this statistic will be distribution-free under H0 : F — G. Following our 

previous method, we will reject HQ if Gm(X^)) takes an extreme value. 

Moreover, if we had all the observations and not only part of them, we could use 

the entire plot to develop a distribution-free test for the equality of two distributions. 

For this purpose, we can use the empirical p — p plot process defined by Wn'm(y) — 

y/m[Gm(F~(y)) — G(F~(y))] for 0 < y < 1. Under general regularity conditions, the 

weak convergence of Wn'm to a mean zero Gaussian process is developed in [4]. 

To be able to extend our test to higher dimensions, we need to analyze the 

problem from a slightly different perspective. 

Let r : Q, —> [0,1] be a random variable. We call r a stopping time with respect 

to a filtration J7 if {r < t} € Tt V t 6 [0,1]. Now, recall that for the alternative 

Hi : F(x) < G(x), H0 : F(x) = G(x) will be rejected in favor of Hi whenever 

Y(r) < X(fc), i.e. the experiment is terminated at the (random) time of the kth failure 

in the F-population, or the r th failure in the G-population. Only the data collected 

up to this time is needed to calculate the test statistic. Actually, the order statistics 

-X"(i), X(2),..., X(n) can be viewed as n stopping times T\, r 2 , . . . , rn with respect to 
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the minimal nitration T generated by the point process N(t) — Y^l=\ I{Xi < t}; that 

is, Tt — a{N(s) : 0 < s < t}. Then, our test statistic is reduced to the number of 

observations from Y\, Y%,..., Ym that lie in the random set [0, r^]. Thus, it becomes 

obvious that before we can extend our test to 3?+, we need to somehow extend the 

concepts of stochastic orders, stopping times, p — p plots and nitrations. 

For data taking values in 9?+, the setup is similar to that in the one-dimensional 

case. Given two continuous distributions F and G on 9ft+, we want to test H0 : F = G 

against the alternative that the distributions are stochastically ordered. It is in trying 

to set up the alternative where we need the extension of stochastic orders. This is 

due to the fact that 9ft+ is not a totally ordered space and thus, when we work with d-

dimensional data we have more than one stochastic order. There are many such orders 

(for a full exploration of them see [41]), but because of the application of precedence 

tests to clinical trials and life testing, we will be focusing first on the lower and upper 

orthant order. Also, although all the concepts and results that follow can be easily 

extended to 9ft+, we chose to restrict our attention to the positive quadrant of the 

plane to simplify our presentation. 

We say that the random variable X is smaller than the random variable Y in 

the lower orthant order (X </0 Y) if, for every t e 9ft+, the probability that X is less 

than or equal to t is greater than the probability that Y is less than or equal to t (in 

the usual partial order on 3?+). Intuitively, this means that X is more likely to take 

values on [0, t] than Y. 

We say that the random variable X is smaller than the random variable Y in 

the upper orthant order (X <uo Y) if for every t € 3?^, the probability that X is 

greater than t is smaller than the probability that Y is greater than t. Intuitively, 

the definition is saying that Y is more likely to take values on [£, oo] than X. Note 

that the equivalence X <i0 Y 44> X <u0 Y, although true on the line, doesn't hold 

anymore in the bivariate setting. Both of these stochastic orders are usually linked 

with experiments dealing with clinical data. 
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Since tests of equality of distributions could also be applied to geographical data, 

we will also work with another type of stochastic order, similar in spirit to both the 

Kendall stochastic order and the ff-larger order. We say that X is less than Y in 

the Kendall stochastic order (X -<K Y) whenever Ki(t) > K2(t) V t G 3ft, where K\ 

is the distribution function of F(X) and K2 is the distribution function of G(Y) (see 

[37]). We say that Y is iJ-larger than X whenever K2{t) < K^t) V t G 3ft, where Kx 

is the distribution function of F(W), K2 is the distribution function of G(W) and H 

is the distribution function of W (see [36]). The order we want to introduce will be 

denoted by -<KF: we say that X -<KF Y whenever K(t) > K(t) V t G 3ft, where K is 

the distribution function of F(X) and K is the distribution function of F{Y). 

Going back to the test of equality of distributions, the alternative hypotheses 

can be rearranged to fit one of the one-dimensional scenarios: H\ : F(x) -< G(x) V x, 

H2 : G(x) •< F(x) V x, or H3 : G(x) ^ F(x) for some x, for some specified stochastic 

order -<. As mentioned earlier, we will focus on Hi and H2. 

Another problem arises when, following the one-dimensional methodology, we 

want to define our new test statistic as the number of G—observations that we en-

counter before X^)- Because we can no longer order the observations, we need to 

find a replacement for the concept of order statistics or, more generally, stopping 

times. For this purpose we rely on stopping sets, which are the multidimensional 

generalization of stopping times. 

A set D C 3?̂ _ is said to be a lower layer if for every t G 3ft+, the event {t G D} 

implies that [0,t] C D, where [0,t] — {x G 3R+ : 0 < x < t}. A map £ with the 

lower layers as range is said to be a stopping set with respect to the filtration T if 

{t G £} G Tt V t G 3?+ (see [29]). Thus, it can be clearly seen that the stopping set 

we choose will not only depend on all or some of the F—observations, but also on the 

kind of data structure -which is given by the filtration (J7 = {F(s,t) '• {s,t) G 3?+})-

that the experiment generates. 

Again, the fact that precedence tests are widely used in life testing and clinical 
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trials leads us to consider two types of filtrations: the minimal and the product. The 

minimal filtration is the a—field generated by the bivariate empirical distribution 

function Fn, which is in turn generated by X\, X2,..., Xn(ci. chapter 2). The simple 

structure of this filtration gives rise to stopping sets that are defined by the contours 

of the empirical distribution Fn. The product filtration is the a—field generated by 

the indicator functions of each component of our data (cf. chapter 2). This filtration 

gives rise to several interesting stopping sets -in addition to those defined by the 

minimal filtration-, such as the set [0,(Xh,X9,\)], where Xf* denotes the Ith order 

statistic of the sth coordinate of X. 

Once we have agreed on the type of stochastic order we are using and a stopping 

set is chosen -or we have identified the kind of stopping set we can use given the 

filtration used to obtain the data-, we can go back to our original problem and define 

a test statistic. If X\, X2,... ,Xn are i.i.d. F and Y\, Y2,... ,Ym are i.i.d. G, our test 

statistic will be now based on the process 

lit 

i = l 

where the sets £n(-) are appropriately chosen random sets depending on X\, X2,..., Xn 

parameterized in some way. The above leads to a sort of p — p plot and to precedence 

tests on 3R+ provided that £n(-) is a stopping set, since we will see that Gm(£n(-)) is 

adapted to the underlying data structure; therefore, we will be able to base our test 

statistic on partial samples. 

In this work we focus on two types of bivariate p — p plots, their asymptotic 

behaviour, and their respective applications to tests of stochastic orders. We will see 

that, for example, if we are using the minimal filtration, we consider the statistic 

Gm(£pn) that gives rise to the one-dimensional p — p process \Zrn[Gm(£pn) — G(££)], 

where ^ = { i 6 K2
+ : F(x-) < p] for p E [0,1]. Under H0 : F = G, this 

one-dimensional p — p process can be regarded as a two-sample version of Kendall's 

process (see [9]). If we use the product filtration instead, we consider the statistic 

Gm o (F*~(p), F%~(q)) that gives rise to the two-dimensional p — p process y^m[Gm o 
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(Ft(p),Ft(q)) ~ Go (Ff (p),F2-(9))] for (p,q) E [0, l ] 2 . Under tf0 : F = G, this 

two-dimensional p — p process can be viewed as a two-sample version of the empirical 

copula process (see [22]). 

This document is organized in the following way: 

In Chapter 2 we will present the definitions of nitrations, stopping sets and 

stochastic orders on the line, as well as their respective extensions to the plane that 

will be used to construct our tests for bivariate data. Since the problem of comparing 

two distributions arises naturally in geographical data and clinical trials, we will be 

considering the minimal and the product nitrations. 

In Chapter 3 we will first formally define the p — p plots on which we will be 

basing our tests. Once we have defined them, we will develop some Glivenko-Cantelli 

type of results for those p — p plots. These results, interesting by themselves, will be 

helpful when we start talking about the possible applications of our tests. 

In Chapter 4 we will explore the asymptotic behaviour of Gm(£pn) -the first of 

the p — p plots introduced in Chapter 3-, which is the appropriate statistic to study 

when we deal with data which generates the minimal filtration. We will also talk 

about specific applications of our test considering two scenarios: when the complete 

samples are available and when we deal only with partial samples. 

In Chapter 5 we will study the asymptotic behaviour of Gm(F^~, F%~) -the second 

of our p — p plots-, which is the appropriate statistic to explore when the available 

data generates the product filtration. As in the previous chapter, we will also discuss 

applications of this test considering the two previously mentioned scenarios. 

It will be seen that copulas play an important role in the development of bivariate 

p — p plots. For this reason, we have included an appendix chapter in which we have 

gathered some definitions and properties related to copulas. Although by no means 

a comprehensive chapter, it has everything about copulas that we make use of in 

the other chapters. In particular, we will be using the Farlie-Gumbel-Morgenstern 

(FGM) copula to illustrate the theory and techniques developed in this thesis. 



Chapter 2 

Filtrations, stopping sets and 

stochastic orders in 3?̂ _ 

In this chapter we will define the concepts of nitrations, stopping sets and stochastic 

orders on the line and we will make the corresponding extensions to the positive 

quadrant of the plane. 

2.1 Filtrations 

In this section we will discuss several types of nitrations associated with point processes 

on -R+ which will be used later to decide if certain random sets are indeed stopping 

sets. We start by stating the definition of a filtration on the line. 

Definition 2.1.1 Let {VL,T, P) be a complete probability space. {Tt '• t € 3?+} is a 

filtration if: 

• Tt Q T V t £ 3?+ and contains all the P-null sets. 

• s < t =£> Ts C Tt-

• {Tt} is right continuous: Tt = Tt+ = C\s>tTs. 

10 
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h > - -

0 

£ z 

cz 

Figure 2.1: A2 = [0,2a] x [0,z2], Bz = [0,2a] x (22,00), £* = (21,00) x (22,00), 

Cz = (21,00) x [0,22]. 

To state the definition of a two-dimensional nitration, we will make use of the 

usual partial order on ^t2
+: z = (zi,z2) < (z1,z'2) = z if and only if 21 < z1 and 

z2 < z2. 

Definition 2.1.2 Let {Vt,F,P) be a complete probability space. {Tz '• z £ 9f?+} is a 

filtration if: 

• J^ C JF V 2 G $t\ and contains all the P-null sets. 

• z < z =£> Tz C Tz>. 

• {^z} is outer continuous: V 2 € 3?̂ _, ,F2 = fln^7^ /or any sequence zn [ z. 

Since we are working on the plane, all of our points will have two components; the 

notation for random variables will be X = ( X ^ X 2 ) , and we will use t = (ti,t2) for 

points. Also, we will be using Figure 2.1 to make the explanation of the information 

we have available for each filtration at time 2 a bit clearer. 
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Before we start to look at filtrations, we need a couple of definitions. Although 

these definitions can be found for a general space in [47], we will only state them here 

for %*_. 

Definition 2.1.3 A set X = {xi,x2,.. •} of finite and unordered points in !ft̂  is said 

to be a configuration. A configuration X C 3f̂ j_ is said to be locally finite if it places 

at most a finite number of points in any bounded Borel set F C K+. The family of 

all locally finite configurations will be denoted as J\f1^ = J\fJ2 . 

Definition 2.1.4 A point process N on 3?̂ _ is a mapping from a probability space 

(Cl,Jr, P) into A/̂ 2 such that for all bounded Borel sets F C 5R+, N(F), the number 

of points falling in F, is a (finite) random variable. 

For now, we will start looking at the filtrations in the case where we only have 

a single jump point, X. Note that in the case of a single jump point we have that 

N[0,z] = I{Xe[0,z]}. 

•Minimal filtration, one jump point 

The minimal filtration is the a—field generated by the indicator function of our single 

point: 

T* = a{N[0,z'} :z'<z} = a{I{X E [0,z]} : z < z). 

Using this filtration we know at time z if our single observation is inside or outside 

of Az. If X is in Az, we know its exact location. 

•Product filtration, one jump point 

The product filtration is the product of the a—fields generated on fl by the indicator 

functions of the components of the time X1 and X2 of the jump X: 

Tl - a{I{Xl < z[} : z[ < Zl}(g)a{I{X2 < z2} : z2 < z2}. 

Using the product filtration we know in which region X is located. In addition, re-

ferring to Figure 2.1, if X is in Az we know both its components. If X is in Bz we 
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know its first component and if X is in Cz we know its second component. 

Now we will do the same kind of analysis in the case where instead of a single 

point we have a finite number of them, namely, X\,X2, • •., Xn. 

•Minimal filtration, n jump points 

When working with n random variables, the minimal filtration becomes: 

n 

Tz = a{N[0, z] :z'<z} = a{^ / { * i G [0, z']} : z < z}. 

When using the minimal filtration we know how many observations lie in Az and 

therefore how many lie outside Az, but not which ones. For the observations in Az 

we have their exact locations, but for the ones outside Az we do not have any other 

information. 

•Identifying filtration, n jump points 

The identifying filtration, as suggested by its name, is the a—field generated by the 

indicator functions of Xi, X2,. • •, Xn: 

n 

?l = V ^ = aWX* e [°^'l -z <z},i = l,...,n}. 

i=i 

Note that if we only have one point, the minimal and the identifying nitrations are 

the same and this is the reason that we did not mention it before. With this filtration 

we know how many and which observations lie in Az and therefore how many and 

which ones lie outside Az. In addition, for the observations lying in Az we also know 

their exact locations in the region. 

•Product filtration, n jump points 

For this work we will be using the product filtration associated with the identifying 

filtration. The product filtration is the product of the a—fields generated by the 
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indicator functions of each of the components of the observations Xi, X2, • • ., Xn: 

Tl = a{I{Xl<zl}:z1<zui = \X---M® 

a{I{X] < z2} : z2 < z2,j = 1,2,. . . , n } . 

This filtration is much larger than the minimal, since we know exactly which obser-

vations lie in the four parts of the plane (AZ,BZ,CZ and Ez). If they lie in Az we 

know both their components, if they lie in Bz we know their first component and if 

they lie in Cz we know their second component. We have no further information on 

those points lying in Ez. 

The choice of the filtration depends on the kind of experiment we are conducting. 

For example, if we are working with medical trials, where each of the components 

denote the times that the patients get a certain disease or symptom, the minimal 

filtration would be of little use. We would have only the following information: how 

many patients get both diseases or symptoms before a certain time, but we would 

not be able to identify the sick ones from the rest. If we were using the identifying 

filtration we would know which patients got both diseases by time t, but we would not 

be able to say how many or which ones got only one. If we decided to use the product 

filtration, we would have the same information as with the identifying filtration plus 

which patients got the first disease by time t\ or the second disease by time t2 and at 

what time. 

On the other hand, suppose we are working with geographical data, such as the 

position of a certain kind of tree in a forest; here, each component of the random 

variables denotes a position coordinate (latitude and longitude). Then, the minimal 

filtration would be enough, since we do not need to identify one tree from another; 

the only thing we are interested in knowing are their positions. This shows that when 

we are conducting an experiment we always have to keep in mind the data structure 

behind it. Even if we are not performing the experiment ourselves, we must be able 

to identify the filtration used to conduct it. 
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We have almost finished the discussion on filtrations, except for one last thing: in 

order to show that what we have defined are indeed filtrations, we need to verify that 

they are outer continuous. Following the method used in [28], we start by proving 

a lemma that will help us to prove that the filtrations we defined before are indeed 

outer continuous. 

L e m m a 2.1.5 Let (Q, J7, P) be a probability space. Let T§, T\,T<i, •.. Q J- be sub-a-

fields satisfyingTQ C Fk and Tof\Hk = J-k^Hk V k > 1, where {Hk} is an increasing 

sequence in T such that UkHk = Q. Then FQ = n^L^k-

Proof: i)T0 C r i g i ^ : 

Since TQ C Tk V k > 1, then TQ C PlfcJ^. 

ii)nr=1^ fc c FQ: 

Suppose F G rifc>i.Ffc. Then F E J-k for each k > 1. 

Therefore, since FQr\ Hk = Fkn Hk 3 Fk e T0 such that Fkn Hk = F n Hk\/ k. We 

will show that F — lim inf Fk • 

h.a)F C lim inf Fk: 

F = u^1(FnHn) = uZ1(Fn(nkZnHk)) = u%L1nkZn(FnHk) 

= U~=1 n£°=n (Ffc n Hk) = lim inf (Ffc n Hk) C lim inf Fk. 

We conclude that F C lim inf F^. 

ii.b)liminfFfc C F : 

Take any a; G lim inf Ffc. It follows that 3 n such that u> G n£LnFfe. Also, since 

Hk | fi, 3 m such that u E Hk\/ k > m. 

Then we can conclude that whenever A; > max(ra, n), LU G Fk D Hk. Therefore, 

uj G F Pi Hk, and so w 6 F , completing this part of the proof. 
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Putting together i) and ii) we get that liminf Fk = F £ TQ. O 

Now we can prove that the minimal filtration is outer continuous. 

Proposition 2.1.6 Let Tz denote the minimal filtration generated by a point process 

N. Then, the family \TZ : z £ 3?̂ _} is outer continuous. 

Proof: Let {zn} £ K .̂ be a decreasing sequence such that [0, z] = nn[0, zn] and {Tz} 

the minimal filtration. Here, zn j z, i.e. Z\^n J, z\ and z2,n I -̂ 2-

i ) ^ Q ^nFz„-

[0, zj] x [0, z2] = [0, z] C [0, sn] V n. Then Tz C jFZn V n. It is straightforward that 

\\)V\nTZn C .F*: 

For z = (21,22) and 2 = (z1,z2), let d is t (z ,z) = max(|2i — z[\,\z2 — z2\). For a 

closed subset C C 3f̂ , and £ G 5R+, let dist(t, C) = infx e Cdist(t, x). Then, de-

fine 8{ui) = min[dist(i, [0,z]) : t £ [0,z]c,N{tj = 1]. If no such t exists, we define 

8(u) = 00. Note that 8(cv) > 0 almost surely. 

We can choose a subsequence {znk} such that dist(z, znk) = max(4 fc 1 — z\%znk 2 — 

z2) < 1/k. 

Now let Hk = {UJ : 1/A; < <J(w)}. It is easy to see that if UJ £ Hk, then all the 

jump points that belong to [0, znk] also belong to [0, z\. Since Hk — {uj: 8{UJ) > 1/k} 

and Q = {LU : 8(OJ) > 0}, we have that Hk f Q. Since {zn} is decreasing and {znk} is 

a subsequence of {zn}, we also have that V\nTZn = C^kTZn • 
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Now we look at the generators of the minimal filtration. Take any [0, a] C [0, znk\. 

On Hk, N([0, znk}\{0, z\) = NZrik - Nz = 0 holds. Then, 

N[0,a] = N([0,a}n[0,z}) + N([0,a]n([0,znk}\[0,z})) 

< 7V([0, a] n [0, z\) + NZnk -NZ = N([0, a] n [0, z\) 

< N[0,a]. 

Therefore, N[0, a] = N([0, a] n [0, z\) on Hk. 

Then V [0, a] C [0,z„fc], we have that NJHk = N([Q,a] D [0,z])/fffc and thus, 

î /c H TZn = Hkil Tz. It follows from Lemma 2.1.5 that n„JFZn C Tz. 

We complete the proof by putting together i) and ii). o 

Now we move on to the identifying filtration. Remember that the identifying 

filtration {J-z} is generated by the indicator functions of the observations inside the 

rectangles of the form [0, z ], z < z. 

If we have n observations, we can identify this generator with an n-dimensional 

vector whose entries are either zero or one. The ith component of the vector is one 

if the ith observation is inside a rectangle [0,z], and zero otherwise. For example, 

the vector (0,1,1,1,0,1,0, 0,0,1,0) for an arbitrary rectangle [0, za] would mean that 

from our 11 observations, we have 5 inside [0,za], namely Y2,Yz,Yi¥s-i a n d ^IO- Let 

this vector be denoted by Sa. The same proof used to verify the outer continuity of 

the minimal filtration can be used to verify that of the identifying filtration. It is 

enough to substitute the generators iVa by our new generators Sa. 

Finally, we take a look at the outer continuity of the product filtration. 

Proposition 2.1.7 The product filtration Tp
z = o{I{X\ < z[} : z[ < z\,i — 

l , 2 , . . . , n } 

^)a{I{Xj < z2} : z2 < z2,j = 1, 2 , . . . ,n} is outer continuous. 
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Proof: Let {zn} E 3l2
+ be a decreasing sequence such that [0,2;] = fln[0,2„]. Again, 

zn i z, i.e. zit7l i zi and z2,n i z2. 

[0, z^ x [0, z2] = [0, z] C [0, zn] V n. Then Tp
z C Jf^V n and it follows that J ^ C n n J ^ n . 

h ) n „ ^ n C J*: 

We will be needing two 1-dimensional processes denoted by A''1 and N2 defined in the 

following way: 

n 

N1^) = ^21{Xl<h} and 
i=i 

n 

N2(h) = ^I{X]<t2}. 
3 = 1 

Now we define 5{u) = min [4ist(t,z) : t £ [ 0 , ^ ] ° , ^ } = 1 and Nfh} = 1], where the 

distance we use is that defined in proposition 2.1.6. If there are no such t\ and t2 we 

define 5(u) = oo. 

We can then choose a subsequence {-Znfc} such that dist(^,2;nfc) — max(znj;1 — 

ZUZnk,2 ~ Zl) < 1/k-

Let Hk — {oo : 1/k < S(u)}. Then all the jump points that belong to [0, znk] also 

belong to [0, z\. Also, as before, Hk f f2, and f\nTl = ^k^zn • 

Now we look at the generators of the product filtration. Take any [0, a] C [0, znk\. 

, , I{X} < ax} if ai < zx 
Then V i, I{X} <a1}= I l * ~ J on Hk. 

I{Xl<zx} i f a i > Z ! 

Thus, I{X} < a}IHk = « V a < znk. 
I{X] < ai}IHk if ai < -2i 

/ { * / < Zl}/tffc ifai>Zl 

Therefore, V [0, a] C [0,2nJ, we have that /{A-/ < ai}lHk = I{X} < min(ai,,zi)}///fc. 

The same argument applies to every second component, i.e. V [0, a] C [0,^nA:], 

I{X] < a2}IHk = I{X] < min(a2, z2)}IHk. Therefore, Hk n ^ = HkC\Tp
z and it 

follows from Lemma 2.1.5 that n„^-? C Tl. 
'L Zn — z 
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Putting together i) and ii) we complete the proof, o 

To summarize, in what follows we will be focusing on two nitrations associated 

with point processes: the minimal and the product filtration. The first data structure 

arises naturally from geographical observations and the second from clinical trials. 

2.2 Stopping times and stopping sets 

This section deals with the stopping sets corresponding to each of the nitrations we 

talked about in the last section. First we need some notation and definitions. We 

begin with the definition of a stopping time on 9ft+. 

Definition 2.2.1 Let {Ft : t G [0, k]}, k G 5ft+ be a filtration. A map r : tt —>• 3?+ is 

a stopping time if {r < t} G JF4 V t. 

Since we required our nitrations to be right continuous, we could have defined r 

to be a stopping time if {t < r } G Tt. This issue is addressed in the following lemma. 

Lemma 2.2.2 A random time T is a stopping time if and only if {t < r } G Tt V t. 

Proof: i)r is a stopping time => {t < r } G Tt V t: 

Let r be a stopping time, then {t < r } = {r < t}c = {Un{r < t — ^}}c G Tt-

ii){£ < T } G Tt V t =$• T is a stopping time: 

For all m we have that 

{r<t} = nn{r-l/n<t} 

= n n{r<t + l/n} 

= n n > m {r <t+ 1/n} G Tt+i/m-

Thus, {r < t} G Cim^t+i/m = •?rt+, arid the result follows directly from the right 

continuity of the nitrations, o 
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Before proceeding to the two-dimensional case, let us make a brief analysis about 

what happens when we have observations on the line. Suppose we have n observations 

on !R+ denoted as XX,X2,... ,Xn. For this scenario we would have several stopping 

times. For example, since !R+ is a totally ordered set, we would have no problem 

working with the smallest of the observations because it is a stopping time with respect 

to the minimal filtration generated by the point process N(t) = X^™=1-f{-Xi — 0 -

Likewise, the kth order statistic X^) — inf{£ : N(t) > k} is also a stopping time. As 

we pointed out earlier (see the introductory chapter), there is no natural analogue for 

order statistics in higher dimensions, but the situation can be handled if instead of 

stopping times we work with random sets. As an illustrative example, we could have 

defined a stopping set on 3?+ in the following way: [0, r] is a stopping set if the event 

{t € [0, r]} G Tt V t. We see from Lemma 2.2.2 that [0, r] is a stopping set if and 

only if r is a stopping time. Therefore, continuing with the example of the smallest 

observation, it is straightforward that the smallest stopping set will be, in fact, the 

intersection of all our stopping sets, as defined in the preceding lines. 

We will now introduce some terminology that will help to define formally the 

stopping sets on 9?+. Let z = (zi,z2) and z = {z\,z2) be two points on the plane. 

We will write z «C z if and only if zx < z[ and z2 < z'2. Conversely, we will write 

z » z whenever z\ > zx and z2 > z2. Also, let Az — {z : z < z} be as in Figure 2.1 

and Ez = {z : z 3> z] and Dz = Ec
z, as in Figure 2.2. 

The definition of stopping sets, as well as all concepts needed to construct this 

definition, were developed in [29]. 

Definition 2.2.3 A set D C 3R̂_ is called a lower layer if the event {z € D} implies 

that [0, z] = Az C D V z. The set of all the lower layers will be denoted as C. 

Definition 2.2.4 Let {Tt : t G 3R+} be a filtration. A map £ : Q, —> C is said to be a 

stopping set with respect to T if {t € £} € Tt V t e. K _̂. 
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Ez 

&-

D2 

Figure 2.2: DZ = AZUBZU Cz, Ez = Dc
z . 

Some authors have defined and worked with stopping lines instead of stopping 

sets. These two definitions are equivalent in the sense that stopping lines are the 

boundaries of stopping sets. For notational convenience, we will use sets instead of 

lines. 

Definition 2.2.5 Let \Tt • t G 5R̂ _} be a filtration. A map (71, r2) : fi —» 3l\ is a 

stopping time if {r < t} G J~t V t. 

Observe that since 3ft̂_ is only partially ordered, we do not have the analogue of 

Lemma 2.2.2 in that if {t < r } G Tt V t then r is necessarily a stopping time, but 

the converse is no longer true. We address this issue in the following Lemma. 

Lemma 2.2.6 i)If {t < T} G Tt V t € 3?+ then r is a stopping time (i.e. the event 

{T < t} is Tt-measurable V t). 

ii)If {T < t} G jFt V t G 3?̂ _ then the event {t < r } is not necessarily ^-measurable. 

Proof: i)Let T denote the points t € 3?̂ _ with dyadic coordinates and assume that 

{t < T} G Tt V t. We need to show that {r G Af } c = {r < t} G Tt V t. Since T' is 
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a dense set in 9ft+, we have that V M e N: 

{T£A?} = UseAcnT>{s<r} 

= Um Us(zACnT',dist{sAt)<± is - T} 

= Um>M ^seACnT',dist(s,At)<^ i s - r } G ^t+jj-

Then, {r < t} e flM-^t+J- — -7"*, a n d r is a stopping time. 

ii)Through Tt at time t we know whether T E At (and therefore its location) or 

if r £ A^. However, if r 6 A^ we have no way of knowing whether r is in Et or in 

Bt U Ct (cf Figure 2.1). As an example, consider the single jump process with the 

minimal filtration. Letting r = X, we see that {t < r } is not ^-measurable, o 

At this point the natural question to ask is what kind of sets will be stopping sets 

for the filtrations we defined in the previous section. A couple of candidates would 

be AT and DT, where r is a stopping time. We have the following two lemmas in this 

respect. 

Lemma 2.2.7 For a stopping time r = (TI ,T2), Dr is always a stopping set. 

Proof: Note that {n < tUT2 < h} = \Jrur2€Q]ri<tl,r2<tM ^ r^T^ ^ r^ G ?*• 

Thus, it is true that {t E DT} = {t E ET}C = {n < tu r2 < t2}
c E Tt- Then, DT is a 

stopping set. o 

Although the random set DT behaves nicely, we have from Lemma 2.2.6 that AT 

may not be a stopping set even if r is a stopping time. However, in some special cases 

AT will be a stopping set. 

Lemma 2.2.8 Let T% denote the product filtration generated by the random variables 

Xi, X2,. .., Xn. Also, let Xh be the ith order statistic from X\, X\,..., X\ and X?-s 

be the jth order statistic from Xl, Xf , . . . , X%. If T — (XL,X?^), then T is a stopping 

time and AT is a stopping set with respect to T^. 
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Proof: Recall the notation of Lemma 2.1.7: Nm{tm) = Y%=1
 1{XT < *m}» m = 1,2. 

First we note that, since each of the indicators inside the sums belong to Jf, we 

have that: 

{ ^ [ M i ) < i ~ 1} f]{N2[0, t2) < j - 1} 

n n 

fc=l ( = 1 

n n 

= < PI iT,I{Xl<r}<i-!}}(]{ D {£HX?<s}<j-l}} 
r£Q,r<ti k=\ s&Q,s<t2 1=1 

i)r is a stopping time: 

{r<t} = {XfoKtjmXfa^h} 

= { ^ [ 0 , ^ ] < i - l } c f l ( ^ 2 [ 0 , t 2 ] < j - 1}C € J ? . 

ii)^4T is a stopping set: 

0 6 4 } = {*i<4)}f>2<*0)} 

= {^[(MO < i - i}f){N2[o,t2) <j-i}e7f. 

When we use the minimal filtration, neither the times r = (Xh,X?.,) as defined 

in the previous lemma nor the jump times are, in general, stopping times. The 

jump times Xi = (Xl,Xf) are stopping times with respect to the identifying and the 

product nitrations, but (Xhs, X?~) is a stopping time only with respect to the product 

filtration. As it was mentioned before, AT may not be a stopping set with respect 

to certain nitrations and this is indeed the case for the minimal and the identifying 

filtration. Nevertheless, there exist other sets that are stopping sets with respect to 

the minimal filtration and therefore with respect to the larger filtrations as well. These 
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sets are the natural separation sets Lk = {z : N(AZJ) < k—1} = {z : JV[0, z) < k — 1}, 

k=l,2,...,n. If we pick any z G L\ the rectangle Az_ = [0,z) will contain no 

observations, if we pick z G L2 the rectangle [0, z) will contain at most one observation, 

and in general, if we pick z G Lk the rectangle Az_ will contain at most k — 1 

observations. It is easy to see that {z G Lk} G Tz, and therefore, Lk is a stopping 

set. 

C o m m e n t 2.2.9 The above mentioned nitrations and stopping sets are defined on 

9ft+. This allows us to define a type of precedence test based on partial data. 

As we mentioned before (see the introductory chapter) our test statistic will 

be based on a process of the form Gm(£n(-)) = ^ Y^=\ I{Xi G £n(0}> where the 

sets £„ are stopping sets depending on X\,X-z,... ,Xn. If our data generates the 

product filtration, two appropriate processes to base our test statistic on would be, 

for example, Gm(AT) or Gm(DT), where r = (Xh,X?-^). If our data generates the 

minimal filtration, it would be appropriate to base our test statistic on the process 

Gm(Lk), where the sets Lk, as defined before, are the empirical counterparts of the 

contours of F. 

2.3 Stochastic orders 

In this last section we will introduce a new stochastic order which will be appropriate 

for when we deal with geographical data (and the minimal filtration). We will also 

present several extensions of the stochastic order F < G to distributions on $R̂_ which 

will be used for when we deal with clinical trials (and the product filtration). In the 

latter case, we will also give a couple of examples to illustrate why we need to have 

different stopping sets for different kinds of experiments. 

We start by reviewing the Kendall stochastic order, which can be found in [37]. 

Definition 2.3.1 Let X = (X a ,X 2 ) andY = (Y1 ,Y2) be random variables with dis-
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tribution functions F and G, respectively. Also, let H and H denote the distribution 

functions of F(X) and G(Y). We say that X is less than Y in the Kendall stochastic 

order (X ^K Y) if and only if H(t) > H{t) V t e E 

To clearly see how this order relates to the one we will be defining later on 

to use with geographical data, we need some notation. Let K be any bivariate 

distribution function for which we have a random sample of size I. The sets ^ 

and its empirical counterpart £f ' are defined as £f- = {(x,y) : K(x~,y~) < t} and 

£f< = {(x,y) : K^x^y-) < t}. Then, H(t) = P(F(X) < t) = P(X G £f) = F(£f) 

and H(t) = P(G(Y) < t) = P{Y G g) = G(tf). It follows that X <K Y if and only 

if F(g) > G(tf) VtER. 

We now turn our attention to the iJ-larger stochastic order, which was developed 

in [36]. 

Definition 2.3.2 Let X = (X\X2), Y = (Y\Y2) and W = (W\W2) be random 

variables with distribution functions F,G and H respectively. Also, let K\ and K^ 

denote the distribution functions of F(W) and G(W). We say that Y is H-larger 

than X if and only if K2(t) < Ki(t) V t G K. 

For any bivariate distribution K, let (f and £fl be defined as before. Then, 

Kx{t) = P(F(W) <t) = P(W G ff) = H(£f) and K2(t) = P(G(W) < t) == P(W G 

g) = H(g). It follows that Y is F-larger than X if and only if H(tf) < H(£f) V 

t£?R. 

What we want to do is define a stochastic order similar to the ones defined above. 

To do it we will apply an F-transformation on the random variables X and Y, namely, 

X = F(X) and Y = F(Y). Then, if K and K denote the distribution functions of X 

and Y, we have that K(t) = P(X < t) = P(F{X) < t) = P(X G £f) = F(£f) and 

K{t) = P(Y < t) = P{F(Y) <t) = P(Y G Cf) = G(£f )• Now that the similarities 

with the two orders described previously are obvious, we can define the stochastic 

order we will use. 
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Definition 2.3.3 Let X and Y be two-dimensional random variables with distri-

bution functions F and G, and let K and K denote the distribution functions of 

X = F(X) and Y = F(Y), respectively. We say that X is less than Y in the F-

transformation stochastic order (X -<K Y) if and only if K(t) > K(t) V t G K. 

Having defined the stochastic order we will use when the data we use is filtered by 

the minimal filtration, we can see that our test statistic will be based on the empirical 

p — p plot Gm(£t
 n ) ; its asymptotic behaviour will be studied in chapter 4. 

Now we turn our attention to the type of stochastic order that is appropiate when 

the product is the underlying filtration. Recall that V t = ( i i ,^) ) w e defined the sets 

At = [0,ti] x [0,t2], Et = (ti, 1] x (t2,1} and Dt = Ec
t = {[0,h] x [0,1]}U{[0,1] x [0,t2]} 

(see Figure 2.1 and Figure 2.2). We will be using this notation as we describe how 

the multivariate stochastic orders follow naturally from the usual univariate stochastic 

order. This extension can be found in [41]. 

Definition 2.3.4 A set U C 3ld is called an upper set if s £ U whenever s > t and 

t G U. Intft., U is an upper set if and only if it is of the form (c, oo) or [c, oo), c G 3ft. 

Definition 2.3.5 Let X and Y be continuous random variables with univariate dis-

tribution functions F and G respectively. We say that X is smaller than Y in the 

usual stochastic order (denoted X <st Y) whenever the following equivalent state-

ments hold: 

(1) P{X>u) <P(Y>u)V ue (-00,00). 

(2) P(X <u)> PiY <u)Vu£ (-00,00). 

(3) P(X >u)< P{Y > « ) V « e (-00,00). 

(4) P(X EU)< P(Y G £/)V upper set U C (-00, 00). 

(5) E{IV[X)) < E(Iu(Y))\/ upper set U C (-00,00). 
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Proof: (that the statements are equivalent) 

1 =>• 2)Statement 1 is saying that the random variable X is less likely to take large 

values than the random variable Y, i.e. that X is more likely to take small values 

than Y, which is exactly what statement 2 says. 

2 =>• l)We have that V u G (—oo, oo), 

P(X <u)> P(Y <u) => 1 - P{X >u)>l- P(Y > u) 

=> -P(X >u)> -P(Y > u) 

=» P(X >u)< P(Y > u). 

1 <S4> 3)This is straightforward because we required F and G to be continuous. 

4 => l)Take any upper set U, it will be of the form (u, oo) or [u, oo). 

i)p(x eu)< P(Y G u) =*• P ( X e (u, oo)) < P(y G (U, OO)) 

=• P ( X > u) < P(Y > u). 

ii)P(X EU)< P(Y G U) =» P(X G [u, oo)) < P(Y G [u, oo)) 

=$• P(X >u)< P(Y > u) 

=> P{X >u)< P(Y > u). 

3 => 4) i)For every upper set of the form [u, oo), we have that 

P{X >u)< P(Y > u) =*• P(X € [u, oo)) < P(Y G [u, oo)) 

=* P ( X £ [ / ) < P ( F G £/). 

ii)For every upper set of the form (u, oo), we have that 

P(X >u)< P(Y > u) =• P ( X G [u, oo)) < P(Y G [M, oo)) 

=• P(X G (u, oo)) < P(Y G (u, oo)) 

=> P(X eU)< P(Y G C/). 
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4 44> 5)For any upper set U we have that 

P(X EU)< P(Y £ [ / ) ^ E(I{X E U}) < E(I{Y e U}) 

& E{Iu{X)) < E(Iu(Y)). 

o 

It is now our aim to extend the above definition from 3ft to 3ft2, and in particular 

to 3ft+. In what follows X and Y will be random variables with bivariate distribution 

functions F and G respectively. From the very definition of an upper set, we have 

that the natural extensions of (4) and (5) are: 

(4') P{X EU)< P(Y E U)W upper set UQU2, and 

(5') E(Iu(X)) < E(Iu{Y))V upper set U C 3ft2. 

If one of these conditions hold, we say that X is smaller than Y in the usual (multi-

variate) stochastic order (denoted X <st Y). Or if we prefer to define it in terms of 

the distribution functions F and G, the extension would be F(U) < G(U) V upper 

sets U C 3ft2. 

If we extend (2), we say that X is smaller than Y in the lower orthant order 

(denoted X <to Y) if 

(2') P(X <t)> P(Y <t)Vte 3ft2, or 

(2') P(X E At) > P(Y e At)\/ t £ 3ft2,. 

Note that the second inequality applies to 3ft̂ _-valued random variables only. In terms 

of F and G, X <lo Y if F(t) > G(t) V t e 3ft2. It is easy to see that, when F and G 

have support 3ft+, the appropriate region to work with the lower orthant order is At. 

If we extend (1) (or (3)), we say that X is smaller than Y in the upper orthant 

order (denoted X <uo Y) if 

(1') P(X >t)< P(Y >t)\/te 3ft2, or 

(1') P(X e Et) < P(Y e Et)V t e 3ft2, or 

(!') P{X G A ) > P(Y e A)V t e 3ft2,. 
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Note that the last inequality applies to ^ - v a l u e d random variables only. In terms 

of distributions F and G with support 3%, X <uo Y if F(Dt) > G(Dt) (or F(Et) < 

G(Et)) holds V i £ 9ft+. Since E^ = Dt, the choice between these two sets when we 

use the upper orthant order will depend on the specific kind of data we have. 

C o m m e n t 2.3.6 Note that, since Et is an upper set, X <at Y implies that X <uo Y. 

However, the rest of our stochastic orders are not related. 

Focusing on the upper and lower orthant orders, we now describe particular 

situations in which our test could be useful, along with the stopping sets and the 

stochastic order to be used. 

•Hypertension is a health condition in which the force of blood against the artery 

walls is too strong; symptoms include headaches, visual problems and nausea. Sup-

pose that we are asked to prove that a new drug is effective against hypertension. 

We design the experiment such that all the participants involved will have high blood 

pressure and related symptoms. Half of them will be taking the new drug and they 

will act as our F sample, the rest will be taking placebo and they will act as our G 

sample (the so-called control group). For both groups we record the observations as 

follows: the first component will be the time when their blood pressure reaches or 

drops below an already fixed level, and the second component will be the time when 

all related symptoms have disappeared for at least a fixed amount of time. We will 

follow the experiment until we can record both times for 20 people in the F group. 

If indeed the drug is working, we expect to have more observations from the sample 

F than from G before the end of the experiment, and we will reject HQ to conclude 

that F > G (X <i0 Y). In this particular case it makes sense to use the A region and 

the lower orthant order since the components of our observations will be recordings 

of time and we will follow the experiment from time zero. 

•Leukemia is a disease that makes the body produce abnormal white cells which 
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destroy all the other healthy cells (white, red and plaquettes); symptoms usually in-

clude fever, headaches, weakness and night sweats. Suppose now that we are asked to 

prove that a new drug is better than an existing one (both combined with chemother-

apy). The experiment is designed so that all our patients will have leukemia and 

related symptoms. A third of them will be taking the new drug (they will act as our 

F sample) and the rest will be taking the existing drug (they will be our G sample). 

For both groups we record the observations as follows: the first component will be the 

time when their healthy cell count reaches or surpasses a fixed level, and the second 

component will be the time when all related symptoms have disappeared for at least 

a fixed amount of time. Suppose the patients go through a series of chemotherapy 

sessions followed by a period of rest, all while taking the drug. The chemotherapy 

may cause headaches and weakness, so the second component of the observations 

cannot be measured with accuracy during the sessions and shortly after. To accom-

modate this condition we will only monitor the patients during the last part of the 

experiment. The patients who have an acceptable cell count and have no symptoms 

prior to the first check-up will be assumed to have the illness in remission during the 

non-check-up time. If indeed the new drug is better than the existing one we expect 

to see fewer patients taking the former during our next check-ups, and therefore to 

reject H0. In this case it makes sense to use the E region and the upper orthant order 

since we cannot have any observations before the first check-up and their components 

are measuring times of occurrence. 

•Suppose a new vaccine for hepatitis is found. The ingredients of the vaccine lead us 

to think that patients might exhibit fatigue and/or nausea in the month after receiv-

ing the vaccine. Also, if the patient exhibits one of them, it is highly likely that he 

or she will exhibit the other eventually. Assume that we are trying to prove that this 

new vaccine will not produce any side effects, i.e. that there is not enough evidence 

to say that either nausea or fatigue are caused by the shot. We will have two groups 
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of patients: the first group will take the vaccine (they will be the G sample) and the 

second group will take a vitamin shot (they will be the F sample). The components 

of the observations will be once again the time when the patient exhibits fatigue and 

the time when he or she exhibits nausea. We will monitor the patients until we can 

record 10 patients which took the vitamin shot with at least one symptom; after that, 

we will only monitor those patients who showed one of the side effects until they show 

the other one. If we are correct, we expect to find only a few observations from both 

groups during the first part of our experiment and therefore we will not be able to 

reject H0. This test suggest that we use the D region and the upper orthant order 

since the observations are markers for time and the kind of follow-up required. 

Before finishing, it is worth mentioning that we outlined the test in an ideal way. 

In practice we may be given the data and we may have to choose a different test from 

that mentioned here for the purpose of extracting as much information as possible 

from the observations we have. 

Looking at the upper and lower orthant orders, it is clear that our test statistic 

should be based on the empirical p — p plot G m o (F*~, F%~); its asymptotic behaviour 

will be discussed in chapter 5. 

The discussion in this chapter on nitrations, stopping and stochastic orders in 

higher dimensions has focused on 3?+-valued random variables, and motivates the two 

definitions of p — p plots to be studied in subsequent chapters. It will be seen that 

these definitions may be applied to arbitrary distributions on ?Rd, and so henceforth 

we do not restrict our attention to the positive quadrant. 



Chapter 3 

P — p plots and Glivenko-Cantelli 

theorems for multivariate 

distributions 

In this chapter we will introduce two types of p—p plots for multivariate distributions, 

as well as their empirical counterparts. We will also prove a Glivenko-Cantelli type 

of result for each of them that will be used in subsequent applications. 

3.1 Multivariate p — p plots 

Before defining the p — p plots we will be using, we have to go through some of the 

notation and assumptions that will be used throughout the entire document. 

We will consider n independent identically distributed Sft^-valued random vari-

ables X, = (Xl,Xl...,Xf),X2 = (X 2 \X 2
2 , . . . ,X2

r f),. . . ,Xn = {X\,Xl... ,X£) 

with distribution function F and m independent identically distributed !ftd-vamed ran-

dom variables Y1 = (¥',¥?, ...,Y*),Y2 = (Y,\Y2
2,..., Y2

d),..., Ym = (Y^, ¥%,..., Y£) 

with distribution function G . We begin with some standard definitions. 

Definition 3.1.1 The random distribution function which assigns mass - to each Xi 

32 
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is called the empirical distribution function o /X 1 ; X2, • • • , Xn: 

1 " 
Fn(Xl,x2, ...,xd) = ~Y,I{Xl < xuXf <x2,...,X?< xd}. 

Similarly forY1,Y2,...,Ym, 

Gm(yi,y2,...,Vd) = - E 7 ^ 1 ^ J/i'1*2 < Jfe , . . . ,1? < yd}-

The next theorem we will mention is the classic Glivenko-Cantelli theorem for 

empirical distributions on 9ftd. 

Theorem 3.1.2 With probability one, the empirical distribution function Fn{x) con-

verges uniformly to the distribution function F(x), i.e. as n —> oo, 

sup \Fn(x) - F(x)\ —•„.„. 0. 

x€5Rd 

Definition 3.1.3 The multivariate empirical process based on Xi, X2,..., Xn will be 

denoted as U£ and is defined as U%(t) = y/n[Fn(t) — F(t)], for t G Krf. 

Definition 3.1.4 A stochastic process {Z(t),t € 3?d} is called a Gaussian process if 

Z(ti), Z(t2),..., Z(tn) has a multivariate normal distribution V t\, t2,..., tn. 

Definition 3.1.5 A stochastic process {U(t),0 < t < 1} is called a standard Brown-

ian Bridge if it is a Gaussian process such that E(U(t)) = 0 and Cov(U(s), U(t)) = 

(sAt) -st V0 < s,t < 1. 

Definition 3.1.6 A stochastic process {UH(t),t G [0, l]d} is called a Brownian Bridge 

(that depends on a distribution H on [0, l]d) if it is a Gaussian process such that 

E{UH{t)) = 0 and Cov(UH(s), UH{t)) = H(s At)- H(s)H{t) V s , t 6 [0, l]d. 

Before we continue with the definitions we need, we will define the spaces that 

will be used throughout the entire document. Given an arbitrary set T C [0, oo)d, 

the Banach space £°°(T) is the set of all functions / : T —> 3? that are uniformly 

bounded equipped with the sup norm | | / | | = supx \f(x)\. As usual, C{T) is the space 
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of all continuous functions / : T —• K equipped with the sup norm. Furthermore, 

D([0,oo]d) denotes the Skorokhod space of functions that are continuous from above 

with limits from all quadrants, also equipped with the sup norm. 

The following theorem is a well-known result, it can be found in [19]. 

Theorem 3.1.7 The empirical process U^(t) = y/n[Fn(t) — F(t)] based on the ran-

dom variables Xi,X2,.. • ,Xn with distribution function F with support on [0, l]d, 

converges weakly in £°° to a Brownian Bridge UF(t). 

Now that we have defined the notation we will use, we can focus our attention 

on p — p plots. First, let us state the usual (one-dimensional) definition of a p — p 

plot. 

Definition 3.1.8 Let F and G be the distribution functions of two one-dimensional 

random variables. The procentile-procentile, or p — p plot of G against F is defined 

as G(F~(p)) for 0 < p < 1, where F~(p) is the left continuous inverse of F and 

F-(0) = \imp^oF-(p) = F-(0+). 

Our goal is to extend this definition to the d-dimensional setting. We present 

two natural approaches. The first involves the contours of a distribution function, 

the second is based on marginal order statistics. 

C o m m e n t 3.1.9 In what follows, we will denote by F and G the measures generated 

by the distribution functions F and G, respectively. 

Definition 3.1.10 Let £jf = {(xi, x2, ...,xd) : F(xT, x%,..., xZ) < p)} for p > 0 

and £(f = n p > 0 ^ . The pth contour of F is defined as the upper boundary of ^'. The 

one-dimensional p—p plot of G against F is defined by G{^). The empirical p—p plot 

of G against F is Gm{^n), where ^ = {(Xl,x2, ...,xd) : Fn(x^X2, ...,x~;) < p) 

for p > 0 and £(fn = n p > 0 ^ n . When we use this definition of a p — p plot, we have a 

process defined on the unit interval [0,1]. 
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Definition 3.1.11 We define the d—dimensional p—p plot ofG against F -using the 

marginal order statistics- as G(Ff, F 2 ~ , . . . , F^). Using this definition, the empirical 

p — p plot of G against F will be Gm(F*~~, F%~~,..., F%~). In this case, we have a 

process defined on [0, l]d. 

3.2 Glivenko-Cantelli results for bivariate p—p plots 

In this section we will present some Glivenko-Cantelli theorems for the p — p plots 

we defined in the previous section, as well as for some other closely related statistics. 

For notational convenience, the theorems are presented for distributions on 5R2, but 

all results are valid for 3?d. 

We start by looking at the one-dimensional p — p plot: G(£p). 

In what follows, we assume that swpxy \Fn(x, y) — F(x, y)\ —> 0 V u> G Cl , where 

P(Q ) = 1. To prove the Glivenko-Cantelli result we want for Gm(£pn) we will be 

using the following lemma. 

Lemma 3.2.1 Fix ui and assume that for n = n(u>) large enough, we have that 

suPx,j/ \Fn{x, y) — F(x,y)\ < e, where F is a continuous and strictly increasing dis-

tribution function on -ft2. Then, V 0 < p < 1 the following inclusions hold: ££_£ C 

tFn c cF 

Sp — Sp+e-

Proof: Since \Fn(x,y) — F(x,y)\ < supxy\Fn(x,y) — F(x,y)\ < e, we have that V 

x,y: 

\Fn(x,y) - F(x,y)\ < e 

O -e < Fn(x, y) - F(x, y) < e 

«• -e + F(x,y) <Fn(x,y) <e + F(x,y). 

To prove the first inclusion we take (x, y) G £^_e, and we show that (a;, y) £ £jfn. 
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-e (x,y) £ £P-

=> F(x~,y~)<p-e 

=• F „ ( x - , i / - ) < e + F ( x - , y - ) < p 

=» F n ( s ~ , y ~ ) < p 

=> {x,y)e$n. 

To prove the second inclusion we take (x, y) € £jfn, and prove that (x, y) G ^ 

=> Fn(x~,y~)<p 

=> -e + F(x-,y-)<Fn(x-,y-)<p 

=> F(x~,y~) < p + e 

F 
p+e" 

(x,y)£tf p+e' 

Before we continue, we would like to talk a little about Kendall distribution 

functions (see [37]). 

• If X 1 and X2 are two continuous random variables with joint distribution func-

tion F, then the Kendall distribution function of (Xl,X2) is the distribution 

function of the random variable F(X\X2), i.e. KF(t) = P[F(X\X2) < t] = 

P[(X\X2)E^] = F^)-

• Given a sample {X\, X2), (X\, X2),..., (X„, X2) from a distribution F, the em-

pirical Kendall distribution of F (i.e. the Kendall distribution of the empirical 

distribution Fn) is defined as Fn{^fn). 
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• Thus, the p — p plot G(£^) is, under H0 : F = G, a two-sample version of the 

Kendall distribution function. 

The following theorem will become useful later when we talk about the possible 

applications of our tests, depending on the information we have available. It is easily 

seen from the discussion above, that it can be regarded as a Glivenko-Cantelli theorem 

for the empirical Kendall distribution function of F . 

Theorem 3.2.2 Let F be a continuous and strictly increasing distribution function 

on 3?2. For any S > 0 and V ui E fl , where P(Cl') — 1, there exists n(uS) such that V 

n > n(ui) 

sup \Fn($") - F(tf)\ < 5. 
0<p<l 

Proof: Lemma 3.2.1 gives us that for fixed ui € f2 and n = n(u) sufficiently large, 

t,p~€ Q £,pn C £F+£ holds V p, 0 < p < 1. Since the empirical distribution function Fn 

is increasing, it follows that for large enough n, 

Fn(^-e) < Fn(^) < Fn(^+e) and therefore, 

Fn($.e) ~ F(£) < Fn($«) - F{g) < Fn(^+e) - F{$). (3.2.1) 

On the other hand, Fn(g) = l- E?= 11{X t G tf} = l- £ ? = 1 I{F(Xt) < p}, so 

Fn{£,p) = Kn{p), where Kn denotes the (univariate) empirical distribution function 

corresponding to K, the distribution function of F(X) (i.e. K(p) = F(^)). There-

fore, from Theorem 3.1.2 we have that V n = n(u>) large enough 

sup \Fn(tf) - F(g)\ < e. (3.2.2) 
0<p< l 

Equation 3.2.2 implies that F—e < Fn < F+e and thus combining Equation 3.2.1 

and Equation 3.2.2 we get that V n = n(ui) sufficiently large 

HCe) - e - F(£) < Fn(&) - F(g) < F(^+e) + e - F(£), 

and therefore that 

W " ) - F($)\ < \F(^+e) - F ( £ e ) | + 2e. (3.2.3) 
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But, since K{p) = P(F(X) <p) = P(X e £p) = F(tf) is a continuous distribution 

function over [0,1], it is uniformly continuous in p and so for any S > 0, an e > 0 can 

be chosen such that 

sup \F(tf+e) - F ( £ e ) | < 6, where e < 5-. (3.2.4) 
0 < p < l <J 

Finally, combining Equation 3.2.3 and Equation 3.2.4 we get that V n = n(u) 

large enough, 

sup \Fn(g»)-F{g)\<3e<6. 
0<p<l 

o 

The following theorem is a two-sample version of the previous one. 

Theorem 3.2.3 Let F and G be continuous distribution functions on 3ft2 and assume 

that F is strictly increasing. For any 5 > 0 and V UJ 6 Q , where P(f2) = 1, there 

exist n{uS) and m(uj) such that V n > n(u>) and m > m(u)) 

sup \Gm($»)-G(g)\<6. 
0<p< l 

Proof: Lemma 3.2.1 gives us that for fixed u> € Q, and n = n(u) sufficiently large, 

£p_e C £^n C £^_e holds V p, 0 < p < 1. Since the empirical distribution function Gm 

is increasing, it follows that for n large enough, 

Gm(Ce) < Gm{&) < Gm(&e) and therefore 

Gm(tf-e) - G(0 < Gm(&) - G(& < G m ( & « ) - G ( # ) . (3.2.5) 

Let Gm{$) = i Eti Wi G # } = i TZi nHYi) < P} be as in the preced-

ing proof, so Gm(^p) = Km(p), where Km is the (univariate) empirical distribution 

function of F(Y) (i.e. K(p) = <?(£*")). Therefore, from Theorem 3.1.2 we have that 

V m = m(uj) large enough, 

sup \Gm(g) - G(£)\ < e. (3.2.6) 
0 < p < l 
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Equation 3.2.6 implies that G — e < Gm < G + e and thus combining Equa-

tion 3.2.5 and Equation 3.2.6 we get that V n = n(u>) and m = m(uj) sufficiently 

large, 

G(e ;_ j - 6 - G(& < Gm(&) - G(& < G ( e ; + j + * - G ( # ) , 

and therefore that 

\Gm&) - G ( C ) | < | G ( & e ) - G ( £ e ) | + 26. (3.2.7) 

But, since K(p) = P(F(Y) < p) = P(Y £ tf) = G(^) is a continuous distribu-

tion over [0,1], it is uniformly continuous in p and so for any 8 > 0, an e > 0 can be 

chosen so that 

sup \G(&e) - G(Ce)\ < e, where e < S-. (3.2.8) 
0<p<l o 

Finally, putting together Equation 3.2.7 and Equation 3.2.8 we get that V n = 

n(u) and m = m(u>) large enough, 

sup \Gm(^)-G(^)\<3e<5. o 
0<p<l 

We will now move on to the bivariate p — p plot: G(Ff, F2~). 

Although we have included an appendix that has all the definitions and properties 

related to copulas that we make use of, we will mention a couple of copula-related 

concepts here. 

• A copula C can be regarded as a distribution on [0, l ] 2 with uniform marginals. 

• CF(u, v) = F(F^(u), F^~(v)) is a copula for any continuous distribution F with 

marginals F\ and F2. 

• Given a sample Xi,X2,... ,Xn from a distribution F, the empirical copula is 

defined by C£(u,v) = Fn{Fl
n~(u), F2"(v)). 
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Thus, it is easily seen that the empirical p — p plot can be viewed, under H0 : 

F — G, as a two-sample empirical copula. For this reason, we will start by proving a 

Glivenko-Cantelli theorem for empirical copulas. We start with the following lemma 

which is a well-known result (see [35]), but we are including it here for completeness. 

Lemma 3.2.4 The copula C satisfies a Lipschitz condition of order 1: 

\C(p,q)-C(u,v)\<V2\\(p,q)-(u,v)\\, 

where || • || denotes the Euclidian norm in 5R2, i.e. \\s,t\\ = 11(si, S2), (^i,̂ 2)11 = 

Proof: First we note that Vs , j / eSRwe have that 2(x2 + y2) > (x + y)2, from which 

it follows that \p2\Jx1 + y2 > \x + y\. 

In what follows, we will also make use of the fact that the copula is a distribution 

function with uniform marginals. We have that: 

\C(p,q)-C(u,v)\ = \C(p,q)-C(u,q) + C(u,q)-C(u,v)\ 

< \C(p,q)-C(u,q)\ + \C(u,q)-C(u,v)\ 

< \C(p,l)-C(u,l)\ + \C(l,q)-C(l,v)\ 

= \p — u\ + \q — v I 

< y/2y/(p - u)2 + (q- v)2 

= V ^ | | ( p - i i , g - ' y ) | | 

= y/2\\(p,q)-(u,v)\\. 

o 

The following theorem is most likely known; however, we have been unable to 

find a proof in the literature. 

Theorem 3.2.5 Suppose that (Xl,X2), ( X ^ X f ) , . . . are independent and identically 

distributed with continuous distribution F and copula CF. If C„ is the empirical 

copula, then supPtq\C^{p,q) - CF(p,q)\ ->„.,. 0 

file:///p2/Jx1
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Proof: We start by noting that: 

Bup\CF(p,q)-CF(p,q)\ = Suv\Fn(F
l
n-{p),F2

n-{q))-F{F{{p),F;{q))\ 
p,q p,q 

= SuP\Fn(Ft(p),Ft(q)) ~ F(Ft(p),Ft(q)) 
p,q 

+ F(F'-(p),I%-(q))-F(Fr(p),Fi(q))\ 

< snp\Fn(F^(p),F2
n-(q)) - F(F^(p),Ft(q))\ 

+ sup \F(F^(p), Ft (q)) ~ F(FT(p),Fi-(q))\ 
P,Q 

- i l - / = sup\(Fn-F){F*-(p),Ff{q))\ 
P,Q 

(1) 

+ Sap\CF(F1(Ft(p)),F2(F^-(q))) - CF(p,q)\ 
p,q 

(2) 

We know from Theorem 3.1.2 that (1) —>a,s, 0. 

Since we proved in the previous lemma that the copula satisfies the Lipschitz 

condition, we can further bound (2) as follows: 

(2) < B U P V ^ I K ^ I ^ - C P ) ) , ^ ^ - ^ ) ) ) - ^ ^ ) ! ! 
p,i 

< sup V2\Fx{Fl
n-{p)) -p\ +Supv/2|F2(Fn

2-(g)) - q\ . 

(3) (4) 

We will only show the way to handle (3), since (4) is managed similarly. 

(3) = supv/2|F1(Fn
1-(p))-F„1(Fn

1-(p)) + Fn
1(JFn

1-(p))-p| 
p 

< sup ^ ^ ( ^ - ( p ) ) - F*(F*-(p))\ +sup y/2\F*(F*-(p)) - p\. 
p 

(5) (6) 

Again, Theorem 3.1.2 gives us that (5) —>a.s. 0. 

On the other hand, since F^x) = M if X\[np]) <x< X\[M+1) and F^ip) = 

^"(Wi)'we ^ave t^iat: 

(6) = suPV2|M_p | 
P n 

r- [np] -np 
= supv2|-— 1 —> 0 . 

p n 
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The convergence of (5) and (6) imply that (3) —>a.s. 0 (and therefore (4) does 

too), so it is also true that (2) —»a.s. 0. This completes the result, o 

Before we can proceed with the Glivenko-Cantelli theorem for G(F^,F^~), we 

will prove a lemma that we will need to prove the desired result. 

Lemma 3.2.6 Let Xi,X2,--- be (univariate) independent random variables with a 

common distribution function F that is continuous and strictly increasing on its open 

support, and let G be any continuous distribution function. Then, for any 5 > 0 and 

V u G ft, where P(Q.) = 1, there exists n = n(uj) such that V n > n(u>), 

sup \G(F-(p))-G(F-(p))\<6. 
0<P<1 

Proof: Fix u € Q and as in the proof of Lemma 3.2.1, for n = n(u>) large enough, 

sup^. \Fn(x) — F(x)\ < e and — e + F(x) < Fn(x) < e + F(x), V x. This last expression, 

combined with the definitions of F~ and F~ gives us that V 0 < p < 1, F~(p — e) < 

F~{p) <F~(p + e) holds. 

Thus, for n = n(u>) sufficiently large we have that V 0 < p < 1 : 

F-{p-e)<F-(p)<F-(p + e) 

=• G(F-(p-t))<G(F-(p))<G(F-(p + e)) 

=• \G(F-(p)) - G(F-(p))\ < G(F-(p + e)) - G(F~(p - e)). 

The result follows from the fact that GF~ is continuous, o 

We are finally ready to present the Glivenko-Cantelli theorem for the p — p plot 

Gm(F*-(•),!%-(.)). 

Theorem 3.2.7 Let (X\,Xl), (X^X^), •.. be independent with common distribution 

function F and let (If1, If2), (Y^1, Y2
2), ...be also independent with ditribution G. If 

Fi,F2 and Gi,G2 are the marginals of F and G respectively, then for any S > 0 and 

V to € Q , where P(Q ) = 1, there exist n(u>) and m(u>) such that V n > n{uj) and 
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m > m{uj), 

sup \Gm(Ft(p), F2
n-{q)) - G(Ff(p),F2-(?))| < S. 

o<p,g<i 

Proof: We have that: 

sup \Gm(F*-(p),Ft(q)) ~ G(F1-(p),F2-(q))\ 
0<P,9<1 

= sup \Gm(Ft(p),Ft(q))-G(F^(p),Ft(q)) 
o<p,g<i 

+ G(Ft(p),F^(q)) - G(Fr(p),Ff(q))\ 

< sup \Gm(F*-(p),Ft(q))-G(F*-(p),FZ-(q))\ 
0<P,9<1 

+ sup \G(Ft(p),Ft(q))-G(F1-(p),F2-(q))\ 
0<p,q<l 

= sup \(Gm-G)(F*-(p)X-(Q))\ 
0<p,q<l 

v ' 
(1) 

+ sup I C ^ G ^ - ^ G ^ - f o ) ) ) - CG(G1(F1-(p)),G2(F2-(q)))\. 
0<p,q<l 

v ' 
(2) 

From Theorem 3.1.2 we get that for e = | we can find m — m(u) large enough 

so that (1) < e. 

On the other hand, since the copula satisfies the Lipschitz condition, we have 

that: 

(2) < sup A^ | | (G 1 (F ) i - ( P ) ) ,G 2 ( ^ - ( g ) ) ) - (G 1 (F f (p ) ) > G 2 (F 2 - ( g ) ) ) | | 
0<p,q<! 

< sup ^\Gx{F^-{p))-Gx{Fr[p))\ 
0<p,q<l 

v ' 
(3) 

+ sup v /2|G 2 (F n
2 - (g))-G 2 (F 2 - (g)) | . 

0<P,Q<1 

v < 
(4) 

In the previous lemma we showed that for e = | we can find n = n(u) such that 

both (3), (4) < e. Therefore (2) < |<5, and that completes the proof, o 



Chapter 4 

Asymptot ic behaviour of Gm(^pn) 

and applications 

In this chapter we will develop the asymptotic behaviour of the p — p plot Gm(£,pn), 

as well as some applications of this result. This is the appropriate process to study 

when the minimal filtration is the one generated by the available data. In order to 

obtain the desired limiting distribution, we will be closely following [9], where Barbe, 

Genest, Ghoudi and Remillard studied the weak convergence of Kendall's process. 

4.1 Limiting distribution 

Although some of the notation we will be using was described in chapter 3, we will go 

through it again here for the sake of convenience. Xi, X2,..., Xn and Y\, Y2,..., Ym 

will be random samples from continuous bivariate distribution functions F and G 

with marginals F\,F2 and Gi ,G 2 , respectively. The sets £fn and £f are defined 

as £fn = {(x,y) : Fn(x~,y~) < t} and <£f = {(x,y) : F{x~,y~) < t}. Also, let 

X = F(X) and Y = F(Y) be random variables with distribution functions K and 

K, i.e. K(t) = P(F(X) <t) = P(X E ef) = F(g) and K(t) = P(F(Y) < t) = 

P(Y G £f) = G(£[), and densities k and k, respectively. We are interested in the 

behaviour of the process an^m(t) = y/m[KniTn(t) — K(i)], where Kn,m(t) is defined as 

44 
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KnAt) = £ £r=i ^ W < *} = £ E£i W e £f»} = Gm(&). 

Although the results developed in this section can be extended to $td as in [9] 

(which we will be closely following), for the sake of clarity we will restrict ourselves 

to bivariate distributions. 

The following assumptions will be made on the distribution functions F and G. 

They are analogues of Hypotheses I and II in [9]. 

Assumption l)The distribution functions K(t) = G(£f) of Y and K(t) = F(£f) 

of X admit continuous densities k{t) and k(t) on (0,1] respectively, that verify 

k(t) = o{<-3 ln _ 5- £ ( I )} and k(t) = o { H l iT5 _ £(I)} for s o m e e > 0 as t - • 0. 

Comment 4.1.1 Note that if K(t) admits a continuous density kit) on (0,1] verify-

ing k(t) — o{t_2 ln _ 2 _ € ( I )} for some e > 0 as t —*• 0, and the distribution functions F 

and G have densities / and g respectively, such that supX:V
 9

fZ ) < c for some c < oo, 

then Kit) = LF g(z)dz < LF cf(z)dz = cK(t), and we would not need an additional 

restriction for Kit), as we have in assumption 1. 

Assumption 2)There exists a version of the conditional distribution of the vector 

Y* = (F1(Y
1),F2iY

2)) given F{Y) = t and a countable family V of partitions C of 

[0, l ] 2 into a finite number of Borel sets satisfying inf ce-p maxc<=c diam(C) = 0 such 

that V C G C the mapping 

t - rf'G(C) = k(t)P{Y* e C\F(Y) = t} 

is continuous on (0,1] with ^G{C) = fc(l)/{(l, 1) € C). 

Comment 4.1.2 Defining the pseudo-variables X\Y* as X* = (F^X1), F2(AT2)) 

and Y* = (F1(Y
l),F2iY

2)), it is easily seen that Kn,mit) = K^Jt), where K^m 

is defined as above using the pseudo-variables X^,X2,.. • ,X£ and Y{ ,Y£,... ,Y£ 

instead. Since X* has distribution CF and Y* is a random variable on [0, l ] 2 , we may 
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assume without loss of generality that F is a copula and that G is a distribution on 

[0, l ] 2 . The assumption that F is a copula implies that Y* = Y = {YX,Y2) in what 

follows. 

The main result of this chapter is the following theorem, which defines the as-

ymptotic behaviour of an,m. 

T h e o r e m 4.1.3 Under assumptions 1 and 2, and if——>\asm,n-^> co ; the empir-

ical process an,m{t) = sJm\Kn^m(t) — K{t)\ converges in distribution to a continuous, 

centered Gaussian process a with zero mean and covariance function 

r ( M ) = G(&n£)-G(S?)G(&) 

+ X J J{F{z A z) - F(z)F(z'))^G(dz)^G(dz). 

Moreover, for t € [0,1], the limiting process has the following representation in terms 

of the weak limits UF of y/n(Fn — F) and UG of y/m(Gm — G): 

«(*) = UG(t?) -Vxf UF{z)^G{dz). (4.1.1) 

Before proceeding with its proof, we will prove a series of results that will be 

needed to show the required convergence. 

L e m m a 4.1.4 i)The process anim(t) — y/rn[Gm(^[n) — G(£F)] can be expressed as 

(t) — Pm(t) + Jn,m(t), where 

-. m 

Pm(t) = V^{-^ri{Yt<t}-G(ZF)]cmd 
i=l 

-. m 

7„,m(«) = ^=Yj[I{Fn{Yl)<t}-I{Yi<t}\. 

ii)If (Fn — F)+ and (Fn — F)~ denote the positive and negative parts of (Fn — F), 
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then we have that jn,m(t) = Sn,m(t) — e„jm(£), where 

Proof: i)an,m(t) = /3m(t) + 7n,m(*): 

The result follows when we express /3m(t) and 7n,m(*) in terms of Gm: 

* m 

i=l 

= yfr[Gm(&) - G(g)}. 

7n>m(t) = — y ; [ i { F „ ( y i ) < * } - ' { £ < * } ] 

= V^[Gm(gn) - Gm& 

We have that: 

\yn,m £n,m)\'') 
.. m 

m 

- Y,I{t-{Fn-Fr{Yi)<F{Yi)<t}] 

-. m 

= " / S T E J # - ^ - F)"(y*) < *TO - (F" - F)"(y*) ^ *> 
V m i=l 
m 

- E ^ < F(y*) + (F« - F)+(y^) ^ *+(F» - F)+(^)>] 
t= i 

- (Fn - F)-(Yi) + (Fn - F)+(YJ <t + (Fn- F)+(Yi)}] 

~ ^ E 7 ^ - (F« - ^ " W < F<X) + (F« - ^ " W 

- (Fn - F)~(Yi) <t + (Fn- F)+(Yi) - (Fn - F)-(Y,)}} 
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Fn(Yi) < t and 

F(Yi) < t 

Fn(Yj < t and 

FiY,) > t 

Fn{Yi) > t and 

F(Yi) < t 

Fn(Yi) > t and 

F{Yt) > t 

^^in,m\}') 

0 

1 

-1 

0 

I8n,m(t) 

0 

1 

0 

0 

1 £n,m\t) 

0 

0 

1 

0 

,m £n,m)\'') 

0 

1 

-1 

0 

Table 4.1: 7„,m(i) = <5„,m(t) - e„im(t) 

1 m 

= ~ W V / { i + (Fn - F ) ^ ) < F{Yi) + (Fn - F ) ^ ) < 
Vm r—^ 

m 

t + (Fn- F)+(yi)} - E J{* - (F- - FHy*) < 
i = l 

F ^ ) + (Fn - F)(y<) < i + (F„ - F ) ^ ) } ] 
w TO 

= - T = [ V / { i + (Fn - F) ( r , ) < Fn(Yi) <t + {Fn- F ) + (y , )} 

m 

- £ / { * - (Fn - F)-(Yi) < Fn(Yj <t + (Fn- F)(y,)}]. 
i=l 

Let Iu>n:m(t) denote the indicator of the process u>n,m(t). For each Yi, i = 1, 2,. 

consider the cases shown in Table 4.1. 

It becomes clear that 7n,m(t) can be rewritten as (<5„,m — e„>m)(t). o 

,m 

C o m m e n t 4.1.5 We know by Theorem 3.1.7 that /3m(-) converges weakly to a Gaussian 

bridge [/x(•) with covariance function K(sM)-K(s)K(t) = G(ff n£f ) - G ( f f )G(£f). 

Since the asymptotic behaviour of /3m is known, we will focus our attention on 

the process j n , m (and therefore on £„>m and eniTn). We will consider the behavior of 
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7n>m in two separate cases: when t is bounded away from the origin and when t is in 

the neighborhood of the origin. Following [9], we start with the former. 

L e m m a 4.1.6 The following quantities converge in probability to zero for any 0 < 

to < 1: 

^ s u p ^ ^ \5n,m(t) - >§ J[0il]2 V^(Fn ~ F)-(z)^G{dz)\. 

ii)*uPt0<t<i k,m(*) - ^ f /[0il]2 V^(Fn - F)+{z)^G{dz)\. 

m j s u p ^ ^ |7n>ro(t) + ^ f /[0il]a Jn~{Fn - F)(z)rf'G(dz)\. 

Proof: iii)If i and ii are true, then: 

SUP | 7 n ,m( t ) + ^ / V^(K ~ F)(z)rf'G(dz)\ 
t0<t<l V n J[0,1]2 

= sup \Sntm(t) - e„,m(t) - ^ P / Vn~(Fn - F)-{z)^G{dz) 
*o<t<i Vn J[o,i]2 

+ v p / ^(Fn-F)+(^f'G(^)| 
Vn ^[0,l]2 

< sup \Sn,m(t) - ^ f V^{Fn-F)-{z)i4'G{dz)\ 
t0<t<i \/n 7[o,i]2 

+ sup |en,m(t) - ^ S / v ^ n - F ) + ( ^ ) / / f , G ( ^ ) | - 0. 
*o<t<l V n ^[0,1]2 

ii)The proof of ii is analogous to that of i (below) and therefore omitted. 

i)For any element C of a partition C = (Cj)r
j=1 £ V, define 

InJ = inf yft(Fn-F)-(y), 
y£Cj 

SnJ = sup y/n(Fn-F)-(y), 
yeCj 

.. m 

em,c{t) = V^[~ Yl HHY^ <t,YiEC}- P(F(Y) <t,YeC)], and 

f i t 

-. m 

<W*) = -=Yint<F(Y^<t + (Fn-F)-(X^}I{YieCj}. m 
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Then, 

r r .. m 

E<W*) = J21^'Ent<F(Yi)<t + (Fn-F)-(Y1)}I{YieCj} 
j=l j=l v m j=l 

.. m r 

= JrTJi{t< F(Xi) <t + (Fn- ^ - ( r o i E 1 ^ G CJ} 

For 1 < j < r: 

Sn>mJ(t) = ^'Tl{t<F(Yi)<t + {Fn-F)-{Yi)}I{Yi£Cj} 

1 m <? 

< -±=Y,nt<nYi)<t+^}i{Yi&cj} 
Sn,j 

= em,Cj(t + % ) - em,Cj(t) + V^ ft+ * HF
s'

G{C3)ds 
vn Jt 

, F,Glr,\Q \fm 
J 'n 

+ [^G(Cj)Snd^P- f V^(Fn-F)-(z)^G(dz)} 

+ / 7^(Fn - F)-(^)//f'G(^) 

< [em A( i + % ) - em A(t)] + VE ft+VK (^(Cj) - ^{Ci))d8 
Vn Jt 

+ [/V {Cj)Sn,j—7=- l=In,ili>t" (Cj)] 
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An analogous argument gives us that 

-[^G(CJ)SnJ^-^In^G(Cj)]+ f V^(Fn-F)-(z)^G(dz). 
V n v n JCj 

For arbitrary C € C, the finite-dimensional distributions of the pseudo-empirical 

process emjc converge in law to those of a Gaussian process on [0,1] with mean zero 

and covariance function P(Y e C,F(Y) < t A s) - P(Y E C,F(Y) < t)P(Y e 

C, F(Y) < s). Moreover, since it can be shown that em>c is tight, it follows that emjc 

converges in distribution, as m —> oo to a continuous Gaussian process (for details, 

see [9]). 

Furthermore, ^Jn{Fn — F) converges in £°°[0, l ]2 to a continuous Gaussian process 

UF = (UFy-(UF)~. Therefore, InJ ->v mfz&Cj(U
F)-(z), SnJ ^v supzsC.(UF)-(z), 

^ ^ P 0 and %4 ^P 0. 

But then, since the £m,c*j are tight, and r is fixed, we have that the processes 

r I 
Pli,m = Y) SUP \£m,cAt +-j^) - emtCj{t)\, and 

r-'o<*<i 3 \/n 3 

r S 
Pl,m = Y ] sup |emic,(* + - 7 ^ ) - e m , c i ( * ) | 

JTio<t<i y/n 

both converge to zero in probability. 

Also, since [iF'G(Cj) is continuous for s G [to, 1], we have that for 0 < to < 1, the 

processes 

P«,m = Vm ^ sup | / ^ (»F'G(Cj) - rf'G{C3))ds\ and 

im = V ^ E SUP I / V~n{^G{Cj)-^
G{Cj))ds\ 

~{to<t<l Jt 

converge in probability to zero. 
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Finally, consider ph
nm as defined below: 

-rY] S U P \^t}G{Cj)SnJ - i£,G(Cj)Inj\ 
Vn ~{to<t<i 

^ J 2 SUP /^'G(Ci)l SUP MFn-F)-(Zl)- inf V n ( F B - F ) - ( z a ) | 

Fn,m 

r 

< ^ sup V s u p / i f ' ^ Q ) sup y ^ K K - F ) - ^ ) - ^ - ^ ) - ^ ) ! 

< ^ s u p f c ( i ) m a x sup Vn~\(Fn - F)-(Zl) - (Fn - F)-(z2)\ 
V n *0<t<l X^^-r zx,z2^Cj 

/ TY) 

< —=• sup k(t)u{\/n(Fn — F)~, max diam(Cj)}, 

where u{f, s} = s u p ^ ^ p ^ ^ i , ^ | / (zi) - /(z2) |-

Since ^ —>• A as n ,m —> oo, it is possible to make p^ arbitrarily small with 

probability arbitrarily close to 1 when n and m are large by choosing a partition with 

an appropriate mesh. 

Then, 

sup \Sn,m(t) - ^ f MFn - F)-{z)^G{dz)\ 
t0<t<l V n J[0,l}2 

= sup i vsn,mJ(t) - y ; / V ^ ( K - F)-(^)/,f'G(^)i 
to<*<l £ ? j^lJci 

< max(p*>m, p2
TO) + m a x ( ^ m ; p ^ j + ^ m 

Lemma 4.1.7 The restriction of the process jn,m{t) t° the interval [to, 1], 0 < to < 1, 

converges in law to a centered, continuous Gaussian process having the representation 

-^Jm.UF{z)^G{dz). 

Proof: There exists a continuous version Fn of Fn such that supzer01i2 \Fn(z) — 

Fn(z)\ < I and y/K(Fn - F) -+v UF in C[0, l]2 . 



4.1. LIMITING DISTRIBUTION 53 

Also note that: 

sup | / V^(Fn-F)(z)^G(dz)- [ V^(Fn-F)(z)rf'G(dz)\ 
t0<t<l J[0,1]2 J[0,i\2 

kit) 
< sup - ^ . 

to<«<l V n 

But in view of Lemma 4.1.6, it is enough to show that for any / G C[0, l]2 the 

function t1—>• L 1]2 f(z)/j,f' (dz) € C[£o, 1]- If that is true, then / i—> L - 2 f{z)[xt' (dz) 

will be a continuous functional from C[0, l ] 2 to C[tQ, 1]. 

Given a partition C = (Cj)J=1 € V, we have by hypothesis that the function 

f H ^ ' (Cj) is continuous on [t0,1] for any 1 < j < r. Then, for any sequence (ti) 

in [to, 1] converging to t: 

L — limsup / fiz)^ (dz) < / J ^ f ' (Cj) sup f(z) < oo and 

L = ]imini [f(z)^G(dz)>J2^G(Cj)mU(z)>-o0. J = l 

Therefore, 

0 <L-L<J2^'G(Cj)[supf(z)- inf /(*)] 
r—f zee,- Z£CJ 

< X X ^ Q ) SUP IM)-/(^) 
j = 1 Zl,Z2£Cj 

< k(t)ui{f, maxdiam(Cj)}. 
3 

Since the above does not depend on the partition chosen, L — L and the result 

follows from the fact that — —>• A as n, m —• oo. o 

To prove our next lemma, we will make use of the following result, the proof of 

which can be found in [9] (corollary, page 215) and therefore is presented without 

proof. 

L e m m a 4.1.8 Let q{t) = \Zilnp(^) and for arbitrary M > 0, 1 < 2p < r and an 

integer n > 1, let Hn,M = {supz:F{z)>tn V ^ g ^ 1 < M}, where tn = ^ . / / 
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~k(t) = oit-^ln-^-'a)} ast->0, then 

lim limmfP(HnM) = 1 
M—>oo n—>oo 

and as n -^ oo, 

sup
 |Fn(t7f(Z)l<Mln^/2(n)^0 

ty/ien i?niM is realized. 

In the next lemma we consider the behaviour of ^n<m in the neighborhood of the 

origin. 

Lemma 4.1.9 For arbitrary p > 0, one has: 

^ l i m t o ^ o l i m s u p ^ ^ F(sup0< t< to <Jn,m(t) > p) = 0. 

zi;iim t 0^0limsup„ ]m^ooF(sup0< t< (0e„ )m(t) > p) = 0. 

myaim i 0_^limsupn i m^o oP(sup0< t< t 0 |7n,m(*)| > p) = 0. 

Proof: iii)If i and ii hold, then: 

lim lim sup P( sup |7n,m(i)| > p) 
*o^0 n ^ - ^ o o 0<t<t0 

= lim lim sup P( sup |5n>m(£) - e„,m(t)| > p) 
*o-*0 n^m-^oo 0 < t < i o 

< lim lim sup P( sup |<5n>TO(£)| > p) + n m lim sup P( sup |en,m(i)| > /°) 
*o-»0 n ; T O ^ o o 0 < t < t 0 ' t o ^ ° n,m->oo 0<t<to 

= 0. 

ii)The proof of ii is close to that of i (below) and therefore omitted. 

i)Choose p and r such that 1 < 2p < r < 1 + 2e. Since P(A) < P(A D B) + P(BC) 

for any events A and B, for given p > 0: 

P( sup <5n?m(t) > p) < P( sup <5n,m(t) > p,HnM) + (1 - P(Hn,M)). 
0<t<t0 0<t<to 
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Since 1 — P(HniM) can be made arbitrarily small by choosing M large enough, 

it is enough to show that 

lim sup limsup P( sup 6n,m(t) > P,HU,M)
 = 0. 

to—»0 n,m—>oo 0<t<to 

Proceeding as in [9], first note that {Fn(Yi) < t < F(Yi)} = {t < F(Yi) < 

t+(Fn — F)~(Yi)}. Then, observe that if Un,M is realized, we have that (Fn — F)~(z) < 

\Fn-F\{z) < Mq{^z)}. Therefore, the event HnMn{t < F(Y^ < t + (Fn-F)-(Yi)}r) 

{F(Yi) > tn) is equal to the event HnM n {t < F{Yi) < t + $q[F(Yj]} (1 {Fn{Yi) < 

t < FiYi)} fl {FiYi) > tn}. 

Now take n sufficiently large such that Mln p _ r ' 2 (n ) < | . It follows from Lemma 

4.1.8 that sup2 : F ( , ) > t n | f g - 1| = suVz:F{z)>tn
 |F"(g(;f

(z)| < I implying that f ^ > 

\, i.e. EnM n {Fiji) > tn} C { f ^ > i } . It then follows that 

Hn,M n {Fn(y<) < t < F(Yi)} n {F(Yi) > tn} 

c { F n ( y i ) < t < F ( y < ) } n { | ^ > i } 

= ( ^ < * < F(Yi)} C {*TO < 2t}. 

Putting these two facts together, we get that Hn<M D {t < F(Yt) < t + (Fn — 

F)-(Yi)} n {F(Yi) > tn} C{t< F(Yi) < t + -^q(2t)}, an inclusion that will be used 

in the following set of inequalities. 

The following inequalities hold when HnjM is realized: 

1 m 

Sn>m(t) = -—y2l{t<F(Yi)<t + (Fn-F)-(Yi}} 
v m

i = i 

< -7= YlJ{t <Fpi) <t + (Fn-F)-(yi)}/{F(yi) > tn} 
v 1 = 1 

-. m 

i=l 

^ "7- E ^ < FVi) < t + -W2*)} + -= J21{FW < tn} 
* 1 = 1 V * 1 = 1 
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1 M 1 

= -?= E w * ) ^ *+^(2 t» - 4? E J{*TO ^ *> 
v
 J = I

 v v i=i 
-. m 

+ 4=]C/{W)<*n} 

= [/?m(t + -^ 9 (2 t ) ) + V ^ # ( * + ^=q(2t))] - [/3m(t) + y/^K(t)] 

+ [An(U + yfaK{tn)\ 

= \Pm(tn) + yfaK{tn)\ + [Pm(t + ^=q(2t)) - (3m(t)} 
y n 

\lTi 

If we define 

£ m = sup \pm(t + -pg(2«)) - 0m(t)\ and 
0<i<£0 V n 

M 
p\m= sup V^[^(t + ^g (2 t ) ) -X( t ) ] , 

0<t<i0 V n 

then 

P( sup <5n,m(t) > p,HnM) < P{\(3m(tn)\ >?-) + P(V^K(tn) > £) 
o<t<t0 4 4 

+ P{Pn,m>l) + P(pl,m>{) 

and it remains to show that each term can be made arbitrarily small when n, m are 

large and to is sufficiently small. 

Recall Comment 4.1.5: j3m converges in distribution to a process j3 which is 

continuous and vanishes at the origin, so that the first term is taken care of. 

We can rewrite the second term as: 

>n 

—7=°\—i r 
^ l ln2 + e ( l / t n ) J 

m 
o{ln(r-1,/2-£(n)} -H. 0. 
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The second equality above follows from assumption 1 and the convergence follows 

from the fact that - ^ —• \f\. 

Since /3m is tight, as n, m —• oo p^ m —» 0. 

Now let Ki0,M = sup0<t<to+Mq{2to) k{t)q(t) and rewrite p ^ m as: 

p\m = sup ^ [ t f (t + ^=q(2t)) - K(t)] 
0<t<to V n 

= y m sup / k(s)ds 
o<t<t0 Jt 

rt+%q(2t) x 

< \/mKt0tM sup / -rTds 

o<t<t0 Jt q{s) 
/ y/rri.. q(2t) 
< —f=MKt0,M SUp —7-r-

Vn o<t<t0 q{t) 

< y^MKtoMV2^to^00. 

Therefore, l im4 o^0 l imsupn m_0 0P(sup0< t< t o <5n>m(t) >p) = 0.o 

We are now in a position to prove Theorem 4.1.3, which deals with the asymp-

totic behaviour of an<m. 

Proof of theorem 4.1.3: Since we have established that otn,m(t) — f3m(t) +jn,m(t), 

given 0 < t0 < 1, it follows from Comment 4.1.5 and Lemma 4.1.7 that an<m(t) 

converges weakly to a continuous process a(t) that may be represented as in equa-

tion (4.1.1) for t0 < t < 1. From Lemma 4.1.9 and the fact that the limit (3 of the 

sequence (/3m) is continuous with mean zero, we may conclude that 

fim l imsupF( sup |a„,m(£)| > p) 
*o—>0 n,m^oo 0<t<to 

= lim l imsupP( sup \(/3m + jn,m)(t)\ > p) = 0 V p > 0. 
^ - • 0 n > r r w o o 0<t<i0 

Therefore, an:m(t) converges weakly to a{t). It remains to check the covariance. 

T(8,t) = E(a(t)a(s)) = E(UG(tf)UG(0 
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- VxJuG(^)UF(z)^G(dz) - VxfuG{iF)UF{z)^G{dz) 

+ xj juF{z)UF{z')^G{dz)^G{dz)) 

= E(UG(tF)UG((F)) + A J J E(UF(z)UF(z))^G(dz)^G(dz) 

= G(£f n£f) - G(£f)G(ef) 

+ xj J(F(zAz')-F(z)F(z'))^G(dz)^G(dz). 

o 

The following theorem is Theorem 5 in [9]. We will state it without proof and 

with minor changes to be consistent with the notation we have been using. 

Theorem 4.1.10 Suppose we have a random sample X\, X2, • • •, Xn from a bivariate 

distribution function F satisfying Assumptions 1 and 2 (with F = G). If K denotes 

the distribution function of F(X) and Kn its empirical counterpart, then the process 

otn{t) = ^/n[Kn(t) — K(t)] converges weakly to a continuous centered Gaussian process 

a. This limiting process has the following representation: 

<*(*) = uF(t?) - f UF(z)nF>F(dz),te [0, l]. 

We can use Theorem 4.1.3 and Theorem 4.1.10 to show the convergence of the 

process ^m(t) = Vm[Gm(£f») - Fn(tf
n)] under H0:F = G. 

Theorem 4.1.11 Under the null hypothesis HQ : F = G, and assumptions 1 and 

2, the process ipn,m(t) — \/m[Gm(£Fn) — Fn((
Fn)} converges weakly to a centered, 

continuous Gaussian process which is equal in distribution to t/j(t) = \J\ + XUF(^f). 

Proof: We can rewrite ipn,m(t) as: 

= Vm[Gm(tf"») - Fn(£f") - Gtff") + Gtff") - F(^) + Ftff")] 
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(2) 
(1) 

+ Vm[G(tf) - Ftff)] • 
V v ' 

(3) 

Using Theorem 4.1.3, (1) -> UG(t?) - V\ Jm2U
F(z)nf'G(dz). Using Theo-

rem 4.1.10 and the fact that ^ - • A, (2) - • y/\UF(g) - V^/[0>1]2 UF (z) ̂ F'F (dz). 

To simplify the result when HQ : F = G is true, £/ will denote the bridge 

associated with \/rn[Gm(£F) — G(£F)]. Note that although U and [/-̂  will have the 

same distribution, they will remain independent. Also note that under HQ, (3) = 0. 

Then, under HQ : F = G, we have that: 

VVnW - lf{g)-V\f UF{z)^F{dz)-^\UF^F) 

+ VX f UF(z)iif'F(dz) 
•Ao,i]2 

= tfV)-V^'(tf') 

o 

Applications of Theorem 4.1.11 will be discussed in the next section. 

What we want to do now, following Theorem 2 in [9], is to show that Assumption 

2 is not as restrictive as it might seem at first glance. We have the following theorem. 

T h e o r e m 4.1.12 Suppose that F is a copula with a continuous and strictly positive 

density f, and that G is a distribution on [0, l ] 2 with continuous density g. Then there 

exists a version of the conditional distribution ofY* = Y given F(Y) = t such that 

for any rectangle C in [0, if, the mapping t -* ^F,G{C) = k(t)P{Y e C\F(Y) = t} 

is continuous on (0,1] and pLx' is the Dirac measure with mass k(l) at point (1,1). 

Moreover, for any Borel set C in [0, l ] 2 and for any 0 < t < 1, /J,F'G(C) admits the 
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representation 

^•G(C) = f I{(x, Rx(t)) e C}g?(x)dx, 

where 

Rx(t) = F-(t) = {y:F(x,y) = t} 

and 

g[(x) = [jtRx(t)]g(x,Rx(t))I{x E (0,1) : F(x, 1) > t}. 

In particular, k(t) — f,Q ^ g[(x)dx. 

Comment 4.1.13 Note that the mapping t -> rf'G(C) = k{t)P{Y G C\F(Y) = t} 

is only required to be continuous on (0,1]. The reason that we do not ask for continuity 

at 0 is that the proof will make use of the transformation (x,y) —> (x,F(x,y)) and 

its inverse. The inverse is unique whenever F(x,y) ^ 0, but if we take F(x,y) = 0 

and x — 0, then (0, y) —• (0,0) V y and the inverse does not exist. 

Proof: Following [9], the proof will consist of two parts: the first is to show that a 

version of the conditional distribution of Y given F(Y) = t can be found such that 

for any continuous j on [0, l ]2 , the mapping t —• mt(j) = J,0 ^2 j(z)fJ>t' (dz) is con-

tinuous on (0,1]. The second part will be to show that for any non-empty rectangle 

C = {z G [0, l]2 : z\ < z < Z2}, the function t —> / i t ' (C) is continuous on (0,1]. 

i)Take a continuous function j on [0, l ] 2 and for t € [0,1] define 

Mt(J) = E(j(Y)I{F(Y) < t}). 

Then, 

Mt(j)= / j(x,y)g(x,y)I{F(x,y)<t}dydx. 
J(0,1) J(0,1) 

If we apply the change of variable s = F(x, y) — Fx(y) for fixed x such that F(x, 1) > 

s, we have that y — Rx(s) and ^ = ^ i? x ( s ) = R'x(s)- Note that since Fx is strictly 

increasing, its inverse Rx(s) is unique and that R'x is continuous since / is. If we let 
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g?(x) = [jj-sRx(s)]g(x, Rx(s))I{x € (0,1) : F(x, 1) > s}, we have that: 

Mt(j) = f (f j(x,F-(s))g(x,F-(s))I{s<t}R'x(s) 

J(0,1) J(0,1) 
I{x : F(x, 1) > s}ds)dx 

= f(f j(x, Rx(s))g(x, Rx(s))Rx(s)I{x : F(x, 1) > s}dx)ds 
Jo J(o,i) 

= / ( / J(x,Rx(s))gs(x)dx)ds. 
Jo J (0,1) 

On the other hand, applying the definition of fit' , we have that for t € [0,1]: 

Mt(j) = E(j(Y)I{F(Y)<t}) 

= f j(z)I{F(z)<t}dG(z) 
J(o,i)2 

= [ [ j{z)k(s)P((Y1,Y2)edz\F(Y) = s)I{s<t}dzds 
Jo J(o,i)2 

j{z)^G{dz)ds. 

o J(o,iy 

From the above we deduce that ^ ^ ( j ) = "fy(j') — J(o u2 J(z)Ht' (dz). Also, note 

that 

/ j(z)tf'G(dz)= f j(x,Rx(t))g[(x)dx (4.1.2) 

must be true for any bounded measurable function j . 

Therefore, /j,t' is a version of k(t) times the conditional distribution of Y given 

F(Y) = t for which the mapping 

t^mt(j)= j(z)fif'G(dz)= j(x,Rx(t))g[(x)dx 
Ao,i)2 7(0,1) 

is continuous on (0,1) for all continuous functions j on (0, l ) 2 , because j and g are 

both continuous and the derivative of Rx is continuous on (0,1). Taking j identically 

equal to one we obtain that for t € (0,1), 

Mt(l) = E(I{F(Y) < t}) = P(F(Y) <t) = G(tf) 
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and 

mt(l) = / g[(x)dx = k(t). 
J(0,1) 

Next, observe that F(y) = 1 & y = (1,1). Therefore E(J(Y)\F(Y) = 1) = 

j ( l , 1) and 

™i(j) = / 3(z)tf,G(dz) 
J(0,1)2 

= f j(z)k(l)P((Y\Y2)edz\F(Y) = l) 
7(0,1)2 

= j ( l , l)fc(l) / P((Y\Y2)edz\F(Y) = l) 
7(o,i]2 

To complete the first step of the proof, it remains to show that mt(j) converges 

to rni(j) as t —> 1. 

I"ii0') -™t( j ) l 

= | j ( l , l)fc(l) - / j(x, Rx{t))gf{x)dx\ 
7(0,1) 

j ( l , 1)A;(1) - j ( l , l)A:(t) - / j(x, Rx{t))gf{x)dx 
7(o,i) 

'(0,1) 

' (o, i) 

+ J'(l,l)fc(«)l 

= \j(l,l)(k(l)-k(t))- I j(x,Rx(t))g[(x)dx 
7(o,i) 

+ / j(l,l)gf(x)dx\ 
7(0,1) 

< | j ( l , l ) | |A: ( l ) -A:( t ) |+ / \j(x, Rx(t)) - j(l,l)\g[(x)dx 
7(o,i) 

< | j ( l , l ) | |A ; ( l ) - fc ( t ) |+ sup \j(x,Rx(t))-j(l,l)\k(t) 
x:F(x,l)>t 

< \j(l,l)\\k(l)-k(t)\ + k(t) sup \j(y)-j(l,l)\ 
ye[*,i]2 

The above is true since k is continuous on (0,1], j is continuous on [0, l ] 2 and the last 

inequality holds from the argument below. 
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We need to prove that supx:F{Xtl)>t\j{x,Rx(t)) - j{l,l)\ < supy e [ M ] a \j{y) -

j(l,l)\. Note that if s < t, then F(x,s) < s < t because F is a copula. Then, 

if F(x,l) > t we have that Rx(t) > s and Rx(t) > t. Moreover, the fact that 

F(x, 1) > t, implies that x = F(x, 1) > t. 

ii)The second part of the proof consists of showing that for fixed t £ (0,1], the 

mapping t —> fit' (C) is continuous at t for any non-empty rectangle C of the form 

{ze [0,l]2:Zl <z<z2}. 

Following the method presented in [9], we will first deal with the case t < 1. 

Consider a rectangle C of the form {z E [0, l]2 : Z\ < z < z2}. Since the boundary 

of C is included in a finite union of sets of the form {z : z^ = c}, it will be enough 

to show that nf'G{z : z® = c} = 0 for arbitrary c £ [0,1], i = 1,2. Then, it 

will follow that \it' (dC) — 0 and so nt' ([0,2;]) is continuous in z for every t and 

lims^tfis(C) = fJLt(C). 

Since 

/ i f G {[M) 2 } = k(t)P«y\Y2)e[t,i)2\F<y) = t) 

it is sufficient to consider c € (0,1). Let 7Tj be the projection function that omits the 

ith coordinate: n\(z) = z2 and ^(z) = z\. Since the representation 

/ J(z)Vt'G(dzi x dz2) = / j(x,Rx(t))g[(x)dx, 

is valid for any continuous function jf on [0,1], the measure / / t ' o n^1 has density 

^f (x) with respect to Lebesgue measure. Hence, nf'G{z : z^ = c} = 0 for arbitrary 

c e ( 0 , i ) . 

To show that jj,t' {z : z^ — c} = 0, let d2F(x, c) denote the partial derivative 

of F(zi,z2) with respect to z^ evaluated at (x,c). Equation 4.1.2 is valid for any 
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bounded, measurable function j , yielding 

rfG{z G [0, l]2 : z^ = c } 

= / J{z G [0, l]2 : z® = c}^G(dz) 
J(o,i)2 

= / /{(x, JRx(t))G[0,l]2 : JR c c(t) = C } 5 f ( a : ) ^ 
7(0,1) 

= f I{(x,Rx(t))£[0,l}2:Rx(t) = c}^-Rx(t) 
7(0,1)

 at 

g(x, Rx(t))I{x G (0,1) : F(x, 1) > t}dx 

= / /{a G (0,1) : F(x, c) = t}g(x, c) dx 

J (0,1) ^x{Kx{t)) 

= / g(x,c)—- rl{x G (0,1) : F(x,c) = t}dx. 
J(o,i) 02-r ( » , c) 

But P(/{a; e (0,1) : F(x, c) = t} = 1) = 0 V x G [0,1] because F has a strictly 

positive density, and it follows that £tf'G{<2 G [0, l]2 : z^ = c} = 0. 

Finally, we consider the case t = 1. Take C = {z G [0, l ] 2 : z\ < z < z^\ and 

let Z2 7̂  (1,1)- Then (1,1) ^ <9C, and it follows from the continuity of /i1' that 

(j,f'G(dC) = k(l)I{(l, 1) G <9C} = 0. Hence ^'G(C) -> Mf'G(C) as s - • 1. 

Now let z2 = (lj 1)- We have that whenever s > maxj=i>2 z\ , 

//i(C) = fc(l) and /is(C) = /c(s)P((F1 ,F2) G C |F (F ) = s) = k(s), 

because for such an s, F(x, 1) > s implies that (x,Rx(s)) C [s, l ] 2 C C. Since A; is 

continuous we have that k(s) —+ k(l) as s —> 1 and the proof is complete, o 

C o m m e n t 4.1.14 We are requiring an extra assumption that is not needed in [9]: 

that / be a strictly positive density. We need this assumption to be able to prove 

that fj,t' {z : z^ = c} = 0; in the one-sample case, studied in [9], it is not necessary 

because when we express /j,t' {z : z^> — c} as an integral, it is immediate that the 

indicator function inside the integral will be greater than zero only when the density 

/ is equal to zero, yielding that part of the proof . 
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4.2 Applications 

In this section it is our aim to discuss potential applications of Theorem 4.1.3, and in 

particular to focus on the different scenarios that are created based on the information 

that is available to the experimenter. 

Recall that Theorem 4.1.11 in the previous section showed that the process 

^n,m(t) = v/^[Gf
r7i(^fn) — Fn(£fn)] converges, under H0, to a continuous Gaussian 

process which is equal in distribution to ip(i) = \ A + ^UF(^f). To point out that 

this process will lead to consistent test statistics, we make the following observation. 

Comment 4.2.1 If HQ : F = G is not true, then 

s u P v ^ | G ( ^ ) - F ( ^ ) | - o o , 
p 

and therefore 

SUp 1pn,m(p) ^P OO. 
P 

Before talking about the possible test statistics to use, let us show with an exam-

ple, as in [9], that in order to verify that our distributions comply with assumption 

1, it is not necessary to calculate k(t) and k(t) explicitly. 

Example 4.2.2 The Farlie-Gumbel-Morgenstern (FGM) family of copulas is given 

by C(u,v) = uv + 9uv(l - u)(l - v), where - 1 < 0 < 1. Take F to be the FGM 

copula with parameter 6 and G to be the FGM copula with parameter e, so that: 

F(x,y) = xy + dxy(l - x)(l - y) 

f(x,y) = l + 0 ( l - 2 : c ) ( l - 2 2 / ) 

G(x,y) = xy + exy(l - x){l - y) 

g(x,y) = l + e ( l - 2 x ) ( l - 2 j / ) . 

As defined before, 

Rx(t) = F-(t) = {y:F(x,y)=t} 
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and 

gf(x) = [jtRx(t)}9& Rx(t))I{x E (0,1) : F(x, 1) > t}. 

Since F(x,y) can be rewritten as F(x,y) — y2(9x2 — 6x) + y(0x — Ox2 + x), it is easy 

to see that Rx(t) — {y : y2(9x — Ox2) + y(9x2 — 9x — x) + t = 0}. Therefore, following 

[9] by letting cx — 9(1 — x) and rx(t) — W(l + cx)
2 — 4cE(^), we have that: 

9x + x - 9x2 - yj{9x2 -9x- x)2 - A(9x - 9x2)(t) 
Rx{t) = — 

2(9x - 9x2) 

x(9 + l - Ox) - ^[x(9x -9- l)]2 - 4t#x2(± -

29x(l - x) 

0(1 - x) + 1 - yj[6{x - 1) - l]2 - U9(^) 

-1) 

20(1-2:) 

l-^[-cx-l]
2-Ucx(l) 

2cl 

l + cx-J(l + cx)
2-4cx(j:) 

zcx 

^ T C J TX 

L0X 

l + e ( l - 2 a ; ) ( l - 1+c»-r*) 
9Ft (*) = c*Ul{x e (0,1) : F(x, 1) > t} 

Since ™*& = 5j-I[(l + cxf - 4 ^ ) ] - * ^ = _ ,„ ,_*, ^ , t „ we have that: 

Xy/(l + CX)2-4CX(^) 

(l-x) + l9(l-x)(l-2x)(l-1-±̂ ] 

xrx(l - x) 

(l-x) + f c J l - 2x)(c*-1~c*+r*) 

- e V A c* -I{x E (0,1) : F(x, 1) > t} 

I{xE (0,1) : F(x, 1) >t} 

xr. „(l-x) 

< (l-x) + 8(l-2x)(rx-l) e ; > ^ ^ s = £w 

xrx(l — x) 9 

s f [ ( i -x )+a-_^) (r . -D 1 / { J e (0> 1}: F ( l i 1} > ( } 

= f i ( 1"' ) +^("i-;r , + 2 l ) '^e (o' « : F < *< i ] > *> 
= ^ 1

2 ! r ; v / ] ^ e ( 0 , l ) : F f c l ) > ( } 
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= S[X{1~^^/H{^(OA):F{xA)>t} 

= s[^yx
 + bI{xe^1):F{xA)>t} 

< S[^^-]I{xe{0,l):F(x,l)>t}. 

The first two inequalities follow from the fact that, depending on the (one-sided) 

alternative we are using, 5 will be either | or 1 and the last inequality (1 — rx < 

2|0|(1 - x)) follows from [9], page 203. 

Thus we can see that 

k(t) = / g[(x)dx<S(l + 2\9\) [ -dx 
Jo Jt x 

= 5(l + 2\0\)(-lnt) 

- 5(l + 2\0\)ln-. 

This is enough because we have that k(t) = o{t~1/2 ln" 1 / 2 _ £ ( l / t )} V - 1 < 9 < 1 and 

arbitrary e. The procedure to check assumption 1 for k(t) is similar and developed 

fully in [9]. Thus, although explicit forms for k(t) and k(t) cannot be found, the FGM 

family of copulas verifies assumption 1. 

Now we can consider applications of Theorem 4.1.3. We will be discussing two 

scenarios: complete and partial samples. 

•Complete samples known. 

We have completed our experiment and recorded the values of the observations 

Xi,..., Xn and Y 1 ; . . . , Ym. We are working with the process 4>n,m(p) = \f™[Gm{£,pn) — 

Fn(^pn)} — \Zrn[Knim(p) — Kn(j>)\. In the previous section, Theorem 4.1.11 proved 

that under HQ : F = G this process converges weakly to a continuous Gaussian 

process with mean zero and covariance (1 + A)_F(£f fl £,f) — F (£f )F(£f ) , i.e. its 
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variance is given by (1 + A ) F ( ^ ) ( 1 - F(g)) = (1 + X)K(p)(l - K(p)). Thus, it 

is straightforward that the process tpn,m converges under HQ to a process which is 

equal in distribution to y/1 + XUK{p). Since K is a continuous increasing function, 

it is also true that suppU
K(p) =x> suppU(K(p)) = # supp£/(p), where [/ is the usual 

Brownian bridge on [0,1]. 

If we are testing H0 : F = G against Hi : F <RF G (i.e. H0 : X =v Y vs Hi : 

Y -<K X), an appropriate test statistic would be V^m = supp \/rn[Gm(£,pn)—Fn(£pn)] 

which, from the argument above, converges under H0 : F = G to A/I + Asupp U(p). 

Similarly, for the alternative H2 : X -<K Y we use the test statistic V~m = 

supp y/m[Fn(^
n) - Gm(^n)] ->O,H0 A/1 + XswppU(p). Finally, if our alternative 

is two-sided, we can use the statistic |Ki,m(p)| = s uPP
m a x (K+m(l J ) ) Vnm(p)) that will 

converge under H0 : F = G to \ / l + Asupp \U(p)\. 

Now that we have identified our test statistics, it remains to calculate the corre-

sponding critical values ca (for different levels a) to know when to reject H0. Let us 

start with the one-sided alternative Hi : Y -<K X; the alternative H2 : X -<K Y is 

treated similarly. 

We want to find a value ca such that P(y/1 + X supp U(p) > ca) < a. Since it is 

known that F(supp U(p) > x) = exp{—2a;2} Vx > 0 (see [43], page 142), we want to 

find cQ such that 

P(Vl + XsupU(p) >ca) = a 
v 

* P(suVU(p)>^^) = * 
p VI + A 

^ -2 (7m ) 2= l n* 
^ c = . , (1 + A)lna 

2 

For testing H0 : F = G against H3 : F ^ G, we need to find the critical values 
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ca such that P ( \ / l + Asupp |C/(p)| > ca), or P(supp |£/(p)| > ~^%)- It i s known that 

P(supp |E/(p)| > x) = 1 - L(x) = 2 $ X 1 ( - l ) f e + 1 e x p { - 2 £ ; 2 x 2 } V x > 0, so we are 

looking for ca such that 2X)£l 1 ( - l ) f c + 1 exp{—2A;2(^£^)2} = a. Alternatively, tables 

for L(x), for several values of x (ranging from .28 to 3.00) can be found in [43]. 

C o m m e n t 4.2.3 Although this document is intended to focus on one-sided alterna-

tives, we are also presenting a statistic to use when we are testing HQ : F = G versus 

H3 : F 7̂  G. However, for the two-sided alternative, the Cramer-Von Mises statistic 

J0 ipn,m(p)dp might be a much better choice in terms of power than the statistic that 

we are suggesting. This is a topic for further study. 

Comment 4.2.4 An important property of these tests that should be highlighted, 

is that they are all distribution free, i.e. they do not depend on the underlying 

distributions of our samples. 

•Partial samples known. 

In this scenario we have already completed our experiment but we only know the 

values of some of our observations, in particular, the process ipn>m{p) — V™[Gm{£,pn) — 

Fn(£,pn)} = y/m[KntTn(p) — K(p)\ can only be observed over the region 0 < p < Po-

We will start to describe the procedure when the alternative is Hi : Y -<K X 

(resp. H2 : X -<K Y). Since we don't have complete samples, we can no longer use 

the statistic V+m (V^ resp.), but we can define a similar test statistic: V^miPo) = 

suPp<P0 V m [ G m ( ^ - ) - Fn(&)] (V;;-(po) = suPp<po v W ^ ( ^ ) - Gm(g")) resp.). 

Under H0 : F = G, V*£(po) ->v VTT\supp<po(U*)(p) (resp. Vf-fa) ->v 

suPp<Po(U
K)(p))• In a similar way, if we are testing H0 : F = G against H3 : 

F ^ G, we can define our test statistic as \V*m(p0)\ = supp<po max(V*;+(p), V*;^(p)); 

it will converge under HQ to y/1 + Asupp<po \UK(p)\ - v \ / l + Asupp<po U(K(p)) =v 

Vl + \supp<R(po)U(p). 

If we know what K is explicitly, the critical values ca can be found without any 

further problems, see [14]. Here, we can use Corollary 1.3.1 (page 9 of [14]), which 
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gives us a formula that we can use to calculate sup p<ai s U(p), used to find ca when 

we have a one-sided alternative. We can also find tables ([14], pages 22 through 34) 

that calculate the critical values ca for the two-sided alternative, for different values 

of K(p0) (.1, . 2 , . . . , 1) and different values of a (.01, .025, .05, .1, . 2 , . . . , .9). 

However, in practice, the usual scenario is that K is unknown. One way to solve 

this problem is to observe that the *—test statistics defined above will always be at 

most equal to their complete samples counterpart. For example, since it is true that 

suPp<K(P0)
U(p) ^ suppE/(p), it is also true that P(y/1 + Asupp<^(po) U(p) > ca) < 

F ( \ / l + A supp U{p) > ca) < a. Thus, we can use the critical values found in the 

complete sample scenario, though it must be said that they will be a conservative 

choice. 

Another way to solve the problem that K(p) = F(£jf) is unknown, is to use 

Theorem 3.2.2, where it was proven that sup 0 < p < 1 \Fn(^
n) — F(^)\ —>a.s. 0. Since U 

is a.s. continuous, we can just replace K(p) = F(^) with its empirical counterpart 

Kn{p) — Fn{ipn) for 0 < p < po, and proceed as if K{p) was known to approximate 

the critical values ca. 

To end the chapter we will describe a couple of scenarios in which the alternative 

Hi : Y -<K X would be appropriate. As a first example, take two distributions F 

and G with exactly the same dependence structure, i.e. CF — C G , but with, possibly, 

different marginals. Our test then becomes a test on the marginals: H0 : F\ = Gi 

and F2 = G2 versus Ht : F\ < Gi or F2 < G2 or both. Second, suppose that 

we are working with two distributions F and G with equal marginals and whose 

dependence structure is given by FGM copulas with unknown parameters 9F and QQ-

In other words, F and G are the same except for, possibly, the parameters Op and 

6G- Under these assumptions, our test will actually become HQ : 6p = 0G versus 

Hi : 9F < BQ. While it is not true that Qp < 9Q implies that Y -<K X, it can be 

shown by numerical calculation that F(^) > G(^) for all 6F, 9G and p > p0, where 

• 1 < Po < -2 (see the procedure following this paragraph). Therefore, an appropriate 
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test statistic would be V*^(.2) = supp> 2 ^/m[Fn{^n) — Gra((p
F")]. The discussion on 

critical values preceding this paragraph is easily adapted to this test. 

To perform the above mentioned numerical calculations, note that if D = {(x, y) : 

0<x<l,0<y<l, F{x, y) < p}, then: 

G ( 0 - F & = j J 9-fdxdy = {6G-eF) J J(l-2x)(l-2y)dxdy 

= (do - 6F) f [P X (1 - 2x){\ - 2y)dydx, 
Jp Jo 

where p(x) is given by: 

( i _ i y/x2(i+eF-xeF)2+4peFx(x-i) . 

p(x) = { 

2 20F(x-l) 

P 

£ 
x 

1 

not defined 

+ 2xdF(x-l) 
if p < x < 1,9F ^ 0 

if x = 1 

if 0F = 0, x ^ 0 

if a; = p 

otherwise. 

The definition of p(x) when p < x < 1,6F ^ 0 comes from solving the equation 

xy + xydF(l — x)(l — y) — p for y. In Table 4.2 we can find different values of 

J J0 (1 — 2a;)(1 — 2y)dydx for different values of 9F and p (Thanks to Justin Francis 

for these calculations). 
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e 

-1 

-.9 

-.8 

-.7 

-.6 

-.5 

-.4 

-.3 

-.2 

-.1 

0 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

1 

P 

Oor 1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

P 

.1 

.0005 

.0013 

.0020 

.0027 

.0034 

.0040 

.0045 

.0050 

.0055 

.0059 

.0063 

.0066 

.0068 

.0070 

.0072 

.0074 

.0075 

.0075 

.0076 

.0076 

.0076 

P 

.2 

-.0362 

-.0356 

-.0349 

-.0343 

-.0336 

-.0329 

-.0322 

-.0315 

-.0307 

-.0300 

-.0293 

-.0286 

-.0279 

-.0272 

-.0265 

-.0258 

-.0251 

-.0244 

-.0238 

-.0231 

-.0225 

P 

.3 

-.0547 

-.0545 

-.0543 

-.0541 

-.0538 

-.0536 

-.0533 

-.0530 

-.0527 

-.0524 

-.0520 

-.0517 

-.0513 

-.0509 

-.0505 

-.0500 

-.0496 

-.0491 

-.0486 

-.0481 

-.0476 

P 

.4 

-.0592 

-.0593 

-.0595 

-.0596 

-.0597 

-.0598 

-.0599 

-.0600 

-.0601 

-.0602 

-.0602 

-.0603 

-.0603 

-.0603 

-.0603 

-.0603 

-.0603 

-.0603 

-.0602 

-.0602 

-.0601 

P 

.5 

-.0541 

-.0544 

-.0546 

-.0549 

-.0552 

-.0554 

-.0557 

-.0560 

-.0563 

-.0565 

-.0568 

-.0571 

-.0573 

-.0576 

-.0579 

-.0582 

-.0584 

-.0587 

-.0589 

-.0592 

-.0595 

P 

.6 

-.0429 

-.0432 

-.0435 

-.0437 

-.0440 

-.0443 

-.0445 

-.0448 

-.0451 

-.0454 

-.0457 

-.0460 

-.0463 

-.0466 

-.0469 

-.0472 

-.0475 

-.0478 

-.0481 

-.0485 

-.0488 

P 

.7 

-.0289 

-.0291 

-.0293 

-.0294 

-.0296 

-.0298 

-.0300 

-.0302 

-.0303 

-.0305 

-.0307 

-.0309 

-.0311 

-.0313 

-.0316 

-.0318 

-.0320 

-.0322 

-.0324 

-.0327 

-.0329 

P 

.8 

-.0150 

-.0151 

-.0152 

-.0153 

-.0153 

-.0154 

-.0155 

-.0156 

-.0156 

-.0157 

-.0158 

-.0159 

-.0160 

-.0161 

-.0161 

-.0162 

-.0163 

-.0164 

-.0165 

-.0166 

-.0167 

P 

.9 

-.0043 

-.0043 

-.0043 

-.0044 

-.0044 

-.0044 

-.0044 

-.0044 

-.0044 

-.0044 

-.0044 

-.0045 

-.0045 

-.0045 

-.0045 

-.0045 

-.0045 

-.0045 

-.0046 

-.0046 

-.0046 

Table 4.2: Numerical calculations of / / 0 (1 — 2x)(l — 2y)dydx. 



Chapter 5 

Asymptot ic behaviour of 

Gm(Fn~,Fn~) a n d applications 

In this chapter we will study the asymptotic behavior of the p — p plot Gm(F^~, F%~), 

as well as some applications of this result. This is the appropriate process to explore 

when the information associated with the data we obtain yields the product filtration. 

In order to obtain the desired limiting distribution, we will be following [22] closely, 

where Fermanian, Radulovic and Wegkamp studied the convergence in £°°([0, l]2) of 

an empirical copula process; it is worth mentioning that Gaenssler and Stute (see 

[25]) had previously proved the weak convergence of the said process in D([Q, l]2). 

5.1 Limiting distribution 

We will be making use of some basic properties of copulas (for more information see 

the copula appendix). Let F and G have continuous marginal distribution functions 

Fi,F2 and G\,G2, respectively. The associated copulas will be denoted as CF and 

CG , i.e. 

CF(F1(x1),F2(x2)) = F(xux2) and 

CG(G1(y1),G2(y2)) = G(y1,y2). 

73 
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Since the marginals are continuous, we may write 

CF(x1,x2) = F ( F f (xi),F2-(x2)) and 

CG(y1,y2) = G(Gr(y1),G2-(? /2)) ) 

where F~(p) = ini{x : F^x) > p} and G~(q) = inf{y : Gi(y) > q] are the left 

continuous inverses of Fu d, i = 1, 2 (Fr(0) = j r ( 0 + ) and G,~(0) = Gf (0+)). 

It follows from the definition of the empirical distribution functions that the 

marginal empirical distribution functions will be: 

F^(xx) = Fn(xi,+oo),F%(x2) = Fn(+oc,x2) and 

G1
m(y1) = Gm(yu+oo), G2

m(y2) = Gm(+oo,y2). 

Therefore, we can define the empirical copula functions as: 

CF{xux2) = Fn{Fl
n-(Xl), Ft (z 2 ) )and 

Cgivum) = Gm{Gl-{yi),G^{y2)), 

where F^"(p) = inf{a: : F^(x) > p} and G^(q) = inf{y : Gl
m(y) > q} are the 

left continuous inverses of F%
n and G^, i = 1, 2 ( i*_(0) = i£~(0+) and G£(0) = 

Gi-(0+)). 

As in Chapter 4, we start by defining, following the method of [22], the pseudo-

variables X* = (X*,X*) = (F1(X1),F2(X2)) and Y* = (Y*,Y*) = (F^), F2(Y2)), 

with distribution functions F* and G* given by 

F\xux2) = P(X 1 *<xi ,X 2 *<a; 2 ) = P ( X 1 < F f ( x 1 ) , X 2 < F 2 - ( x 2 ) ) 

= F(Fr(x1),F2-(x2)) = CF(xl,x2), 

G*{yuy2) = P(Y*<yuY*<y2) = P(Y1<F1-(y1),Y2<F2-(y2)) 

= G(F-(yi),F2-(y2)), 

and marginals F-j*, F2 and G\, G2 respectively. Although Ff(xi) and F2*(x2) are both 

uniform distributions as noted in [22], G\{y\) and G2(y2) no longer have this property 

under our transformation. 
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We will also use the copulas CF*,CG* associated with X* and Y*, as well as 

the empirical distributions F*, F\*, F%* and G*m, G „ , G „ associated with (X*1; X*2), 

i = 1 , . . . , n and (Y*x, Y*2), j = 1 , . . . , m. 

The following Lemma allows us to reduce our problem to the distributions F* 

and G* defined on [0, l ] 2 . 

Lemma 5.1.1 Let F1}F2,Gi,G2 be continuous distribution functions and assume 

that JF\ and F2 are strictly increasing. We have the following equalities: 

i) CF(xux2) = CF"(xx,x2) = F'(x!,x2). 

it) CG(y1,y2)^CG,(y1,y2). 

Hi) G*(Fr(xi) ,F2*-0r2)) = G{F{{Xl),F2{x2)). 

Furthermore, 

n n n n 

«) <?m(F?-£),*?-&) = Gm{Fl-{^Fl-{l)). 
lb lb Tb lb 

Since the proofs of equalities i) and iv) can be found in [22], they are omitted. 

It is worth mentioning that with our definition of (Y{,Y2*), CG(-, *•) ^ CG*'(-, i). 

Proof: n)CG(y1,y2) = CG*(y1,y2): 

CG(y1:y2) = G(GT(yi):G2(y2)) 

= P(Yl<G^{y1),Y2<G2{y2)) 

= P(F1(Y1) < F1G^(yl),F2(Y2) < F2G2(y2)) 

= P(Y1*<F1Gi(y1),Y2*<F2G2(y2)) 

= G*(F1G^(y1),F2G2(y2)) 

= CG* (G1F1-F1Gi(y1),G2F2F2G2-(y2)) 

= CG*(yuy2). 
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in)G*(Fr(x,),Fr(x2)) = G(Fr(x1),Fi(x2)) : 

G*(Fr(x1),F;-(x2)) = P(Y*<Fr(x1),Y*<F;-(x2)) 

= p ^ y ^ ^ F ^ y ; ) ^ ) 

= P ^ F ^ ) < XI,F;F2(Y2) < x2) 

= P{F1F{F1{Yl) < xuF2F2-F2(Y2) < x2) 

= G{Fy{x1),F^{x2)). 

v)G*m(Fi*-(±),FZ*-(i)) = G m ( F B
1 - ( i ) , i ^ - ( i ) ) : 

Let in = ^ and j n = z, then: 

lb lb lib 

1 m 

= ™ £ w 1 < *r ̂ - (o , n2 < ^e-(jn)} 
fc=l 

= Gm(FrF^-(in),F2-F**-(jn)). 

It remains only to show that F„ (in) = F1 F^* (in) (the result for j n is similar 

and therefore omitted). First note that F^(XL) = £ Y2=i HXk < xh)} IT,., SO 

Fn (*n) = ^ ( V We also have that 

1 " 

n , 
fc=i 

hence Fn
1*-(in) = F 1 (Xj ) ) . 

Therefore, FfPn
1*-(in) = F{F^X^) = Xl

{i) = F'-(in) and our proof is com-

plete, o 
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To prove the main theorem of the section we will be making use of the functional 

delta method, which in turn uses the concept of Hadamard differentiability. We start 

by stating the definition of the latter, which is taken from [46]. 

Definition 5.1.2 Let D and E be Banach spaces. A map $ : D$ C D —> E is 

called Hadamard differentiable at 9 € D$ tangentially to a set Do C D if there is a 

continuous linear map §'e:D^E such that * ( g + W - * W _> ^ ' ^ for aU 

converging 
sequences tn —> 0 and hn —*• h G D0 such that 9 + tnhn € -D$ for every n. 

Now we can move on to prove that the bivariate p — p plot G o (F^~,F2~) is 

Hadamard differentiable. 

Lemma 5.1.3 Let F(xi,x2) and G(yi,y2) have compact support [0, l ] 2 and marginal 

distributions Fi(xi), F2(x2),Gi(yi) and G2(y2) that are continuously differentiable on 

their support with strictly positive densities fi(xi),f2(x2) and gi(yi),52(2/2) respec-

tively. Then, the map $ : (D[0, l]2)2 -» £°°([0, l]2) defined by $(F,G) = Go(F^,F2) 

is Hadamard differentiable tangentially to (C[0, l]2)2 , with derivative given by 

*\F,G)(a,0) = P(Fl-,F2) - ^ { G ^ 2 F ' ) 9 ^ f \ F n 

dCC^FriG.F^g^F,-) 

dG2F2~ f2(F2f ^ >• 

Proof: We can decompose our map <& into three simpler maps as follows: 

(F,G) n (FUF2,G) n (Ff ,F2,G) ^Go{F^F2). 

Then we have that $ = <p$ o <p2 ° <Pii a n d using the chain rule (see [46], Theorem 

3.9.3) we get that $e = tp3 (ip2 o <fi(9)) o tp2 (ipi(9)) o ip^ (9). 

The map (pi is linear and continuous, hence Hadamard differentiable. Its deriv-

ative is given by 

<p'1(F,G)(a,/3) = (ct1,a2,P)i 

where a1(-) = a(-, 1) and a2(-) = a ( l , •). 
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The map <p2 is Hadamard differentiable tangentially to C([0, l]2) by Lemma 

3.9.23 in [46] and its derivative is 

^(F1,F2,G)(7
1,72,C) = ( -T o i 7 , r' -T o F ^ ! C)-

h h 

Finally, the map <p3 is Hadamard differentiable by Lemma 3.9.27 in [46], with deriv-

ative 

Combining these three results we obtain that our map <& is Hadamard differen-

tiable as a composition of Hadamard differentiable functions. Its derivative is given 

by: 

$ ' (F,G)(a,/3) = V'3(iP2o(p1(F,G))oV,'2((p1(F,G))olp'1(F,G)(a,P) 

i , a1 ,_,_ a2 ,_,_ 

= ft0(-70fi--Toi?
2,ffl 

/ l 72 

P(Fr, F2) - dC°iG^Fi^F2) <*\FD dCG(G1F1~, G2F2~) a\F2) 

= p(Fr,F2)-

dFT / i ( F f ) ^ 2 " /2(^2_) 
dC G (GiFf , G2F2-) a d F f ^ ( F f ) 

S d F f dFr / ! ( F f ) 

d C ^ G i F f , G2F2) dG2F2 a2(F2) 

dF2 8F2 f2(F2~) 

- B(F- F~) dCG^F^G^)9i(Fr) , 

dCG(G1F1-,G2F^)g2(F2j 2 

9G2JP2- /2(F2-) 
a2(i^2-). (5.1.1) 

o 

The following theorem (the functional delta method) can also be found in [46]. 
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Theorem 5.1.4 Let D and E be metrizable topological vector spaces. Let $ : D§ C 

D —> E be Hadamard differentiable at 8 tangentially to D0. Let Xn : Qn —• D$ be 

maps such that rn(Xn — 9) —>•£> X for some sequence of constants rn —• oo; where X 

is separable and takes its values in D0. Then r„ ($(X n ) — $(#)) —±v ®e(X)-

Finally, in what follows, recall Definition 3.1.6: if H is a distribution func-

tion on [0, l ] 2 , we will be denoting by UH the Gaussian process with covariance 

E(UH{s1,s2)U
H(tut2)) = H(mm{(s1,s2),(t1,t2)})-H(s1,s2)H(tut2). We are ready 

to state and prove the main theorem of the section. 

Theorem 5.1.5 Suppose F and G are continuous and differentiable distribution 

functions with marginal distributions Fi,F2,Gx,G2 that have positive derivatives on 

their open support. Let vFl = F1~(p) and vF2 = F^(q). If m —>• A as n , m —> o o , 

then \pm\Gmo (F^~,F^~) —Go (Ff ,F 2
_)] converges weakly to a Gaussian process in 

£°°([0, l]2) which is equal in distribution to 

W(p,q) = U^iG^G^v?)) 

dG1(v^) h(v?)u {p'1} 

where U° and Uc are independent bridges. 

Proof: First recall that for any distribution function H on [0, l]2 and its empirical 

distribution Hn we have that y/n[Hn — H] —>© UH (Theorem 3.1.7). Thus, it is 

straightforward that ^i[(FZ,G*J - (F*,G*)} = ^§^i{{F*n,G*m) - (F*,G*)} - „ 

(v\UF*,UG*), where UF* and UG* are independent Brownian bridges. 

Then, notice that V x, y G [0,1] there exists in,jn such that Gm(F^~(x), F 2 _ (y)) = 

Gm(F^~(in), F%~(jn)). This and Lemma 5.1.1 give us that 

m[Gmo(Fl
n-,F

2
n-) - Go (Ff,F2-)](x,y) 

= v^[G*m o ( F : 1 - ^ : 2 - ) - G* o (Fr,F;-)](x,y) v (*>y). 
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We now use Theorem 5.1.4 applied to ^/rn[(F*, G*m)-(F*, G*)] with $ as in Lemma 5.1.3, 

and since G*(F^~(x1), F2~(a:2)) = G(F^(xi), F2~(x2)) (from Lemma 5.1.1), we get 

that 

m[*(Fn, Gm) - $(F, G)] = v^[$(Fn*, GJJ - $(F*, G*)] 

$'(\ZA[/F*,t/G*)in£°°([0,l]2). >T> 

Substituting (a,/5) by (V\UF*, £/G*) in Lemma 5.1.3 and recalling that F* and 

F2* are uniform, we find that: 

*'(F-,G-)(^t/f-,c/G-)(P,,) =„ c/°-(P,,) - dCa~{f^"2{q))g'MJ\uF-ij>,i) 

SGiFj (p) ^ (F j (p)) 

dCG{GxF^q), G2F2-(q)) g2(F2-(q)) ^ F 

5G^(^ ^ r M V A [ / ( o o ' F 2 ( g ) ) 

~° u {Vp '"' ] dd^f) h(v?) {Vp ,oo) 

dG2(v
F2) f2(vF2) ^ ' ^ > 

0Gi (V) / i ( V ) 

o 

Corollary 5.1.6 The limiting Gaussian variable W(p,q) described in Theorem 5.1.5 

has variance 

Var(W(p,q)) = C G ( G 1 « ' ) , G 2 « 2 ) ) ( 1 - C G (G,«>) ,G 2 «>) ) ) 
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Sfj dG2(vp) ^U-?J 

(9i(v?).(g2(v?) dCG\Gl{vFy\G2{vF^)dCG{Gl{yFy\G2{vF^)) 

x[CF(p,q)-CF(p,l)CF(l,q)}. 

Proof: From the usual covariance form of a Brownian bridge and noting that UG 

and Uc are independent we have 

Var(W(p,q)) = CG(G1(v^),G2(v
F^))(l - CG(G1(v

F^),G2(v^))) 

+ A(^)3(^^)y)))W-P) 

+ A(^^) r^TvC )2^-^ 
ff2«2) 2 dCG(G1(v^),G2(vp)). 

h(vF*y dcM 

n > r g i ( ^ ) v f f 2 « 2 ) dCG(G1(v
F^G2(v

F^)dCG(G1(v^),G2(v^)) 

[ C F ( p , g ) - C F ( p , l ) * ^ ( l , g ) ] . 

x '"' 

Corol lary 5.1.7 Under the null hypothesis HQ\ F = G, the process W(p,q) simpli-

fies to TfF(p, q) - VX^^U^ip, 1) - V A ^ M / 7 c F ( l , g ) , where U°F and if* 

are independent, identically distributed bridges. 

C o m m e n t 5.1.8 It is important to remark that although Uc and U have the 

same distribution, they are the limits of independent empirical processes, and thus 

they remain independent. This fact makes the covariance structure simpler than in 

the single sample case. 

Proof: If F = G the limiting distribution becomes: 

wM = VIM - ̂  W^>>^^<.) 
& F i ( V ) h{vp) 

dF2{v?) f2{vFyyxu {v'} 
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= Tf^P,q}-Vxd^^u-'(P,i)--rxB-^^u-'(i, 

o 

What we want to do now is to bring into the mix the fact that, depending on 

the kind of experiment that we are dealing with, we work with different regions of 

the plane (see discussion of these regions in chapter 2). 

Recall that to prove Theorem 5.1.5 we were closely following [22]. As we men-

tioned, this paper developed the weak convergence of the copula process; note that 

the process \fm[Gm ° (F^~,F%~) — Go (F-f, F2
-)] can be regarded as a two-sample 

copula process when F = G. For this reason we will state the following theorem 

(Theorem 3 in [22]) with minor changes to fit the notation we are using. 

Theorem 5.1.9 Suppose that F has continuous marginal distribution functions and 

that the copula function CF has continuous partial derivatives. Then the empiri-

cal copula process ^/n[CF{p,q) — CF(p,q)] converges weakly to the Gaussian process 

UcF(p,q) - d-^UcF(p,l) - d-^flUcF(l,q) m*»([0 , l ] 2 ) V 0 < M < 1 . 

Now, using the result of Theorem 5.1.5 and Theorem 5.1.9 we can find the limiting 

distribution of the process 

V^[{Gm(V(F^(p),Ft(q))) - Fn(V(F^-(p),Ft(q)))} 

- {G(Y(Fr(p),I%-(q))) - F(V(Fr(p),Ff(q)))}l 

where V stands for the different regions we have introduced in Figure 2.1 and Fig-

ure 2.2: Az and Dz (or equivalently Ez). 

In everything that follows, we will indicate convergence in distribution in ^°°([0, l]2) 

by ' W -

•A region 

When working with the A region, our process becomes 

yfr[{Gm(F*-(p),FZ-(q)) - Fn(F^(p),Ft(q))} 
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- {G(F1-(p),F2-(q)) - F(F1-(p),F2-(q))}). 

Combining Theorem 5.1.5 and Theorem 5.1.9, we get that: 

m[{Gm(F^(p), Fl-{q)) - Fn(F^(p), F^iq))} ~ {G(Ff (p), F2(q)) 

nFr(p),F2-(q))}} -*„ U^iG^lG^)) - J\UcF{p,q) 

4. /ITTC( ^9CF(P^) dCG{Gl{v^\G2{v^))gl{v^)y 

UU;L dp 5Gi(<1) / I ( < 1 ) J 

ag dG2{vq
2) f2(vq

 2) 

Under Ho : F = G the last expression becomes: 

where £/ (p, g) is, as stated before, the bridge depending on the G-sample. This is 

equal in distribution to y/l + XUC (p,q). 

•D region 

When working with the D region, our process becomes: 

™[{GttFt(p)) ~ Gi(*T (P))} - {Fl
n{Fl

n-{p)) - Fi(Ff(p))} 

+ {G2
m(Ft(q)) ~ G2(F2~(q))} - {F^F^iq)) - F2(F2(q))} 

- {Gm{Fl
n-{p),Fl-{q)) - Fn(F>-(p),Ft(q))} 

+ {G(Fr(p),F2-(q)) - F(Fr(p),F2-(q))}}. 

Therefore, it is clear that to determine the limiting distribution of this process, 

we need the limiting distribution of each of its 1-dimensional analogues. Although 

the following is a weaker version of a well known result by Aly, Csorgo and Horvath 
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(see [4]), setting p = 1 or q = 1 in Theorem 5.1.5 will suffice to give us that: 

m[{Gl(F^(p)) - G^Frip))} - {^(^-(p)) - FxCFfCp))}] 

>v U°°(G^),1) - ^li^MuC'\pA) a n d 

h{Fi (p)) 

M{G2
m(Ft(q)) - G2(F2-(q))} - {^(^"(9)) - F2(F2(q))}\ 

-+o ^G(i,G2(<2))-^|SM^(i,,). 

Next, since the Hadamard derivative of a linear function is the function itself, 

we may add the result on the A section to get the limiting distribution of the process 

associated with the D region: 

™[{<M-(P)) " GW(P))} - {Fn(F^(p)) - F^FTip))} 

+ {G2
m(Ft(q)) ~ G2(F-(q))} - {F2

n(F^(q)) - F2(F2(q))} 

- {Gm(F^(p),Ft(q)) ~ Fn(F^(p),Ft(q))} 

+ {G(Fr(p),Ff(q)) - F(F1-(p),F2-(q))}\ 

^ v UcG(Gl(v?), 1) - Vx9-^lucF(p, 1) + Uc°(l, G2{v?)) 

- V\9-^UCF(l,q) - {UcG(Gl(v?),G2(v?)) - VXUcF(p,q) 

x /\TTC'( ^9CF(p,g) g C G ( G i ( ^ ) , G 2 ( v f ' ) ) g i « ) 1 

^ ) [ dp dG^) h^r 

+ VXU (l,<z)[—^ ^ ^ ^ ^ y ] } 

= ^ G ( G 1 « 1 ) , l ) + t / c G ( l , G 2 « 2 ) ) - ^ G ( G 1 « 1 ) , G 2 « 2 ) ) 

dp OGiivp1) /i(V) 

QF QF QF 

Under Ho : F = G the last expression becomes U (p, 1)+U (1, q) — U (p, q) + 
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V\UcF(p,q) - y/\UcF(p, 1) - y/\UcF(l,q). This is equal in distribution to 

VTT\{UcF(p, 1) + UcF(l,q) - UcF(p,q)]. 

As we will see in more detail in the applications section of this chapter, when we 

work with the D region we have the option to work with the (equivalent) E region. 

In this case, instead of the usual copula structure, we will use the survival copula 

structure instead. 

To end the section, we will mention that although the applications of Theo-

rem 5.1.5 that we will talk about next can be easily modified to include the results 

for the Dz (or Ez) region, we will focus on the case of the Az region for the sake of 

clarity. 

5.2 Applications 

In this section it is our aim to discuss applications of Theorem 5.1.5 in practice, and 

in particular to focus on the different scenarios that are created based on the informa-

tion that is available to the experimenter. Again, it is divided in two parts: the first 

part deals with the case where we have complete data, the second with precedence 

tests based on partial data. 

•Complete samples known 

We have already completed our experiment and know the values of X\, X<i,.. . , Xn 

and Yi,Y2,... ,Ym. It remains to make the decision whether to reject HQ : F = G 

with a specific level of significance or not. 

We define the following notation (as in [2]): \F — G\+ = sup(F(a;) — G(x)), 

\F - G\~ = sup(G(x) - F(x)), and \F - G\ = max( |F - G\+, \F - G\~) for x e 3?2 
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and any two continuous distribution functions F and G. 

Now, assume that ^/m[Gm(F^~(p), F%~(q)) - Fn(F*~(p), F%~(q))] is the process 

we are working with (which is the one corresponding to the Az region) and that our 

one-sided alternative is Hi : Y <;0 X, i.e. Hi : F < G. In the previous section we 

showed that under HQ : F — G, this process converges in distribution to \ / l + \UC , 

so an appropriate test statistic would be 

W+m = sup V^[Gm(F^(p),Ft(q)) ~ Fn(F^(p), Fn
2"(g))] 

—»D \ / l + A sup UcF(p,q). 
p,q 

Let |Wn,m | = max(W+ m ,W- m ) , where W~m = supp>g ^m[Fn(F^-(p), F^~(q)) -

Gm(Fn~(p),F%~(q))]; then for a two-sided test with H3 : F ^ G we use the fact 

that |Wn,m | ^ o Vl + AsupP j q | t / c F(p,g) | . 

C o m m e n t 5.2.1 As mentioned in Section 4.2, a Cramer Von-Mises statistic is prob-

ably a better way to go if our alternative is two-sided. Although it is not our aim to 

focus on a two-sided alternative, we are giving a test statistic that agrees with the 

method we are following for the sake of completeness. 

To be able to reach a conclusion we need to determine the critical values ca for 

each of our different alternatives. If the copula CF is known, the asymptotic dis-

tribution of |iyn>m| is completely determined and the values ca can easily be found 

or simulated. On the other hand if the F copula is unknown, as in most cases, we 

need to develop an alternative method to find those critical values. We suggest the 

following two approaches. 

a) Conservative approach 

Conservative asymptotic values ca can be calculated by using the next two results, 

the first of which was proved in detail in [1]; only a sketch of the proof is presented 

here. 
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T h e o r e m 5.2.2 Let J be the degenerate distribution J(x) — max(si + x2 — 1,0) for 

x G [0, l ] 2 . Then for any copula CF and any 5 > 0 we have that -P(supxe[01]2 Uc (x) > 

5)<P(suPxmi]2U
J(x)>5). 

Proof (sketch): A unique map m from [0, l ] 2 onto {(x, y) G [0, l ] 2 : x + y > 1} can 

be defined such that J(m(x)) = J(mi(x),m2(x)) = F(x) andm2(2;)-m1( i ; ) = x2 — X\ 

hold V x G [0, l ] 2 . It can be shown V x, y G [0, l ] 2 , by taking separately the cases x < y 

(or y < x) anda;i > yi,x2 < J/2 (or x1 < yi,x2 > y2), that F(xAy) > J(m(x)Am(y)), 

from which it follows that Cov(U°F(x), U°F(y)) > Cov(UJ(m(x)),UJ(m(y))). This 

together with the fact that Var(Uc (x)) = Var(UJ{m(x))) gives us, via Slepian's 

inequality, that P(supa.er01]2 Uc (x) > S) < P(supx^01^2U
J(m(x)) > 5). The result 

follows since sup^ UJ{m{x)) = sup^ UJ(x). o 

More precisely, we have the following result (Proposition 5.3 and Remark 5.4) in 

[10]: 

Proposition 5.2.3 Let J be the degenerate distribution J(x) = max(xi + x2 — 1,0) 

for x G [0, l ] 2 . Then for any distribution F on !ift2 and any c : [0,1] —> [0,1], we have 

that P(Jn(y) > c{J{y))V y G 3?2) < P(Fn(x) > c(F(x))V x G 3R2). In particular, it is 

true that P(snpte^2{^/n(Fn(t) - F(t))} > cn) < P(supt&2{^/n(Jn(t) - J(t))} > cn) 

In view of this two results, Adler, Brown and Lu [2] found, using simulation 

techniques, several critical values which we will make use of next. 

Going back to our original problem, our null hypothesis was that F and G have 

the same distribution. We consider first the case when we have Hi : Y <;0 X 

{Hi : F < G) as our alternative; the case H2 : X <i0 Y (H2 : G < F) is managed 

exactly the same way using W~m instead of W+m. 

Consider 

W+m = snpV^[Gm(F^(p),Ft(q))-Fn(F^(p),F^(q))} 

= Bup[Vm{Gm(Fn
1-(p),^-(9)) - H(Ft(P),FZ-(q))} 
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- V^{Fn(F^(p),F*-(q)) - H(F^(p),Ft(q))}} 

= Snp[V^{Gm(Ft(p),Ft(q)) ~ H\Fl
n~(p), F2

n~(q))} 

+ ^rfi{H(Ff(p), Ft(q)) - Fn(Ff(p), Ft(q))}} 

< suVV^[Gm(F^-(p),Ft(q)) - H(Ft(p),FZ-(q))] 

+ ^supMH(Ft(p),Ft(q)) ~ Fn(Ft(p),F^(q))] 
n 

< V^\Gm-H\+ + ^V^\Fn-H\ 

Under H0 : F = G = H the last expression reduces to W£m < ^Jm\Fm — F\+ + 

r7%\/n\Fn — F\~~, where Fm denotes the empirical distribution of the second sample. 

We are looking for values ca such that P(W+m > ca) < a. This inequality certainly 

holds if we choose ca = 2 max(dt, dz), where the values GL are chosen such that 
2 2 2 

P(VE\Fm - F\+ > dp < | and P(yft\Fn - F\~ > - ^ ) < | . 

We can find in [2] simulated values of dt and -£ for various values of n and m; the 

values for our test for different values of n and m are shown in Table 5.1 and Table 5.2. 

Values for the alternative H2 : X <i0 Y are shown in Table 5.3 and Table 5.4, where 

we use instead the test statistic W~m. 

Now consider the case where our alternative is two-sided: H3 : F ^ G. This time 

we will reject H0 : F = G — H when our test statistic |W„im| = m.ax(W+m,W~ ) 

gets too big. Notice that: 

\Wn,m\ = mip\yfr[Gn(Ft(p),Ft(q))-Fn(Ft(p),Ftm\ 

= sup|Vm{Gm(Fn
1-(p)>i^-((z)) -H(F'-(p),Ft(q))} 

- V^{Fn(F^(p),Ft(q)) - H(F*-(p),FZ-(q))}\ 

< sup \V^[Gm(Ft(p), Ft(q))~H(Ft(p), Ft(q))}\ 

/^snp\^[H(Ft(p),Ft(q))-Fn(Ft(p),Ft(q))}\ 
n 
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< yfri\Gm-H\ + ^yfr\Fn-H\. 
In 

Under HQ : F = G = H we have that |Wn,m | < Vm\Fm -F\ + ^jn\Fn - F\. 

We need to find the critical values ca such that P( |Wn j m | > ca) < a. This holds if 

we let ca = 2max(di,<2i), where the values d\_ and d\ are such that 

dl 
P(yM\Fm -F\> d\) < | and P(^\Fn - F\ > - | ) < | . 

Again, we can use [2] to find d\ and - 1 ; these values for our test for several levels of 

significance and combinations of n and m are shown in Table 5.5 and Table 5.6. 

The method to calculate critical values that we have just described will give us 

more conservative values as we increase our sample sizes. Thus, even if we are willing 

to accept somewhat conservative critical values, this may not be the best approach if 

we have large sample sizes. 

To handle the large samples scenario, for the alternative Hi : Y <;0 X, we can 

use Theorem 5.2.2 to find that 

P(Km > <£) « P(VTT\ SUp U° (X) > d+
a) 

se[o,i]2 

= P( sup UcF{x) > - 75—) 
ze[o,i]2 v 1 + A 

< P( sup U\x) > ~JL=). 
XG[0,1]2 V l + A 

Again, simulated values for JT+X can be found in [2] and the resulting critical 

values are in table 5.7. For the alternative Hi : X <i0 Y, the argument is a similar 

one, but replacing W+m and ci+ with W~m and d~; the corresponding critical values 

are also shown in table 5.7. 
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a 

.20 

.10 

.05 

.02 

.01 

A 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

m = 10 

< 2 

1.453 

1.453 

1.453 

1.453 

1.453 

1.576 

1.576 

1.576 

1.576 

1.576 

1.685 

1.685 

1.685 

1.685 

1.685 

1.815 

1.815 

1.815 

1.815 

1.815 

1.903 

1.903 

1.903 

1.903 

1.903 

n= 10 

C/2 

0.788 

0.965 

1.365 

1.930 

2.364 

0.859 

1.052 

1.488 

2.104 

2.577 

0.923 

1.130 

1.599 

2.261 

2.769 

0.993 

1.216 

1.721 

2.433 

2.980 

1.044 

1.279 

1.809 

2.558 

3.133 

m = 20 

d+
a/2 

1.474 

1.474 

1.474 

1.474 

1.474 

1.603 

1.603 

1.603 

1.603 

1.603 

1.720 

1.720 

1.720 

1.720 

1.720 

1.855 

1.855 

1.885 

1.885 

1.885 

1.950 

1.950 

1.950 

1.950 

1.950 

n = 20 

°C/2 

0.813 

0.996 

1.409 

1.992 

2.440 

0.887 

1.087 

1.538 

2.175 

2.663 

0.956 

1.170 

1.656 

2.341 

2.868 

1.034 

1.266 

1.791 

2.532 

3.102 

1.088 

1.332 

1.885 

2.665 

3.264 

m = 30 

da/2 

1.485 

1.485 

1.485 

1.485 

1.485 

1.615 

1.615 

1.615 

1.615 

1.615 

1.731 

1.731 

1.731 

1.731 

1.731 

1.875 

1.875 

1.875 

1.875 

1.875 

1.976 

1.976 

1.976 

1.976 

1.976 

n = 30 

<C/2 

0.825 

1.011 

1.430 

2.022 

2.476 

0.899 

1.101 

1.558 

2.203 

2.698 

0.968 

1.185 

1.677 

2.371 

2.904 

1.046 

1.281 

1.813 

2.563 

3.140 

1.101 

1.348 

1.907 

2.696 

3.303 

Table 5.1: Values of dt and da for the alternative Hi : Y <i0 X. 
2 2 
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a 

.20 

.10 

.05 

.02 

.01 

A 

I 
3 

1 
2 

1 

2 

3 

l 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

m = 50 

a/1 

1.494 

1.494 

1.494 

1.494 

1.494 

1.625 

1.625 

1.625 

1.625 

1.625 

1.744 

1.744 

1.744 

1.744 

1.744 

1.884 

1.884 

1.884 

1.884 

1.884 

1.978 

1.978 

1.978 

1.978 

1.978 

n = 50 

da/2 

0.840 

1.028 

1.455 

2.057 

2.520 

0.915 

1.121 

1.586 

2.242 

2.747 

0.985 

1.207 

1.707 

2.414 

2.956 

1.065 

1.305 

1.846 

2.610 

3.197 

1.121 

1.373 

1.943 

2.747 

3.365 

m = 100 

a/2 

1.501 

1.501 

1.501 

1.501 

1.501 

1.634 

1.634 

1.634 

1.634 

1.634 

1.755 

1.755 

1.755 

1.755 

1.755 

1.898 

1.898 

1.898 

1.898 

1.898 

2.001 

2.001 

2.001 

2.001 

2.001 

n = 100 

C/2 

0.849 

1.040 

1.472 

2.081 

2.549 

0.926 

1.134 

1.604 

2.268 

2.778 

0.994 

1.218 

1.723 

2.436 

2.984 

1.076 

1.318 

1.865 

2.637 

3.230 

1.137 

1.393 

1.970 

2.786 

3.412 

m = 500 

</2 

1.507 

1.507 

1.507 

1.507 

1.507 

1.640 

1.640 

1.640 

1.640 

1.640 

1.752 

1.752 

1.752 

1.752 

1.752 

1.904 

1.904 

1.904 

1.904 

1.904 

2.004 

2.004 

2.004 

2.004 

2.004 

n = 500 

da/2 

0.866 

1.060 

1.500 

2.121 

2.598 

0.943 

1.156 

1.635 

2.312 

2.831 

1.012 

1.239 

1.753 

2.479 

3.036 

1.103 

1.351 

1.911 

2.702 

3.309 

1.167 

1.430 

2.023 

2.860 

3.503 

Table 5.2: Values of dt and da for the alternative H\ : Y <i0 X. 
2 2 
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a 

.20 

.10 

.05 

.02 

.01 

A 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

n = 10 

<C/2 

0.838 

1.027 

1.453 

2.054 

2.516 

0.909 

1.114 

1.576 

2.228 

2.729 

0.972 

1.191 

1.685 

2.382 

2.918 

1.047 

1.283 

1.815 

2.566 

3.143 

1.098 

1.345 

1.903 

2.691 

3.296 

m = 10 

^a/2 

1.365 

1.365 

1.365 

1.365 

1.365 

1.488 

1.488 

1.488 

1.488 

1.488 

1.599 

1.599 

1.599 

1.599 

1.599 

1.721 

1.721 

1.721 

1.721 

1.721 

1.809 

1.809 

1.809 

1.809 

1.809 

n = 20 

d+/2 
OLf I 

0.851 

1.042 

1.474 

2.084 

2.553 

0.925 

1.133 

1.603 

2.266 

2.776 

0.993 

1.216 

1.720 

2.432 

2.979 

1.070 

1.311 

1.885 

2.623 

3.212 

1.125 

1.378 

1.950 

2.757 

3.377 

m = 20 

C/2 

1.409 

1.409 

1.409 

1.409 

1.409 

1.538 

1.538 

1.538 

1.538 

1.538 

1.656 

1.656 

1.656 

1.656 

1.656 

1.791 

1.791 

1.791 

1.791 

1.791 

1.885 

1.885 

1.885 

1.885 

1.885 

n = 30 

d+
a/2 

0.857 

1.050 

1.485 

2.100 

2.572 

0.932 

1.141 

1.615 

2.283 

2.797 

0.999 

1.224 

1.731 

2.448 

2.998 

1.082 

1.325 

1.875 

2.651 

3.247 

1.140 

1.397 

1.976 

2.794 

3.422 

m = 30 

<C/2 

1.430 

1.430 

1.430 

1.430 

1.430 

1.558 

1.558 

1.558 

1.558 

1.558 

1.677 

1.677 

1.677 

1.677 

1.677 

1.813 

1.813 

1.813 

1.813 

1.813 

1.907 

1.907 

1.907 

1.907 

1.907 

Table 5.3: Values of dt and GL for the alternative H^ : X </0 Y. 
2 2 
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a 

.20 

.10 

.05 

.02 

.01 

A 

l 
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1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

i 
3 

1 
2 

1 

2 

3 

n = 50 

a / 2 

0.862 

1.056 

1.494 

2.112 

2.587 

0.938 

1.149 

1.625 

2.298 

2.814 

1.006 

1.233 

.1.744 

2.466 

3.020 

1.087 

1.332 

1.884 

2.664 

3.263 

1.141 

1.398 

1.978 

2.797 

3.425 

m = 50 

<C/2 

1.455 

1.455 

1.455 

1.455 

1.455 

1.586 

1.586 

1.586 

1.586 

1.586 

1.707 

1.707 

1.707 

1.707 

1.707 

1.846 

1.846 

1.846 

1.846 

1.846 

1.943 

1.943 

1.943 

1.943 

1.943 

n = 100 

</2 

0.866 

1.061 

1.501 

2.122 

2.599 

0.943 

1.155 

1.634 

2.310 

2.830 

1.013 

1.240 

1.755 

2.481 

3.039 

1.095 

1.342 

1.898 

2.684 

3.287 

1.155 

2.414 

2.001 

2.829 

3.465 

m = 100 

C/2 

1.472 

1.472 

1.472 

1.472 

1.472 

1.604 

1.604 

1.604 

1.604 

1.604 

1.723 

1.723 

1.723 

1.723 

1.723 

1.865 

1.865 

1.865 

1.865 

1.865 

1.970 

1.970 

1.970 

1.970 

1.970 

n = 500 

4/2 

0.870 

1.065 

1.507 

2.131 

2.610 

0.946 

1.159 

1.640 

2.319 

2.840 

1.011 

1.238 

1.752 

2.477 

3.034 

1.099 

1.346 

1.904 

2.692 

3.297 

1.157 

1.417 

2.004 

2.834 

3.471 

m = 500 

da/2 

1.500 

1.500 

1.500 

1.500 

1.500 

1.635 

1.635 

1.635 

1.635 

1.635 

1.753 

1.753 

1.753 

1.753 

1.753 

1.911 

1.911 

1.911 

1.911 

1.911 

2.023 

2.023 

2.023 

2.023 

2.023 

Table 5.4: Values of dt and da for the alternative H2 : X <i0 Y. 
2 2 
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a 

.20 

.10 

.04 

.02 

A 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

m = 10 

a/2 

1.536 

1.536 

1.536 

1.536 

1.536 

1.646 

1.646 

1.646 

1.646 

1.646 

1.776 

1.776 

1.776 

1.776 

1.776 

1.864 

1.864 

1.864 

1.864 

1.864 

n= 10 

dl/2 

0.886 

1.086 

1.536 

2.172 

2.660 

0.950 

1.163 

1.646 

2.327 

2.850 

1.025 

1.255 

1.776 

2.511 

3.076 

1.076 

1.318 

1.864 

i 2.636 

3.228 

m = 20 

a/2 

1.574 

1.574 

1.574 

1.574 

1.574 

1.690 

1.690 

1.690 

1.690 

1.690 

1.826 

1.826 

1.826 

1.826 

1.826 

1.919 

1.919 

1.919 

1.919 

1.919 

n = 20 

a/2 

0.908 

1.112 

1.574 

2.225 

2.726 

0.975 

1.195 

1.690 

2.390 

2.927 

1.054 

1.291 

1.826 

2.582 

3.162 

1.107 

1.356 

1.919 

2.713 

3.323 

TO = 30 

di/o 
a/2 

1.588 

1.588 

1.588 

1.588 

1.588 

1.705 

1.705 

1.705 

1.705 

1.705 

1.845 

1.845 

1.845 

1.845 

1.845 

1.942 

1.942 

1.942 

1.942 

1.942 

n = 30 

dl,2 

0.916 

1.122 

1.588 

2.245 

2.750 

0.984 

1.205 

1.705 

2.411 

2.953 

1.065 

1.304 

1.845 

2.609 

3.195 

1.121 

1.373 

1.942 

2.746 

3.363 

Table 5.5: Values of d\ and d\ for the alternative H3 : F ^ G. 
2 2 
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a 

.20 

.10 

.04 

.02 

A 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

m = 50 

di/2 

1.607 

1.607 

1.607 

1.607 

1.607 

1.727 

1.727 

1.727 

1.727 

1.727 

1.865 

1.865 

1.865 

1.865 

1.865 

1.961 

1.961 

1.961 

1.961 

1.961 

n = 50 

dl/2 

0.927 

1.136 

1.607 

2.272 

2.783 

0.997 

1.221 

1.727 

2.442 

2.991 

1.076 

1.318 

1.865 

2.637 

3.230 

1.132 

1.386 

1.961 

2.773 

3.396 

m = 100 

<£/» 
1.620 

1.620 

1.620 

1.620 

1.620 

1.739 

1.739 

1.739 

1.739 

1.739 

1.882 

1.882 

1.882 

1.882 

1.882 

1.984 

1.984 

1.984 

1.984 

1.984 

n = 1 0 0 

dl/2 

0.935 

1.145 

1.620 

2.291 

2.805 

1.004 

1.229 

1.739 

2.459 

3.012 

1.086 

1.330 

1.882 

2.661 

3.259 

1.145 

1.402 

1.984 

2.805 

3.436 

m = 500 

di/o 
Oi.fl 

1.638 

1.638 

1.638 

1.638 

1.638 

1.752 

1.752 

1.752 

1.752 

1.752 

1.906 

1.906 

1.906 

1.906 

1.906 

2.012 

2.012 

2.012 

2.012 

2.012 

n = 500 

dl/2 

0.945 

1.158 

1.638 

2.316 

2.837 

1.011 

1.238 

1.752 

2.477 

3.034 

1.100 

1.347 

1.906 

2.695 

3.301 

1.161 

1.422 

2.012 

2.845 

3.484 

Table 5.6: Values of d\ and d\ for the alternative H3 : F ^ G'. 
2 2 

http://Oi.fl
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a 

.10 

.05 

.025 

.01 

.005 
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3 

1 
2 
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2 

3 

I 
3 

1 
2 

1 

2 

3 

l 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

# i : Y <io X 

1.740 

1.845 

. 2.131 

2.610 

3.014 

1.893 

2.008 

2.319 

2.840 

3.280 

2.023 

2.145 

2.477 

3.034 

3.504 

2.198 

2.331 

2.692 

3.297 

3.808 

2.314 

2.454 

2.834 

3.471 

4.008 

H2 :X<l0Y 

1.732 

1.837 

2.121 

2.598 

3.000 

1.887 

2.002 

2.312 

2.831 

3.270 

2.024 

2.146 

2.479 

3.036 

3.506 

2.206 

2.340 

2.702 

3.309 

3.822 

2.335 

2.477 

2.860 

3.503 

4.046 

Table 5.7: Large sample critical values for the alternatives Hi : Y < 

X <lo Y. 
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3 

1 
2 

1 

2 

3 

l 
3 

1 
2 

1 

2 

3 

I 
3 

1 
2 

1 

2 

3 

H3:F^G 

1.891 

2.006 

2.316 

2.837 

3.276 

2.023 

2.145 

2.477 

3.034 

3.504 

2.200 

2.334 

2.695 

3.301 

3.812 

2.323 

2.464 

2.845 

3.484 

4.024 

Table 5.8: Large sample critical values for the alternatives H3 : F ^ G. 
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Now consider the case where our alternative is Hi : F ^ G and the statistic 

\Wn<m\ = max(W^m , W~tTn). In the same way as before, we get that P(|Wn>m | > 

da) < F(sup:ce[0)1]2 UJ{x) > T^CT) a n d we have in [2] simulated values such that 

F(supxe[0jl]2 UJ(x) > J^rx) < a. Critical values are presented in table 5.8. 

b) Bootstrap approach 

As we mentioned before, in practice, we do not usually know what the copula CF is 

and need to estimate it from the data we have. One of the ways to approach this 

situation is to estimate CF via the bootstrap technique, which was first introduced in 

[17]. The general idea behind the bootstrap is to obtain a sample from an unknown 

distribution, construct an empirical distribution applying I/nth of mass to each ob-

servation, resample with replacement from that empirical distribution and then use 

this last sample to estimate the initial unknown distribution or a function of it. As 

under our null hypothesis the samples Xi, X2,..., Xn and Yi, Y2,..., Ym are actually 

two samples from the same distribution, we will present a bootstrap that uses pooled 

data. 

Following the two-sample bootstrap procedure described in section 3.7.2 of [46], 

we denote the pooled data as 

\ZiNi Z2N, • • • > ZNN) = (Xi,X2,... ,Xn,Yi,Y2, • • •, Ym), 

where N — n + m. To follow this approach we will sample with replacement from 
B B B 

{ZIN, Z2N, • • •, ZNN) to obtain (ZIN, Z2N, • • •, ZNN)- This can be regarded as a sin-

gle bootstrapped sample from the distribution H = JT^F + JT^G. We define the 

pooled empirical distribution function HN and the two-sample bootstrap empirical 
B B 

distribution functions Fn,N
 a n d Gm,N a s follows: 

1 N 

B 1 " B 
Fn,N(t) = ~^2l{ZiN<t} 

n 
i = l 

file:///ZiNi
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B 1 ™ B 

Gm,N (t) = — / j I{Zn+i,N< t). 
m . 

4 = 1 

First, consider the process 

B B B B 

Vrn[(Fn,N,Gm,N) - (HN,HN)} = (Vm(Fn,N -HN),«Jm{Gm,N -HN)). 

This will converge to (VxucH,u ) given (Xi,X2,..., Xn, Yi,Y2,..., Ym), where as 

before, the bridges Uc and U are independent. We will again use the fact that 

the function <&(F, G) = Go (F-f, F2~) is Hadamard differentiable with derivative given 

by Lemma 5.1.3. 

We have that: 

B B 1 _ J52 

m[Gm,N {Fn,N,Fn,N)-HN(Hl
N ,H2

N )}(p,q) 

j Gm,N )-$(HN,HN)](p,q) 

->v $'(H,H)(V\UcH,UCH)(p,q) 

?iven (XUX2,...,Xn, Yu Y2,..., Ym). 

Similarly: 

B Bl~ B2 

m[Fn<N (.Fn,N,Fn,N)-HN(Hl
N ,H2

N )](p,q) 

m[$(Fn,N, FU,N) - &(HN, HN)](p, q) 

*x> $'(H,H)(V\UcH,V\UcH)(p, 

= ^XUC\p,q)-VX^^UcH(PA)-^X^^UCH(l,q) 
dp oq 

given (X1,X2,..., Xn, Y1: Y2,..., Ym). 
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Both asymptotic behaviors above follow from the delta method for bootstrap 

(see Theorem 3.9.11 in [46]). 

Putting the two expressions together, we get that the following holds: 

B B 1 _ B2" B B1' B2~ 

m[Gm,N (Fn>N,Fn,N)- Fn,N (FniN,FniN)](p,q) 

+ ^»(i,,)&i>-^M>] 
oq oq 

= ucH{p,q)-^\uCH{P,q) 

=v VTT\ucH(P,q) 

given (XUX2, • • •, Xn, Yu Y2,..., Ym). 

Now we define our new bootstrapped process: 

W%£(p,q) = sup Vrn[Gm,N (FniN,FniN)- Fn,N (Fn > i V ,Fn , 
2 -

N) 
P,Q 

We just proved that Wjf̂ J" —>-jy V l + A supp g U
c . Therefore, we can take a large 

number of samples of size iV from our pooled empirical distribution HN and use W„£ 

to approximate observations of \/l + A s u p M Uc . The upper (1 — a) 100th percentile 

of our bootstrapped observations will approximate ca, the appropriate critical value 

for testing HQ : F = G = H against the alternative H\ : Y <i0 X. The alternatives 

H2 : X <i0 Y and H% : F ^ G are handled similarly using, respectively, bootstrapped 

observations of WJ?L~ and I W ^ I 
n,m 

•Partial samples known 

In this scenario we have already completed our experiment but we only know the val-

ues of some of our observations, in particular, the process y/m[Gm(F*~(p), F%~(q)) — 

Fn(F^~(jp), F2~(q))] can only be observed over the region 0 < p < p0 and 0 < q < qo-
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a) Conservative approach 

Assume we are working with the process y/m[Gm(F^~(p), F%~(q))—Fn(F^~(p), F%~(q))] 

and the alternative H\ : Y <io X. Under the precedence scheme we can no longer 

use the test statistic Wn,m, but we will define a new statistic 

Wn,m = WZ,m(po,qQ) 

= sup V^[Gm(Ft(p), F2
n-{q)) - Fn(F*-(p), Ft(q))] 

p<po,q<qo 

to takes its place. It is easy to see that under HQ : F — G, 

Wn,m(Po,qo) -+vVl + \ sup UcF(p,q). 

p<Po,q<qo 

Now we are in a familiar position: we need to find the critical values ca for each 

alternative. If the copula CF is known the critical values are simulated without any 

further complications. 

If the F copula is unknown we can certainly compare this new statistic with 

that we already used in the case of complete samples. We know that W*'^ < W^m, 

from which follows that P(W*£ > ca) < P(W+m > ca) < a. Then, if we let 

ca = 2 maxfeft, dZ), where the values aL are chosen as in the case of complete samples, 
2 2 2 

we have found critical values that will work. It is obvious that these values are not the 

best in the sense that P(W£'+ > ca) could be significantly smaller than P(W+m > ca), 

which in turn is almost always smaller than a. As a consequence of accepting as 

critical values the values found in Table 5.1, Table 5.2 or Table 5.7 we are definitely 

setting a conservative critical region and in doing so, choosing a less powerful test. 

Using the same logic we can conclude that the values found in Table 5.3, Table 5.4 

or Table 5.7 can be seen as conservative critical values for a test H0 : F = G vs 

H2 : X <lo Y. 

Similarly, when we have a two-sided alternative H3 : F 7̂  G, we use that 

|W.t,m(Po,go)| ~^v VI + Asupp<p0]g<90 \UcF(p,q)\. Since \W* \ < |W„,m|, it follows 
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that -P(|W^m | > ca) < F( |W n i m | > ca) < a and once more we can use the values in 

Table 5.5, Table 5.6 or Table 5.8 as conservative critical values for our test. 

If we have some additional information about the copulas involved, this approach 

can be refined. To explain the path to follow we need to go back to the sketch of 

the proof of Theorem 5.2.2. There, we worked with the supremum over [0, l ] 2 of the 

two bridges Uc and UJ. If we now want to restrict x to [0,£>o] x [0, <?o], the proof 

will still hold up until the last line: we will have that P(supxe[0]PO]x[0go] Uc (x) > S) < 

p(suPxe[o,PO]x[o,go] U
J(m(x)) > 5), but supsG[0iPo]x[0;(?o] U

J{m(x)) = supxG[0iPo]x[0|W] UJ(x) 

will not be true anymore. 

We have that: 

P( sup U°F{x) >S) < P{ sup UJ(m(x)) > S) 
x6[0,p 0 ]x[0,go] xe[0,p0]x[0,qo] 

< P( sup U\x) > 8). 
xi<sup{mi (z):z€[0,po] X [0,go]},Z2<sup{m2(z):z€[0,po] X [0,go]} 

With that in mind, let us pick a specific example to show the way this method 

works. Suppose we know that both F and G share the FGM copula C(u,v) = 

uv + 9uv(l — u)(l — v) with unknown parameter 6, and we want to test Ho : F — G 

vs Hi : Y <t0 X. Under this assumption, we are actually testing HQ : 9p = 9Q VS 

H\ : 8F < 8G. 

The function m(x) for the FGM copula is \{x\ — X2 + 1 + 0:1X2(1 + ^(1 — £i)( l — 

2;2))>2:2 — x\ + 1 + x\X2{^- + 0(1 — xi)(l — X2))). To continue with the example, fix 

Po — % = \- Some of the values oim(x) are: m i ( | , | ) = m 2 ( | , | ) = § + 55, "2i(0, | ) = 

m2(|>0) = 4, a n d m,i(^,0) — m2(0, ^) = | . We can check that mi is increasing in Xi, 

but decreasing in X2 and that 1712 is decreasing in x\, but increasing on X2- Therefore, 

the supremum ( | for both functions) is attained at m i ( | , 0 ) and at 777,2(0, | ) . Then 

we can say that P(supa.6[0 |i ]x [0 ii ] U°F(x) > A) < P(sup x e [ 0 | ] 2 UJ(x) > A). 

In general, if we can find the function m(x) as defined in Theorem 5.2.2, which 

in turn means we have some information about the copula structure, we can use this 

alternative approach to obtain more accurate critical values. 
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b) Standarization 

Up to this point, we have assumed that the process 

Tn ,m(p,g) = y/m[Gm(Ft(p)X-(q)) ~ Fn(Ft(p),F*-(q))} 

can be completely observed on some region \pQ, qQ]. However, there may be situations 

in which only aggregate data is available, and we observe only Tn>m(po,qo) at one 

fixed value of (p, q). It is our intention to prove that under H0, 

, ?JM"(Po.go) = - > P M Q , l ) , (5.2.1) 

y/T+^y/CZto,«,)[! - CF(Po,g0)] 

where CF — Fn(F^~, F%~) is the empirical copula of the F distribution. In this case, 

the appropriate critical values for each of the alternatives are easily determined. 

We will rewrite ^MPQW) 

V'(i+f)3r(po,ro)[i-c£(po,*0]) 
Tn,m(po,qo) VTTA ^/CF(p0,qo)[l-CF(p0,q0)] 

V/(1 + X)CF(p0, q0)[l - CF(p0, q0)] y/T+* ^CF{p0, ?o)[l - CF(p0, qo) 

(o) (6) (c) 

Since under the null hypothesis Tnim(p0,<7o) —•£> \ / l + AC/C (po,qo), which is normal 

with mean 0 and variance (1 + X)CF(p0,q0)[l — CF(po,qo)], it immediately follows 

that (a) -»2> iV(0,1). From the fact that a - • A, it is clear that (6) -»• 1. Fi-

nally, to deal with (c) we first recall that the empirical copula CF converges to CF 

a.s. (Theorem 3.2.5). Then we observe that the functions f(x) = x(l — x) and 

g(x) = ^Jx (and therefore their composition) are continuous. This implies that 

C^(Po,9o)[l - CF(p0,q0)} ^a.s CF(p0,q0)[l - CF(p0,q0)}, and we can deduce that 

(c) —*a.s. 1- Equation (5.2.1) follows from the convergence of (a),(6),(c) and Slut-

sky's theorem. 

C o m m e n t 5.2.4 It is important to remark that the particular bootstrap technique 

that we used in the complete samples case cannot be used when we only have partial 

data, since the full samples are needed for resampling. 
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Although all the results in this section are for the A region, it is worth mentioning 

that to handle information for the D region we can take two approaches. The first one 

is to work with the limiting distribution that was developed in the previous section. 

The second, and more convenient, one is to work with the equivalent region E instead 

(see figure 2.2). We have not developed the limiting distribution of this region because 

it is possible to use the asymptotics found for the A region for this purpose. What 

we need to do is to invert all our data so that the points (0,0) and (1,1) become 

(1,1) and (0,0), respectively. By "flipping all our data over" we will end up with 

observations in the A region, and we have already presented different alternatives to 

work with this type of data. It should be noted that, since we are inverting all our 

data, the resulting copula structure under H0 : F = G will correspond to the survival 

copula of F (see Definition 7.1.11). All the results developed for the A region hold 

for the E region under the above mentioned transformation and the corresponding 

survival copula structure. 



Chapter 6 

Conclusion 

The goal of this thesis has been to suitably extend the concepts of a p — p plot and a 

precedence test to higher dimensions. Although the focus has been on the underlying 

theory, potential applications have been proposed. 

For multivariate data that generates the minimal filtration -like geographical 

data- and data that generates the product filtration -like clinical experiments-, we 

have defined two different extensions of a p — p plot to 5Rd. We developed a Glivenko-

Cantelli type of result for each of these p—p plots, as well as described their respective 

asymptotic Gaussian behaviour. We have used these results to construct tests of 

stochastic order between two distributions. These tests have the advantage that they 

do not necessarily need the complete samples to be effective; instead, partial data 

may be enough. 

At this point, we would like to mention that, although we have managed to 

achieve all the goals we set for ourselves at the beginning of this work -and that our 

theoretical results are useful as they are-, there is still plenty of research to be done 

on this topic. 

The first step in this direction would be to do some simulations in order to 

calculate the power of our tests. Once we have their power we would be able to 

compare them both to other tests (for example, to two one-dimensional tests) and to 

other test statistics (for example, a Cramer-Von Mises test statistic for a two sided 

105 
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alternative). We could, as well, assess the adequacy of tests based on partial data. 

Further research is also needed in the case that our samples are small, instead 

of large. We did not go into the details of the small sample scenario because our 

focus was on the asymptotic behaviour of our two test statistics. Regarding the large 

sample case, we have developed a weak approximation for both our processes; it would 

be interesting to obtain a strong approximation. We would also suggest, as future 

research, to look for weak and strong approximations for weighted processes. 

Also, in essence, our tests can set a cut-off point, where only the data found 

before such point will be considered. This can be regarded as a particular form of 

censoring. Therefore, extending our schemes and results to include censored data 

might turn out to be a productive idea. 



Chapter 7 

Appendix A 

7.1 Copulas 

For this appendix chapter we have gathered some definitions, theorems and properties 

concerning copulas. Although the literature on copulas is very extensive, we will only 

be covering the small part that is needed for the present work. All the following 

results, and their corresponding proofs when applicable, can be found in [35]. 

Definition 7.1.1 Let Si and S2 be nonempty subsets of 9? = [—oo,oo]; and let H 

be a function with domain Si x S2. Let B = [xi,x2]
 x [yijjte] be a rectangle whose 

vertices are in Si x S2. The H—volume of B is denoted as VH(B) and it is defined 

as VH(B) = H(x2,y2) -H(x2,yi) - H(xi,y2) + H(xuyi). 

Definition 7.1.2 A real function H with domain Si x 5 j C 3? and range in the 

real numbers is 2-increasing ifVn(B) > 0 for all rectangles B whose vertices lie in 

<Si x b2. 

Definition 7.1.3 Suppose that Si has a least element ai and that S2 has a least 

element a2. A function H from Si x S2 to ^R is said to be grounded if H(x, a2) — 0 = 

H(ai,y) for all (x,y) G Si x S2. 

Definition 7.1.4 A copula is a function C with the following properties: 
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• The domain of C is [0, l ] 2 . 

• C is grounded and 2-increasing. 

• For every u in S\ and every v in S2, C(u, 1) = u and C( l , v) = v. 

Equivalently, a copula is a function C from [0, l]2 to [0,1] with the following properties: 

• For every u,v E [0,1], C(u, 0) = 0 = C(0, v), C(u, 1) = u and C( l , v) = v. 

• For every Mi, U2, i>i, t>2 £ [0,1] suc/i i/iai tii < ^2 an.d fi < i>2, C ^ , ^ ) — 

C(w2,fl) - C(Mi,f2) + C(lti,t!i) > 0. 

T h e o r e m 7.1.5 If C is a copula, then for every (u, v) G [0,1]2
; max(u + v — 1,0) < 

C(tt, v) < min(u,v). 

T h e o r e m 7.1.6 If C is a copula, it is uniformly continuous on [0, l ] 2 : for every 

ui,u2,v1,v2 e [0,1], \C(u2,v2) -C{ui,vi)\ < \u2 - u i | + \v2 -Vi\. 

T h e o r e m 7.1.7 Let C be a copula. For any v G [0,1], the partial derivative ^ exists 

for almost all u, and for such v and u, 0 < — g ^ < 1. Similarly, for any u G [0,1], 

the partial derivative ^ exists for almost all v, and for such u and v, 0 < — g ^ < 1. 

T h e o r e m 7.1.8 Let H be a joint distribution function with marginals F and G. 

Then there exists a copula C such that for all x,y G 3?, 

H(x,y) = C(F(x),G(y))- (7-1.1) 

If F and G are continuous, then C is unique. Conversely, if C is a copula and F and 

G are distribution functions, then the function defined by equation 7.1.1 is a joint 

distribution function with marginals F and G. 

Corollary 7.1.9 Let H be a joint distribution function with continuous marginals F 

and G, and let F~ and G~ be the left continuous inverses of F and G, respectively. 

Then for any (u,v) G [0,1]2
; C(u, v) = H(F-(u),G-(v)). 
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We can restate the last theorem in terms of random variables and their distrib-

ution functions. 

Theorem 7.1.10 Let X and Y be random variables with distribution functions F 

and G, respectively, and joint distribution function H. Then there exists a copula C 

such that equation 7.1.1 holds. If F and G are continuous, C is unique. 

Definition 7.1.11 For a pair (X,Y) of random variables with distribution func-

tion H, the joint survival function is given by H(x,y) = P(X > x,Y > y). If 

the marginals of H are denoted by F and G, then the survival copula is defined as 

C(u, v) = u + v — 1 + C( l — it, 1 — v). As with the usual copula structure, we have 

thatH(x,y) = C(F(x),G(y)). 

Theorem 7.1.12 Let X and Y be continuous random variables. Then X and Y are 

independent if and only if C(u,v) = \\{u,v) = uv. Y[ is called the product copula. 

Example 7.1.13 The Farlie-Gumbel-Morgenstern (FGM) family of copulas is given 

by C(u, v) = uv + 6uv(l — u)(l — v), where — 1 < 9 < 1. In view of their simple form, 

FGM copulas have been used, traditionally, in tests of association and non-parametric 

studies. 
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