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Case Postale 8888, succursale Centre-ville
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Abstract

Because they play a role in our understanding of the symmetric group algebra,
Lie idempotents have received considerable attention. The Klyachko idempotent
has attracted interest from combinatorialists, partly because its definition involves
the major index of permutations.

For the symmetric group Sn, we look at the symmetric group algebra with
coefficients from the field of rational functions in n variables q1, . . . , qn. In this
setting, we can define an n-parameter generalization of the Klyachko idempotent,
and we show it is a Lie idempotent in the appropriate sense. Somewhat surprisingly,
our proof that it is a Lie element emerges from Stanley’s theory of P -partitions.
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1 Introduction

The motivation for our work is centered around the search for Lie idempotents in the
symmetric group algebra. In fact, our goal is to give a generalization of the well-known
Klyachko idempotent, and to show that important and interesting properties of the Kly-
achko idempotent carry over to the extended setting. It turns out that the proof that our
generalized Klyachko idempotent is a Lie element gives a nice application and illustration
of Richard Stanley’s theory of P -partitions. We should point out that P -partitions were
previously used in [2] to show that the traditional Klyachko idempotent is a Lie element.

To define Lie idempotents, however, we will first need the concepts of free Lie algebras
and the symmetric group algebra. Let K be a field of characteristic 0. If X is an
alphabet, we will write K〈X〉 to denote the free associative algebra consisting of all linear
combinations of words on X with coefficients in K. The product of two words on X is
defined to be their concatenation, and extending this product by linearity gives a product
on K〈X〉. We can then define the Lie bracket [p, q] of two elements p and q of K〈X〉 by
[p, q] = pq − qp. We let LK(X) denote the smallest vector subspace of K〈X〉 containing
X and closed under the Lie bracket. It is a classical result that LK(X) is the free Lie
algebra on X. We refer the reader to [6, 16] for further details on free Lie algebras from
a combinatorial viewpoint.

If X = {1, 2, . . . , n}, then elements of the symmetric group Sn can be considered as
words onX. We writeKSn to denote the symmetric group algebra, which consists of linear
combinations of elements of the symmetric group Sn, with coefficients in K. When X =
{1, 2, . . . , n}, certain elements of LK(X), such as [[· · · [1, 2], 3], . . . , n], can be naturally
considered to be elements of KSn. This is because all the words in their expansions as
elements of K〈X〉 are permutations of 1, 2, . . . , n. Elements in this intersection of KSn

and LK(X) are called Lie elements. We will denote the set of Lie elements by Ln.
We should clarify our suggestion that KSn is an algebra. The product of two per-

mutations σ, τ ∈ Sn is the usual composition στ from right to left, and extending this
product by linearity gives the product in KSn. It is well-known, and is not difficult to
check, that Ln is then a left ideal of KSn.

Definition 1.1. A Lie idempotent is an element π of KSn that is idempotent and that
satisfies

KSnπ = Ln.

In particular, π must be a Lie element. Lie idempotents are quite remarkable because,
in particular, they give an alternative, and direct, construction of Ln. It is natural,
therefore, that there should be widespread interest in the search for Lie idempotents and,
from a combinatorial perspective, [2, 4, 7, 6, 11, 15] all offer progress in this search.

One of the most famous Lie idempotents is the Klyachko idempotent of [10]. (We refer
the reader to the end of this introduction for the definition of the major index, maj(σ),
of σ ∈ Sn.) Let ζ be a primitive nth root of unity in K, meaning that ζn = 1 and ζm 6= 1
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for 1 ≤ m < n. Then the Klyachko idempotent κn is defined by

κn =
1

n

∑

σ∈Sn

ζmaj(σ)σ.

The appearance of the major index in this definition naturally makes the Klyachko idem-
potent appealing to combinatorialists and, for example, [2, 4, 11, 15] study the Klyachko
idempotent and its generalizations.

Our goal is to introduce a new, broad generalization of the Klyachko idempotent and
to show that its Lie idempotency property is preserved in this much wider setting. As we
will show in Example 1.6, we will indeed be able to recover the usual symmetric group
algebra KSn and the Klyachko idempotent by specialization. Rather than working with
a primitive nth root of unity, we will let q = (q1, q2, . . . , qn) be a sequence of variables
in a field K with the only restriction being that q1q2 · · · qn = 1. Since the qi’s are for-
mal variables, we can assume, in particular, that qi1qi2 · · · qir 6= 1 for any proper subset
{i1, i2, . . . , ir} of {1, 2, . . . , n}. Throughout, unless otherwise stated, q will denote such a
sequence. We let K(q) denote the field of rational functions in q over the field K, and
our primary focus will be K(q)Sn, the symmetric group algebra with coefficients in K(q).
Before proceeding, however, we must pay attention to a twist in our story. It turns out
that the most useful product for K(q)Sn is not the natural analogue of the product for
KSn. More precisely, if f(q), g(q) ∈ K(q) and σ, τ ∈ Sn, one might assume that the
product of f(q)σ and g(q)τ should be defined to be simply (f(q)g(q))στ . However, this
product does not seem to allow the concepts of interest from KSn to extend to K(q)Sn

and, in particular, our generalized Klyachko element is not idempotent with respect to
this product for n ≥ 4. Instead, we observe that there is a natural left action of Sn on
K(q): if f(q) = f(q1, q2, . . . , qn) ∈ K(q), then we define

σ[f(q)] = f(qσ(1), qσ(2), . . . , qσ(n)).

We then define the twisted product of f(q)σ and g(q)τ , denoted f(q)σ n g(q)τ , by

f(q)σ n g(q)τ = (f(q)σ[g(q)])στ.

As a simple example, if n=3,

231 n
q1q3

(1− q1)(1− q1q3)
132 =

q2q1

(1− q2)(1− q2q1)
213.

This twisted product appears in some standard texts on the representation theory of
groups and algebras, such as [3, §28]. As in [3], we leave it as a quick exercise to check
that the twisted product is associative. Our results will serve as evidence in favor of the
assertion that the twisted product is the “correct” product for K(q)Sn.

We are now in a position to define our extended version of the Klyachko idempotent.

Definition 1.2. Given a permutation σ in Sn, define the q-major index maj
q
(σ) of σ by

maj
q
(σ) =

∏

j∈D(σ) qσ(1)qσ(2) . . . qσ(j)
∏n−1

i=1 (1− qσ(1)qσ(2) . . . qσ(i))
.
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We will justify the terminology “q-major index” in Example 1.6.

Remark 1.3. The numerator termsNq(σ) =
∏

j∈D(σ) qσ(1) . . . qσ(j) have a certain fame due

to their appearance in [5]. There, Garsia shows that every polynomial G(q) in q1, . . . , qn
has a unique expression of the form

G(q) =
∑

σ∈Sn

gσ(q)Nq(σ),

where each gσ(q) is a polynomial that is symmetric in q1, . . . , qn. Furthermore, if G(q)
has integer coefficients, then so do all the polynomials gσ(q). These results were originally
conjectured by Ira Gessel.

The following definition introduces our main object of study.

Definition 1.4. Denote by κn(q) the element of K(q)Sn given by

κn(q) =
∑

σ∈Sn

maj
q
(σ) σ.

Example 1.5. If n = 3 we get

κ3(q) =
1

(1− q1)(1− q1q2)
123 +

q1q3

(1− q1)(1− q1q3)
132

+
q2

(1− q2)(1− q1q2)
213 +

q2q3

(1− q2)(1− q2q3)
231

+
q3

(1− q3)(1− q1q3)
312 +

q2q
2
3

(1− q3)(1− q2q3)
321.

Example 1.6. With ζ a primitive nth root of unity, we can see that κn(q) maps to the
Klyachko idempotent κn under the specialization qi → ζ for i = 1, . . . , n. Indeed, the
q-major index of any σ ∈ Sn then specializes to

ζmaj(σ)

∏n−1
i=1 (1− ζ i)

=
ζmaj(σ)

n
.

This equality follows from the identity

xn − 1 = (x− 1)(x− ζ)(x− ζ2) · · · (x− ζn−1),

which implies that n = (1− ζ)(1− ζ2) · · · (1− ζn−1). Also notice that, since q1 = · · · = qn,
the twisted product of K(q)Sn in this setting is identical to the usual product of KSn.

Actually, if we take the ring K[q], localized at 1− q, . . . , 1− qn−1, and quotiented by
the ideal generated by 1− qn, it will follow from our results that the element

∑

σ∈Sn

qmaj(σ)

(1− q) · · · (1− qn−1)
σ

is a Lie idempotent. This may shed some light on some results in [2]. We see that this
new element specializes to the Klyachko idempotent when we map q to a primitive root
of unity.
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We can now state our main results.

Theorem 1.7. κn(q) is a Lie element.

Theorem 1.8. κn(q)nκn(q) = κn(q), i.e., κn(q) is idempotent as an element of K(q)Sn.

We will let Ln(q) denote the analogue of Ln when coefficients come from K(q). As a
formula, Ln(q) = K(q)Sn ∩ LK(q)({1, 2, . . . , n}). We observe that Ln(q) is a left ideal of
K(q)Sn:

K(q)Sn n Ln(q) = Ln(q). (1.1)

Theorem 1.9. The left ideal K(q)Sn n κn(q) is equal to Ln(q).

By extending Definition 1.1 in the obvious way, we define what it means for an element
of K(q)Sn to be a Lie idempotent, and we have the following immediate consequence of
Theorems 1.8 and 1.9:

Corollary 1.10. κn(q) is a Lie idempotent.

One might wonder why κn(q) would have such desirable properties. In Section 5, we
give one possible explanation. Removing the condition that q1 · · · qn = 1, we consider an
expression Θ(q), which one can think of as a generating function for κn(q), defined by

Θ(q) =
∑

n≥0

κn(q1, . . . , qn)

(1− q1 · · · qn)
.

As our main result of Section 5, we show that Θ(q) can be expressed as a very simple
infinite product. This result generalizes [8, Proposition 5.10], which corresponds to the
specialization qi → q for i = 1, . . . , n.

Remark 1.11. According to the referee, our work possibly has a generalization in the
spirit of the papers of Lascoux, Leclerc and Thibon [12], and of Hivert [9]. In [12], a multi-
parameter construction is devised, not for the Klyachko idempotent, but for rectangular-
shaped q-Kostka numbers. On the other hand, q-Kostka numbers are defined in terms of
Hall-Littlewood polynomials, and [9] shows a direct connection between column-shaped
Hall-Littlewood polynomials and the Klyachko idempotent.

The organization of the remainder of the paper is simple: in Sections 2, 3 and 4,
we prove Theorems 1.7, 1.8 and 1.9 respectively. The infinite product expansion is the
subject of Section 5.

Before beginning the proofs, we need to introduce some terminology related to
permutations. If w is a word of length n, we will write w(i) to denote the ith letter
of w. If the letters of w are distinct, we define the descent set D(w) of w by
D(w) = {i | 1 ≤ i ≤ n − 1, w(i) > w(i + 1)}. The major index maj(w) of w is then
the sum of the elements of D(w). We will denote the cardinality of D(w) by d(w). Fi-
nally, we will use D̄(w) to denote the of circular descent set of w, so that

D̄(w) =

{

D(w) if w(n) < w(1)
D(w) + {n} if w(n) > w(1)

.

Then d̄(w) is simply the cardinality of D̄(w).
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Figure 1: Pu,v

2 κn(q) is a Lie element

Our goal for this section is to prove Theorem 1.7. We begin by stating a well-known
characterization of Lie elements. We refer the reader to [6], [13, p. 87] or [16, §§1.3-1.4]
for further details.

Our definitions in this paragraph will hold for K being any field of characteristic
0, although we will only need them for the case K = K(q). First, define an inner
(scalar) product 〈 , 〉 on K〈X〉 by 〈u, v〉 = δu,v for any words u and v, extended to K〈X〉
by linearity. For the remainder of this section, it suffices to restrict to the case when
X = {1, 2, . . . , n}. Suppose u = u(1)u(2) . . . u(r) and v = v(1)v(2) . . . v(s) and, since it
will be sufficiently general for our needs, assume u(i) 6= v(j) for all i, j. A word w is said
to be a shuffle of u and v if w has length r+ s and if u and v are both subsequences of w.
The shuffle product u

∃
v of u and v is an element of K〈X〉 and is defined to be the sum

of all the shuffles of u and v. We will write w ∈ u ∃ v if w is a shuffle of u and v. The
characterization of Lie elements that we will use is the following: an element p of KSn

is a Lie element if and only if p is orthogonal to u ∃ v for all non-empty words u and v.
Therefore, we wish to show that

〈κn(q), u

∃

v〉 = 0 (2.1)

for all u = u(1)u(2) · · ·u(r) and v = v(1)v(2) · · ·v(s) with r, s ≥ 1.
Because (2.1) holds trivially otherwise, let us assume that r + s = n and that

u(1), u(2), . . . , u(r), v(1), v(2), . . . , v(s) are all distinct. Therefore, the partially ordered
set (poset) Pu,v whose Hasse diagram is shown in Figure 1 is a poset with elements
{1, 2, . . . , n}. Namely, Pu,v is the disjoint union of the chains u(1) < u(2) < · · · < u(r)
and v(1) < v(2) < · · · < v(s). Recall that a linear extension σ of a poset P of size n
is a bijection σ : P → {1, 2, . . . , n} such that if y ≤ z in P , then σ(y) ≤ σ(z). We will
represent the linear extension σ as the word σ−1(1), σ−1(2), . . . , σ−1(n), and we will write
L(P ) to denote the set of linear extensions of P . We introduce linear extensions and the
poset Pu,v for the following reason: the set of shuffles of u and v is exactly the set of linear
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extensions of Pu,v. Therefore, 〈κn(q), u

∃

v〉 can be expressed as

〈κn(q), u ∃ v〉 =
∑

σ∈L(Pu,v)

∏

j∈D(σ) qσ(1)qσ(2) . . . qσ(j)
∏n−1

i=1 (1− qσ(1)qσ(2) . . . qσ(i))
. (2.2)

The reader who is acquainted with Richard Stanley’s theory of P -partitions may find
(2.2) strikingly familiar. We now introduce the parts of this theory that will be necessary
to complete our proof. While P -partitions are the topic of [18, §4.5], we will need to work
in the slightly more general setting found in [17].

For our purposes, it is most convenient to say that a labelling ω of a poset P is an
injection ω : P ↪→ {1, 2, . . .}.

Definition 2.1. Let P be a finite partially ordered set with a labelling ω. A
(P, ω)-partition is a map f : P → {0, 1, 2, . . .} with the following properties:

(i) f is order-reversing : if y ≤ z in P then f(y) ≥ f(z),

(ii) if y < z in P and ω(y) > ω(z), then f(y) > f(z).

In short, (P, ω)-partitions are order-reversing maps with certain strictness conditions
determined by ω. We will denote the set of (P, ω)-partitions by A(P, ω).

Note. If P is a poset with elements contained in the set {1, 2, . . . , n}, then in the labelled
poset (P, ω), each vertex i will have a label ω(i) associated to it and, in general, we
certainly need not have ω(i) = i. However, in our case, we will always take ω(i) = i, since
this is sufficient to yield the desired outcome.

Define the generating function F (P, ω;x) in the variables x = (x1, x2, . . . , xn) by

F (P, ω;x) =
∑

f∈A(P,ω)

(

∏

p∈P

(xω(p))
f(p)

)

.

For any n-element poset P , by [17, Prop. 7.1] in the case when ω = id, the identity map,
we have

F (P, ω;x) =
∑

σ∈L(P )

∏

j∈D(σ) xσ(1)xσ(2) . . . xσ(j)
∏n

i=1(1− xσ(1)xσ(2) . . . xσ(i))
.

Comparing this with (2.2), we deduce that

〈κn(q), u

∃

v〉 = (1− q1q2 · · · qn)F (Pu,v, id;q).

The structure of Pu,v is simple enough that we can actually get a nice expression
for F (Pu,v, id;q). Indeed, when P is simply a total order with elements labelled
u(1), u(2), . . . , u(r) from bottom to top, we see that

F (P, ω;x) =

∏

j∈D(u) xu(1)xu(2) . . . xu(j)
∏r

i=1(1− xu(1)xu(2) . . . xu(i))
, (2.3)
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where u is the word u(1)u(2) . . . u(r). The terms in the denominator ensure that the
(P, ω)-partitions are order-reversing, while the terms in the numerator take care of the
strictness conditions. Furthermore, if P is a disjoint union P = P1+P2, then let ωi denote
the labelling ω restricted to the elements of Pi, for i = 1, 2. We see that

F (P, ω;x) = F (P1, ω1;x)F (P2, ω2;x). (2.4)

Combining (2.3) and (2.4), we deduce that

F (Pu,v, id;x) =

(

∏

j∈D(u) xu(1)xu(2) · · ·xu(j)

)(

∏

`∈D(v) xv(1)xv(2) · · ·xv(`)

)

∏r

i=1

(

1− xu(1)xu(2) · · ·xu(i)

)
∏s

k=1

(

1− xv(1)xv(2) · · ·xv(k)

) .

We finally conclude that

〈κn(q), u

∃

v〉 = (1− q1 · · · qn)F (Pu,v, id;q)

= (1− q1 · · · qn)

(

∏

j∈D(u) qu(1) · · · qu(j)

)(

∏

`∈D(v) qv(1) · · · qv(`)

)

(
∏r

i=1 1− qu(1) · · · qu(i)

) (
∏s

k=1 1− qv(1) · · · qv(k)

)

= 0,

because of the conditions on q and because r, s < n. This yields Theorem 1.7.

3 κn(q) is idempotent

One way to show that the Klyachko idempotent is idempotent is to define an element ηn

of KSn such that
ηnκn = κn and κnηn = ηn.

(See [10], [16, Lemma 8.19].) Then it follows that

κ2
n = κnηnκn = ηnκn = κn,

as required. Throughout, let γ denote the n-cycle (1, 2, . . . , n) ∈ Sn. Let ζ denote the
primitive nth root of unity from the definition of κn. Then a suitable element ηn is given
by

ηn =
1

n

n−1
∑

i=0

γi

ζ i
.

We wish to apply the same principle to show that κn(q) is idempotent, thus proving
Theorem 1.8. We define an element ηn(q) of K(q)Sn by

ηn(q) =
n−1
∑

i=0

maj
q
(γi)γi.
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The reader is encouraged to check that if q1, . . . , qn are all mapped to ζ , then ηn(q) maps
to ηn. Our goal, therefore, for the remainder of this section is to show that:

ηn(q) n κn(q) = κn(q), and (3.1)

κn(q) n ηn(q) = ηn(q). (3.2)

Because we are taking twisted products, we will need to know how, for example,
γ[maj

q
(σ)] compares to maj

q
(σ). For notational convenience, for any σ ∈ Sn, let us write

maj
q
(σ) = Nq(σ)

Dq(σ)
, with

Nq(σ) =
∏

j∈D(σ)

qσ(1)qσ(2) . . . qσ(j),

Dq(σ) =
n−1
∏

i=1

(1− qσ(1)qσ(2) . . . qσ(i)).

(“N” stands for numerator, and “D” for denominator.) The following result extends [15,
Lemma 11].

Lemma 3.1. For all σ, τ ∈ Sn, we have the following identities among elements of K(q):

(i)
γ[Nq(σ)] = q1Nq(γσ).

(ii)
τ [Dq(σ)] = Dq(τσ).

(iii)
γi[maj

q
(σ)] = q1 · · · qi ·maj

q
(γiσ).

(iv)

Nq(σγ
i) = (qσ(1) · · · qσ(i))

−d̄(σ)Nq(σ).

Proof. (i) By definition,

γ[Nq(σ)] =
∏

j∈D(σ)

qγ(σ(1)) . . . qγ(σ(j)),

=
∏

j∈D(σ)

q(γσ)(1) . . . q(γσ)(j),

since γ(σ(i)) = (γσ)(i).
The argument that follows is best understood by first trying some simple examples.

If σ(n) = n, then D(γσ) = D(σ) + {n− 1}. Therefore,

Nq(γσ) = (qγσ(1)qγσ(2) · · · qγσ(n−1))γ[Nq(σ)]

= (q2q3 · · · qn)γ[Nq(σ)]

=
γ[Nq(σ)]

q1
.
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If σ−1(n) = i < n, then D(γσ) = D(σ) + {i− 1} − {i}, where we set {0} = ∅. Therefore,

Nq(γσ) =
qγσ(1) · · · qγσ(i−1)

qγσ(1) · · · qγσ(i)

γ[Nq(σ)] =
γ[Nq(σ)]

q1
.

(ii) This follows directly from the fact that τ(σ(i)) = (τσ)(i).
(iii) By (i) and (ii), this is clearly true when i = 1. Working by induction,

γi[maj
q
(σ)] = γ[γi−1[maj

q
(σ)]]

= γ[q1 · · · qi−1 ·maj
q
(γi−1σ)]

= q2 · · · qi · γ[maj
q
(γi−1σ)]

= q1q2 · · · qi ·maj
q
(γiσ).

(iv) We first show that

Nq(σγ) =
Nq(σ)

(qσ(1))d̄(σ)
. (3.3)

Indeed, suppose that σ(1) > σ(n). Then

Nq(σγ) =
Nq(σ)

(qσ(1))d(σ)

holds directly, and d(σ) = d̄(σ). If σ(1) < σ(n), then

Nq(σγ) =
qσ(2) · · · qσ(n)Nq(σ)

(qσ(1))d(σ)

=
Nq(σ)

(qσ(1))d(σ)+1
,

and d(σ) + 1 = d̄(σ).
Proceeding by induction,

Nq(σγ
i) = Nq((σγ

i−1)γ)

=
Nq(σγ

i−1)

(qσγi−1(1))d̄(σγi−1)

=
Nq(σγ

i−1)

(qσ(i))d̄(σ)

= (qσ(1) · · · qσ(i))
−d̄(σ)Nq(σ).

Before proving (3.1) and (3.2), we state one further necessary result, which is essen-
tially taken word-for-word from [15]. As usual, δi,j denotes the Kronecker delta, defined
to be 1 if i = j, and 0 otherwise.
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Proposition 3.2. [15, Corollary 10] Let α1, . . . , αn be elements of a field such that
the product α1α2 · · ·αn is equal to 1 and each subproduct is different from 1. For
k = 0, 1, . . . , n− 1,

n−1
∑

i=0

(αi+1 . . . αn)k

(1− αi+1)(1− αi+1αi+2) · · · (1− αi+1αi+2 · · ·αi+n−1)
= δ0,k,

where all subscripts on α are taken modulo n.

Here and henceforth, unless otherwise stated, all subscripts on q are taken modulo n.

Proof of (3.1). We wish to show that
(

n−1
∑

i=0

maj
q
(γi)γi

)

n

(

∑

σ∈Sn

maj
q
(σ)σ

)

=
∑

τ∈Sn

maj
q
(τ)τ. (3.4)

The left-hand side can be rewritten as
∑

i,σ

maj
q
(γi) · γi[maj

q
(σ)]γiσ

=
∑

i,σ

maj
q
(γi) · q1 · · · qi ·maj

q
(γiσ)γiσ

by Lemma 3.1(iii). Therefore, showing (3.4) is equivalent to showing that
∑

i,σ

γiσ=τ

maj
q
(γi) · q1 · · · qi ·maj

q
(γiσ) = maj

q
(τ)

for all τ ∈ Sn. Here, the left-hand side simplifies to

maj
q
(τ)

∑

i,σ

γiσ=τ

maj
q
(γi) · q1 · · · qi

= maj
q
(τ)

n−1
∑

i=0

maj
q
(γi) · q1 · · · qi

= maj
q
(τ)

n−1
∑

i=0

1

(1− qi+1)(1− qi+1qi+2) · · · (1− qi+1qi+2 · · · qi+n−1)
(3.5)

by Lemma 3.1(iii) with σ = id or, alternatively, by direct calculation of maj
q
(γi). Apply-

ing Proposition 3.2, we see that the expression of (3.5) equals maj
q
(τ), as required.

Proof of (3.2). We wish to show that
(

∑

σ∈Sn

maj
q
(σ)σ

)

n

(

n−1
∑

i=0

maj
q
(γi)γi

)

=

n−1
∑

j=0

maj
q
(γj)γj. (3.6)

11



Since the left-hand side can be rewritten as
∑

σ,i

maj
q
(σ) · σ[maj

q
(γi)]σγi,

showing (3.6) is equivalent to showing that

∑

σ,i

σγi=τ

maj
q
(σ) · σ[maj

q
(γi)] =

{

maj
q
(γj) if τ = γj for some j,

0 otherwise.
(3.7)

The left-hand side of (3.7) can be rewritten as

n−1
∑

i=0

maj
q
(τγ−i) · (τγ−i)[maj

q
(γi)]

=

n−1
∑

i=0

maj
q
(τγi) · (τγi)[maj

q
(γn−i)].

By Lemma 3.1(iv),

Nq(τγ
i) = (qτ(1) · · · qτ(i))

−d̄(τ)Nq(τ).

Also, we see directly that

Dq(τγ
i) = (1− qτ(i+1))(1− qτ(i+1)qτ(i+2)) · · · (1− qτ(i+1)qτ(i+2) · · · qτ(i+n−1)).

As for the term (τγi)[maj
q
(γn−i)], we have that

(τγi)[Nq(γ
n−i)] = (τγi)[qn−i+1 · · · qn]

= τ [q1 · · · qi]

= qτ(1) · · · qτ(i),

while, by Lemma 3.1(ii), (τγi)[Dq(γ−i)] = Dq(τ).
Putting this all together, we get that

∑

σ,i

σγi=τ

maj
q
(σ) · σ[maj

q
(γi)]

=
Nq(τ)

Dq(τ)

n−1
∑

i=0

(qτ(1) · · · qτ(i))
1−d̄(τ)

(1− qτ(i+1)) · · · (1− qτ(i+1)qτ(i+2) · · · qτ(i+n−1))

=
Nq(τ)

Dq(τ)

n−1
∑

i=0

(qτ(i+1) · · · qτ(n))
d̄(τ)−1

(1− qτ(i+1)) · · · (1− qτ(i+1)qτ(i+2) · · · qτ(i+n−1))
.

Since d̄(τ) = 1 if τ = γj for some j, and 2 ≤ d̄(τ) ≤ n−1 otherwise, applying Proposition
3.2 gives exactly the desired equality (3.7).

12



4 κn(q) generates the multilinear part of the free Lie

algebra

As before, let Ln (resp. Ln(q)) denote the set of Lie elements in KSn (resp. K(q)Sn).
Our goal for this section is to show that

K(q)Sn n κn(q) = Ln(q).

By Theorem 1.7, we know that κn(q) ∈ Ln(q), while (1.1) states that Ln(q) is a left
ideal of K(q)Sn. Hence, we have that K(q)Sn n κn(q) ⊆ Ln(q). Also, it is well-known
that Ln has dimension (n− 1)!, from which it follows that Ln(q) has dimension (n− 1)!.
Therefore, it suffices to show that K(q)Sn n κn(q) has dimension at least (n− 1)!.

As we saw in Section 3, we have the following two identities:

ηn(q) n κn(q) = κn(q),

κn(q) n ηn(q) = ηn(q).

We claim that these identities can be used to give a bijection φ from K(q)Sn n κn(q) to
K(q)Sn n ηn(q). Indeed, for x ∈ K(q)Sn n κn(q), let

φ(x) = xn ηn(q).

Define a map ψ : K(q)Sn n ηn(q)→ K(q)Sn n κn(q) by

ψ(y) = y n κn(q)

for any y ∈ K(q)Sn n ηn(q). For x ∈ K(q)Sn n κn(q), we know that x = x′ n κn(q) for
some x′ ∈ K(q)Sn. Therefore,

ψ(φ(x)) = ψ(x′ n κn(q) n ηn(q))

= ψ(x′ n ηn(q))

= (x′ n ηn(q)) n κn(q)

= x′ n κn(q)

= x.

Similarly, φ(ψ(y)) = y for any y ∈ K(q)Sn n ηn(q), and so φ is a bijection. We conclude
that to prove Theorem 1.9, it remains to show that K(q)Sn n ηn(q) has dimension at
least (n− 1)!.

Consider the set B = {σnηn(q) | σ ∈ Sn, σ(1) = 1}. Clearly, B ⊆ K(q)Snnηn(q). We
claim that B forms a basis of K(q)Sn nηn(q). Suppose σ and τ are distinct permutations
with σ(1) = τ(1) = 1. Since

σ n ηn(q) =

n−1
∑

i=0

σ[maj
q
(γi)]σγi,

13



we see that σ n ηn(q) is a linear combination of permutations of the form σγi. Similarly,
τ n ηn(q) is a linear combination of permutations of the form τγj . But since σ and
τ are distinct and σ(1) = τ(1) = 1, there do not exist k, ` such that σγk = τγ`. It
follows that σ n ηn(q) 6= τ n ηn(q) and, furthermore, that the elements of B are linearly
independent. We conclude that B consists of (n− 1)! linearly independent elements, and
so K(q)Sn n ηn(q) has dimension at least (n− 1)!, thus proving Theorem 1.9.

We will conclude by showing independently that B spans K(q)Sn n ηn(q), thereby
reproving that the dimension of K(q)Sn nηn(q), and hence of K(q)Sn nκn(q), is (n−1)!.

Every permutation τ ∈ Sn is of the form σγj for some σ with σ(1) = 1. We claim
that τ n ηn(q) is then simply a scalar multiple of σ n ηn(q) ∈ B. Indeed, using Lemma
3.1(iii), we have

τ n ηn(q) = (σγj) n

n−1
∑

i=0

maj
q
(γi)γi

=

n−1
∑

i=0

(σγj)[maj
q
(γi)]σγj+i

=

n−1
∑

i=0

qσ(1) · · · qσ(j) · σ[maj
q
(γj+i)]σγj+i

= qσ(1) · · · qσ(j)

n−1
∑

i=0

σ[maj
q
(γi)]σγi

= qσ(1) · · · qσ(j) · σ n ηn(q).

It follows that every element of K(q)Sn n ηn(q) can be written as a linear combination
of elements of B, as required.

5 Infinite product expansion

Let x = x1, x2, . . . be an infinite sequence of variables in a field K of characteristic 0.
In effect, the xi’s will play the role formerly played by the qi’s. We switch variables to
emphasize two key differences with the material in this section. The first is that n will no
longer be fixed and the second is that there will be no restriction on the xi’s analogous
to the restriction q1 · · · qn = 1 on the qi’s. We let K[[x1, . . . , xn]] denote the algebra of
formal power series in x1, . . . , xn over the field K.

The central object of study in this section will be Θ(x), which is an element of
⊕n≥0K[[x1, . . . , xn]]Sn, and is defined as follows:

Θ(x) =
∑

n≥0

∑

σ∈Sn

∏

j∈D(σ) xσ(1)xσ(2) . . . xσ(j)
∏n

i=1(1− xσ(1)xσ(2) . . . xσ(i))
σ (5.1)

=
∑

n≥0

κn(x1, . . . , xn)

(1− x1 · · ·xn)
.
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We can think of Θ(x) as a generating function for κn(x1, . . . , xn) and, in particular,
we see that knowing Θ(x) allows us to extract κn(q), for any n.

Our goal for this section is to show that Θ(x) can be expressed as a simple
infinite product. To do this, we first need to put an appropriate ring structure on
⊕n≥0K[[x1, . . . , xn]]Sn. As we shall see, once we have done this correctly, we will have
completed much of the work necessary to fulfill our goal.

First, we will recall from [14] the associative product ? defined on ⊕n≥0KSn. We
let P denote the positive integers, and we will be working with words on the alphabet
P. If u and v are two such words, then we define the product u · v to be simply their
concatenation. If w = w(1) . . . w(n) and the letters w(1), . . . , w(n) of w are distinct, then
we define the standardization of w to be the unique permutation st(w) of Sn satisfying

st(w)(i) ≤ st(w)(j) ⇔ w(i) ≤ w(j)

for all 1 ≤ i, j ≤ n. For example, st(5716) = 2413. If σ ∈ Ss and τ ∈ St then we define ?
by

σ ? τ =
∑

u,v

u · v,

where the sum is over all u, v such that u · v ∈ Ss+t with st(u) = σ and st(v) = τ . For
example, 132 ? 1 = 1324 + 1423 + 1432 + 2431. Extending by linearity gives a product on
⊕n≥0KSn. Since σ ? τ is a multiplicity-free sum, we can write w ∈ σ ? τ to mean that w
appears as a term in σ ? τ .

Before extending ? to ⊕n≥0K[[x1, . . . , xn]]Sn, we will introduce some convenient nota-
tion. If f(x1, . . . , xn) ∈ K[[x1, . . . , xn]] and if w is a word on P of length n with distinct
letters a1 < a2 < · · · < an, then define f(w) to be f(xa1 , . . . , xan

). For example, if
f(x1, x2, x3) ∈ K[[x1, x2, x3]], then f(382) = f(x2, x3, x8). For σ ∈ Ss and τ ∈ St, we can
then define

(f(x1, . . . , xs)σ) ? (g(x1, . . . , xt)τ) =
∑

w∈σ?τ

f(w(1) . . .w(s)) · g(w(s+ 1) . . . w(s+ t))w,

and extend to ⊕n≥0K[[x1, . . . , xn]]Sn by linearity. For example,

(x2
1x

2
2x3132) ? (x3

11) = x2
1x

2
2x3x

3
4 1324 + x2

1x
2
2x4x

3
3 1423

+x2
1x

2
3x4x

3
2 1432 + x2

2x
2
3x4x

3
1 2431.

We see that the product ? on ⊕n≥0K[[x1, . . . , xn]]Sn is a natural extension of the ⊕n≥0KSn

version.

Remark 5.1. The product ? on ⊕n≥0K[[x1, . . . , xn]]Sn makes it an associative algebra.
This follows from [1, §1.2]: our algebra is the completion, in an appropriate sense, of
the algebra ⊕n≥0K[x1, . . . , xn]Sn; the latter is isomorphic to the F (V ) of Baumann and
Hohlweg when V is taken to be the freeK-module with basis N (the non-negative integers).
Indeed, a word i1 . . . in on N corresponds to the monomial xi1

1 · · ·x
in
n in K[[x1, . . . , xn]]. It

also follows from [1] that ⊕n≥0K[[x1, . . . , xn]]Sn can even be endowed with a Hopf algebra
structure.
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We are almost ready to state the main result of this section. We let ε denote the unique
element of the symmetric group S0. When expressing an infinite product of elements of
⊕n≥0K[[x1, . . . , xn]]Sn, we will use an arrow pointing left above the product symbol to
denote that the product should be expanded from right to left. For example,

←−
∏

n≥0

F (n) = · · · ? F (2) ? F (1) ? F (0).

The following result extends [8, Proposition 5.10].

Theorem 5.2. The generating function Θ(x) of κn(x1, . . . , xn) satisfies

Θ(x) =
←−
∏

n≥0

(ε+ xn
1 1 + xn

1x
n
2 12 + xn

1x
n
2x

n
3 123 + · · · ) . (5.2)

The simplicity of (5.2) perhaps helps to explain why κn(q) would have many nice
properties, such as those from the earlier sections. We remark that each factor in the
product, and the product itself, is a group-like element for the Hopf algebra structure of
Remark 5.1. This is similar to the situation in [8] and is easily verified.

Proof. We can expand the right-hand side of (5.2) into nested sums as follows:

←−
∏

n≥0

(ε+ xn
1 1 + xn

1x
n
2 12 + xn

1x
n
2x

n
3 123 + · · · )

=
∑

k≥0

∑

n1>···>nk≥0

∑

a1,...,ak≥1

(xn1
1 · · ·x

n1
a1

12 · · ·a1) ? · · · ? (xnk

1 · · ·x
nk
ak

12 · · ·ak)

=
∑

n≥0

∑

σ∈Sn

∑

k≥0

∑

σ=u1···uk

∑

n1>···>nk≥0

(xu1)
n1 · · · (xuk

)nk σ.

where the fourth sum is over all non-empty increasing words u1, . . . , uk in P whose concate-
nation is the word σ, and where xu for the word u = u(1) . . . u(s) denotes xu(1) · · ·xu(s).

We see that the coefficient C(σ) of a fixed σ ∈ Sn is then given by

C(σ) =
∑

k≥0

∑

σ=u1···uk

∑

n1>···>nk≥0

(xu1)
n1 · · · (xuk

)nk ,

where the ui’s are increasing non-empty words. It will be helpful to rewrite C(σ) as

C(σ) =
∑

k≥0

∑

σ=u1···uk

∑

n1>···>nk≥0

(xu1)
n1−n2(xu1u2)

n2−n3 · · · (xu1...uk
)nk

=
∑

k≥0

∑

σ=u1···uk

∑

m1,...,mk−1>0

mk≥0

(xu1)
m1(xu1u2)

m2 · · · (xu1...uk
)mk .

The condition that the ui’s be increasing words implies that C(σ) can be restructured as

C(σ) =
∑

p1,p2...,pn≥0
i∈D(σ)⇒ pi>0

(xσ(1))
p1(xσ(1)xσ(2))

p2 · · · (xσ(1) · · ·xσ(n))
pn.
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Observing that each monomial in the sum has
∏

j∈D(σ) xσ(1)xσ(2) . . . xσ(j) as a factor, we
get

C(σ) =





∏

j∈D(σ)

xσ(1)xσ(2) . . . xσ(j)



× (5.3)

∑

p1,p2...,pn≥0

(xσ(1))
p1(xσ(1)xσ(2))

p2 · · · (xσ(1) · · ·xσ(n))
pn

=

∏

j∈D(σ) xσ(1)xσ(2) . . . xσ(j)
∏n

i=1(1− xσ(1)xσ(2) . . . xσ(i))
, (5.4)

as required.

We close with a remark that again relates our work to Stanley’s P -partitions. Compar-
ing (5.4) with [18, Lemma 4.5.2(a)], we see that C(σ) is exactly the generating function
for the set of all σ-compatible permutations, as defined in [18].
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