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π-phases in balanced fermionic superfluids on spin-dependent optical lattices
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1Departamento de F́ısica de Materiales, Universidad Complutense de Madrid, E-28040 Madrid, Spain
2Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA

(Dated: October 12, 2009)

We study a balanced two-component system of ultracold fermions in one dimension with attractive
interactions and subject to a spin-dependent optical lattice potential of opposite sign for the two
components. The ground-state develops a non-trivial superconducting order parameter as the depth
of the lattice is increased. The real-space gap parameter changes sign and is analogous to the Fulde-
Ferrell-Larkin-Ovchnnikov states discussed in the context of superconductors in magnetic fields. We
discuss how to observe these π-phases using the rapid-ramp technique. In addition we discuss laser
setups that can produce the required lattices needed for these novel phases to appear.

PACS numbers: 67.85.-d,03.75.Ss,71.10.Pm,74.45.+c

One of the most intriguing examples of the interplay
of superconductivity and magnetism is the Fulde-Ferrel-
Larkin-Ovchinnikov (FFLO) phase, where Zeeman split-
ting of the Fermi surfaces should lead to spatial oscil-
lations of the pairing amplitude. It is difficult to ob-
tain such phases in superconductors, since the orbital
effect of the magnetic field is typically much larger than
the spin Zeeman splitting. Several proposals have been
made, however they remain controversial [1]. For ex-
ample, FFLO phase has been discussed in the context of
heavy fermion CeCoIn5 superconductors [2, 3], but alter-
native interpretation in terms of competing magnetic or-
der has also been given [4]. So far the only unambiguous
demonstration of FFLO-like physics has been achieved in
heterostructures of ferromagnetic and superconducting
(F/SC) layers , where proximity coupling through fer-
romagnetic layers results in superconducting π-junctions
(see [1] for a review). We note that π-phases arising
from a different mechanism than FFLO have also been
discussed for high-Tc cuprates [1, 5].

Recently, in cold atoms, there has been a large body
of work, both experimental and theoretical, aimed at
achieving FFLO states. The biggest difficulty is that
FFLO phases are fragile and extremely susceptible to
phase separation and the experimental situation remains
controversial [6, 7, 8, 9, 10]. In this paper we propose
a novel system of ultracold fermions in an optical lattice
[11, 12] which can be used to observe FFLO type states
with oscillating pairing amplitude. The system which we
discuss is somewhat similar to F/SC heterostructures and
should be stable against phase separation. Our proposal
relies on the ability to create spin dependent optical lat-
tices and we find that beyond a certain critical strength of
such optical potential, the superconducting pairing am-
plitude becomes a sign changing function (we will refer
to such states as as π-phases, see Fig. 2).

The gap profile in the ground-state depends on the
wavelength of the lattice, λ, and the strength of the po-
tential, V0. In Fig. 1 we present the (V0, λ) phase dia-
gram showing the transitions from constant gap to the
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FIG. 1: Phase diagram showing the emergence of π-phases
for a spin-dependent lattice potential of wavelength λ and
strength V0 for interaction strength g1DkF /EF = −2.04 and
zero temperature. A gradient of colors gives the average of the
absolute value of the gap. The black lines indicate transitions
from gap profiles with zero, two, four, six and eight zero-
crossings per unit cell. These regions are labelled BCS, π, 2π,
and 3π respectively.

π-phases with several zero-crossings in the pairing ampli-
tude. A color gradient gives the root-mean-square value
of the gap and the black lines indicate the transitions.
We clearly see π-phases occuring in a broad range of λ

restricted from below only by the coherence length as we
will discuss. The emergence of oscillations in the gap
gives clear signatures in the Fourier transform. We will
demonstrate how the rapid-ramp techniques can be used
to observe these states in time-of-flight measurements.
We also suggest ways to make spin dependent large wave-
length lattice potentials in the high-field regime as is
needed to access π-phases.

The quasi-1D system we study is described by the ef-
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FIG. 2: The polarization (n↑(x)− n↓(x))/kF in blue and pairing ∆(x)/EF in red as functions of 2x/λ, for the case of 0-phase
(left), π-phase (two figures in the middle), and 2π-phase (right) at zero temperature. The dashed and dotted black lines in
the left plot show the spin-dependent lattice potential. Here kF λ = 30, T = 0, g1DkF /EF = −2.04, and V↑(x) = −V↓(x) =
V0 cos(2πx/λ).

fective Hamiltonian [13]

H − µ↓N↓ − µ↑N↑ =
∑

σ=↑↓

∫

dxΨ
†
σ
(x)[−

!
2

2m

∂2

∂x2
+ Vσ(x) − µσ]Ψσ(x)

+ g1D

∫

dxΨ
†
↑(x)Ψ†

↓(x)Ψ↓(x)Ψ↑(x), (1)

where g1D is the effective 1D coupling constant (we use
g1DkF /EF = −2.04 as in [13]). We consider a balanced
system but introduce chemical potentials µσ since the
optical lattice potential is spin-dependent. For the main
part of this work we use V↑(x) = V0 cos(2πx/λ) and
V↓(x) = −V↑(x) in which case µ↑ = µ↓. In the non-
interacting system, the spin-dependent lattice spatially
displaces the degenerate solution of the two components
as V0 is increased. In a simple-minded picture, pairing
of these states will generate spatial variation in the order
parameter which is the origin of π-phases.

We solve the Hamiltonian of Eq. (1) in mean-
field theory by using the inhomogeneous Bogoliubov-
deGennes (BdG) ansatz for the field operator Ψσ(x, t) =
∑

k[ukσ(x)e−iωkσtckσ + σv̄kσ̄(x)eiωkσ̄tc†kσ̄
], where the c

and c† denote the quasiparticles and the sum runs over
ωkσ > 0 with k the quasiparticle index composed of a
quasimomentum and the band index. The mean-field
equations are

[

Hσ ∆(x)
∆̄(x) −H−σ

] (

ukσ(x)
vkσ(x)

)

= ωkσ

(

ukσ(x)
vkσ(x)

)

,

Hσ = −
!

2

2m

∂2

∂x2
+ Vσ(x) − µσ + g1Dn−σ(x), (2)

where nσ(x) = 〈Ψ†
σ
(x)Ψσ(x)〉 and ∆(x) =

−g1D〈Ψ↓(x)Ψ↑(x)〉. These equations can be solved

self-consistently for densities and gap through

n↑(x) =
∑

ωk↑≷0

f(ωk↑)|uk↑(x)|2 =

∞
∑

m̃=−∞

n↑m̃ei2πm̃x/λ

n↓(x) =
∑

ωk↑≷0

f(−ωk↑)|vk↑(x)|2 =

∞
∑

m̃=−∞

n↓m̃ei2πm̃x/λ

∆(x) = g1D

∑

ωk↑≷0

f(ωk↑)uk↑(x)v̄k↑(x)

=

∞
∑

m̃=−∞

∆m̃ei2πm̃x/λ, (3)

where f(ωkσ) = 1/(1 + exp(!ωkσ/kBT )) is the Fermi-
Dirac distribution. In Eq. (3) we use the periodicity of
the optical lattice to do a Fourier decomposition. Notice
that these equations only contain u, v for σ =↑ [13]. We
have explicitly checked the convergence of our numerical
solutions by extending the cut-off on the basis size.

The mean-field BdG ansatz does not take into account
soft collective modes of the order parameter which, in
principle, lead to the power law decay of the supercon-
ducting correlations. However, the BdG approach de-
scribes the ground state energy in our parameter regime
well, which is determined by correlations on the scale of
the BCS correlation length [13, 14]. Thus we expect it
to also correctly capture the competition between 0- and
π-phases.

In Fig. 2 we show (n↑(x) − n↓(x))/kF and ∆(x)/EF

as functions of 2x/λ with kF λ = 30 for amplitudes
V0/EF = 0.38, 0.39, 0.69 and 0.70. Here we notice a
sudden jump in the gap from an even to an odd function
(around x = 0) at the definite value V0/EF = 0.39, and
again at V0/EF = 0.70. We will give arguments as to
why this occurs in the following sections. The signature
of the new phases are even more clear in Fig. 3 which
shows the largest components of |∆m̃|. Here we see a
very clear jump between even and odd Fourier compo-
nents as V0 is increased. This transition constitutes the
main result of our paper and below we propose a way
to observe the π-phases which is clearly distinguishable
from other oscillatory behaviors in the gap.
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FIG. 3: Plot of the absolute value of the Fourier components
of ∆(x) in Eq. (3) for m̃ = 0, 1, 2, 3, 4, and 5 as function of the
lattice potential strength V0 (parameters as in Fig. 2). Only
even components are non-zero for V0/EF ≤ 0.39, whereas
only odd ones are non-zero for 0.39 ≤ V0/EF ≤ 0.69, and so
forth. This is the tell-tale sign of the transition from the 0-
to the π-phase.

The spin-dependent lattice we use here is invariant un-
der spatial reflection. We can therefore characterize our
solutions for ∆(x) in terms of their parity under reflec-
tion. In addition, for the balanced system, we study the
symmetry of the lattice potential implies that the den-
sities are even and interchanged every half wavelength
(λ/2). We can use this observation to restrict the func-
tional form of the gap. In the absence of any currents,
the gap obeys ∆(x + λ/2) = ±∆(x). Combined with
the full periodicity ∆(x + λ) = ∆(x), we see that either
only even or only odd Fourier components survive which
facilitates its unmistakable detection.

Our spin-dependent lattice potential effectively acts as
a spatially varying magnetic field. In agreement with
FFLO states in homogenous systems with a uniform mag-
netic field, we find a critical value of V0 for the π-phase to
develop, and with increasing V0 more oscillations in the
gap appears. Furthermore, there is a suppresion of the
gap magnitude as V0 grows as seen in the homogeneous
case [13]. The difference for our system is that the wave-
length of variations in the gap does not vary continuously
but changes at discrete values of V0 since the oscillations
must be commensurate with the lattice potential. FFLO
states are similar to π-phases since modulation of the
pairing field generates a lower energy solution. However,
the present proposal differs from FFLO since we do not
have a global spin imbalance.

The transition between the different π-phases can be
explained by an energy balance argument. They are
driven by the competition between interaction (pairing
and Hartree terms) and potential energy in the lattice.
First consider the situation where the gap and densities
are almost constant and even functions, ∆

e(x) = ∆0

and n↑(x) = n↓(x) = n0/2 (V0/EF ≤ 0.38 in Fig 2),
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FIG. 4: Same as Fig. 3 but with V↑(x) = −3V↓(x)/2 =
V0 cos(2πx/λ).

and contrast this with the situation where the gap is
an odd function. Let us for simplicity assume the same
magnitude of the gap and introduce a corresponding os-
cillation in the densities, thus ∆

o(x) = ∆0 sin(2πx/λ)
and no

↑/↓(x) = n0/2 ∓ (δn/2) cos(2πx/λ). In the long-
wavelength limit we can neglect the kinetic energy and
the energy densities of the even and odd state can be
written

ve/o :=

∫

dx

[

∑

σ

Vσ(x)ne/o
σ

(x)+

g1Dn
e/o
↓ (x)n

e/o
↑ (x) + |∆e/o(x)|2/g1D

]

/L, (4)

where L is the system size. From our ansatz we get ve =
g1Dn2

0
/4 + ∆

2

0
/g1D and vo = g1Dn2

0
/4 + ∆

2

0
/(2g1D) −

V0δn/2 − (g1D/2)(δn/2)2. If we determine the density
variation in the odd state by requiring minimal energy, we
find vo = g1Dn2

0
/4+∆

2

0
/(2g1D)+V 2

0
/(2g1D) from which it

follows that the constant even solution is lower in energy
until V0 = ∆0. Taking ∆0/EF ∼ 0.3 from Fig. 2 gives
V0/EF ∼ 0.3. Numerically we find ∆0/EF ∼ 0.39, about
30% higher. At small λ we expect large deviations from
this estimate. This is caused by the neglected kinetic
term that grows with decreasing λ and push the jump to
larger V0.

The transitions we find are very sharp as illustrated in
Figs. 2 and 3. The 0- and π-phase have different parities
and we therefore have a crossing of ground-states as we
tune V0. We test the stability of our predictions by us-
ing a potential that has V↑(x) = −3V↓(x)/2. As Fig. 4
shows, a sharp transition occurs also in this case. Even
though this potential breaks λ/2 symmetry, there is still
conservation of parity, thus ∆−m = ±∆m, and a sharp
transition still occurs. However, we no longer have either
even or odd Fourier components.

The results discussed thus far use kF λ = 30. For
smaller λ ∼ ξ, the lattice drives the system into the nor-
mal state before showing any noticeable oscillations of the
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gap. For the interaction strength g1DkF /EF = −2.04,
we estimate that kF λ ! 12 is necessary to support ob-
servable π-phases. In the phase diagram in Fig. 1 the
suppression of the gap at the transitions at small λ is
clearly seen. Fig. 1 also demonstrates that more zeros of
the gap per unit cell could be accessible in experiments.
The presented results are for the zero temperature case.
We find that our results are robust up to T ∼ 0.1TF

for the full phase diagram. Above this temperature the
effects are washed out as the gap vanishes rapidly.

In order to detect the π-phase, the rapid ramp tech-
nique can be used to transfer opposite spin pairs into
molecules on the BEC side of the Feshbach resonance as
shown in [15, 16, 17]. If the gap is uniform over the tube
we expect to see only one prominent peak at zero mo-
mentum in a time-of-flight image. However, if there is an
oscillating component, ∆ ∝ sin(2πx/λ), it translates into
molecules going in opposite horizontal directions with ve-
locity v = h/(mλ). Assuming a 35 ms vertical drop under
gravity and λ = 7.6 µm, the molecules are displaced hor-
izontally by x ∼ 91 µm. Leftover unpaired atoms can
be separated by a Stern-Gerlach field. In particular for
Vσ(x) = −V−σ(x), π-phases are linked to either only odd
or only even Fourier components of the order parame-
ter and after the rapid ramp process, two spots on the
screen clearly shows that the system has gone through
a π-phase, and rules out other types of oscillation in ∆.
On the other hand, phase-separated densities located in
the minima of their respective potentials would require
many Fourier components.

For experimental realization we focus here on 40K [18].
6Li is another possible candidate, although we note that
a spin-dependent lattice is harder to implement [19]. We
assume a 1D geometry of tubes that are optically trapped
with a superposed magnetic field to control the interac-
tion via the Feshbach resonance at B0 = 202.1G. Using
N ∼ 100 per tube of length L ∼ 40µm, we have n ∼ 2.5
µm−1 and kF = πn/2 ∼ 3.93 µm−1. For simplicity we
neglect the external confinement.

In the unpolarized system, the appearance of π-phases
in the order parameter requires a spin-dependent lattice
potential with a wavelength longer than the coherence
length. In general we need λ ! ξ. To fulfil both require-
ments multiple lasers should be used [20, 21, 22]. To
get spin-dependence there are several proposals and we
focus on the one of [22]. The splitting is controlled by
the difference in laser intensity and phase of left-circular
and right-circular polarized light. Furthermore the tran-
sition is between the 2S1/2 and 2P1/2,

2P3/2 lines with
optical wavelength λopt ∼ 770 nm. To change λ in the
lattice one changes the angle between laser and tubes.
The magnetic field is aligned parallel to the lasers. If θ is
the angle between the tubes and these lasers, the lattice
wave-length is λ = λopt/2 cos(θ). kF λ = 30 translates to
7.6 µm and θ ∼ 87o. Since this is almost perpendicular
to the 1D tube, the heating will also be reduced as most

of the recoil is absorbed in the confining potential.
In an actual experiment it has been suggested 1D tubes

in an intermediate strength 2D optical lattice will give
the best conditions for observing the FFLO state in 1D
[23], and we expect this to hold for our π-phases as well.
Our proposal differs from other studies on FFLO states
in cold atom since we use an unpolarized gas. The Fermi
surfaces are therefore identical for the two spins and the
non-trivial pairing properties of the system are entirely
due to the spin-dependent lattice potential.
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