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ABSTRACT

With the ubiquity of information networks and their broad
applications, the issue of similarity computation between en-
tities of an information network arises and draws extensive
research interests. However, to effectively and comprehen-
sively measure “how similar two entities are within an in-
formation network” is nontrivial, and the problem becomes
even more challenging when the information network to be
examined is massive and diverse. In this paper, we pro-
pose a new similarity measure, P-Rank (Penetrating Rank),
toward effectively computing the structural similarities of
entities in real information networks. P-Rank enriches the
well-known similarity measure, SimRank, by jointly encoding
both in- and out-link relationships into structural similarity
computation. P-Rank is proven to be a unified structural
similarity framework, under which all state-of-the-art simi-
larity measures, including CoCitation, Coupling, Amsler and
SimRank, are just its special cases. Based on its recursive
nature of P-Rank, we propose a fixed point algorithm to
reinforce structural similarity of vertex pairs beyond the lo-
calized neighborhood scope toward the entire information
network. Our experimental studies demonstrate the power
of P-Rank as an effective similarity measure in different in-
formation networks. Meanwhile, under the same time/space
complexity, P-Rank outperforms SimRank as a comprehen-
sive and more meaningful structural similarity measure, es-
pecially in large real information networks.

Categories and Subject Descriptors

G.2.2 [Graph Theory]: Graph algorithms; H.2.8 [Database
Applications]: Data mining

General Terms

Algorithms, Measurement, Performance, Reliability
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Structural similarity, Information network, Graph mining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’09, November 2-6, 2009, Hong Kong, China.

Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

hanj@cs.uiuc.edu

sun22@uiuc.edu

1. INTRODUCTION

Social and technical information systems usually consist
of a large number of interacting physical, conceptual, and
human/societal entities. Such individual entities are inter-
connected to form large and sophisticated networks. With-
out loss of generality, we call these interconnected networks
as information networks (INs). Examples of INs include the
Web [15], highway or urban transportation networks [11], re-
search collaboration and publication networks [8], biological
networks [21] and social networks [19]. Clearly, INs are ubig-
uitous and form a critical component of modern information
infrastructure.

In this paper, we focus on the problem of similarity com-
putation on entities of INs. Our study is motivated by recent
research and applications on proximity query processing,
outlier detection, classification and clustering over different
INs, which usually require an effective and trustworthy eval-
uation of underlying similarity functions among entities. It
is desirable to propose a comprehensive similarity measure
on INs which can both map human intuition and generalize
well under different IN settings. However, it is nontrivial
to systematically compute entity similarity in a general and
effective fashion, and it becomes especially challenging when
the INs to be examined are massive and diverse.

In the mean time, multiple aspects of entities in INs can
be exploited for similarity computation, and the choices are
usually made domain-specifically. In this paper, we propose
a new structural similarity measure, P-Rank (Penetrating
Rank), which solely explores the link structure of the un-
derlying INs for similarity computation. Compared with
traditional text contents, the link-based structural informa-
tion is more homogenous and language independent, which
is critical for similarity computation [18]. Concretely, within
an IN, we compute P-Rank that says “two entities are simi-
lar if (1) they are referenced by similar entities; and (2) they
reference similar entities.” In comparison with the state-of-
the-art structural similarity measure, SimRank [10], which
considers the first aforementioned factor only, P-Rank en-
codes both in- and out-link relationships into computation
toward a semantically complete and robust similarity mea-
sure. Moreover, similarity beliefs of entity pairs are prop-
agated beyond local neighborhood scope to the entire IN,
whose global structure is fully utilized in order to reinforce
similarity beliefs of entites in a recursive fashion. P-Rank is
also proven to be a general framework for structural simi-
larity of INs and can easily be adapted in any IN settings
wherever there exist enough interlinked relationships among
entities. For practical applicability, P-Rank can be effectively
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Figure 1: A Heterogenous IN and Structural Simi-
larity Scores for SimRank (C' = 0.8) and P-Rank (C =
0.8, A=0.5)

coupled with other non-structural domain-specific similarity
measures, for example, textual similarity, toward a unified
similarity measure for INs.

Example 1.1: (A Heterogeneous IN) Consider a het-
erogeneous information network G in Figure 1, representing
a typical submission, bid, review and acceptance procedure
of a conference. G is regarded as heterogeneous if vertices
(entities) of G belong to different mutual exclusive cate-
gories, such as Conference = {c}, Committer Member =
{m1, ma2,ms} and Paper = {p1,p2,p3,pa}. Directed edges
model the relationships between vertices in different cate-
gories. Two structural similarity measures, SimRank and P-
Rank, for different vertex pairs of G are illustrated as well.
As shown in Figure 1, the conference c is considered similar
to itself, and the similarity scores (for both SimRank and
P-Rank) are set to be 1. For committee member pairs {mi,
ma}, {m1, ms}, and {msa, ms}, as both vertices of each
pair are pointed to by ¢ (they both are invited as commit-
tee members by the conference, c), we may infer that they
are similar. However, SimRank cannot differentiate among
these three pairs. (They have the same SimRank score, 0.4).
The main reason is that for committee member pairs, Sim-
Rank considers the in-link relationships with the vertex c
only, while neglecting out-link relationships with paper ver-
tices {p1,p2,ps3, pa}. P-Rank, however, takes into account of
both in- and out-link relationships for similarity computa-
tion. As to {m1, ma}, for example, because they both point
to p2 (both m1 and ma bid for paper p2), the structural sim-
ilarity between them is further strengthened (P-Rank score
is 0.420, which is different from that of {mq, ms} (0.295),
and that of {m1, ms} (0.380)). We generalize this idea by
observing that once we have concluded similarity between
m1 and mg, p1 and ps are similar as well because they are
pointed to by mi and maq, respectively, although this in-
ference is somehow weakened during similarity propagation.
Continuing forth, for every comparable pair of vertices in G,
we can infer P-Rank between them. O

Example 1.2: (A Homogeneous IN) Consider a homo-
geneous information network G in Figure 2, representing
a tiny literature graph. G is homogeneous if vertices of
G, which represent scientific publications in this example,
all belong to one category (“Publication”). Edges between
vertices are references/citations from one paper to another.
Different from heterogeneous INs, any pair of vertices in ho-
mogenous INs can be measured by their structural similarity
because they all belong to the same category. We present
SimRank and P-Rank scores for some of them, as shown in
Figure 2. SimRank cannot tell the differences between the
vertex pair {P2, P3} and {P3, P4}, solely because Sim-
Rank considers partial relationship information for similarity
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Figure 2: A Homogeneous IN and Structural Sim-
ilarity Measures for SimRank (C = 0.8) and P-Rank
(C =08, A=0.8)

computation. More severely, SimRank is unavailable for the
vertex pairs {P4, P5} and {P2, P5}, mainly because these
vertex pairs do not have common in-link similarity flows.
However, P-Rank can successfully infer structural similarity
for all vertex pairs by considering both in- and out-link re-
lationships into computation, thus outperforms SimRank in
homogeneous INs. a

As its name dictates, P-Rank encodes both in- and out-
link relationships of entities in similarity computation, i.e.,
P-Rank scores flow from in-link neighbors of entities and
penetrate through their out-link ones. Furthermore, this
process is recursively propagated beyond the localized neigh-
borhood scope of entities to the entire IN. The major mer-
its of P-Rank are its semantic completeness, generality and
robustness. As a comprehensive structural similarity mea-
sure, P-Rank can be effectively adapted in INs with different
variety and scale, in which most up-to-date similarity mea-
sures, like SimRank, may generate biased answers or simply
fail due to the incomplete structural information considered
during similarity computation, as illustrated in Example 1.1
and Example 1.2. In order to compute P-Rank efficiently,
we propose an iterative algorithm which converges fast to a
fixed-point. The correctness of the algorithm is proven that
the iterative algorithm always converges to its theoretical
upper bound.

The contributions of this paper are summarized as follows:

1. We propose a new structural similarity measure, P-
Rank, which is applicable in INs. We study its mathe-
matical properties, its advantages over other state-of-
the-art structural similarity measures, and its deriva-
tives under different IN settings.

2. We propose a fixed-point iterative P-Rank algorithm
toward effectively computing P-Rank in INs. We prove
the correctness of the algorithm and discuss the opti-
mization techniques to facilitate P-Rank computation
in different scenarios.

3. P-Rank is shown to be a unified structural similarity
framework in INs, under which the well-known struc-
tural similarity measures, CoCitation, Coupling, Amsler
and SimRank , are all its special cases.

4. We do extensive experimental studies on both real and
synthetic data sets. The evaluation results demon-
strate the power of P-Rank as a general structural sim-
ilarity measure for different INs.

The rest of the paper is organized as follows. Section 2
discusses related work. In Section 3, we present our struc-
tural similarity measure, P-Rank, from both mathematical



and algorithmic perspectives. We report our experimental
studies in Section 4. Section 5 concludes the paper.

2. RELATED WORK

As common standards to determine the closeness of dif-
ferent objects, similarity (or proximity) measures are crucial
and frequently applied in clustering, nearest neighbor clas-
sification, anomaly detection and similarity query process-
ing. Compared with traditional textual contents, link-based
structural context in INs is of special importance and ex-
ploited frequently in similarity computation. In previous
studies, SimFusion [23] aimed at “combining relationships
from multiple heterogeneous data sources”. [16] proposed
a similarity measure based on PageRank score propagation
through link paths. [7] explored methods for ranking partial
tuples in a database graph. Maguitman et al. did extensive
comparative studies on different similarity measures [18],
and the results demonstrate that link-based structural sim-
ilarity measures produce systematically better correlation
with human judgements compared to the text-based ones.

In bibliometrics, similarities between scientific publica-
tions are commonly inferred from their cross-citations. Most
noteworthy from this field are the methods of CoCitation [22],
Coupling [13] and Amsler [1]. For CoCitation, the similarity
between two papers p and ¢ is based on the number of papers
which reference both p and ¢q. For Coupling, the similarity
is based on the number of papers referenced by both p and
q. Amsler fuses both CoCitation and Coupling for similarity
computation. These methods have been efficiently applied
to cluster scientific publications and web pages [20].

SimRank [10, 6, 17], together with its variant [2], is an iter-
ative PageRank-like structural similarity measure for INs. It
goes beyond simple CoCitation much as PageRank goes be-
yond direct linking for computing importance of web pages.
The weakness of SimRank, called the limited information
problem, is discussed in [10]. SimRank makes use of in-
link relationships only for similarity computation while ne-
glecting similarity beliefs conveyed from out-link directions.
Therefore, the structural information of INs is partially ex-
ploited and the similarity computed is inevitably asymmet-
ric and biased. In real INs, those “unpopular entities”, i.e.,
entities with very few in-link relationships will be penalized
by SimRank. More severely, SimRank can even be unavail-
able for entities with no in-link similarity flows (shown in
Example 1.2). However, those entities with few or no in-
links are dominating the INs in quantity, as expressed by
the power law distribution and heavy-tailed in(out)-degree
distribution [4]. Meanwhile, these entities are often not ne-
glectable because they are new, potentially popular, and in-
teresting to most users. However, they tend to be harder for
humans to find. To overcome the limited information prob-
lem of SimRank, we propose P-Rank which refines structural
similarity by jointly considering both in- and out-link rela-
tionships of entity pairs. Furthermore, the similarity compu-
tation goes beyond the localized neighborhood so that the
global structural information of INs are exploited to rein-
force similarity beliefs of entities. As discussed in the re-
minder of the paper, with the same time/space complexity
as SimRank, P-Rank can achieve much better results and
solve the limited information problem effectively. Heymans
et al. [9] proposed similar ideas to model structural simi-
larity of enzymes in metabolic pathway graphs in order for
the phylogenetic analysis of metabolic pathways. However,

their similarity are on vertices in different graphs and if the
factors of dissimilarity and absence of edges are not consid-
ered, their work can be regarded as a special case of P-Rank
(C=1and A=0.5).

Iterative fixed-point algorithms over the web graph, like
HITS [14] and PageRank [3], have been studied and applied
to compute “importance” scores for Web pages. Results show
that the usage of structure of INs can greatly improve search
performance versus text alone.

3. P-RANK

The basic recursive intuition of P-Rank can be expressed
as “two entities in an IN are similar if they are related to
similar entities”. More specifically, the two-fold meaning of
P-Rank is elaborated as

1. two entities are similar if they are referenced by similar
entities

2. two entities are similar if they reference similar enti-
ties

As the base case, we consider an entity maximally similar
to itself, to which we can assign the P-Rank score of 1. (If
other entities are known to be similar a-priori, their similar-
ities can be pre-assigned as well.) For each pair of distinct
entities, we take into consideration both their in- and out-
link relationships for similarity computation. This similarity
is then penetrating from in-link neighbors to out-link ones
and propagated toward the entire IN.

3.1 Preliminaries

We model an IN as a labeled directed graph G = (V, E, ;1)
where vertex v € V represents an entity of the domain and
a directed edge (u,v) € E represents a relationship from
entity u to entity v, where u,v € V. ¥ is an alphabet set
and [ : V — X is a labeling function. In heterogeneous
INs, V.={VilJVz---UVa} can be partitioned into n mu-
tual exclusive vertex subsets, V1, Va, -, V,, Vi V; = 0 for
1 < i,j < n, which belong to n different domain-specific
categories. In homogeneous INs, however, there is no dis-
tinction among vertices. Note that our definition of INs can
be naturally extended to undirect graph or edge-weighted
graph settings.

For a vertex v in a graph G, we denote by I(v) and
O(v) the set of in-link neighbors and out-link neighbors
of v, respectively. Note that either I(v) and O(v) can be
empty. An individual in-link neighbor is denoted as I;(v),
for 1 < ¢ < |[I(v)], if I(v) # 0, and an individual out-link
neighbor is denoted as O;(v), for 1 < < |O(v)], if O(v) # 0.

3.2 P-Rank Formula

We denote the P-Rank score for vertex a and b by s(a, b) €
[0,1]. Following our aforementioned intuition, P-Rank can
be formalized recursively in Equation (1), when a # b:

c [L(a)| [1(b)]
s(a,b) = X x m lz::l JZZl s(Ii(a), 1;(b))
[O(a)] [O®)] M

C
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Otherwise, P-Rank is defined as
s(a,b) =1 (2)

+ (1—-X)x



In Equation (1), the relative weight of in- and out-link
directions is balanced by parameter A € [0,1]. C is set as a
damping factor for in- and out-link directions, C' € [0,1] *.
The reason is that s(a, b) will be attenuated during similarity
propagation. When I(a)(or I(b)) = 0, the in-link part is
invalidated and only the out-link direction takes into effect.
Similarly, when O(a)(or O(b)) = 0, only the similarity flows
from in-link part are considered. If both I(a)(or I(b)) = 0
and O(a)(or O(b)) =0, we define s(a,b) = 0.

Equation (1) is written for every pair of vertices a,b € G,
resulting in a set of n? equations for a graph of size n. To
solve the set of n? equations, we rewrite the recursive P-Rank
formula (shown in Equation (1)) into the following iterative
form

Ro@n ={ § GeZy ®
and
c [1(a)| [1(b)]
Rii1(a,b) = Ax T 2::1 JZ:l Ry (Ii(a), 1;(b))
c 10(a)| |O()] @
+ (1= x o@Ion] X 3221 Ry (0i(a), 0;(b))

where Ri(a,b) denotes the P-Rank score between a and b
on iteration k, for a # b and Rk(a,b) = 1 for a = b. We
progressively compute Rp41(%,%) based on Ry (*,x). That
is, on iteration (k + 1), we update Riy1(a,b) by the P-Rank
scores from the previous iteration k. This iterative compu-
tation starts with Ro(*,*) where Ro(a,b) is a lower bound
of the actual P-Rank score, s(a,b).

Theorem 3.1: The iterative P-Rank equations (shown in
Equation (3) and Equation (4)) have the following properties

1. (Symmetry) Ry(a,b) = Ry(b,a)
2. (Monotonicity) 0 < Ri(a,b) < Riy1(a,b) <1

3. (Existence) The solution to the iterative P-Rank equa-
tions always exists and converges to a fixed point,
s(*,*), which is the theoretical solution to the recur-
sive P-Rank equations.

4. (Uniqueness) the solution to the iterative P-Rank equa-
tions is unique when C # 1.

Proof: Shown in Appendix. |

Theorem 3.1 demonstrates four important properties of
P-Rank. For any vertices a,b € G, the iterative P-Rank be-
tween a and b is the same as that between b and a, i.e.,
P-Rank is a symmetric measure, as mentioned in property
1 (Symmetry). Property 2 (Monotonicity) shows that the
iterative P-Rank is non-decreasing during similarity compu-
tation. However, the solution will not go to infinity. Prop-
erty 3 (Ezistence) and 4 (Uniqueness) guarantee that there
exists a unique solution to n? iterative P-Rank equations,
which can be reached by iterative computation to a fixed

'For a more general form of P-Rank, C' can be replaced by
two different parameters C;,, and C,y: to represent damping
factors for in- and out-link directions, respectively. We omit
the details as it is fairly easy to extend our work into that
scenario.
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Figure 3: Structural Similarity Matrix for INs

point, i.e., the solution to iterative P-Rank converges to a
limit which satisfies the recursive P-Rank equation, shown
in Equation (1):

Va,bedG, klim Ry (a,b) = s(a,b) (5)

In real applications, iterative P-Rank converges very fast (de-
tails are shown in Section 4). Empirically, we can choose to
fix a small number of iterations (k & 5) to derive P-Rank for
all pair of vertices in real INs.

3.3 Derivatives of P-Rank

Besides its semantic completeness with a consideration of
both in- and out-link relationships in similarity computa-
tion, P-Rank outperforms other structural similarity mea-
sures by its generality and flexibility. As shown in Figure 3,
all of the state-of-the-art structural similarity measures pro-
posed so far for INs are illustrated in the structural simi-
larity matrix. Among all measures shown in Figure 3, P-
Rank enjoys the most general form, from both the semantic
completeness perspective and the structure perspective. All
other measures, such as CoCitation, Coupling, Amsler and
SimRank, are just simplified special cases of P-Rank and can
be easily derived from P-Rank. P-Rank therefore provides
a unified framework for structural similarity computation
in INs. By analyzing the iterative P-Rank shown in Equa-
tion (4), we can draw the following conclusions:

1. When k =1, C =1 and A = 1, P-Rank is reduced to
CoCitation.

2. When k£ =1, C =1 and A = 0, P-Rank is reduced to
Coupling.

3. When k=1, C =1 and A = 1/2, P-Rank is reduced to
Amsler, which subsumes both CoCitation and Coupling.
Amsler can be regarded as a one-step P-Rank without
similarity propagation.

4. When k£ — oo and A = 1, P-Rank boils down to Sim-
Rank, which is an iterative form of CoCitation with no
out-link similarity considered.

5. When k — oo and A = 0, P-Rank is degenerated to a
new structural similarity measure, which is an iterative
form of Coupling with no in-link similarity involved.
Since this new measure considers out-link relationships
only and is the counterpart of SimRank, we name it rvs-
SimRank, short for reverse-SimRank. In real INs, rvs-
SimRank is more practical and useful than SimRank,
because entities of a massive IN are usually highly dis-
tributed. It is prohibitive to maintain a global view of



the whole IN. And an entity usually has a good knowl-
edge of what entities are referenced by it, but it is
hard to know what entities are referencing it without
a full scan of the entire IN. For example, a web page
contains hyper-links to other web pages for its own
sake, but it is impossible to know which web pages are
hyper-linking it without examining the whole Web be-
forehand. This becomes even more severe when INs
are dynamically changing over time. So, rvs-SimRank
is more robust and adaptive for measuring structural
similarity over large yet dynamically changed INs.

In real applications, P-Rank can be adapted flexibly to
different IN settings, as long as there exist enough inter-
linked relationships between entities. Even when the IN to
be studied has sparse in-link information or biased edge dis-
tribution in which SimRank may fail, P-Rank can still work
well in modeling structural similarities.

Another important issue is to select appropriate values for
parameters C, A and k in P-Rank computation. C' represents
the degree of attenuation in similarity propagation, and A
expresses the relative weight of similarity computation be-
tween in-link and out-link directions. A priori knowledge of
the IN infrastructure is usually helpful to select the values of
C and \. By sampling a set of subgraphs from the original
IN, we can learn the characteristics of the underlying IN,
and C, A can be set based on the sampled subgraphs as an
approximation. The convergence of iterative P-Rank is fast
with only several iterations of computation, so k is usually
set empirically as a small constant number. In Section 4, we
will systematically study the effects of different parameters
on P-Rank computation.

3.4 Computing P-Rank

Based on Section 3.2, the solution to the recursive P-Rank
formula (Equation (1)) can be reached by computing its it-
erative form (Equation (4)) to a fixed point. Algorithm 1
illustrates the iterative procedure for computing P-Rank in
an IN, G. Let n be the number of vertices in G and k be
the number of iterations executed until P-Rank converges to
its fixed point. For every vertex pair (a,b), an entry R(a,b)
maintains the intermediate P-Rank score of (a,b) during it-
erative computation. Because the (k+1)-th iterative P-Rank
score is computed based on P-Rank scores in the k-th itera-
tion, an auxiliary data structure R*(a,b) is maintained ac-
cordingly. As proven in Theorem 3.1(1), Ri(a,b) = Ri(b,a),
so only one order for each pair is stored explicitly. In real
implementations, either sparse matrixes or hash tables can
be chosen as core data structures for R(-,-) and R*(-,-). Be-
cause GG can be so large as not to be held in main memory,
any advanced data structures that optimize external mem-
ory accesses can be applied.

Algorithm 1 first initializes Ro(a,b) based on Equation 3
(Lines 1 — 4). During iterative computation, P-Rank in
(k+ 1)-th iteration, R*(-,-), is updated by R(,-) in the k-th
iteration, based on Equation 4 (Lines 6 —18). Then R(,-) is
substituted by R*(:,-) for further iteration (Lines 19 — 21).
This iterative procedure stabilizes rapidly and converges to
a fixed point within a small number of iterations. A typical
call to the algorithm can be P-Rank (G, 0.5, 0.8, [In(n)]),
where the relative weight A is set to be 0.5 and the damping
factor C' is set to be 0.8.

The space complexity of Algorithm 1 is O(n?), the amount
to store intermediate and final P-Rank scores of G, i.e., the

Algorithm 1: P-Rank (G, X, C, k)
Input : An IN G, the relative weight A, the

damping factor C, the iteration number k
Output: P-Rank score s(a,b),V a,b e G

1 foreach a € G do

/* Initialization */

2 foreach b € GG do
3 if a == b then R(a,b) =1
4 else R(a,b) =0
5 while (k > 0) do /* Iteration x/
6 k+—Fk-—1
7 foreach a € G do
8 foreach b € G do
9 in«—0
10 foreach i, € I(a) do
11 foreach i, € 1(b) do
12 in «— in + R(ia, i)
13 R*(a,8) — X ity
14 out «— 0
15 foreach o, € O(a) do
16 foreach o, € O(b) do
17 out «— out + R(0q, 0p)
18 R (a,b) += (1= A) * 55516
19 foreach a € G do /* Update */
20 foreach b € G do
21 R(a,b) = R*(a,b)

22 return R(x,*)

size of R*(-,-) and R(-,-). Let di and d2 be the average
in-degree and out-degree over all vertices of GG, respectively,
the time complexity of the algorithm is O(k(d5 +d3)n?), and
the worst case time complexity can be O(n*). In comparison
with SimRank whose space and time complexities are O(n?)
and O(n*), P-Rank has the same space and time complexities
with SimRank.

In [17], the authors improved the time complexity of Sim-
Rank from O(n*) to O(n®). The same memoization based
algorithms can be applied in the same way on P-Rank to re-
duce its time complexity to O(n?). In [6], the authors sug-
gested a scalable framework for SimRank computation based
on the Monte Carlo method. Essentially their computation
is probabilistic and the SimRank scores computed are an ap-
proximation to the exact answer. In order to make full use of
characteristics of different INs, we propose different pruning
algorithms to efficiently compute P-Rank.

Homogeneous Information Network: In homogeneous
INs, all vertices of G are of the same type. One way to re-
duce the space/time complexities in this scenario is to prune
less similar vertex pairs while not deteriorating the accuracy
of similarity computation too much. For n? vertex-pair of
G, only those adjacent to each other (say, vertices within a
radius of 3 or 4) are similar, while those whose neighbor-
hood have little or no overlap are far apart and inevitably
not similar. Thus radius-based pruning [10] can be used to
set the similarity between two vertices far apart to be 0,
and only those vertex-pairs within a radius of r from each
other in the underlying undirected graph G’ are considered
in similarity computation. Given a vertex u € G, let there
be d, such neighbors of u within a radius r on the underly-
ing undirect graph G’ on average, then there will be (n *d,)



vertex-pairs considered. The space and time complexities
become O(n * d,.) and O(k(d? + d3)d,n), respectively. Since
d, is likely to be much less than n, if r is small w.r.t. n, we
can think of this approximate algorithm as being linear with
a possibly large constant factor.

Heterogeneous Information Network: In heterogeneous
INs, vertices of G belong to different categories. Given two
vertices u,v € @, it is meaningless to measure structural
similarity between u and v if they belong to different cate-
gories. Thus the pruning technique in this scenario, called
category-based pruning, is to set the similarity between two
vertices belonging to different categories to be 0, and con-
sider only those vertex pairs within the same category. Let
there be ¢ different categories over the vertices of G, and
for each category i, there be n; vertices included, where
1 < i < c, then the total number of vertex pairs is 5, n7.
The space and time complexities then become O(>_, n7)
and O(k(d}+d3)(3°5_, n?)). Notice the following inequality
holds,

c (&
n® = (Z ni)? > Zn?
i=1 i=1
Category-based pruning can eliminate a huge number of ver-
tex pairs belonging to different categories, especially when
c is large. If the number of vertices in a specific category
is still so large that they cannot be held in main memory,
radius-based pruning can be further applied within this cat-
egory to facilitate the computation. [24] presented an ad-
vanced index-based algorithm, SimTree, for fast computa-
tion of similarity scores in heterogeneous INs if vertices in
every category are hierarchically organized. Our category-
based pruning algorithm is actually the specialized one-level
SimTree.

4. EXPERIMENT

In this section, we report our experimental studies on the
effectiveness of P-Rank as a comprehensive structural sim-
ilarity measure over different INs. We show the power of
P-Rank in comparison with the state-of-the-art structural
similarity measure, SimRank. In addition, the experiments
illustrate the feasibility and efficiency of the P-Rank algo-
rithm with pruning techniques in INs with different diversity
and scale.

We ran our experiments on two different datasets: one is
real data from DBLP? and the other is synthetic [5]. For the
real dataset, we further generate two different INs: one is a
heterogeneous IN and the other is a homogeneous IN. All our
experiments are performed on an Intel PC with a 2.4GHz
CPU, 2GB memory, running Redhat Fedora Core 4. All
algorithms including P-Rank and SimRank are implemented
in C++ and compiled by gcc 3.2.3. For ease and fairness
of comparison, we set the damping factor C' = 0.8 for both
SimRank and P-Rank; The relative weight A is set to be 0.5
for P-Rank , if not specified explicitly. All the default values
of parameters are set in accordance with [10].

4.1 A Heterogenous IN from DBLP

We first build a heterogeneous INs from DBLP. The down-
loaded DBLP data had its time stamp on March 15th, 2008.
The heterogeneous IN, G, contains four different kinds of

Zhttp://www.informatik.uni-trier.de/ ley/db/

Paper : 211607 H Author : 4979 H Conference : 2292

Figure 4: The Schema of the Heterogeneous IN from
DBLP Datasets. (The Number within Each Rectan-
gle Represents the Number of Vertices in the Cor-
responding Category.)

vertices: paper, author, conference and year. If a paper p
is written by an author a, there exists a directed edge from
p to a; If an author a participated in a conference ¢, there
exists a directed edge from a to ¢; For a specific year y, there
are bidirectional edges between both p and y and ¢ and y,
if the paper p was published in conference c in year y. Fig-
ure 4 illustrates the global schema of the heterogenous IN,
G. The number of vertices in G is 218930 and the number
of edges is 818301. More specifically, the number of paper
vertices is 211607; the number of author vertices is 4979;
the number of conference vertices is 2292 and the number of
year vertices is 52.

In order to evaluate the effectiveness of P-Rank, we choose
to test how different structural similarity measures perform
in clustering authors in G. It is worth noting that P-Rank
is not confined only in clustering applications. Any data
management applications adopting structural similarity as
an underlying function can make use of P-Rank as its sim-
ilarity measure. Meanwhile, P-Rank is orthogonal to the
specific clustering algorithms applied, i.e., P-Rank proposes
a general structural similarity measure which can be applied
in most existing clustering algorithms. We plug P-Rank and
SimRank into K-Medoids [12], respectively. The structural
distance between two vertices u,v € G is defined as

df(u,v) =1—s5(u,v) (6)

where s¢(u,v) is the similarity score generated by the sim-
ilarity function, f, (either p for P-Rank or s for SimRank).
We define compactness of the clustering results, Cy, as

. Z@K:1 Zmeci d(CE, ml)

Cy =
Zl§i<]’§K d(mi, m;)

(7)

where K is the number of clusters to be generated®; C; is
the i-th cluster; m;, m; are centers for cluster ¢ and cluster
J, respectively. Intuitively, the numerator of Equation (7)
describes intra-cluster distances and the denominator rep-
resents inter-cluster distances. Smaller Cy values demon-
strate better clustering performance. In the following ex-
periments, we compare Cp, and C; for P-Rank and SimRank,
respectively.

We run both P-Rank and SimRank over G until the simi-
larity scores converge. We then cluster author vertices by K-
Medoids algorithm, and K = 10. At the beginning, we ran-
domly choose 10 author vertices (without replacement) as
initial centers of clusters and run the K-Medoids algorithm.
We perform [ = 10 trials and the clustering results are shown
in Figure 6. As illustrated, P-Rank consistently achieves
more compact clustering results than does SimRank. The
main reasons are as follows: (1) P-Rank considers similarity

3Note K is different from k in Equation (4), which is the
number of iterations performed for iterative P-Rank.
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Figure 5: Top-10 Ranking Results for Author Vertices in DBLP by P-Rank

propagation from both in-link (paper vertices) and out-link
directions (conference vertices), which generates more com-
prehensive results than does SimRank for clustering authors;
(2) By simply considering in-link propagation only, SimRank
fails to measure quite a few vertex pairs in G. For Sim-
Rank, only those authors who cooperate (either directly or
indirectly) on some papers have significant similarity scores,
while others are regarded as dissimilar. In comparison, P-
Rank is more robust than SimRank. For two author vertices,
although they may not cooperate with each other (no in-link
propagation), as long as they participate in common confer-
ences (there exists out-link propagation), they are regarded
as similar to some extent. Therefore, quite a few vertices
which are dissimilar under SimRank’s scheme are now simi-
lar in P-Rank, which improves the compactness of clustering
results.
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Figure 6: Compactness vs. Number of Trials for
P-Rank and SimRank in the Heterogeneous IN

We then test the algorithmic nature and mathematical
property of P-Rank. Figure 7(a) plots structural similarity
scores of author pairs w.r.t. the number of iterations per-
formed in corresponding algorithms. The scores are aver-
aged by the top 10 highest ranked scores of author pairs
for P-Rank and SimRank, respectively. We see from the fig-
ure that the intermediate similarity scores Ry (*,*) become
more accurate on successive iterations. Iteration 2, which
computes Ra(*,*) from Ri(*,*), can be thought of as the
first iteration taking advantage of the recursive power of al-
gorithms for similarity computation. Subsequent changes
become increasingly minor, suggesting a rapid convergence.
The figure also manifests that the fixed point iteration pro-
cess stabilizes very fast, as the number of iterations, k, is
greater than 5. Figure 7(b) plots the structural similarity
scores of P-Rank and SimRank w.r.t. the rank number, N.
The downward curves for both P-Rank and SimRank present
a decrease in structural similarity as IV increases, which is

expected because highly ranked authors are more similar.
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Figure 7: Similarity Measures on Author Pairs in
the Heterogeneous IN from DBLP

We further examine the ground truth generated by P-Rank
on author vertices of G to test if it really reflects the real-
ity to single out similar authors from the DBLP dataset.
Although the judgement of similarity might be quite sub-
jective and difficult even for human beings, we still find very
interesting results by making use of P-Rank. As illustrated
in Figure 5(a), the top-10 highly ranked author pairs are
listed. We may notice that the author pairs with high P-
Rank scores share some common characteristics. First, they
are usually co-authors or share quite a few authorities as co-
authors. And they are purely dedicated in specific research
fields. In the mean time, highly ranked authors are inclined
to be clustered into a close related community, in which their
authorities are further reinforced. That is also another rea-
son why P-Rank outperforms SimRank in entity clustering,
as illustrated in the aforementioned experiment. We further
issue k-Nearest Neighbor (KNN) queries to retrieve top-k
most similar authors in IN G, given an author vertex ¢ as
a query. Figure 5(b) shows the ranked results for the query
“Philip S. Yu” and Figure 5(c) shows the ranked results for
the query “Michael Stonebraker”, where £ = 10. As illus-
trated, both results are quite intuitive and conform to our
basic understandings. Therefore, P-Rank can be effectively
used as an underlying metric for measuring structural simi-
larity in heterogenous INs, and its results obey our common
sense pretty well.

4.2 A Homogenous IN from DBLP

After the study of P-Rank on heterogeneous INs, we con-
tinue generating a homogeneous IN, G, on the DBLP dataset.
The vertex set of G is composed of a subset of papers in
DBLP and a directed edge exists from paper u to paper v if
u cited v. The number of vertices in the homogenous IN G
is 21740, and the number of edges is 65186.
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P-Rank and SimRank in the Homogeneous IN

Our first experiment is to study how the different struc-
tural similarity measures perform in clustering vertices in
homogenous IN. We plug P-Rank and SimRank respectively
as underlying similarity functions into K-Medoids (K = 10).
We randomly choose 10 vertices (without replacement) as
initial centers of clusters and run the K-Medoids algorithm.
We perform [ = 10 trials and the clustering results are shown
in Figure 8. As illustrated, P-Rank can achieve much bet-
ter results in clustering vertices in homogeneous IN, G. The
improvement can be at least 6 times better. And the cluster-
ing performance of P-Rank is consistently stable in different
experimental trials.

| P-Rank === |
1e+008 SimRank
(2]
‘®  1e+006 |-
a
)
£ 10000
]
>
* 100
1

{
1,

Structural Similarity Scores

Figure 9: Vertex Pair Distributions Based on P-
Rank and SimRank Scores in Homogeneous DBLP
IN

Different from heterogenous INs, homogeneous INs have
their vertices in one unique category and every vertex pair is
eligible for comparison under the P-Rank framework. How-
ever, SimRank may fail in homogeneous INs simply because
there might be no common in-link similarity flows for ver-
tex pairs. The problem becomes even more severe when
the IN is massive and the interlinked relationships are not
evenly distributed within the IN. As illustrated in Figure 9,
vertex pairs are reorganized into different histograms based
on their structural similarity scores computed by P-Rank
and SimRank, respectively. For example, vertex pairs whose
structural similarity scores are between [0.1,0.2) are put in
the third histogram. A special histogram “N/A” represents
vertex pairs whose structural similarity can not be measured
properly. Because of the very biased information consid-
ered during similarity computation, SimRank fails to gen-
erate meaningful similarity measures for a majority of ver-
tex pairs in the homogenous IN, as shown in the histogram
“N/A”. However, in the real homogenous IN with very un-
even relationship distributions, P-Rank can still work well
and is robust enough in structural similarity computation.
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Figure 10: Vertex Pair Distributions Based on P-
Rank and SimRank Scores in Homogeneous Syn-
thetic IN

4.3 Synthetic Datasets: R-MAT

We generate a synthetic homogeneous IN G based on the
Recursive Matriz (R-MAT) model [5], which naturally fol-
lows power-law (in- and out-)degree distributions for G. The
homogeneous IN G generated is a directed graph with 10°
vertices and 6 * 10° edges.

In this homogenous IN, we first test how P-Rank and Sim-
Rank perform when measuring structural similarity of ver-
tices in G. As illustrated in Figure 10, vertex pairs are
distributed to different histograms with different similarity
score intervals. Similar to Figure 9, SimRank again fails
to deliver meaningful structural similarity for a majority of
vertex pairs in IN, as shown in the histogram “N/A”. How-
ever, P-Rank can successfully measure structural similarity
for every pair of vertices in the homogeneous IN, G.
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Figure 11: P-Rank v.s. Different Parameters

We are also interested in how different parameters affect
P-Rank when computing similarity in the homogeneous IN.
We first test how the damping factor C' is correlated with
P-Rank. Figure 11(a) illustrates P-Rank scores in G w.r.t.
the number of iterations performed. The structural similar-
ity scores are averaged by the top 10 highest ranked scores
of vertex pairs. The damping factor, C, is set to be 0.2,
0.5 and 0.8, and three curves are plotted, respectively. It
is obvious that P-Rank grows proportionally with the in-
crease of C. When C = 0.2, P-Rank converges fast when
the number of iterations, k, is larger than 2. However, when
C = 0.8, P-Rank converges approximately at the 7th itera-
tion of computation. The reason is that when C' is set to a
small value, the recursive power of P-Rank will be weakened
and only vertices nearby can contribute in the structural
similarity computation. When C' is set high, more vertices
in G can participate in the process of recursive computation.
So P-Rank scores can be accumulated more easily and the
convergence therefore will take more time.

We then test how the relative weight, A, has an impact
on P-Rank. As discussed in Section 3.2, X trades off P-Rank



between the in-link and out-link relationships. When A =1,
P-Rank is equal to SimRank. And when A = 0, P-Rank is
equal to rvs-SimRank. As shown in Figure 11(b), the curve
representing A = 0.5 lies between curves representing A = 0
(rvs-SimRank) and A = 1 (SimRank). It means that when
A = 0.5, P-Rank well balances both in-link and out-link fac-
tors for measuring structural similarity. When A = 0.2, the
out-link relationships are still more important than the in-
link ones, and P-Rank is interpolated by similarity scores
from both sides. However, the curve representing A = 0.2 is
quite close to the rvs-SimRank curve (A = 0). A similar phe-
nomenon occurs for the curve representing A = 0.8, which is
quite close to the SimRank curve.

5. CONCLUSION

In this paper we propose a comprehensive structural simi-
larity measure, P-Rank, for large information networks (INs).
We start with the basic philosophy of P-Rank that two enti-
ties of an IN are similar if (1) they are referenced by similar
entities, and (2) they reference similar entities. In compari-
son with other structural similarity measures, P-Rank takes
into account of both in- and out-link relationships of entity
pairs and penetrates the structural similarity computation
beyond neighborhood of vertices to the entire IN. The advan-
tages of P-Rank are its semantic completeness, robustness
and flexibility under different IN settings. P-Rank is shown
to be a unified framework for structural similarity measures
over massive INs, under which the state-of-the-art similarity
measures as CoCitation, Coupling, Amsler and SimRank are
all its special cases. We present a fixed point algorithm for
computing P-Rank. Efficient pruning techniques under dif-
ferent IN settings are also proposed to reduce the space and
time complexity of P-Rank. We perform extensive experi-
mental studies on both real datasets and synthetic datasets
and the results confirm the applicability and comprehensive-
ness of P-Rank, as well as its significant improvement over
other structural similarity measures.
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APPENDIX
Proof: [Theorem 3.1]

1. (Symmetry) According to Equation (3) and Equa-
tion (4), it is obvious Ry(a,b) = Ri(b,a) for k > 0

2. (Monotonicity) If a = b, Ro(a,b) = Ri(a,b) = ... =
1, so it is obvious that the monotonicity property holds.

Let’s consider a # b. According to Equation (3), Ro(a,b) =

0. Base on Equation (4), 0 < Ri(a,b) < 1. So,
0 < Ro(a,b) < Ri(a,b) < 1. Let’s assume that for
all k, 0 < Rp_1(a,b) < Ri(a,b) <1, then
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Based on the assumption, we have (Rx(a,b)—Rk—1(a,b)) >

0,V a,b € G, so the left hand side Ryx11(a,b)— Ry (a,b) >
0 holds. By induction, we draw the conclusion that for
any k, Ry < Riyi1. And based on the assumption,
0 < Ri(a,b) <1, so
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50, Rr+1(a,b) < AC+ (1 —A)C < 1. By induction, we
know that for any k, 0 < Ry(a,b) < 1.

3. (Ezistence) According to Theorem 3.1-(2), Va,b € G,
Ry (a,b) is bounded and nondecreasing as k increases.
By the Completeness Axiom of calculus, each sequence
Ry (a,b) converges to a limit R(a,b) € [0,1]. Note
limg oo Ri(a,b) = limg—oc Re+1(a,b) = R(a,b), So we
have

R(a,b) = Jm Ry11(a,b)
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Note that the limit of Ry (x*, *), Wlth respect to k, right
satisfies the recursive P-Rank equation, shown in Equa-
tion (1).

. (Uniqueness) Suppose s1(*,*) and s2(x,%) are two

solutions to the n? iterative P-Rank equations. For
any entities z,y € G , let §(z,y) = si1(x,y) — s2(z,y)
be their difference. Let M = max(, ) |6(a,b)| be the
maximum absolute value of any difference. We need to
show that M = 0. Let |§(z,y)] = M for some a,b € G
. It is obvious that M = 0 if a = b. Otherwise,

d(a,b) = s1(a,b) — s2(a,b)
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