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ABSTRACT. Let X be an irreducible complete nonsingular curve of genus
g over an algebraically closed field k of positive characteristic p. If g > 2,
the automorphism group Aut(X) of X is known to be a finite group, and
moreover its order is bounded from above by a polynomial in g of degree four
(Stichtenoth). In this paper we consider the p-rank -7 of X and investigate
relations between if and Aut(X). We show that 1 affects the order of a Sylow
p-subgroup of Aut(X) (§3) and that an inequality |Aut(X)| < 84(g — l)g holds
for an ordinary (i.e. i = g) curve X (§4).

1. Introduction. Let k be an algebraically closed field. We consider a con-
nected complete nonsingular algebraic curve X over k. The genus and the auto-
morphism group of X are denoted by gx and Aut(A), respectively. It is a classical
fact that Aut(A) is a finite group when gx > 2. Further it is known that, for any
finite group G, there exists a curve X with G — Aut(A) (see Madden and Valentini
[5]). But if we consider a fixed curve X, the order of Aut(A) (we denote it by
| Aut(A)|) is bounded from above by a polynomial of gx- When charfc = 0, there
is a well-known inequality of Hurwitz (gx > 2):

(1.1) |Aut(A)|<84(<7X-l).

When p = char k is positive, the inequality (1.1) holds if 2 < gx < p — 2, except for
a curve y2 = xv — x (Roquette [7]). But when gx is large, (1.1) is no longer valid,
and instead we have the results of Stichtenoth [11] and Singh [10]. Stichtenoth's
theorem1 states that

(1.2) |Aut(A)| < l<ogx

holds when gx > 2 except for the curves below. The exceptional curves are the
complete nonsingular models of yq + y = xq+x where q runs over all powers of p =
charfc. (For the above curve A, gx = q(q-l)/2and |Aut(A)| = q3(q3 + l)(q2-l).)
From this we see that |Aut(A)| may be very large in the case charfc > 0, as
compared with the case charfc = 0. (Its cause is appearance of wild ramification.)

When p = char fc is positive, we have an important invariant of X other than gx ■
It is the p-rank ~/x of X (namely, the p-rank of the Jacobian of A). Concerning
-7x, it was observed [11, 13] that, for curves X with large Aut(A), it often occurs
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7x = 0. This suggests that 7x may affect the size of Aut(A) in some way. The
purpose of this paper is to show that actually 7x has influence on |Aut(A)|.

After explaining notation in §2, we show in §3 that 7x directly influences the
sizes of p-subgroups (p = charfc) of Aut(A), and prove, as its consequence, that
|Aut(A)| must be small for certain values of 7x- In particular, we may see that
the case 7x = 0 is really exceptional. In §4 we treat ordinary (i.e. gx = 7x)
curves, which occupy an open dense subset in the moduli space of curves of given
genus. Our result is that, when restricted to ordinary curves, we have an inequality
|Aut(A)| < 84(<?x - l)gx (gx > 2), which is better than the general estimate (1.2).
A noteworthy fact about an ordinary curve X is that, for any finite subgroup G of
Aut(A) and P E X, the second ramification group G2(P) (cf. §2) is always trivial
(Theorem 2(i)). The main tools of the proofs are the Riemann-Hurwitz formula
and the Deuring-Safarevic formula (see §2). Our arguments proceed by applying
these formulas to various coverings of curves.

2. Notation and formulas. To begin with, we explain the notation which
will be used throughout the paper. We fix an algebraically closed field fc of positive
characteristic and put p = charfc. A "curve" always means a connected complete
nonsingular algebraic curve over fc. For a curve X, the symbols gx,1x, Aut(A)
and fc(A) denote, respectively, the genus, the p-rank, the automorphism group and
the function field over fc, of X. The integer 7x is, by definition, the p-rank of the
Jacobian of X. When a curve X, a finite subgroup G of Aut(A) and a point P of
X are given, we define the ramification groups Gt(P) (i > 0) by

Go(P) = {oeG\o-P = P}

and for i > 1,

Gi(P) = {oE Go(P) | Ordp(cT ■ TTp - TTp) > i + 1} ,

wher^ 7Tp is a local uniformizing parameter at P and ordp means the order at P.
For properties of G¿ (P), we refer to [9, Chapter IV]. When a covering X —y Y of
curves is given, we denote its covering morphism by 7Tx/y : X —y Y. Further, if
A —» Y is a Galois covering, its Galois group is denoted by Gal(A/F). For natural
numbers a and b, (a, b) denotes the greatest common divisor of a and b, and for a
finite set S, \S\ means its cardinality. When q is a power of p, Fq denotes the field
with q elements.

Next we review the Riemann-Hurwitz formula and the Deuring-Safarevic formula
for Galois coverings of curves. Suppose that a finite Galois covering X —> Y is
given. For a point Q E Y, we define eg (ramification index) and d<o (different
exponent) in the following way: Put G = Gal(A/F) and take P E X which satisfies
*x/y(P) = Q- Then, eQ = \G0(P)\ and dQ = J2T=o(\Gi(P)\ - 1)- Since A - Y
is a Galois covering, eg and d<o do not depend on choice of P. We note that
dç > eQ - 1 is always true and dç > eç holds if and only if Q (i.e. P) is widly
ramified in X —* Y. With notation as above, the Riemann-Hurwitz formula is the
following (see e.g. [11, p. 529]):

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



p-RANKS AND AUTOMORPHISM GROUPS OF ALGEBRAIC CURVES 597

We further assume that G = Gal(A/Y) is a p-group (p = charfc). Then we have
the following equality, which is called the Deuring-Safarevic formula (see e.g. [4, 6,
12]):

(2-2) ^w^-rv-i+E (*-<)•
1     ' Q€Y

These formulas will be used to estimate |67| from above.

3. 7x and p-subgroups of Aut(A). Let A be a curve. In this section we
investigate how the values of the p-rank 7x and the difference gx — 7x affect the
sizes of p-subgroups of Aut(A).

First we deal with 7x- Namely, we prove the following

THEOREM l.   Let X be a curve with gx > 2, and let H be a Sylow p-subgroup
of Aut(X).  Then the following hold.

(i) When 7x > 2, we have

(3.1) \H\ < cp (7x - 1),
where cp — p/(p — 2) (p > 3) and c2 = 4.

(ii) When 7x = 1 and p > 3, H is a cyclic p-group and \H\ divides gx — 1-
Further the covering X —y X/H is unramified.

(hi) When 7x = 1 and p = 2, we have \H[ < 4(ox — 1)-
(iv) When 7x = 0, we have

|tf|<maxJ0x,^^ffx}-
PROOF. We put Z = X/H and denote by es (S E Z) the ramification index of

S with respect to X -* Z. Set A = (7x - l)/|ff|. Then by formula (2.2),

(3.2) A = 72-l+£(1-es1)-
sez

Here we note that if eg > 1, then eg > p holds, because ff is a p-group. Assume
that 7x > 2, i.e. A > 0. We should prove A > c"1. If 72 > 2, (3.2) shows
A > 1 > c~x. If 7z = 1, there exists Si E Z with es, > 1, since A > 0. Then from
(3.2), A > 1 - eg1 > 1 — p_1 > cZ"1. If 72 = 0 and p > 3, there are two points
Si, S2 E Z with es,, eg2 > 1, since A > 0. Then we have A > —1+2(1—p_1) = c~x.
If 7z = 0 and p = 2, we have two cases; (a) there are Si, S2 E Z with es, > 4
and es2 > 2 (note that es is a power of p = 2), (b) there are Si, S2, S3 E Z with
eSi > 2 (i = 1,2,3). In both cases (a) and (b), we obtain from (3.2), A > \ and
A > \, respectively. Thus (i) is proved. Next assume that 7x = L i-e- A = 0.
Then, from (3.2), 7z = 0 or 1. If 72 = 1, we have es = 1 for all S E Z, i.e. X -> Z
is unramified. Since 7z = 1, an unramified p-covering of Z must be cyclic (cf. [8,
2]). Hence H = Gal(X/Z) is a cyclic p-group. Further, (2.1) gives 2<7x - 2 =
\H\(2gz — 2), which shows that \H\ divides gx — 1. In particular, \H\ < gx — 1-
The case 7z = 0 cannot occur if p > 3, because we have | < 1 — p_1<l-eg1<l
when es > 1, and hence J2sez(L ~ eg1) ^ *• This proves (ii). In the case 7z = 0
and p = 2, we have e^ = es2 = 2 for Si, S2E Z and es = 1 if S ^ Si, S2. Hence
(2.1) shows

(2gx - 2) /|ff I = 2gz-2+Xî (dSí + dg2).
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The right-hand side of this equality is not smaller than | because it is a positive
rational number with denominator at most 2. This settles (hi). Finally, assume
that 7x = 0, i.e. A < 0. Then 7z = 0 from (3.2). If 63^632 > 1 for two points
Si, S2 E Z, the right-hand side of (3.2) is not smaller than -1 + 2(1 - p_1) =
(p - 2)/p > 0, which contradicts A < 0. Consequently es = 1 when S ^ Si for
a point Si E Z. In this case A = — e^1, i.e. es, = |ff|. Take Pi G A satisfying
7rx/z(Pi) = Si. Then the above fact shows that Pi is the only ramification point
of X —y Z and it is totally ramified. Therefore, from [11, Teil I, Satz 1(a), (c)], we
obtain the assertion (iv).

Theorem 1 shows, in particular, that the order of Sylow p-subgroups of Aut(A)
is bounded from above by a linear polynomial of gx except when 7x = 0. If 7x = 0,
the upper bound 4pgx/(p— l)2 can really be attained ([11, p. 533, Bemerkung 1]),
which demonstrates that Aut(A) may be especially large when 7x = 0.

We give a corollary of Theorem 1, which exhibits influence of 7x on the whole
group Aut(A).

COROLLARY.   Let X be a curve with gx > 2 and put G = Aut(A).
(i) Assume 7x = 1 and p > 3. Then the covering X —► A/67 is tamely ramified,

i.e. Gi(P) = {l} for all P EX.
(ii) Assume 2 < 7x < P — 2 (necessarily p > 5). Then \G\ is not divisible by p.

In particular X —♦ X/G is tamely ramified.
(hi) In both cases (i) and (ii), the Hurwitz inequality \G\ < 84(<?x — 1) holds.

PROOF, (i) By Theorem 1 (ii), X —> X/H is unramified for any p-subgroup ff
of G. This is equivalent to the assertion that A —► X/G is tamely ramified.

(ii) Let ff be the same as in Theorem 1. Then from Theorem l(i) and 7x < p—2,
we have |ff| < p(p — 3)/(p — 2) < p. Hence we have |ff| = 1 because |ff | is a power
of p. This shows that |G| is not divisible by p.

(hi) In (i) and (ii), the covering X —* X/G is tamely ramified. In that case the
classical argument of Hurwitz is valid and we have |67| < 84(<7x — 1) (cf. [11, Teil
I, Satz 3]).

Next we consider the difference gx — 7x • Our result is given in the following

THEOREM 2. (i) Assume that X is an ordinary curve (i.e. gx — lx), o-nd let G
be a finite subgroup of Aut(A). Then for every point P E X, we have G2(P) = {1}.
(For the definition ofG2(P), see §2.)

(ii) Let X be a curve with gx > 2, and assume that 1 < gx — 7x < (p — 2)/2
holds (necessarily p > 5). Then |Aut(A)| is not divisible by p. In particular X —►
A/Aut(A) is tamely ramified and |Aut(A)| < 84(<7x - 1) holds.

PROOF. Let ff be a p-subgroup of G. (In the case (ii), we put G = Aut(A).)
We consider the covering X —y Z — X/H and apply to it the formulas (2.1) and
(2.2). Consequently we have

29*-2 y- ds

and

1    ' sez
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From these equalities we obtain

/,,>                               2(gx~lx)      0, ..  .  y^ rs
(3-3) -rjj-=2(gz-lz)+}^-,

11 sez es

where rs = ds - 2(es - 1). For S E Z, take P E X satisfying nX/z(P) = S. Then
we have ds = X^od-^«^)! — x) ana- es = \Ho(P)\- We note that also the equality
es = |ffi(P)| holds since ff is a p-group (cf. [9, p. 75, Corollary 1]). Therefore we
obtain

oo

rs=^(|ff(P)|-l).
»=2

In particular rs > 0. Hereafter we assume that gx — Ix < (p — 2)/2 holds. For
any S E Z, (3.3) shows (recall gz — lz > 0),

rs<(2es/|ff|)(ffx-7x)<p-2.
From this we may conclude that H2(P) = {1}, i.e. rs = 0. For, if H2(P) ^ {1},
then |ff2(P)| > p and hence rs > p— 1 must hold. Now we apply the above result
to the cases (i) and (ii). In the case (i), put ff = Gi(P). Then the above argument
shows G2(P) = H2(P) — {1}, which is the assertion of (i). In the case (ii), let ff
be a Sylow p-subgroup of G = Aut(A). Since rs = 0 for all S E Z, (3.3) gives
an equality gx — Ix = \H\(9z — lz)- Accordingly, gx — 7x is a multiple of p if
|ff| > 1. But, that is impossible because of the assumption 1 < gx~lx < (p—2)/2.
Therefore we have |ff| = 1, i.e. |Aut(A)| is not divisible by p. As in the Corollary
to Theorem 1, we obtain |Aut(A)| < 84(gx - 1).

Finally, we mention a direct consequence of Theorem 2.

COROLLARY. Let X be an ordinary curve and a E Aut(A) an element of order
Pl (I > 1)- If o fixes at least one point of X, then I = 1.

PROOF. Let G = (a) be the group generated by a, and let P E X be a point
which is fixed by a. Then G = Gi(P). Theorem 2(i) shows G2(P) = {1}. Hence
G = Gi(P)/G2(P). On the other hand, Gi(P)/G2(P) must be an elementary
abelian p-group (cf. [9, p. 75, Corollary 3]). Accordingly, G is both cyclic and
elementary abelian, i.e. 1 = 1.

4. Ordinary curves. In the moduli space of curves of given genus, ordinary
curves form a Zariski dense open subset, i.e. general curves are ordinary. So it
seems worthwhile making closer investigation for ordinary curves. When we restrict
ourselves to ordinary curves, the general estimate (1.2) can be much improved.
Namely, we have

THEOREM 3. Let X be an ordinary curve with gx > 2. Then the following
inequality holds;

(4.1) |Aut(A)|<84(;3x-l)i?x.

REMARK. Whether the estimate (4.1) for ordinary curves is best possible or
not is an open question. However, we know that |Aut(A)| cannot be bounded
from above by any polynomial in gx of degree one. That fact was first shown by
Subrao [12]. As examples of ordinary curves with large automorphism groups, he
pointed out the complete nonsingular models of (yq — y)(xq — x) = 1, where q runs
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over all powers of p. Here we refer to another kind of ordinary curves with large
automorphism groups. Let q be a power of p and let X be the complete nonsingular
model ofyg -y = xq + x~x. Then in view of the Claim below, we see that |Aut(A)|
cannot be bounded from above by a linear polynomial in gx, even for ordinary X.

CLAIM.   The above X is an ordinary curve with gx = q2 — 1, and |Aut(A)| >
(gx + i)Wgx + i + i)-

PROOF. We put z = yq + y and denote by V and W the complete nonsingular
curves corresponding to the function fields k(x,z) and k(x), respectively. (Note
that W is isomorphic to P1 and the function field of A is k(x,y). ) The coverings
V —> W and X —► V are defined by the equations zq — z = xq + x~x and yq + y =
z, respectively. Hence, putting ff = Gal(V/W) and ff' = Gal(A/V), we have
ff ~ ff' ~ (Z/pZ)n, where q = pn. The covering V -* W is also defined by
(z')q — z' = x + x~x, where z' = z — x. Therefore, in V —> W, exactly two points
x = 0 and x = oo of W ramify completely and the other points are unramified.
Denote by Qo and Qoo the points of V lying over x = 0 and x = oo, respectively.
Then by the same method as in [1] and [11], we obtain ffi(Qo) — Hi(Q<x>) = H
and H2(Qo) = H2(Q00) = {1} (for notation see §2). By applying formulas (2.1)
and (2.2) to V —► W, we see that V is an ordinary curve of genus q — 1. Now we
consider X —» V. From the equation (z')q — z' = x + x~x (z' = z — x), we get
(z')oo = Qo + Qoo and (2)00 = Qo+ <?Qoo, where (z')^ and (0)00 are the pole-
divisors on V of z' and 2, respectively. Therefore the points of V other than Q0 and
Qoo are unramified in X —► V. The equation y' + y = 2 shows that Qo is completely
ramified in X —y V (recall (2)00 = Q0 + qQoo)- Further, letting Po be the point
of A lying over Q0, we obtain H[(P0) = ff' and H2(P0) = {1} (cf. [1 or 11];
ff' = Ga\(X/V)). Rewriting yq + y = z in the form (y-z')q+ (y-z') = -z'-x~x,
we obtain ffj(Poo) = ff' and ff^P») = {1}, where P» is the point of X lying
over Qoo (recall (z')oo = Qo + Qoo)- Then applying (2.1) and (2.2) to A —► V, we
can conclude that X is ordinary and gx = q2 — 1- For any f, ç G FQ2 satisfying
ç9+1 = 1, the transformation x —» ça:,y —» Ç~xy + ti induces an automorphism of
X. Hence we have |Aut(A)| > q2(q + 1) = (c/x + l)(Vffx + 1 + !)•

From now on we shall prove Theorem 3. The fundamental fact for the proof is
Theorem 2(i). Put G = Aut(A) and Y = X/G. For Q E Y, we denote by eQ the
ramification index of Q with respect to A —► Y. Then by [11, Teil I, Satz 3], we
have |G| < 84(<?x — 1) except for the four cases below:

(I) p > 3 and gY = 0;  eg = 1 if Q ^ Qi,Q2,Q3 E Y; p divides eQl, and
eQ2 = eQ3 - 2-

(II) gy — 0; eç = 1 if Q ^ Qi, Q2 EY; p divides both eg, and eç2.
(III) gY = 0; eQ = 1 if Q ^ Qi E Y; p divides eQl.
(IV) gY = 0; eQ = 1 if Q ^ Qi, Q2 E Y; p divides eQi and (p,eQ2) = 1.
We shall prove (4.1) in each of the above cases. The following Proposition 1 is

useful for the proof. It will be used only in the case G2(P) = {1}.

PROPOSITION 1. Let X be a curve and G be a finite subgroup of Aut(A). For
P E X, put E =\G0(P)/Gi(P)\ andq=\Gi(P)/G2(P)\. Then q - 1 is a multiple
ofE.

PROOF. Proposition 1 is merely a special case of [3, Lemma 1] (take care,
notation is different).    But we give another proof here.    There exist injective
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homomorphisms 90: G0(P)/Gi(P) -» fcx and 9X : GX(P)/G2(P) -y fc, for which
Image oo = Pe (the group of Pth roots of unity) and

(4.2) 9i (tot-1) = 90(f)9i(o)        (t EG0(P),a E d(P)/G2(P))

hold (cf. [9, Chapter IV, §2]). Let Fgo be the field generated by ps over Fp. Then
by (4.2), Image f?i is an FQo-vector space. Accordingly, q = | Image #i| = ql0, where
/ is the dimension over Fqo of Image f?i. From definition, 90 — 1 is a multiple of E.
Hence q — 1 = ql0 — 1 is also a multiple of E.

Now we consider the case (I). Put eQ, = Eq, where (p,E) = 1 and q is a
power of p, i.e. E = |G0(Pi)/Gi(Pi)| and q = |Gi(Pi)| for Pi E X satisfying
kx/y(Pi) — Qi- Note that q > 1 holds since p divides eQ1. By virtue of Theorem
2(i), dQl =Eq-l + q-l = Eq + q-2. Since dQi = dQs = 2 - 1 = 1 (recall
p > 3), the formula (2.1) gives

(2gx - 2)/\G\ = (q- 2)/Eq.

From this equality we obtain q < 2gx because Eq divides |G|. Then, since q > 1,
Proposition 1 and Theorem 2(i) shows E < q — 1 < 2gx — Y Hence we obtain (note
that q > p > 3),

igi = ¿zt\ {9x -1] - ih{9x -1} {2gx -1]
<6(gx-l)(2gx-l)-

A fortiori, (4.1) holds.
Next we consider the case (II). Put eg, = EiÇi (i = 1,2), where (p,E¿) = 1 and

qi is a power of p. Then, as in (I), we have dçt = Eiqi + c¿ — 2 (i = 1,2) and

2gx-2 = qi-2      q2 - 2
\G\        '   Eiqi        E2q2 •

The equality qi = q2 = 2 contradicts the assumption gx > 2. Hence we may
assume qi > 3. Further, the above equality shows

(2gx-2)/\G\>(qi-2)/Eiqi.

Then, by the same argument as in (I), we obtain the estimate (4.1).
In the case (III), let eg, = Eq be the same as in (I). Then we have d<o, = Eq+q—2

and (2.1) gives
(2gx-2)/\G\ = (q-Eq-2)/Eq.

However, the right-hand side of the above equality is clearly negative, contradicting
the assumption gx > 2. That is to say, the case (III) does not occur when X is
ordinary, and so we have nothing to prove.

Finally we proceed to the most difficult case (IV). We put eQ, = Eq and eQ2 = e,
where (p, E) = 1 and q is a power of p. Then, as before, dç, = Eq + q — 2 and
dQ2 = e - 1. So (2.1) gives

(4.3) (2gx - 2) /\G\ = ((e - E)q - 2e) /Eqe.

To begin with, we settle the case E = 1.
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LEMMA 1.   Assume that E = 1.  Then we have \G\ < 24(gx - 1).

PROOF. Setting E = 1 in (4.3), we obtain 2gx -2 = v\G\, where v = 1 -e"1 -
2g_1. So we should show v > j^. Since <?x > 2, /^ > 0 holds. Accordingly, e > 2.
If e = 2, we have q > 5 and ^>l_|-§ = :rg- If e = 3, we have q > 4 and
f > 1 — ¿ — § = g- If e > 4, we have q > 3 and ^ > 1 - ¿ - | = ^. In all cases
the inequality v > j^ is true.

Hereafter we assume E > 2. The estimate of |G| will be carried out by use of
the following

LEMMA 2.   Assume E > 2.  Then the following inequalities hold:

(4.4) [G\<l4Eq(gx-l)

and

(4.5) \G\ < 21E2 (gx - 1) -

PROOF. We put d = (q - 1)/E and e = e - E. By Proposition 1 and Theorem
2(i), d is an integer. Further, d > 1 holds since q > 1. The assumption gx > 2 and
the formula (4.3) show e > 1. Now (4.3) gives the equalities 2Eq(gx — 1) = A|G|
and 2.E2(í;x - 1) = p|G|, where

d£e-2£-e , dEe-2E-e
and     p =£ + e n     (d + E~1)(E + e)'

So what we should prove is A > j and p > ¿y. Here we give the proof of p > ^.
The proof of A > y is similar and easier. To estimate w, we often use the fact that
(ax — ß)("ix + ¿)_1 is a nondecreasing function of x for a,ß,^,6 > 0. First we
consider the case d, e > 2. Then, if E > e, we have

d£e - 3P    _ ds-3      1
P- (d+\)(2E) ~ 2d+l - 5'

and if E < e, we have

dffe - 3g    _ d.E-3      1
M - (d+ ±)(2e) ~ 2d+l - 5'

In both cases p > jr. Next assume that d = 1. Then

p = (Ee-2E- ¡r)/(l + £-*)(£ + e).

Since p > 0, e > 3 holds. When E = 2,p = 2(e - 4)/3(e + 2). Then we have
e > 5 and hence p > £. When E = 3, p = 3(e - 3)/2(e + 3). Then e > 4 and
p > Y4 > Sr- When ¿J > 4, we have from e > 3, p > ^ > ^. Finally, assume
that s = 1. Then p = ((d - 2)£ - l)/(d + £_1)(£; + 1). Since p > 0, we have
d > 3. From E > 2 and d > 3, we obtain easily p > ■2\. After all, p > ^y is true
for all d,e > 1 and E> 2.

We take and fix a point Pi € A which satisfies kx/y(Pi) = Qi-   Put ff =
Gi(Pi) (|ff | = q) and Z = X/H. Then the following holds.
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LEMMA 3.   If gz > 1, then the estimate (4.1) is valid.

PROOF. We note that q = |ff| = deg7rx/z and ffo(Pi) = ffi(Pi) = H. Hence
applying (2.1) to A —> Z, we obtain an inequality 2<7x — 2 > q(2gz —2) + 2(q— 1) =
2qgz - 2. Namely,

(4.6) qgz < gX-

On the other hand, Go(Pi)/Gi(Pi), which is a cyclic group of order E, may be
regarded as a subgroup of Aut(Z) which fixes tïx/z(Pi) € Z. Accordingly, the
assumption gz > 1 admits an estimate E < 4gz +2 < 6gz (see [11, Teil I, Satz 2],
[14]). Combined with (4.6), this shows Eq < 6gX- Therefore, in view of (4.4) we
obtain (4.1).

Hereafter we assume gz = 0. We put W = X/Go(Pi). Then Z —+ W is a cyclic
covering of degree E and Qal(Z/W) = Go(Pi)/Gi(Pi). From the assumption
gz =0 and E > 2, we see that, in Z —> W, just two points are totally ramified and
the other points are unramified. (This follows easily by applying (2.1) to Z —► W;
cf. [11, p. 538, Lemma].) One of the ramification points is Pi = ttx/w(Pi) £ W.
Let the other be R2 E W. Here we prove

LEMMA 4. // there exists a point R3 E W (P3 ^ Ri,R2) which ramifies in
X —y W, then we have \G\ < 56(<7x — l)2- In particular, (4.1) holds in this case.

PROOF. Since P3 is unramified in Z —y W, it ramifies in A —► Z, i.e. P3 is
wildly ramified in X —+ W (q = deg7rx/z is a power of p). We apply (2.1) to the
covering X —y W. We have dp, > ep,, dp2 > ep2 — 1 and dp3 > ep3 because
Pi and P3 are wildly ramified in X —> W. Further gw = 0 holds since gz = 0.
Consequently we obtain

2gx-2>Eq(l-e^2)>Eq/2.

This shows the inequality |G| < 56(gx — l)2 m view of (4.4).
From now on we assume that Pi and R2 are the only ramification points of the

covering A -+ W. We fix P2 G A which satisfies irx/w^ï) — Pi- Further, we put
N = Hi(P2), q' = \N\ and q" = \H/N\. (We have q = q'q" and the ramification
index of P2 with respect to A —y W is Eq'.) Then the following lemma holds.

LEMMA 5.   (i) E divides both q' - 1 and q" — 1.
(ii) //<?"> 2, i/ien|G|<21(ffx-l)2.

PROOF. We first prove that A is a normal subgroup of G' = Gal(X/W) =
Go(Pi)- For t E G', we have tNt"1 = Hi(t-P2) because r normalizes ff = Gi(Pi).
By definition we have itx/w(T ■ P2) — ^x/w(Pi) — Pi- Then ttx/z(t ■ P2) —
~nx/z(Pi) holds because R2 is totally ramified in Z —> W. Accordingly, there exists
o E ff = Gal(A/Z) for which r • P2 = o ■ P2 holds. Therefore, since ff is abelian
(cf. Theorem 2(i)), we obtain tNt~x = ffj(r • P2) = ffi(<r • P2) = oH^P^a'1 =
Hi(P2) = N. This shows that N is normal in G'. Now we prove (i). Applying
Proposition 1 to P2 E X and Gal(X/W), we see that E divides q' - 1. Next, put
V = A/A. Then, since N is normal in G' = Gal(X/W), V -» W is a Galois
covering of degree Eq". Put D = Gal(V/W) = G'/N and Tj = ttx/v(P) S V. We
note that Ti is totally ramified in V —y W. Theorem 2(i) shows G'2(Pi) = {1}, and
hence D2(Ti) = {1} holds as easily calculated by using Herbrand's theorem (see
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[9, p. 82, Lemme 5]). Therefore, applying Proposition 1 to Ti e V and D, we see
that E divides q" - 1. To prove (ii), we apply (2.1) to X —► Z. Then we have

(4-7) l q q'       J
= 2{(q'-l)(q"-l)+q'-2},

since H2(Pi) = H2(P2) = {1} by Theorem 2(i). From (4.7) and the assumption
gx > 2, we have q' > 2. Hence, from (i) above, E < q' — 1. We also have E < q" -1
since we are assuming q" > 2. Consequently (4.7) shows gx -1 > (q1 - 1)(q" — 1) >
E2. Therefore \G\ < 21(gx - l)2 holds by virtue of (4.5).

Lemma 5(h) shows, in particular, that (4.1) is true when q" > 2. Now we
consider the final case q" = 1. Namely, we assume that, in X —> W, Pi and P2 are
totally ramified and the other points are unramified. In this case (4.7) gives

(4.8) gx = q - 1.

We shall prove (4.1) by use of (4.5). To estimate E, we need the following argument.
For a divisor D on X, we put £(D) = {x E k(X) \ (x) > —D}, where (x) denotes

the divisor of x.  (C(D) is a finite-dimensional vector space over fc.)  Further, for
x E k(X), we denote by ordp(x) the order of x at P¿ (i = 1,2). We first prove

LEMMA 6.   (i) dimfc i((q - 1)PX) = 1.
(ii) dimfe i((q - l)Pi + P2) > 2.

PROOF, (i) We follow the argument of [3, p. 104]. Let / > 1 be the smallest
integer for which dim¿ C(lPi) = 2 holds, and take x E C(lPi) with ordpt (x) = -I.
For every a E ff = Gal(X/Z), ca = ox—x belongs to C(lPi) and ordp, (cCT) > —l+l
holds because a E ff = ffi(Pi). Hence by the minimality of /, ca is a constant
function, i.e. cCT G fc. Furthermore, from H = Hi(P2) and ordp2(a;) > 0, we have
ordp2(c<T) > 1. This shows that c„ = 0 for all o G ff. Consequently x E k(Z), and
hence / is a multiple of q. In particular we have / > q, which proves (i).

(ii) The Riemann-Roch theorem shows dim*: Z((q — l)Pi + P2) > q — gx + 1-
Hence by (4.8), we obtain dimfc £((q - l)Pi + P2) > 2.

Yet d > 1 be the smallest integer for which dimfc C(dPi + P2) = 2 holds. Then
Lemma 6(h) shows

(4.9) d < q - 1.

We take an element r G Gal(X/W) of order E. (Since (E,q) = 1, the sequence
1 -» Gal(X/Z) -y Gal(X/W) -► Gal(Z/W) -y 1 splits, and hence such r exists.)
Then r acts on M = L(dPi + P2) because it fixes Px and P2. The action of r on
M is semisimple because (p, E) = 1, i.e. M is spanned over fc by eigenvectors of r
(one of them is a constant function). Namely, we have M = fc © ku, where uE M
satisfies t ■ u = cu for some ç G fcx (çE — 1). We denote by (u)0 and (ii)oo the
zero-divisor and the pole-divisor of w, respectively ((u) = (u)o — («)oo holds). Then
we have

(4.10) («)«, = dp + P2.

(By the minimality of d, ordpx (u) = -d. Hence Lemma 6(i) and (4.9) show (4.10).)
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For o E ff, put x(v) = o ■ u - u. Then ordp, (x(c)) > —d + 1 because a E ff =
ffi(Pi). Hence \(a) G fc by the minimality of d. It is easy to verify that x is a
group homomorphism from ff to fc, i.e. \ E Hom(ff, fc). Further we see that \ is
injective. For, if x(ao) = 0 for some cto G ff, cr0 ̂  1, then u belongs to the fixed
field of oo, which is impossible because ordp2(u) = — 1 (P2 is totally ramified in
X-y Z). We define a polynomial /([/) G k[U] by

f(U) = J] (U - X(<r)) •
o-eH

Then f(U) is an additive polynomial of degree q (cf. [9, Chapter V, §5]). Further,
it is separable because \ is injective. Putting U — u, we have /(u) G fc(A). Since,
by definition, <r • f(u) = f(u) holds for all a E ff, we see that /(w) G k(Z). On
the other hand, there exists an element t E k(Z) whose divisor in Z coincides with
'Kxiz(Pi) — nx/z(Pi)i since gz = 0. Then we have k(Z) = k(t), and so f(u) is a
rational function of t. Examining the poles of f(u) (see (4.10)), we obtain a precise
form

(4.11) f(u) = g(t)+ar1+b,

where a E fcx, 6 G fc and g(T) E k\T] is a polynomial of degree d satisfying g(0) = 0.
The following lemma holds by virtue of the assumption that X is ordinary.

LEMMA  7.   g(T) is an additive polynomial.   In particular, d — deg<?(T) is a
power of p.

PROOF.  Let f(U) = £"=0c¿í7pn_\ where q = p" and c0 = 1, and take a G fc
which satisfies

(4.12) ¿(cfaf'=0.
¿=o

Then we see easily that there exists an additive polynomial ha(U) which satisfies

(4.13) ha(Uy-ha(U) = af(U).

(We put ha(U) = 2^27=1 biUp" ' and try to solve (4.13). The solvability condition
is just (4.12).) Next we decompose g(T) into the form

g(T)=    J2    9m(Tm),
(p,m) = l

where each gm(T) is an additive polynomial and m runs over all natural numbers
satisfying (p,m) = 1. (Such a decomposition is possible since g(0) = 0.) Then, for
a G fc satisfying (4.12), we have from (4.11) and (4.13),

ha(u)p - ha(u) =    ^2    agm(tm)+aat~1+ab.
(p,m) = l

Here we take suitable ra(t) E k[t], for which the following holds:  When we put
va — ha(u) + ra(t), it satisfies

(4.14) vpa-va=    J2    gm(a)tm + aat'1 + ab,
(p,m) = l
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where gm(a) = Y^,i(aai)p ' e * when gm(T) = J2iaiTp'- (Such ra(t) is obtained
by repeating the transformation atpl = {(ap~V)p - ap~V} + ap~V; cf. [1].) Let
mo be the largest m for which gm(T) ^ 0 holds. Then there exists a = ao satisfying
(4.12) and gmo(a0) ¿ 0. For, we have deg9mo(T) < deg g(T) = d < q (see (4.9)),
and (4.12) has q different solutions (co, cn^0 since f(U) is a separable polynomial
of degree q). We fix such a0. Yet V be the curve satisfying k(V) = k(t, vao). Then
V —* Z is a cyclic covering of degree p (it is defined by (4.14) for a = ao), and
D = Gal(VVZ) is a quotient group of ff = Gal(X/Z). Putting Tj = irx/v(Pi), we
try to determine the ramification groups D¿(Ti) (i > 1). First we apply Herbrand's
theorem [9, p. 82, Lemme 5] to D and ff. Then we obtain Di(Ti) = D and
D2(Ti) = {1} since we know ffi(Pi) = ff and ff2(Pi) = {1} (cf. Theorem 2(i)).
On the other hand, we can determine Di(Ti) from the equation (4.14) for a = ao-
By the choice of m0 and ao, the result is Dmo(Ti) = D and Dmo + i(Ti) = {1}.
(For the method of computation, see [1] and [11, Teil II, Satz 1].) Therefore we
obtain mo = 1, which shows that g(T) itself is additive.

By r • u — çu (ç G fcx), the zero-divisor (u)0 of u is invariant under r. The fixed
points of t are only Pi and P2, and (u)o does not contain them "because of (4.10).
Hence E, the order of r, divides deg(it)0. On the other hand, deg(w)o = deg(u)oo =
d+ 1 (see (4.10)). So we have

(4.15) E divides d+1.

(An alternative proof of (4.15) is as follows: It is easy to see that r • t = ut for
a primitive Pth root of unity to. Then applying r to (4.11) (recall r • u = cm)
and comparing coefficients, we obtain (4.15). Further, this argument gives more
accurate information about f(U) and g(T), although we do not need it here.) By
Proposition 1 and Theorem 2(i), E divides q — 1. Combined with (4.15), this shows
that E divides q + d. From Lemma 7 and (4.9), we see that d is a divisor of q.
Hence we obtain

(4.16) E divides qd~l + 1,

recalling (p,E) = 1. Clearly, we have d < ^fq or qd~l < ^fq. In either case, the
equality E < s/q+ 1 is true in view of (4.15) and (4.16). Consequently, (4.8) shows
E < \/gx + 1 + 1- (This estimate of E cannot be improved as the example in
the Remark after Theorem 3 shows.) By an easy computation we obtain E2 <
(\Jgx + 1 + I)2 < 4<7x (gx > 2). Therefore the inequality (4.1) holds by virtue of
(4.5). Thus the proof of Theorem 3 is completed.
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