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Satellite navigation is critical in signal-degraded environments where signals are corrupted and GNSS systems do not guarantee an
accurate and continuous positioning. In particular measurements in urban scenario are strongly a�ected by gross errors, degrading
navigation solution; hence a quality check on the measurements, de�ned as RAIM, is important. Classical RAIM techniques work
properly in case of single outlier but have to be modi�ed to take into account the simultaneous presence of multiple outliers.

is work is focused on the implementation of random sample consensus (RANSAC) algorithm, developed for computer vision
tasks, in the GNSS context. 
is method is capable of detecting multiple satellite failures; it calculates position solutions based on
subsets of four satellites and compares them with the pseudoranges of all the satellites not contributing to the solution. In this
work, a modi�cation to the original RANSACmethod is proposed and an analysis of its performance is conducted, processing data
collected in a static test.

1. Introduction

GNSS (global navigation satellite systems) are worldwide and
all weather navigation systems are able to provide three-
dimensional position, velocity, and time synchronization to
UTC (coordinated universal time) scale. 
e multiconstel-
lation based on GPS-GLONASS is the standard for most
receivers, from survey ones to smartphones, and it is able
to ensure the estimation of the user location by using the
pseudorange observable in single point, with an accuracy of
about 10 meters in good visibility conditions [1]. 
e main
disadvantage of GNSS is the need of having a good satellites
visibility; for this reason, the environments characterized by
strong signal degradation, such as urban areas, are particu-
larly critical for satellite navigation [2]. In fact, buildings can
mask some signals, thereby reducing the satellites availability
and causing geometric con�guration worsening, up to cases
in which it is not possible to calculate the position because of
the lack of measurements. Buildings can also re
ect signals
from in-view satellites, producing the multipath e�ects, or
from non-line-of-sight (NLOS) ones. 
ese two e�ects are

not the same, although they sometimes occur together, but
cause gross errors inmeasurements even though di�erent [3].

With the rise of enhanced GNSS systems over the next
decade the number of satellites and therefore of ranging
sources available for positioning will signi�cantly increase to
more than double the current value. Hence it is no longer
possible to assume that the probability of failure formore than
one satellite within a certain timeframe is negligible. In this
context the ability to detect multiple satellite failures at the
receiver level, where local errors sources as multipath, NLOS
reception, receiver failures, unusual atmospheric conditions,
or interference degrade the navigation solution, becomes of
high importance for the integrity of the navigation system [4].


e system reliability is related to the ability to identify
and exclude measures a�ected by large errors which, if
not rejected, could corrupt the �nal output of the system.

e reliability testing in GNSS context is performed by
RAIM (receiver autonomous integrity monitoring) tech-
niques, which are based on consistency check of redundant
measurements [5, 6]. 
e classical RAIM algorithms need
to be modi�ed in urban canyons because of multiple outlier
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presence [7, 8], but such environments are currently a
challenge for standard RAIM methods.

In this work RANSAC (random sample consensus) algo-
rithm, early used for graphics and image processing [9]
and capable of interpreting/smoothing data containing a
signi�cant percentage of outlier, is applied to GNSS case.
RANSAC application in GNSS context was �rstly studied in
[10, 11], using simulated data and showing promising results;
in [3, 12] this algorithm has been applied for GNSS outlier
detection using real data.


e present work shows an augmented version of
RANSAC algorithm, called P-RANSAC, whose results are
particularly suitable for GNSS application andwhose bene�ts
are investigated.


e tests to demonstrate the e�ciency of P-RANSAC
method in GNSS context are performed using real data
obtained fromaGPS station located in an urban scenario.
e
results obtained from P-RANSAC algorithm are compared
with original RANSAC method and the ones obtained with
a classical RAIM technique, that is, the “observation subset
testing” [13, 14].

2. GPS Positioning and RAIM Technique

2.1. Single Point Positioning. GPS positioning is based on the
one-way ranging technique: the time of travel of a signal,
transmitted by a satellite, is measured and scaled by the
speed of light to obtain the satellite-user distance, called
pseudorange (�), whose equation is

� = � + ���� + �, (1)

where � is the geometric receiver-satellite distance, ���� is
the receiver clock o�set scaled by the speed of light, and �
contains the remaining errors a�er atmospheric and satellite-
related corrections [15].

A set of equations like (1), a�er linearization around a
nominal state, forms the measurement model

� = 	Δ� + �, (2)

where � is the di�erence between actual and predicted mea-
surements, 	 is the design matrix, � is the remaining error
vector a�er atmospheric and satellite-related corrections,
and Δ� is the state vector containing receiver coordinates
corrections and clock o�set errors.


e state vector for the single point-single epoch algo-
rithm is estimated using least squares method (LS), whose
optimization criterion consists in minimizing the sum of the
squared residuals de�ned as

� = � − 	Δ̂�, (3)

where Δ̂� is the state vector, estimated with LS.
In this work the adopted estimation technique is the

weighted least squares (WLS), with weights related to satellite
elevation [16].

2.2. Reliability Test. In GNSS context, reliability testing using
overdetermined set of GNSS measurements is known as
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Figure 1: Example of	0 and	� (Gaussian case) (from [13]).

RAIM. In reliability testing, it is assumed that the measures
follow a prede�ned statistical distribution and an outlier
causes that the measure no longer follows this distribution
[17]. Actually it is not possible to know certainly if a measure
belongs or not to a prede�ned distribution [18]. In order to get
that information with a good chance, a statistical approach
is adopted, de�ning a decisional variable and a threshold
wherewith performing a comparison. 
e situation where
outliers are not encountered is called null hypothesis (	0) and
the situation where outliers are present is called alternative
hypothesis (	�); if the decisional variable� is lower than the
threshold �, the 	0 event is assumed, while if � is higher
than the threshold �, the 	� event is considered and the
presence of outliers is assumed. In reliability testing, there
are two types of errors: false alarm and missed alarm. If the
decisional variable is higher than threshold and there are no
outliers, there is a false alarm and the probability of making
this error is called signi�cance level (�), while the probability
of not committing this error is called con�dence level. If� is
lower than threshold and there are outliers, there is a missed
alarm; the probability ofmaking this type of error is indicated
by � and the probability of not committing this type of error
is de�ned as the power of the test [16]. An example with
Gaussian distribution is shown in Figure 1.

2.3. Global Test and Observation Subset Testing. A common
reliability test is the global test based on least squares residual
method (GT) which determines the goodness of the used
model or highlights the presence of any outliers. It de�nes a
decision variable�, based on residuals, and compares it with
a threshold. 
e decision variable is de�ned as

� = ����
(� − �) , (4)

with � weighting matrix, � number of measurements, and
� number of states.

It is assumed that the decision variable� follows a central
chi-square distribution with (� − �) degrees of freedom
[13, 16]; this is based on the assumption that the observation
errors follow a standard normal distribution and on the
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Figure 2: Observation subset testing algorithm.

relationship between the normal and chi-square distributions
[5, 18].


e threshold is de�ned by

�GT = X
2
1−�,(�−�)
(� − �) , (5)

where � is the false alarm probability andX21−�,(�−�) is the �-
axis value corresponding to a false alarm probability (1 − �)
of a chi-square distribution with (� − �) degrees of freedom.


e hypothesis testing in the global test is

	0 : � < �GT,
	� : � ≥ �GT.

(6)

In case of event	0 the measurements are considered consis-
tent; in case of	� an inconsistency is indicated by the test and
a outlier among the measurements is assumed.

Subset testing is a RAIM technique for the detection and
the exclusion of fault measurements and is based uniquely on
global test [13, 14]. If a measurement set is declared incon-
sistent by GT, all the possible combinations of measurements
are checked (up to (� + 1) measures), to �nd a subset from
which the supposed outliers are excluded. Only the subset
that passes the GT and is declared consistent is used to
compute the navigation solution; if more subsets pass the GT,
the set with the minimum statistic variable and the largest
number of measurements is chosen. A complete scheme of
the algorithm implemented is shown in Figure 2.

3. RANSAC


e algorithm developed and investigated in this work is
based on the basic idea of the RANSAC algorithm, early
used for graphics and image processing. It is an iterative
method for the estimation ofmathematicalmodel parameters
starting from a set of input data that contains a large
percentage of outliers. It is a nondeterministic algorithm; it
produces an accurate result only with a given probability that
increases with the increase of the iterations [9]. RANSAC
generates candidate solutions using a minimum number
of observations (input data) needed to estimate the model
parameters. In fact, while traditional methods use as much
data as possible in order to obtain a solution and only later
proceed to remove outliers that would signi�cantly a�ect the
solution, RANSAC uses the smallest possible set of data to
determine the model and proceeds to enlarge this set with
data points that are consistent with the estimated model. In a
two-dimensional example of the problem, two distinct points
are enough to draw a line passing through them.


e algorithm computes the solution by considering
all possible subsets formed by two sample points, and it
measures the consistence of the remaining sample points,
classifying as outliers those that are located at a distance
higher than a preselected threshold and inlier those that
fall in the above threshold; the number of inlier de�nes the
consensus number of the considered subset; in Figure 3 a
generic iteration of the algorithm is displayed.


e subset with the highest consensus is considered the
best and the samples that do not fall within the threshold
are classi�ed as outliers (Figure 4) and are excluded from the
calculation of the �nal solution [10, 19].
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Figure 3: Generic iteration of the RANSAC algorithm.
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Figure 4: Subset with the largest consensus (best subset).

3.1. RANSAC Application to GNSS. RANSAC approach can
be adopted in satellite navigation and a minimum of four
satellites is necessary to estimate the receiver position and
clock o�set, so subsets with four pseudoranges (de�ned
quartets) should be used.


e RANSAC algorithm can be considered a RAIM-FDE
(fault detection and exclusion)method, so a redundancy of at
least two observations is necessary to identify a single outlier.
For an overall FDE procedure, a�er estimating the residuals,
the global test can be performed to �nd out the solution
consistency. If some inconsistency is detected, an additional
test can be performed to exclude erroneous observations.
For detecting a failure, there must be at least one redundant
measurement [7, 20].


e algorithm input data are the design matrix 	, the
measurements �, and their uncertainties, which are used to
form the weighting matrix�.
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Figure 5: Subset selection and sorting algorithm.


e �rst step of the algorithm is the “subset selection
and sorting” (detailed in Figure 5), which selects of the
useful subsets; that is, only subsets having excellent satellite
geometry are kept, because they would provide accurate
solutions in case of no outliers.


e number of possible subsets is given by the number of
simple combinations of� elements in � places, where� is the
number of satellites in view and � is the number of satellites
in a subset, which is set to 4:

��,� = (��) = (�4) = �!
4! (� − 4)! . (7)

In order to evaluate the subsets, the algorithm uses the
singular value decomposition on the geometrymatrix of each
subset 	sub(�) to compute the conditioning number. 
e
conditioning number is a measure of stability or sensitivity of
a matrix to numerical operations, given by the ratio between
the �rst (�1) and the last (��) singular value [21]:

Cond (	sub) = �1
�� . (8)

In the subset selection and sorting block all subsets are sorted
in increasing order of conditioning number, and only the ones
with a conditioning number smaller than a certain threshold
are considered. 
e outputs of the block are the selected
satellite quartets, which de�ne the subset measurements,
design andweightmatrix (�sub,	sub,�sub), and consequently
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the satellites outside the subsets, indicated with the subscript
“out” in Figure 5.

An alternative method for subset selection is to use the
GDOP parameter. In [22] the relationship between GDOP

and the conditioning number of thematrix (	�	) is demon-
strated; starting from that and considering the four measure-

ments case it can be demonstrated that Cond(	�sub	sub) =
[Cond(	sub)]2 and so the following relationship is valid:

( 1
�1) {[Cond (	sub)]2 + 3}

≤ GDOP2 ≤ ( 1
�1) {3 [Cond (	sub)]2 + 1} .

(9)

From (9) the close link between GDOP and Cond(	sub) is
clear, whose behaviour for all the quartets at a speci�c epoch
is shown in Figure 6. A similar trend of them con�rms that
the two selection methods are equivalent (the thresholds
must be suitably proportionated) and this is corroborated by
empirical tests described in [23].

A�er subset selection and sorting, the position estimates
(�̂sub), for all selected subsets, are computed with a weighted
least squares (WLS) solution:

�̂sub = �0 + Δ�sub, (10)

where Δ̂�sub = (	�sub�sub	sub)−1	�sub�sub�sub and �0 is a
priori state.

Starting from the subset with the best conditioning num-
ber, the algorithm performs the “range comparison,” which
compares pseudorange measurements out of the subset with
pseudoranges calculated using the state estimated with the
measures of the subset.

In this way it is possible to calculate the residuals of
pseudorange outside the subset and the relative variance.
Residuals are now de�ned as

� = �out − �sub, (11)

with �out measured pseudoranges outside the subset and �sub
predicted pseudoranges calculated using the state �̂sub; that
is,

�sub = �sub + ���sub. (12)

Expanding �sub around the a priori state,

�sub ≅ �0 + ℎΔ̂�sub, (13)

where �0 is the pseudorange calculated with the a priori state
and ℎ is the row vector of the geometrymatrix corresponding
to the concerned satellite.

�out and �sub errors are uncorrelated, so the standard
deviation of the residual is given by the square root of the sum
of their variances:

&� = √&2	out + &2	sub , (14)

where

&	sub = &ℎΔ̂
sub , (15)

since �0 is deterministic.


e variance of the term ℎΔ̂�sub is

&2ℎΔ̂
 = * {(ℎΔ̂�sub) (ℎΔ̂�sub)�}
= ℎ* {Δ̂�subΔ̂�sub

�} ℎ�

= ℎ�Δ
ℎ� = ℎ (	�sub�sub	sub)−1 ℎ�,
(16)

where �Δ
 = (	�sub�sub	sub)−1 is the covariance matrix of

Δ̂�sub.
Substituting (16) into (14) the expression of the residual

standard deviation becomes

&� = √ℎ (	�
sub

�sub	sub)−1 ℎ� + &2	out , (17)

where &2	out = 1/sin2(el) with el is satellite elevation.

RANSAC compares residuals with a threshold chosen as
a multiple of the standard deviation &�, but it has been shown
that, by using a threshold related to false alarm probability,
the results are more accurate [23].

Residuals (11) are compared with the threshold equal to
an abscissa value corresponding to a (1 − �) probability
of the standard normal distribution, where � is the false
alarm probability. Using this comparison, the count of inlier
(consensus number) can be determined for each subset: if the
residuals are higher than the threshold, the corresponding
measurements are called outliers; otherwise they are inliers.

e algorithm can be stopped if a subset indicating all
measurements as inliers is found.


e RANSAC algorithm applied to GNSS (detailed in
Figure 7) iterates through all acceptable subsets, according
to the geometric selection, identifying those with the highest
consensus, which are used to detect outliers. If subsets pro-
vide inconsistent satellite outlier information, the algorithm
classi�es the solution as unreliable because it is not possible to
identify uniquely the outliers; otherwise the state is estimated
excluding the outliers.

In addition an updated version of the RANSAC algo-
rithm, called P-RANSAC (PANG-RANSAC), is proposed;
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P-RANSAC performs a �nal range comparison using the
estimate obtained by considering all the satellites in view

except the outliers (8̂RANSAC) and assuming that such esti-
mate is more accurate than the one from subsets with the
highest consensus. 
e outliers that will be identi�ed from
this last comparison will be excluded from the �nal solution
(Figure 8).


is approach allows identi�cation of as many outliers as
the number of satellites in viewminus four for the estimation.

4. Test and Results


eabilities of RANSAC inGNSS context are tested adopting
it for the analysis of a static data set. Measurements are
collected by the Novatel single frequency receiver FlexPak-
G2 connected to aGPSTrimbleMicrocentered L1/L2 antenna
located on the roof of University of Naples “Parthenope,” an
urban canyon scenario (Figure 9).


e data are processed using the two versions of the
algorithm (RANSAC and P-RANSAC) and the classical
RAIM technique observation subset testing algorithm as a
comparison.


emeasurement session has been collected inDecember
2013 for 4 hours with a one second data rate (the mission
planning has been performed with the so�ware developed
by Parthenope Navigation Group [24]). Figure 10 shows the
number of available satellites during the whole observation
period that varies from 4 to 10 with an average of about 7
satellites for epoch.

Figure 11 shows the comparison, in terms of horizontal
and vertical errors, between GPS positioning performed with

(i) no RAIM technique (red dots),

(ii) observation subset testing (green dots),

(iii) RANSAC method (black dots),

(iv) P-RANSAC algorithm (blue dots).

For all the considered RAIM techniques, the error
decreases with respect to “no RAIM” case, characterized
by mean horizontal and vertical absolute errors amounting,
respectively, to 28.35m and 53.36m and by horizontal and
vertical RMS errors, respectively, of 38.93m and 74.11m.


emeanhorizontal and vertical absolute errors obtained
with the observation subset testing are, respectively, 18.27m
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Table 1: Positioning errors: comparison of positioning without RAIM and with RANSAC, P-RANSAC, and observation subset testing.

Mean abs.
horizontal [m]

RMS
horizontal [m]

Mean abs.
vertical [m]

RMS
vertical [m]

Solution
availability

No RAIM 28.35 38.93 53.36 74.11

100%
Subset 18.27 34.73 42.07 65.31

RANSAC 20.35 31.73 43.31 67.18

P-RANSAC 20.53 31.64 44.29 68.23

H z W
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Number of outliers Unreliable
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redundancy

Yes
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Figure 8: Data 
ow diagram for the P-RANSAC algorithm.

GNSS station

Figure 9: Antenna position.

and 42.07m with horizontal RMS of 34.72m and vertical
RMS of 65.31m.


emeanhorizontal and vertical absolute errors obtained
with the traditional RANSAC are, respectively, equal to
20.35m and 43.31m with horizontal RMS of 31.74m and
vertical RMS of 67.18m.
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Using the P-RANSAC algorithm, mean absolute errors
and RMS horizontal errors are, respectively, 20.53m and
31.64m, while mean absolute errors and RMS vertical errors
are 44.29m and 68.23m.


e errors of the considered con�gurations are summa-
rized in Table 1, as �gures of merit RMS and mean absolute
errors are used. 
e solution availability, de�ned as the time
percentage with at least 4 visible satellites, is 100% and indeed
the minimum number of visible satellites is 4 (Figure 10).


e results listed above are for all available epochs.
Hence considering all the epochs when it is possible to
obtain a GPS solution, the RANSAC techniques do not show
improvements with respect to the classical RAIM technique
of observation subset testing, while a large error decreasing is
evident with respect to no RAIM case.


e reliable availability, de�ned as the percentage of
epochs marked as reliable by the RAIM technique, is about
88% for the observation subset testing, about 75% for
RANSAC, and about 70% for P-RANSAC. An e�cient way to
highlight the performance of a RAIM technique is to compare
its errors with the no RAIM case only for reliable epochs.

Considering only the epochs when observation subset
testing is reliable, no RAIM positioning has mean horizontal
and vertical absolute errors (Figure 12), respectively, equal
to 28.32m and 52.44m, with horizontal RMS of 38.37m
and vertical RMS of 71.93m. A�er the application of the
algorithm the mean horizontal absolute error is 17.94m and
the mean vertical absolute error is 41.85m, with an improve-
ment of 36.67% and 20.20%, respectively; the horizontal
RMS is 34.54m and the vertical RMS is 64.67m, with an
improvement of 9.97% and 10.08%.
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Table 2: Positioning errors in observation subset testing at reliable epochs: comparison of positioning without RAIM and with observation
subset testing.

Mean abs.
horizontal [m]

RMS
horizontal [m]

Mean abs.
vertical [m]

RMS
vertical [m]

Reliable
availability

No RAIM 28.32 38.37 52.44 71.93

Subset 17.94 34.54 41.85 64.67 ∼88%
Improvements 36.67% 09.97% 20.20% 10.08%

Table 3: Positioning errors in RANSAC at reliable epochs: comparison of positioning without RAIM and with RANSAC.

Mean abs.
horizontal [m]

RMS
horizontal [m]

Mean abs.
vertical [m]

RMS
vertical [m]

Reliable
availability

No RAIM 26.85 37.55 44.73 65.50

RANSAC 16.59 27.53 31.84 55.08 ∼75%
Improvements 38.22% 26.70% 28.82% 15.91%


e results obtained using observation subset testing at
reliable epochs are summarized in Table 2.

Figure 13 shows the errors in 74.83% of the epochs when
RANSAC testing is deemed reliable. In this case no RAIM
horizontal and vertical mean absolute errors are 26.85m and
44.73m, with horizontal RMS of 37.55m and vertical RMS
of 65.50m. A�er the application of the algorithm the mean
horizontal absolute error is 16.59m and the mean vertical
absolute error is 31.84m, with an improvement of 38.22% and
28.82%, respectively; the horizontal RMS is 27.53m and the
vertical RMS is 55.08m, with improvements of 26.70% and
15.91%.


e results obtained using RANSAC are summarized in
Table 3.

Considering only the epochswhen P-RANSAC is reliable,
no RAIM positioning has mean horizontal and vertical
absolute errors (Figure 14), respectively, equal to 26.01m and
52.44m with horizontal RMS equal to 37.09m and vertical
RMS equal to 61.76m.


e P-RANSAC is characterized by a mean horizontal
absolute error of 15.26m, with an improvement of 41.32%;

while the mean vertical absolute error is 28.57m, with an
improvement of 30.38%. 
e horizontal RMS is 25.86m and
the vertical RMS is 51.61m, with improvement of 30.28% for
the horizontal and 16.43% for the vertical one.


e results obtained using P-RANSAC are summarized
in Table 4.

A �nal comparison was made considering only the
epochs reliable for P-RANSAC and RANSAC (Table 5);
it could be noted that the P-RANSAC produces a slight
improvement compared with RANSAC on the vertical mean
absolute error and the vertical RMS error.

Test results show that the observation subset testing algo-
rithm has a higher percentage of reliable availability, while
RANSAC and P-RANSAC provide larger improvements in
RMS and mean errors at reliable epochs.

5. Conclusions

Classical RAIM algorithms do not work properly in case of
simultaneous multiple outliers; RANSAC technique, mainly
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Figure 12: Horizontal and vertical errors in observation subset testing at reliable epochs.
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Figure 13: Horizontal and vertical errors in RANSAC at reliable epochs.
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Figure 14: Horizontal and vertical errors in P-RANSAC at reliable epochs.
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Table 4: Positioning errors in P-RANSAC at reliable epochs: comparison of positioning without RAIM and with P-RANSAC.

Mean abs.
horizontal [m]

RMS
horizontal [m]

Mean abs.
vertical [m]

RMS
vertical [m]

Reliable
availability

No RAIM 26.01 37.09 41.04 61.76

∼70%P-RANSAC 15.26 25.86 28.57 51.61

Improvements 41.32% 30.28% 30.38% 16.43%

Table 5: Positioning errors in RANSAC and P-RANSAC at common reliable epochs.

Mean abs.
horizontal [m]

RMS
horizontal [m]

Mean abs.
vertical [m]

RMS
vertical [m]

Reliable
availability

RANSAC 14.99 25.79 29.01 52.22 ∼65%
P-RANSAC 15.05 25.82 28.64 52.00

used for graphics and image processing, usually works
properly even with a large percentage of outliers. For this
reason this paper has been focused on the implementa-
tion of RANSAC algorithm in GNSS context, applying it
on urban canyon data, typically characterized by multiple
outliers caused by multipath and NLOS errors. To assess
RANSAC performance, its results are compared with the
ones obtained applying observation subset testing (a classical
RAIM technique) and with the solution obtained without
RAIM application.

RANSAC algorithm calculates the position based on four
satellites and compares this estimate with the pseudoranges
not contributing to this solution. 
e residuals of this com-
parison are then used as a measure of statistical consen-
sus. 
e measurements with residuals larger than a certain
threshold are identi�ed as outliers. 
is approach allows
identi�cation of as many outliers as the number of satellites
in view minus six. An updated version of the RANSAC
algorithm, called P-RANSAC, is proposed; P-RANSAC per-
forms a �nal range comparison using the state estimate
obtained with only the inliers identi�ed by RANSAC. 
e
measurements identi�ed from this last comparison as outliers
will be excluded from the �nal solution.


e subset technique provides larger reliable availabil-
ity (about 88%) relative to RANSAC (about 75%) and P-
RANSAC (about 70%). On the other hand RANSAC tech-
niques demonstrate a better ability to detect and reject
measurements a�ected by large errors as revealed by lower
horizontal and vertical (both mean and RMS) errors for
the reliable epochs; in fact, traditional RANSAC shows
improvements relative to no RAIM application up to 36%
for reliable epochs, while P-RANSAC shows improvements
up to about 40%. Testing the last two methods on common
reliable epochs it was noted that mean absolute error and
RMS for vertical component slightly improve in P-RANSAC
con�guration.


e RANSAC and P-RANSAC algorithms performances
are promising; hence further investigations on larger data
amounts can be useful to validate their use in GNSS context.
Moreover the next step of this research will be to assess the
RANSAC performance with GPS andGLONASS (or Galileo)
together.
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