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n-REGULAR VARIATION

J. L. GELUK

Abstract. A function U: R + -» R+ is said to be Il-regularly varying with

exponent a if U(x)x~a is nondecreasing and there exists a positive function L such

that

U(\x)/X" - U(x)     ,     . . . .    ,      _
v    "     .  r    v  ' -*\o%\       (x -> oo) for X > 0.

*  i-(JC)

Suppose

Û(t) i=  f   e~a dU(x) exists for t > 0.
•'o

We prove that U is Il-regularly varying iff U is 17 -regularly varying.

1. Introduction. First we give the definition of regular variation.

Definition. A function U is said to be regularly varying with exponent p at

infinity if it is real-valued, positive and measured on (0, oo) and if for each X > 0

lim       \ / = X"   where p G R (notation U(x) G RV).*-°°    U(x) v v  ' "'

Regularly varying functions with exponent zero are called slowly varying. The

theory of regularly varying functions has been developed by Karamata. For some

basic facts see [1], [8], [9].

A recent treatment of regular variation is also given in Seneta's book [10].

Karamata proved the following theorems on regular variation which are basic in

this theory.

Theorem A. Suppose U: R+ -» R+ is Lebesgue summable on finite intervals.

(i) If U varies regularly at infinity with exponent ß > -1 then

lim     **<*>    -ß + h
*—  ¡I U(t)dt     P

(ii) If limx^x(xU(x)/Jl U(t)dt) = ß + 1 with ß > -1 then U(x) G RVß.
See, e.g., [5, Theorem 1.2.1].

The second theorem concerns the Laplace-Stieltjes transform: U(t) =

/o° e~'s dU(s) of U. For a proof of this theorem the reader is referred to [10,

Theorem 2.3].
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566 J. L. GELUK

Theorem B. Suppose U: R+ —» R+ is nondecreasing, right-continuous ¡7(0 + ) =

0, U(t) is finite for t > 0. For ß > 0 the following assertions are equivalent:

(i) £/(*) G RVß;

(ii) c/(l/x) G Ä^.

Both imply

(iii) lim_JÍ/(x)/¿>(l/*)) = 1/IX/? + 1).

For nondecreasing functions U we can combine Theorems A and B using the

notion of a fractional integral:

Definition. „ U(x) = (l/T(a + l))/0(* - t)a dU(t) where a > 0.

Theorem C. Suppose U: R+ —» /?+ « nondecreasing and right-continuous,

U(0 + ) = 0 o/k/ i)(0 » //míe /or / > 0. For a > 0 anrf y8 > 0 /Ae following

assertions are equivalent:

(i) t/(x) G RVß;

(ü)aU(x)eRVa+ß;

(iii) ¿>(l/x) G RVß.

They imply

(iv)aU(x)/xaU(x) ^T(ß+ Í)/T(a + ß + 1) (x -> oo);

(v) U(x)/Û(l/x) -> l/r(/8 + 1) (x -» oo).

Remark that the case a = 1 yields Theorem A(i) with ß > 0. For arbitrary

a > 0 Theorem C can be proved by using Theorems A and B and the relation

aÛ(l/x) = x«Û(\/x),

since a U(x) is nondecreasing.

In 1963 Bojanic and Karamata [2] studied the class of functions U for which

U(Xx) - U(x)

*^°° x"L(x)

exists for some function L(x) and showed that a can be chosen such that L(x) is

slowly varying. In this paper we shall see that the Theorems A and B can be

sharpened for functions U which satisfy the relation

*^°° x"L(x) 6

for some function L(x) and a > 0 fixed. For o = 0 this relation defines the class n.

Theorem D. Suppose <¡>: R+ -* R is nondecreasing. Then the following three

statements are equivalent:

(i) There exist functions a: R+ -^ R+ and b: R + —» R such that for all positive x

<b(tx) - b(t)
hm '        w = log x;
í->oo a(t)

(ii) there exists a slowly varying function L such that

<b(x) = L(x) + f L(t)/t dt;
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(iii) there exists a slowly varying function L0 such that

<¡>(x) = L0(x) + fXL0(t)/t dt.

Moreover if a function $ satisfies the conditions of this theorem then

1   tx
a(x) — L(x) — <i>(xe) — <p(x)-l   s d<b(s) — L0(x)       (x —»■ oo)

x J0

(see [5, Theorem 1.4.1]).

We call the function a(x) the auxiliary function of «X*)- This function is (of

course) determined up to asymptotic equivalence.

Definition. A function <J> which satisfies the conditions of Theorem D is said to

belong to the class n. It can be shown that the class n is a proper subclass of the

slowly varying functions (see [5, Corollary 1.4.1]). From Theorem D we can see

that if <j>(x) G TI with auxiliary functions a(x) and [<p(x) — <f>x(x)]/a(x) —» c (x —»

oo) where c G R is a constant and <bx(x) a nondecreasing function, then <bx(x) G n

with auxiliary function a(x).

In this paper we generalize the following theorem (see [6]).

Theorem E. Suppose <b: R+ —» R+ is nondecreasing, <j>(0 + ) = 0 and <j>(s) is finite

for s > 0. Then the following statements are equivalent :

(i) <t>(x) g n;

(ii) fal/x) G n;
Both imply

(iii) (<tfx) - ^l/x))/(l/x)}x0 s d<Ks) ̂ y(x^ oo).

We give a second order version of Karamata's Theorems A and B for nonde-

creasing functions U. A necessary and sufficient condition for a function to obey

the second order relation is formulated in the following definition.

Definition. U g URVa iff U(x)/xa G n where a G R.

If U G HRVa then we say that L is the auxiliary function of U if L is the

auxiliary function of U(x)/xa G n. We call the function U Il-regularly varying

with exponent a. The n-varying functions with exponent a form a subclass of RVa.

2. Results. Our result is the following theorem.

Theorem 1. Suppose a > 0, ß > 0, U: R + -^R+, U(x)/xß nondecreasing,

limxlQ(U(x)/xß) = 0, and U(t) exists for t > 0. Then the following statements are

equivalent:

(i) U(x) <EllRVß;

(ii)aU(x)GURVa+ß;

(iii) Û(\/x) G URVß.
They imply

(T(ß + l)/r(« + ß + \))U(x) -ai/(x)/x"_3/    T(ß+l)    \

(W) xß-lrosd(U(s)/sß) ~*    W\T(a + ß+l))

(x-»oo),
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Ujx)-(l/T(ß+l))u(l/x)

[) xß->rosd(U(s)/sß)

where ipi*) = (d/dx)log T(x).

Conversely if (iv) with a G (0, 1], ß > 0 then (i) and if (v) with ß > 1 then (i).

Proof, (i) -» (iv) and (i) -» (ii). We write

DM- x'(nx) +f¿!f «*)
with

1   r*      U(s)
L(x)=-( sd^Ç-GRVt'.

xJ0 sfi

Then

(aU(x)/x°) -(T(ß+ l)/r(« + ß + l))U(x)

xßL(x)

1    f>„     ..-ui^/^l-W*')
~r(«)V      ; iW

-^rTfi°g<(i-0B~V,Ä     (x^oo)
I (a) -/0

The last step is justified since by substituting the expression for U(x) we find

1 7>-')-'"{^-'}*-/>-'r,"r^t*r(«)

and

jexcL(5x)
-»ic        (x—»oo)

xeL(x)

uniformly on (0, 1) where e > 0 (see de Haan [5]). Now (iv) and (i) imply (ii) as

mentioned in the introduction.

(i) -► (v)   and   (i) -» (iii).   We   write   U(x) = xßL(x) + K(x)   where   K(x) =

xßSx(L(t)/t)dt. By Karamata's Theorem B we have

X"L{X) " T(ß\\)Ce"/X 4tßL(i)) = °<x#^»       <* ̂  °°)-

Substituting the expression for K(x) we find

^(x) - K(\/x)/T(ß+ 1)       /-i L(fx)   df

xßL(x) h   L(x)     t

_!_ Ce-'tß f'MEÚ. L*L dt
T(ß+\)k h   L(x)     u  at

1 Ce-tß f u'x'Ljux)    du
T(ß+l)J0 h     x'L(x)     M'+«

T(ß
1_ r°°  _,,« ftu-'x-'Ljux)    du     .      , .
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since T(ß + 1) = /" e''tß dt. Since

u'x'L(ux)

x'L(x)

and
u~'x~eL(ux)

* u' (x -» oo)    uniformly on (0, 1)

■* u  e (x -» oo)    uniformly on (1, oo)
x~'L(x)

(see [5, Corollary 1.2.1.4]) we find

(*)^~Y(/^T)fJ>e-''ßlogtdt = -w(ß+l)        (*-«).

This proves (i) -» (v). Now we have analogously that (v) and (i) imply (iii).

(ii)-»(iii) follows immediately since aU(\/x) = x"U(l/x) and we can use

(i)^(iii).

(i) <-» (iii). Writing V(x) = U(x)/xß we have by Proposition P4 in [7]

V(x) G n iff f V dV(t) G RVß   where ß > 0.

Or

u(x) g n/î^g iff í/(x) - r^LL dt g j?r,.
A>     t

This is equivalent to

Ô(\/x) - ßxK(\/x) G RVß   where AT(x) = í/(x)/x.

The last statement is equivalent to U(\/x) G HRVß, since xK(\/x) =

¡x(U(l/t)/t)dt. (Both sides have the same derivative.) The case ß = 0 is the result

of Theorem E.

(iv) -» (i). As in the proof of (i) ~» (iv) we write

U(x) = xßi[L(x)+foX^p-dt^.

Substituting this expression in (iv) and rearranging we see that (iv) is equivalent to

where £ = (T(ß + l)/T(a + ß + I)) + (d/dß){T(ß + l)/T(a + ß + 1)}. Or

/" L(t)k(x/t) dt/t ~ £L(x) (x -» oo) where the kernel k is defined by

for x < 1 and 0 for x > 1. For a G (0, 1] and ß > 0 the kernel is nonnegative

since (1 — x)"~lxß is increasing on (0, 1). Moreover we have

limx^oo;/_>1+ iai(L(tx)/L(x)) > 1 since xL(x) is nondecreasing. Application of

Theorem 6.2 in [3] then gives the result since k(p) = /¿ k(l/t)tp~l dt is decreasing

for p > -/} - 1 and so A:(p) = £ only if p = 0.
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570 J. L. GELUK

fk(Z)Ut)*~tL{x)       (jc^oo),

(v) —> (i). We define L(x) as in the proof of (iv) -» (i). Here we can reformulate

(v) as follows:

dt

where £ = I + y(ß + I) and the kernel k is given by

k(-) = wJ    ,x*^~* - - (Xuße-Udu + 1 - ¿onto-
\x)      T(ß +1) xJ0 (0'1)V  J

If ß > 1 this kernel is positive for all x > 0, since the term xße~x is increasing on

(0, /?). Here we can also apply Theorem 6.2 in [3].

The author is indebted to Dr. L. de Haan for his valuable advice and criticism.
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