P-signatures and Noninteractive Anonymous
Credentials

Mira Belenkiy', Melissa Chase®, Markulf Kohlweiss?, and Anna Lysyanskaya'

1 Brown University
{mira, melissa, anna} @cs.brown.edu
2 KU Leuven
mkohlwei@esat.kuleuven.be

Abstract. In this paper, we introduce P-signatures. A P-signature scheme con-
sists of a signature scheme, a commitment scheme, and (1) an interactive proto-
col for obtaining a signature on a committed value; (2) a non-interactive proof
system for proving that the contents of a commitment has been signed; (3) a non-
interactive proof system for proving that a pair of commitments are commitments
to the same value. We give a definition of security for P-signatures and show how
they can be realized under appropriate assumptions about groups with a bilinear
map. We make extensive use of the powerful suite of non-interactive proof tech-
niques due to Groth and Sahai. Our P-signatures enable, for the first time, the
design of a practical non-interactive anonymous credential system whose secu-
rity does not rely on the random oracle model. In addition, they may serve as a
useful building block for other privacy-preserving authentication mechanisms.

1 Introduction

Anonymous credentials [Cha85,Dam90,Bra99,LRSW99,CL01,CL02,CL04] let Alice
prove to Bob that Carol has given her a certificate. Anonymity means that Bob and Carol
cannot link Alice’s request for a certificate to Alice’s proof that she possesses a certifi-
cate. In addition, if Alice proves possession of a certificate multiple times, these proofs
cannot be linked to each other. Anonymous credentials are an example of a privacy-
preserving authentication mechanism, which is an important theme in modern cryp-
tographic research. Other examples are electronic cash [CFN90,CP93,Bra93,CHLOS]
and group signatures [CvH91,CS97,ACJT00,BBS04,BW06,BWO07]. In a series of pa-
pers, Camenisch and Lysyanskaya [CLO1,CL02,CL04] identified a key building block
commonly called “a CL-signature” that is frequently used in these constructions. A
CL-signature is a signature scheme with a pair of useful protocols.

The first protocol, called Issue, lets a user obtain a signature on a committed mes-
sage without revealing the message. The user wishes to obtain a signature on a value x
from a signer with public key pk. The user forms a commitment comm to value x and
gives comm to the signer. After running the protocol, the user obtains a signature on z,
and the signer learns no information about x other than the fact that he has signed the
value that the user has committed to.

The second protocol, called Prove, is a zero-knowledge proof of knowledge of a
signature on a committed value. The prover has a message-signature pair (z, op(x)).

The prover has obtained it by either running the Issue protocol, or by querying the signer
on z. The prover also has a commitment comm to x. The verifier only knows comm.
The prover proves in zero-knowledge that he knows a pair (z, o) and a value open such
that VerifySig(pk, z, o) = accept and comm = Commit(z, open).

It is clear that using general secure two-party computation [Yao86] and zero-knowl-
edge proofs of knowledge of a witness for any NP statement [GMW86], we can con-
struct the Issue and Prove protocols from any signature scheme and commitment scheme.
Camenisch and Lysyanskaya’s contribution was to construct specially designed sig-
nature schemes that, combined with Pedersen [Ped92] and Fujisaki-Okamoto [FO98]
commitments, allowed them to construct Issue and Prove protocols that are efficient
enough for use in practice. In turn, CL-signatures have been implemented and stan-
dardized [CVH02,BCCO04]. They have also been used as a building block in many other
constructions [JS04,BCL04,CHL05,DDP06,CHK*06,TS06].

A shortcoming of the CL signature schemes is that the Prove protocol is interactive.
Rounds of interaction are a valuable resource. In certain contexts, proofs need to be
verified by third parties who are not present during the interaction. For example, in off-
line e-cash, a merchant accepts an e-coin from a buyer and later deposits the e-coin to
the bank. The bank must be able to verify that the e-coin is valid.

There are two known techniques for making the CL Prove protocols non-interactive.
We can use the Fiat-Shamir heuristic [FS87], which requires the random-oracle model.
A series of papers [CGH04,DNRS03,GK03] show that proofs of security in the random-
oracle model do not imply security. The other option is to use general techniques:
[BFM88,DSMP88,BDMPI1] show how any statement in NP can be proven in non-
interactive zero-knowledge. This option is prohibitively expensive.

We give the first practical non-interactive zero-knowledge proof of knowledge of
a signature on a committed message. We have two constructions using two different
practical siganture schemes and a special class of commitments due to Groth and Sa-
hai [GSO7]. Our constructions are secure in the common reference string model.

Due to the fact that these protocols are so useful for a variety of applications, it is im-
portant to give a careful treatment of the security guarantees they should provide. In this
paper, we introduce the concept of P-signatures — signatures with efficient Protocols,
and give a definition of security. The main difference between P-signatures and CL-
signatures is that P-signatures have non-interactive proof protocols. (Our definition can
be extended to encompass CL signatures as well.)

OUR CONTRIBUTIONS. Our main contribution is the formal definition of a P-signature
scheme and two efficient constructions.

Anonymous credentials are an immediate consequence of P-signatures (and of CL-
signatures [Lys02]). Let us explain why (see full paper for an in-depth treatment). Sup-
pose there is a public-key infrastructure that lets each user register a public key. Alice
registers unlinkable pseudonyms Ap and Ac with Bob and Carol. Ap and Ac are
commitments to her secret key, and so they are unlinkable by the security properties of
the commitment scheme. Suppose Alice wishes to obtain a certificate from Carol and
show it to Bob. Alice goes to Carol and identifies herself as the owner of pseudonym
Ac. They run the P-signature Issue protocol as a result of which Alice gets Carol’s

signature on her secret key. Now Alice uses the P-signature Prove protocol to construct
a non-interactive proof that she has Carol’s signature on the opening of Ap.

Our techniques may be of independent interest. Typically, a proof of knowledge 7
of a witness x to a statement s implies that there exists an efficient algorithm that can
extract a value z’ from 7 such that 2’ satisfies the statement s. Our work uses Groth-
Sahai non-interactive proofs of knowledge [GS07] from which we can only extract f(x)
where f is a one-way function. We formalize the notion of an f-extractable proof of
knowledge and develop useful notation for describing f-extractable proofs that com-
mitted values have certain properties. Our notation has helped us understand how to
work with the GS proof system and it may encourage others to use the wealth of this
powerful building block.

TECHNICAL ROADMAP. We use Groth and Sahai’s f-extractable non-interactive proofs
of knowledge [GSO7] to build P-signatures. Groth and Sahai give three instantiations
for their proof system, using SXDH, DLIN, and SDA assumptions. We can use either of
the first two instantiations. The SDA-based instantiation does not give us the necessary
extraction properties.

Another issue we confront is that Groth-Sahai proofs are f-extractable and not fully
extractable. Suppose we construct a proof whose witness = contains @ € Z, and the
opening of a commitment to a. For this commitment, we can only extract b* € f(x)
from the proof, for some base b. Note that the proof can be about multiple committed
values. Thus, if we construct a proof of knowledge of (m,o) where m € Z, and
VerifySig(pk, m, o) = accept, we can only extract some function F'(m) from the proof.
However, even if it is impossible to forge (m, o) pairs, it might be possible to forge
(F(m), o) pairs. Therefore, for our proof system to be meaningful, we need to define
F-unforgeable signature schemes, i.e. schemes where it is impossible for an adversary
to compute a (F'(m), o) pair on his own.

Our first construction uses the Weak Boneh-Boyen (WBB) signature scheme [BB04].
Using a rather strong assumption, we prove that WBB is F-unforgeable and our P-
signature construction is secure. Our second construction uses a better assumption (be-
cause it is falsfiable [Nao03]) and Our construction is based on the Full Boneh-Boyen
signature scheme [BB04]. We had to modify the Boneh-Boyen construction, however,
because the GS proof system would not allow the knowledge extraction of the entire
signature. Our first construction is much simpler, but, as it’s security relies on an inter-
active and thus much stronger assumption, we have decided to focus here on our second
construction. For details on the first construction, see the full version.

ORGANIZATION. Sections 2 and 3 define P-signatures and introduce complexity as-
sumptions. Section 4 explains non-interactive proofs of knowledge, introduces our new
notation, and reviews GS proofs. Finally, Section 5 contains our second construction.

2 Definition of a Secure P-Signature Scheme

We say that a function v : Z — R is negligible if for all integers c there exists an integer
K such that Vk > K, |v(k)| < 1/k°. We use the standard GMR [GMR88] notation to
describe probability spaces.

Here we introduce P-signatures a primitive which lets a user (1) obtain a signature
on a committed message without revealing the message, (2) construct a non-interactive
zero-knowledge proof of knowledge of (F(m),o) such that VerifySig(pk, m,o) =
accept and m is committed to in a commitment comm, and (3) a non-interactive method
for proving that a pair of commitments are to the same value. In this section, we give the
first formal definition of a non-interactive P-signature scheme. We begin by reviewing
digital signatures and introducing the concept of F-unforgeability.

2.1 Digital Signatures

A signature scheme consists of four algorithms: SigSetup, Keygen, Sign, and VerifySig.
SigSetup(1*) generates public parameters paramsg;,. Keygen(paramss;,) generates
signing keys (pk, sk). Sign(paramsg,g, sk, m) computes a signature o on m. VerifySig
(paramss;g, pk, m, o) outputs accept if o is a valid signature on m, reject if not.

The standard definition of a secure signature scheme [GMRS88] states that no adver-
sary can output (m, o), where o is a signature on mn, without first previously obtaining
a signature on m . This is insufficient for our purposes. Our P-Signature constructions
prove that we know some value y = F'(m) (for an efficiently computable bijection F')
and a signature o such that VerifySig(paramsgiq, pk, m,c) = accept. However, even
if an adversary cannot output (m, o) without first obtaining a signature on m, he might
be able to output (F'(m), o). Therefore, we introduce the notion of F'-Unforgeability:

Definition 1 (F-Secure Signature Scheme). We say that a signature scheme is F-
secure (against adaptive chosen message attacks) if it is Correct and F'-Unforgeable.

Correct. VerifySig always accepts a signature obtained using the Sign algorithm.

F-Unforgeable. Let F' be an efficiently computable bijection. No adversary should be
able to output (F'(m), o) unless he has previously obtained a signature on m. For-
mally, for every PPTM adversary A, there exists a negligible function v such that

Prparamsg;y < SigSetup(1%); (pk, sk) — Keygen(paramsgig);
(Qsigns4:0) — Alparamsssy, ph) s (voromssst.)
VerifySig(paramssiy, pk, F~(y),0) = 1 Ay & F(Qsign)] < v(k).
Osign(paramsgig, sk, m) records m-queries on Qsign and returns Sign(paramsgq,
sk, m). F(Qsign) evaluates F' on all values on Qsign.

Lemma 1. F-unforgeable signatures are secure in the standard [GMRS88] sense.
Proof sketch. Suppose an adversary can compute a forgery (m, o). Now the reduction
can use it to compute (F'(m), o).

2.2 Commitment Schemes

Recall the standard definition of a non-interactive commitment scheme. It consists of
algorithms ComSetup, Commit. ComSetup(1*) outputs public parameters paramscon,

for the commitment scheme. Commit(paramscom, €, open) is a deterministic function
that outputs comm, a commitment to = using auxiliary information open. We need
commitment schemes that are perfectly binding and strongly computationally hiding:

Perfectly Binding. For every bitstring comm, there exists at most one value x such that
there exists opening information open so that comm = Commit(params, x, open).
We also require that it be easy to identify the bitstrings comm for which there exists
such an z.

Strongly Computationally Hiding. There exists an alternate setup HidingSetup(1¥)
that outputs parameters (computationally indistinguishable from the output of
ComSetup(1*)) so that the commitments become information-theoretically hiding.

2.3 Non-Interactive P-Signatures

A non-interactive P-signature scheme extends a signature scheme (Setup, Keygen, Sign,
VerifySig) and a non-interactive commitment scheme (Setup, Commit). It consists of
the following algorithms (Setup, Keygen, Sign, VerifySig, Commit, ObtainSig, IssueSig,
Prove, VerifyProof, EqCommProve, VerEqComm).

Setup(1*). Outputs public parameters params. These parameters include parameters
for the signature scheme and the commitment scheme.

ObtainSig(params, pk, m, comm, open) < lssueSig(params, sk, comm). These two in-
teractive algorithms execute a signature issuing protocol between a user and the
issuer. The user takes as input (params, pk, m, comm, open) such that the value
comm = Commit(params, m, open) and gets a signature o as output. If this signa-
ture does not verify, the user sends “reject” to the issuer. The issuer gets (params, sk,
comm) as input and gets nothing as output.

Prove(params, pk, m, o). Outputs the values (comm,w, open), such that comm =
Commit(params, m, open) and 7 is a proof of knowledge of a signature o on m.
VerifyProof (params, pk, comm, 7). Takes as input a commitment to a message m and
a proof 7 that the message has been signed by owner of public key pk. Outputs
accept if 7 is a valid proof of knowledge of F'(m) and a signature on m, and outputs

reject otherwise.

EqCommProve(params, m, open, open’). Takes as input a message and two commit-
ment opening values. It outputs a proof 7 that comm = Commit(m, open) is a
commitment to the same value as comm’ = Commit(m, open’). This proof is used
to bind the commitment of a P-signature proof to a more permanent commitment.

VerEqComm(params, comm, comm/,) . Takes as input two commitments and a proof
and accepts if 7 is a proof that comm, comm' are commitments to the same value.

Definition 2 (Secure P-Signature Scheme). Let F' be a efficiently computable bi-
Jection (possibly parameterized by public parameters). A P-signature scheme is se-
cure if (Setup, Keygen, Sign, VerifySig) form an F-unforgeable signature scheme, if
(Setup, Commit) is a perfectly binding, strongly computationally hiding commitment
scheme, if (Setup, EQqCommProve, VerEqComm) is a non-interactive proof system, and
if the Signer privacy, User privacy, Correctness, Unforgeability, and Zero-knowledge
properties hold:

Correctness. An honest user who obtains a P-signature from an honest issuer will be
able to prove to an honest verifier that he has a valid signature.

Signer privacy. No PPTM adversary can tell if it is running IssueSig with an honest
issuer or with a simulator who merely has access to a signing oracle. Formally, there
exists a simulator Simlssue such that for all PPTM adversaries (A, .As3), there exists
a negligible function v so that:

| Pr[params «— Setup(1%); (sk, pk) < Keygen(params);

(m, open, state) — Aj(params, sk);
comm < Commit(params, m, open);
b — As(state) < IssueSig(params, sk, comm) : b = 1]
— Pr[params < Setup(1¥); (sk, pk) < Keygen(params);
(m, open, state) «— A;(params, sk);
comm «— Commit(params, m, open); o < Sign(params, sk, m);

b — Ay (state) < Simlssue(params, comm, o) : b =1]| < v(k)

Note that we ensure that IssueSig and Simlssue gets an honest commitment to what-
ever m, open the adversary chooses.

Since the goal of signer privacy is to prevent the adversary from learning anything
except a signature on the opening of the commitment, this is sufficient for our pur-
poses. Note that our SimIssue will be allowed to rewind .A. to Also, we have defined
Signer Privacy in terms of a single interaction between the adversary and the issuer.
A simple hybrid argument can be used to show that this definition implies privacy
over many sequential instances of the issue protocol.

User privacy. No PPTM adversary (A, A2) can tell if it is running ObtainSig with an
honest user or with a simulator. Formally, there exists a simulator Sim = SimObtain
such that for all PPTM adversaries A7, As, there exists negligible function v so that:

| Pr[params — Setup(1%); (pk, m, open, state) — A (params);
comm = Commit(params, m, open);
b — As(state) « ObtainSig(params, pk, m, comm, open) : b = 1]
— Pr[(params, sim) — Setup(1%); (pk, m, open, state) — A, (params);
comm = Commit(params, m, open);
b — Ay (state) < SimObtain(params, pk, comm) : b = 1]| < v(k)

Here again SimObtain is allowed to rewind the adversary.

Note that we require that only the user’s input m is hidden from the issuer, but not
necessarily the user’s output o. The reason that this is sufficient is that in actual
applications (for example, in anonymous credentials), a user would never show ¢ in
the clear; instead, he would just prove that he knows ¢. An alternative, stronger way
to define signer privacy and user privacy together, would be to require that the pair of
algorithms ObtainSig and IssueSig carry out a secure two-party computation. This
alternative definition would ensure that o is hidden from the issuer as well. However,
as explained above, this feature is not necessary for our application, so we preferred
to give a special definition which captures the minimum properties required.

Unforgeability. We require that no PPTM adversary can create a proof for any message
m for which he has not previously obtained a signature or proof from the oracle.
A P-signature scheme is unforgeable if an extractor (ExtractSetup, Extract) and a
bijection F exist such that (1) the output of ExtractSetup(1¥) is indistinguishable
from the output of Setup(1%), and (2) no PPTM adversary can output a proof 7 that
VerifyProof accepts, but from which we extract F'(m), o such that either (a) o is not
valid signature on m, or (b) comm is not a commitment to m or (c) the adversary has
never previously queried the signing oracle on m. Formally, for all PPTM adversaries
A, there exists a negligible function v such that:

Pr[params, < Setup(1¥); (params,, td) « ExtractSetup(1*) : b — {0,1} :
A(params,) = b < 1/2+ v(k), and
Pr[(params, td) — ExtractSetup(1%); (pk, sk) — Keygen(params);

(Qsign, comm,) — A(params, pk) s (Perams:sk),

(y,0) « Extract(params, td, m, comm) :
VerifyProof (params, pk, comm,) = accept
A (VerifySig(params, pk, F~*(y), o) = reject
vV (Vopen, comm # Commit(params, F~*(y), open))
V (VerifySig(params, pk, F~*(y),0) = accept Ay & F(Qsign)))] < v(k).
Oracle Osig (params, sk, m) runs the function Sign(params, sk, m) and returns the
resulting signature o to the adversary. It records the queried message on query tape
Qsign- By F(Qsign) we mean F applied to every message in Qsign.
Zero-knowledge. There exists a simulator Sim = (SimSetup, SimProve, SimEqComm),
such that for all PPTM adversaries A, Ao, there exists a negligible function v such
that under parameters output by SimSetup, Commit is perfectly hiding and (1) the
parameters output by SimSetup are indistinguishable from those output by Setup,
but SimSetup also outputs a special auxiliary string sim; (2) when params are gen-
erated by SimSetup, the output of SimProve(params, sim, pk) is indistinguishable
from that of Prove(params, pk, m, o) for all (pk, m,o) where o € opi(m); and
(3) when params are generated by SimSetup, the output of
SimEqComm(params, sim, comm, comm’) is indistinguishable from that of
EqCommProve(params, m, open, open’) for all (m, open, open’) where
comm = Commit(params, m, open) and comm’ = Commit(params, m, open’).
In GMR notation, this is formally defined as follows:

| Pr[params «— Setup(1%);b < A(params) : b = 1]
— Pr[(params, sim) « SimSetup(1%); b < A(params) : b = 1]| < v(k), and
| Pr[(params, sim) — SimSetup(1%); (pk, m, o, state) — A, (params, sim);
(comm, 7, open) < Prove(params, pk, m,o); b «— As(state, comm,m) : b = 1]
— Pr|(params, sim) « SimSetup(1%); (pk, m, o, state) — A (params, sim);

(comm,) < SimProve(params, sim, pk); b — As(state, comm,)

:b=1]| <v(k), and

| Pr[(params, sim) «— SimSetup(1%); (m, open, open’) — A (params, sim);
7« EqCommProve(params, m, open, open’); b < As(state, w) : b= 1]
— Pr[(params, sim) « SimSetup(1%); (m, open, open’) — A, (params, sim);
7« SimEqComm(params, sim, Commit(params, m, open),
Commit(params, m, open’));
b — Ag(state,7) : b=1]| < v(k).

3 Preliminaries

Let G1, G, and G be groups. A function e : G; X Go — G is called a cryptographic
bilinear map if it has the following properties: Bilinear. Va € G1,Vb € Go,Vz,y € Z
the following equation holds: e(a®,b¥) = e(a,b)*¥. Non-Degenerate. If a and b are
generators of their respective groups, then e(a, b) generates Gr. Let BilinearSetup(1¥)
be an algorithm that generates the groups G1, G5 and G, together with algorithms for
sampling from these groups, and the algorithm for computing the function e.

The function BilinearSetup(1*) outputs paramsgy = (p,G1,G2,Gr,e,g,h),
where p is a prime (of length k), G1, G2, G are groups of order p, g is a generator
of GG1, h is a generator of G, and e : G; X G2 — G is a bilinear map.

We introduce a new assumption which we call TDH and review the HSDH as-
sumption introduced by Boyen and Waters [BWO7]. Groth-Sahai proofs use either the
DLIN [BBS04] or SXDH [Sco02] assumption. For formal definitions, see the full ver-
sion.

Definition 3 (Triple DH (TDH)). On input g, g%, g%, h, h*, {ci, g*/ @+ Yy, itis
computationally infeasible to output a tuple (h**, g*¥, g**¥) for u # 0.

Definition 4 (Hidden SDH [BWO7]). On input g, g*,u € G1, h, h* € G5 and {gl/(““),
ht, uct} oy 4, it is computationally infeasible to output a new tuple (g*/(®+¢) he u®).

Definition 5 (Decisional Linear Assumption (DLIN)). On input u,v,w,u",v®
G it is computationally infeasible to distinguish zy < w™"* from z; < Gi. The
assumption is analogously defined for G.

Definition 6 (Symmetric External Diffie-Hellman Assumption (SXDH)). SXDH states
that the Decisional Diffie Hellman problem is hard in both G1 and Go. This precludes
efficient isomorphisms between these two groups.

4 Non-Interactive Proofs of Knowledge

Our P-signature constructions use the Groth and Sahai [GSO7] non-interactive proof
of knowledge (NIPK) system. De Santis et al. [DDP00] give the standard definition of
NIPK systems. Their definition does not fully cover the Groth and Sahai proof system.
In this section, we review the standard notion of NIPK. Then we give a useful gen-
eralization, which we call an f-extractable NIPK, where the extractor only extracts a

function of the witness. We develop useful notation for expressing f-extractable NIPK
systems, and explain how this notation applies to the Groth-Sahai construction. We
then review Groth-Sahai commitments and pairing product equation proofs. Finally, we
show how they can be used to prove statments about committed exponents, as this will
be necessary later for our constructions.

4.1 Proofs of Knowledge: Notation and Definitions

In this subsection, we review the definition of NIPK, introduce the notion of f-extractab-
ility, and develop some useful notation. We review the De Santis et al. [DDPO0O0] defi-
nition of NIPK. Let L = {s : Jx s.t. M (s,x) = accept} be a language in NP and
M, a polynomial-time Turing Machine that verifies that = is a valid witness for the
statement s € L. A NIPK system consists of three algorithms: (1) PKSetup(1¥) sets up
the common parameters paramspg; (2) PKProve(paramspg , s,) computes a proof
7 of the statement s € L using witness x; (3) PKVerify(paramspy, s, w) verifies cor-
rectness of . The system must be complete and extractable. Completeness means that
for all values of paramspy and for all s, x such that M (s, z) = accept, a proof 7 gen-
erated by PKProve(paramspr , s, x) must be accepted by PKVerify(paramspg , s,).
Extractability means that there exists a polynomial-time extractor (PKExtractSetup,
PKExtract). PKExtractSetup(1*) outputs (td, paramsp) where paramspx is dis-
tributed identically to the output of PKSetup(1*). For all PPT adversaries .A, the prob-
ability that A(1%, paramspx) outputs (s, 7) such that PKVerify(paramspg,s,) =
accept and PKExtract(td, s, 7) fails to extract a witness 2 such that M, (s, z) = accept
is negligible in k. We have perfect extractability if this probability is 0.

We first generalize the notion of NIPK for a language L to languages parameterized
by paramspg — we allow the Turing machine M7, to receive paramspy as a separate
input. Next, we generalize extractability to f-extractability. We say that a NIPK system
is f-extractable if PKExtract outputs y, such that there 3z : My (paramspk, s, x) =
accept Ay = f(paramspk,). If f(paramspg,-) is the identity function, we get the
usual notion of extractability. We denote an f-extractable proof 7 obtained by running
PKProve(paramspr, s, x) as

7w — NIPK{paramspx, s, f (paramspk, x) : My (paramspk, s,x) = accept}.

We omit the paramspg where they are obvious. In our applications, s is a conditional
statement about the witness x, so M, (s, x) = accept if Condition(z) = accept. Thus
the statement 7 — NIPK{f(x) : Condition(x)} is well defined. Suppose s includes a
list of commitments ¢,, = Commit(z,,, open,,) . The witnessis x = (z1, ...,z N, openy,
..., open), however, we typically can only extract 1, . ..,z xn. We write

7w — NIPK{(z1,...,z,) :Condition(z)

AL Jopen, : cg = Commit(paramscom, Te, 0peny)}.

We introduce shorthand notation for the above expression: m «— NIPK{((c1 : 1), ...,
(¢n : x,)) : Condition(x)}. For simplicity, we assume the proof 7 includes s.

4.2 Groth-Sahai Commitments [GS07]

We review the Groth-Sahai [GS07] commitment scheme. We use their scheme to com-
mit to elements of a group G of prime order p. Technically, their constructions commit
to elements of certain modules, but we can apply them to certain bilinear groups ele-
ments. Groth and Sahai also have a construction for composite order groups using the
Subgroup Decision assumption; however it lacks the necessary extraction properties.

GSComSetup(p, G, g). Outputs a common reference string paramscom -

GSCommit(paramscom, x, open). Takes as input z € G and some value open and out-
puts a commitment comm. The extension GSExpCommit(paramscom, b, 8, open)
takes as input § € Z, and a base b € G and outputs (b, comm), where comm =
GSCommit(paramscom, b?, open). (Groth and Sahai compute commitments to ele-
ments in Z,, slightly differently;

VerifyOpening(paramscom, comm, x, open). Takes © € G and open as input and out-
puts accept if comm is a commitment to x. To verify that (b, comm) is a commitment
to exponent @ check VerifyOpening(paramscom, comm, b’ open).

For brevity, we write GSCommit(x) to indicate committing to « € G when the param-
eters are obvious and the value of open is chosen appropriately at random. Similarly,
GSExpCommit(b, #) indicates committing to § using b € G as the base.

GS commitments are perfectly binding, strongly computationally hiding, and ex-
tractable. Groth and Sahai [GS07] show how to instantiate commitments that meet
these requirements using either the SXDH or DLIN assumptions. Commitments based
on SXDH consist of 2 elements in (, while those based on DLIN setting require 3 ele-
ments in G. Note that in the Groth-Sahai proof system below, G = G or G = G for
SXDH and G = G1 = G5 for DLIN.

4.3 Groth-Sahai Pairing Product Equation Proofs [GS07]

Groth and Sahai [GSO7] construct an f-extractable NIPK system that lets us prove
statements in the context of groups with bilinear maps.

GSSetup(1*) outputs (p, G1, G2, Gr, e, g, h), where G, Go, G are groups of prime
order p, with g a generator of G1, h a generator of Go, and e : G; X G2 — Gr
a cryptographic bilinear map. GSSetup(1*) also outputs params; and paramss for
constructing GS commitments in G and Gs, respectively. (If the pairing is symmet-
ric, G; = G2 and params; = paramss.) The statement s to be proven consists
of the following list of values: {aq}q=1..0 € Gi1, {bg}q=1..0 € G2, t € Gr, and
{agm}m=1..Mq=1..Q;{Bqn}tn=1..Ng=1..0 € Zp, as well as a list of commitments
{¢m}m=1..0 to values in Gy and {d,, },—1.. n to values in G5. Groth and Sahai show
how to construct the following proof:

N|PK{((01 : 1‘1), ey (CM : {E]w)7(d1 : yl), ey (dN : yN)) :

The proof 7 includes the statement being proven; this includes the commitments c1, . . . , cps
and dy, ...,dy. Groth and Sahai provide an efficient extractor that opens these com-
mitments to values x1,..., 25, Y1, . ., yN that satisfy the pairing product equation.

Recall the function GSExpCommit(paramsi, b, 8, open) = (b, GSCommit(paramsi,
%, open)). We can replace any of the clauses (¢, : ,,) with the clause (c,, : %), and
add b to the list of values included in the statement s (and therefore in the proof).
The same holds for commitments d,,. Groth-Sahai proofs also allow us to prove that the
openings of (c1,...,¢p,d1, ..., d,) satisfy several equations simultaneously.

We formally define the Groth-Sahai proof system. Let paramsgy, «+ BilinearSetup(1¥).

GSSetup(paramspys). Calls GSComSetup to generate params; and paramss for
constructing commitments in G; and G4 respectively, and optional auxiliary values
params .. Outputs paramsgs = (paramspr, paramsi, paramss, paramsy).

GSProve(paramsgs, 8, ({Tm t1...m5 {Yn }1...N, openings)). Takes as input the param-
eters, the statement s = {(c1,...,cp,d1,. .., dN), equations} to be proven, (the
statement s includes the commitments and the parameters of the pairing product
equations), the witness consisting of the values {2, }1...ar, {yn }1...v and opening
information openings. Outputs a proof 7.

GSVerify(paramsgs, 7). Returns accept if 7 is valid, reject otherwise. (Note that it
does not take the statement s as input because we have assumed that the statement is
always included in the proof 7.)

GSExtractSetup(params gy). Outputs paramsgs and auxiliary information (tdy, tds).
paramsgs are distributed identically to the output of GSSetup(paramsgay). (td1, tds)
allow an extractor to discover the contents of all commitments.

GSExtract(paramsgs, tdy, tde, 7). Outputs x1,...,xp € Gq and y1,...,yn € Ga
that satisfy the equations and that correspond to the commitments (note that the
commitments and the equations are included with the proof 7).

Groth-Sahai proofs satisfy correctness, extractability, and strong witness indistinguisha-
bility. We explain these requirements in a manner compatible with our notation.

Correctness. An honest verifier always accepts a proof generated by an honest prover.

Extractability. If an honest verifier outputs accept, then the statement is true. This
means that, given td;, tds corresponding to paramsgg, GSExtract extracts values
from the commitments that satisfy the pairing product equations with probability 1.

Strong Witness Indistinguishability. A simulator Sim = (SimSetup, SimProve) with
the following two properties exists: (1) SimSetup(paramspgys) outputs paramsgs’
such that they are computationally indistinguishable from the output of GSSetup(
paramspyr). Let params) € paramsgs’ be the parameters for the commitment
scheme in G1. Using params), commitments are perfectly hiding — this means that
for all commitments comm, Va € G1, Jopen : VerifyOpening(params’, comm, x,
open) = accept (analogous for G5). (2) Using the paramsgs’ generated by the
challenger, GS proofs become perfectly witness indistinguishable. Suppose an un-
bounded adversary A generates a statement s consisting of the pairing product equa-
tions and a set of commitments (¢1,. .., ¢y, d1, - - -, dn). The adversary opens the

commitments in two different ways Wy = (Igo), e 1:53), y§0)7 e 7yj(\(,))7 openingsg)

and W; = (mgl), e ,x%ll), y§1), e ,yj(\}), openings,) (under the requirement that
these witnesses must both satisfy s). The values openings, show how to open the
commitments to {xﬁ,’i), y,(f’)}. (The adversary can do this because it is unbounded.)
The challenger gets the statement s and the two witnesses Wy and IW;. He chooses
abit b « {0,1} and computes # = GSProve(paramsgs’, s, W;). Strong witness

indistinguishability means that 7 is distributed independently of b.

Composable Zero-Knowledge. Note that Groth and Sahai show that if in a given pair-
ing product equation the constant ¢ can be written as t = e(t1,t2) for known ¢, ta,
then these proofs can be done in zero knowledge. However, their zero knowldge proof
construction is significantly less efficient than the WI proofs. Thus, we choose to use
only the WI construction as a building block. Then we can take advantage of special
features of our P-signature construction to create much more efficient proofs that still
have the desired zero knowledge properties. The only exception is our construction for
EqCommProve, which does use the zero knowledge technique suggested by Groth and
Sahai.

4.4 Proofs about Committed Exponents

We use the Groth-Sahai proof system to prove equality of committed exponents.

Equality of Committed Exponents in Different Groups. We want to prove the state-
ment NIPK{((c : %), (d : h?)) : a = B}. We perform a Groth-Sahai pairing product
equation proof NIPK{((c: z), (d : y)) : e(z, h)e(1/g,y) = 1}. Security is straightfor-
ward due to the f-extractability property of the GS proof system.

Equality of Committed Exponents in the Same Group. We want to prove the state-
ment NIPK{((c; : g%), (c2 : ©?)) : a = B}, where g,u € Gy. This is equivalent to
proving NIPK{((c1 : ¢%), (c2 : uP),(d: hY) :a =y A B =7}

Zero-Knowledge Proof of Equality of Committed Exponents. We want to prove the
statement NIZKPK{((c; : ¢g%),(c2 : ¢°) : @ = B} in zero-knowledge. We perform
the Groth-Sahai zero-knowledge pairing product equation proof NIPK{((¢1 : g%), (c2 :
"), (d:h%) :e(a/b,h?) = 1Ae(g,h%)e(1/g, h) = 1}. Proof of equality of committed
exponents in group G is done analogously. See full version for details.

Remark 1. We cannot directly use Groth-Sahai general arithmetic gates [GS07] to con-
struct the above proofs because they assume that the commitments use the same base.

5 Efficient Construction of P-Signature Scheme

In this section, we present a new signature scheme and then build a P-signature scheme
from it. The new signature scheme is inspired by the full Boneh-Boyen signature scheme,
and is as follows:

New-SigSetup(1*) runs BilinearSetup(1%) to get the pairing parameters (p, G1, Go, G,
e, g, h). In the sequel, by z we denote z = e(g, h).

New- Keygen(params) picks a random o, 3 < Zp. The signer calculates v = h®,
w = hP o = g% @ = g¢° The secret-key is sk = («,3). The public-key is
pk = (v,w, D, w). The public key can be verified by checking that e(g, v) = e(0, h)
and e(g, w) = e(w, h).

New-Sign(params, (o, 3), m) chooses r — Z,, — { } and calculates C; =
gt/(atmtBr) Cy — ", C3 = u”. The signature is (C1, Cy, Cs3).

New-VerifySig(params, (v, w, v, w), m, (Cy,Ca, C3)) outputs accept if e(C7, vh™C5)
= z, e(u,C3) = e(Cs,w), and if the public key is correctly formed, i.e., e(g,v) =
e(9,h), and e(g,w) = e(w, h).}

a—m

Theorem 1. Let F(x) = (h*,u”), where u € Gy and h € G as in the HSDH and
TDH assumptions. Our new signature scheme is F'-secure given HSDH and TDH. (See
full version for proof.)

We extend the above signature scheme to obtain our second P-signature scheme
(Setup, Keygen, Sign, VerifySig, Commit, ObtainSig, IssueSig, Prove, VerifyProof,
EqCommProve, VerEqComm). The algorithms are as follows:

Setup(1¥) First, obtain paramsgy = (p, G1,G2,Gr,e,g,h) «— BilinearSetup(1%).
Next, obtain paramsgs = (params g, paramss, paramss, paramsy) «—
GSSetup(paramspyr). Pick u <+ Gy. Let params = (paramsgs, u). As before, z
is defined as z = e(g, h).

Keygen(params) Run the New-Keygen(paramsgys) and output sk = (o, 3), pk =
(ha’ hﬂ? ga7 gﬁ) = (/U, w? ,177 ,l‘z})'
Sign(params, sk, m) Run New-Sign(paramsps, sk, m) to obtain o = (C1, Cs, C3)
where Oy = gl/(etm+8r) Cy — ", C3 = u”, and sk = (a, §)
VerifySig(params, pk, m, o) Run New-VerifySig(paramsgas, pk, m, o).
Commit(params, m, open) To commit to m, compute C' = GSExpCommit(paramsas, h,
m, open). (Recall that GSExpCommit(paramsa, h, m, open) = GSCommit(paramsa,
h™ open), and paramss is part of paramsgs.)
ObtainSig(params, pk, m, comm, open) < lssueSig(params, sk, comm). The user and
the issuer run the following protocol:
1. The user chooses p1, p2 < Zp.
2. The issuer chooses 1’ «— Z,,.
3. The user and the issuer run a secure two-party computation protocol where the
user’s private inputs are (p1, p2, m, open), and the issuer’s private inputs are
sk = (a, 8) and 1.
The issuer’s private outputis x = (a+m~+Bp17’) ps if comm = Commit(params,
m, open), and z = L otherwise.
41f z # L, the issuer calculates C = ¢'/*, C, = w" and C} = u"', and sends
(Cy, C%, C%) to the user.
5. The user computes C; = C*?, Co = Cif’*, and C3 = C5* and then verifies that
the signature (C, C2, C3) is valid.

3 The latter is needed only once per public key, and is meaningless in a symmetric pairing setting.

Prove(params, pk, m, o) Check if pk and o are valid, and if they are not, output L.
Then the user computes commitments X~ = GSCommit(paramsi, C1, open,), Ry, =
GSCommit(paramsy, Ca, openy), R, = GSCommit(paramsy, Cs, opens), My =
GSExpCommit(paramss, h, m, open,) = GSCommit(paramss, h™, open,) and
M, = GSExpCommit(paramsy,u, m, opens) = GSCommit(paramsy, u™, openy).
The user outputs the commitment comm = M, and the proof

7= NIPK{((X: C1), (Ry : Ca),(Ry : C3)(Mj, : h%), (M, : u?))
e(C1,vh®Cy) = z N e(u, Cy) = e(Cs,w) A = (}.

VerifyProof (params, pk, comm, 7) Outputs accept if the proof = is a valid proof of the
statement described above for M}, = comm and for properly formed pk.

EqCommProve(params, m, open, open’) Let commitment comm = Commit(params,
m, open) = GSCommit(paramss, h™, open) and comm’ = Commit(params, m,
open’) = GSCommit(paramss, h™, open’). Use the GS proof system as described
in Section 4.4 to compute 7 « NIZKPK{((comm : h%), (comm’ : hP?) : a = B}.

VerEqComm(params, comm, comm’,) Verify the proof 7 using the GS proof system
as described in Section 4.4.

Theorem 2 (Efficiency). Using SXDH GS proofs, each P-signature proof for our new
signature scheme consists of 18 elements in G1 and 16 elements in Go. The prover
performs 34 multi-exponentiation and the verifier 68 pairings. Using DLIN, each P-
signature proof consists of 42 elements in G1 = Ga. The prover has to do 42 multi-
exponentiations and the verifier 84 pairings.

Theorem 3 (Security). Our second P-signature construction is secure given HSDH
and TDH and the security of the GS commitments and proofs.

Proof. Correctness. VerifyProof will always accept properly formed proofs.

Signer Privacy. We must construct the Simlssue algorithm that is given as input
params, a commitment comm and a signature ¢ = (C7, Cy, C3) and must simulate
the adversary’s view. Simlssue will invoke the simulator for the two-party computation
protocol. Recall that in two-party computation, the simulator can first extract the in-
put of the adversary: in this case, some (p1, p2, m, open). Then Simlssue checks that
comm = Commit(params, m, open); if it isn’t, it terminates. Otherwise, it sends to
the adversary the values (C = C}/"*,C}) = C/* C} = CA/*"). Suppose the adver-
sary can determine that it is talking with a simulator. Then it must be the case that the
adversary’s input to the protocol was incorrect which breaks the security properties of
the two-party computation.

User Privacy. The simulator will invoke the simulator for the two-party computation
protocol. Recall that in two-party computation, the simulator can first extract the input
of the adversary (in this case, some (o, 8'), not necessarily the valid secret key). Then
the simulator is given the target output of the computation (in this case, the value =
which is just a random value that the simulator can pick itself), and proceeds to interact
with the adversary such that if the adversary completes the protocol, its output is .
Suppose the adversary can determine that it is talking with a simulator. Then it breaks
the security of the two-party computation protocol.

Zero knowledge. Consider the following algorithms. SimSetup runs BilinearSetup
to get paramsgn = (p, G1,G2,Gr, e, g, h). It then picks ¢ « Z, and sets up u =
g®. Next it calls GSSimSetup(paramspys) to obtain paramsgs and sim. The final
parameters are params = (paramsgs,u,z = e(g, h)) and sim = (a, sim). Note that
the distribution of params is indistinguishable from the distribution output by Setup.
SimProve receives params, sim, and public key (v, ¥, w,w) and can use trapdoor sim
to create a random P-signature forgery in SimProve as follows. Pick s,r «— Z, and
compute ¢ = ¢'/*. We implicitly set m = s — a — 3. Note that the simulator does
not know m and «. However, he can compute h™ = h*®/(vw”) and u™ = u®/(0%0*").
Now he can use o, h™, u™, w", u" as a witness and construct the proof 7 in the same
way as the real Prove protocol. By the witness indistinguishability of the GS proof
system, a proof using the faked witnesses is indistinguishable from a proof using a real
witness, thus SimProve is indistinguishable from Prove.

Finally, we need to show that we can simulate proofs of EqCommProve given the
trapdoor simgg. This follows directly from composable zero knowledge of
EqCommProve. See full version for details.

Unforgeability. Consider the following algorithms: ExtractSetup(1*) outputs the
usual params, except that it invokes GSExtractSetup to get alternative paramsgs and
the trapdoor td = (tdy, tds) for extracting GS commitments in G; and Gs. The pa-
rameters generated by GSSetup are indistinguishable from those generated by
GSExtractSetup, so we know that the parameters generated by ExtractSetup will be
indistinguishable from those genrated by Setup.

Extract(params, td, comm,) extracts the values from commitment comm and
the commitments M}, M, contained in the proof 7 using the GS commitment extractor.
If VerifyProof accepts then comm = My,. Let F(m) = (h™,u™).

Now suppose we have an adversary that can break the unforgeability of our P-
signature scheme for this extractor and this bijection.

A P-signature forger outputs a proof from which we extract (F'(m), o) such that
either (1) VerifySig(params, pk,m,c) = reject, or (2) comm is not a commitment
to m, or (3) the adversary never queried us on m. Since VerifyProof checks a set of
pairing product equations, f-extractability of the GS proof system trivially ensures that
(1) never happens. Since VerifyProof checks that M} = comm, this ensures that (2)
never happens. Therefore, we consider the third possibility. The extractor calcualtes
F(m) = (h™,u™) where m is fresh. Due to the randomness element r in the signature
scheme, we have two types of forgeries. In a Type 1 forgery, the extractor can extract
from the proof a tuple of the form (g/(@+m+07) o7 oy ™ u™), where m + (3 #
my + r¢0 for any (my,) used in answering the adversary’s signing or proof queries.
The second type of forgery is one where m + r3 = my + 740 for (my, r,) used in one
of these previous queries. We show that a Type 1 forger can be used to break the HSDH
assumption, and a Type 2 forger can be used to break the TDH assumption.

Type 1 forgeries: 5r + m # Pry + my for any ry, my from a previous query.
The reduction gets an instance of the HSDH problem (p, G1, G2, Gr, ¢, g, X, X, h,u,
{C, Hy,Us}g=1..4), such that X = h* and X = ¢” for some unknown z, and for all /,
Cy = gl/(’“rcf), Hy = h, and Uy = u® for some unknown c¢y. The reduction sets up
the parameters of the new signature scheme as (p, G1, Ga, ¢, g, h,u, z = e(g, h)). Next,

the reduction chooses 5 « Z,, sets v = X, = X and calculates w = h?, @ = ¢°.
The reduction gives the adversary the public parameters, the trapdoor, and the public-
key (v, w, 0, D).

Suppose the adversary’s /th query is to Sign message my. The reduction will implic-
itly set 7 to be such that ¢, = my + (ry. This is an equation with two unknowns, so we
do not know 1, and ¢,. The reduction sets C; = Cy. It computes Cy = Hy/h™ =
het /h™ = w't. Then it computes C3 = (Up)'/8/u™/8 = (uce)t/B jyme/B =
u(ce=me)/B — 47t The reduction returns the signature (C', Cy, C3).

Eventually, the adversary returns a proof m. Since 7 is f-extractable and perfectly
sound, we extract o = gl/(x+m+5’"), a=w",b=u",c=h"™, and d = u™. Since this
is a P-signature forgery, (¢, d) = (™, u™) & F(Qsign). Since this is a Type 1 forger,
we also have that m + [Br # my + (r, for any of the adversary’s previous queries.
Therefore, (o, ca, db®) = (gt/(e+m+87) pm+Ar 4m+57) is a new HSDH tuple.

Type 2 forgeries: gr + m = (ry + my for some r,, my from a previous query.
The reduction receives (p, G1, G2, Gr,e,9,h, X, Z,Y, {04, ¢c¢}), where X = h*, Z =
g°, Y = g¥, and for all £, oy = g'/(*+¢)_ The reduction chooses v « Z, and
sets u = Y. The reduction sets up the parameters of the new signature scheme as
(p,G1,G2,¢e,9,h,u, z = e(g, h)). Next the reduction chooses o < Z,, and calculates
v="hYw=X"0=g%w= Z". It gives the adversary the parameters, the trapdoor,
and the public-key (v, w, ¥, w). Note that we set up our parameters and public-key so
that 3 is implicitly defined as 3 = x~y, and u = g"V.

Suppose the adversary’s ¢th query is to Sign message my. The reduction sets 1, =
(a + my)/(cey) (which it can compute). The reduction computes C; = aé/ (re) _
(g"/teyl/(ore) = gl/(yre(aten)) — gl/(etmetBre) Since the reduction knows ry, it
computes Cy = w", C3 = u™ and send (C1, Cs, C3) to A.

Eventually, the adversary returns a proof 7. The proof 7 is f-extractable and per-
ficetly sound, the reduction can extract ¢ = g%/ (@+m+07) ¢ = " b = u", ¢ = A™,
and d = u™. Therefore, VerifySig will always accept m = F~1(c,d), o, a,b. We also
know that if this is a forgery, then VerifyProof accepts, which means that comm = Mj,,
which is a commitment to m. Thus, since this is a P-signature forgery, it must be the
case that (c,d) = (h™,u™) € F(Qsign). However, since this is a Type 2 forger, we
also have that 3¢ : m + Br = my + Bry, where my is one of the adversary’s previous
Sign or Prove queries. We implicitly define § = m — my. Since m + Or = my + Bry,
we also get that 6 = B(ry — 7). Using 8 = zy, we get that 6 = xy(r, — r). We
compute: A = ¢/h™ = k™™ = B0 B = o't b = w7 = u®/ (%) = gud/e
and C' = (d/u™)V/7 = um=—ma/7 = 49/7 = g% We implicitly set = §/x, thus
(A, B,C) = (h#*, gMY, g**¥) is a valid TDH tuple.

Acknowledgments: Mira Belenkiy, Melissa Chase and Anna Lysyanskaya are sup-
ported by NSF grants CNS-0374661 CNS-0627553. Markulf Kohlweiss is supported
by the European Commission’s IST Program under Contracts IST-2002-507591 PRIME
and IST-2002-507932 ECRYPT.

References

[ACJTO0] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure

[BBO4]
[BBS04]
[BCCO4]

[BCLO4]

coalition-resistant group signature scheme. In CRYPTO 00, p. 255-270.

D. Boneh and X. Boyen. Short signatures without random oracles. In Eurocrypt 04,
p. 54-73.

D. Boneh, X. Boyen, and H. Shacham. Short group signatures using strong Diffie-
Hellman. In CRYPTO ’04, p. 41-55.

E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. Technical
Report Research Report RZ 3450, IBM Research Division, March 2004.

E. Bangerter, J. Camenisch, A. Lysyanskaya. A cryptographic framework for the
controlled release of certified data. In Cambridge Security Protocols Workshop ’04.

[BDMP91] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge.

[BFM8S]
[Bra93]
[Bra99]
[BW06]
[BWO7]
[CFN90]
[CGHO04]

[Cha85]

SIAM J. of Computing, 20(6):1084-1118, 1991.

M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its appli-
cations (extended abstract). In STOC ’88, p. 103-112.

S. Brands. An efficient off-line electronic cash system based on the representation
problem. Technical Report CS-R9323, CWI, April 1993.

S. Brands. Rethinking Public Key Infrastructure and Digital Certificates— Building
in Privacy. PhD thesis, Eindhoven Inst. of Tech. The Netherlands, 1999.

X. Boyen and B. Waters. Compact group signatures without random oracles. In
Eurocrypt *06, p. 427-444.

X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group sig-
natures. In PKC ’07, p. 1-15.

D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In CRYPTO ’90,
p. 319-327.

R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
J. ACM, 51(4):557-594, 2004.

D. Chaum. Security without identification: Transaction systems to make big brother
obsolete. Communications of the ACM, 28(10):1030-1044, October 1985.

[CHKT06] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and M. Meyerovich.

[CHLO5]
[CLO1]
[CL02]
[CLO4]
[CLMO07]
[CP93]
[CS97]

[CvHO1]
[CVHO2]

How to win the clonewars: efficient periodic n-times anonymous authentication. In
CCS 06, p. 201-210.

J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact E-Cash. In Eurocrypt
05, p. 302-321.

J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multi-show
credential system with optional anonymity revocation. In Eurocrypt '01, p. 93-118.
J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In
SCN °02, p. 268-289.

J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In CRYPTO 04, p. 56-72.

J. Camenisch, A. Lysyanskaya, and M. Meyerovich. Endorsed e-cash. In IEEE Sym-
posium on Security and Privacy "07, p. 101-115.

D. Chaum and T. Pedersen. Transferred cash grows in size. In Eurocrypt *92, p. 390—
407.

J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In
CRYPTO ’97, p. 410-424.

D. Chaum and E. van Heyst. Group signatures. In Eurocrypt *91, p. 257-265.

J. Camenisch and E. Van Herreweghen. Design and implementation of the idemix
anonymous credential system. In Proc. 9th ACM CCS ’02, p. 21-30..

[Dam90]

[DDPO00]

[DDPO06]

I. Damgard. Payment systems and credential mechanism with provable security
against abuse by individuals. In CRYPTO ’88, p. 328-335.

A. De Santis, G. Di Crescenzo, and G. Persiano. Necessary and sufficient assump-
tions for non-interactive zero-knowledge proofs of knowledge for all NP relations. In
ICALP °00, p. 451-462.

I. Damgard, K. Dupont, and M. Pedersen. Unclonable group identification. In
Eurocrypt "06, p. 555-572.

[DNRSO03] C. Dwork, M. Naor, O. Reingold, and L. J. Stockmeyer. Magic functions. J. ACM,

50(6):852-921, 2003.

[DSMPS88] A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge proof

[FO98]
[FS87]
[GKO03]
[GMR88]
[GMW86]
[GS07]

[JS04]

systems. In CRYPTO 87, p. 52-72.

E. Fujisaki and T. Okamoto. A practical and provably secure scheme for publicly
verifiable secret sharing and its applications. In Eurocrypt °98, p. 32-46.

A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO ’86, p. 186—194.

S. Goldwasser and Y. Kalai. On the (in)security of the Fiat-Shamir paradigm. In
FOCS ’03, p. 102-115.

S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. on Computing, 17(2):281-308, April 1988.
0. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity
and a method of cryptographic protocol design. In FOCS ’86, p. 174-187.

J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
http://eprint.iacr.org/2007/155.

S. Jarecki and V. Shmatikov. Handcuffing big brother: an abuse-resilient transaction
escrow scheme. In Eurocrypt 04, p. 590-608.

[LRSW99] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. Heys

[Lys02]

[Nao03]
[Ped92]

[Sco02]
[TFS04]
[TS06]

[Yao86]

and C. Adams, eds., Selected Areas in Cryptography, volume 1758 of LNCS, 1999.
A. Lysyanskaya. Signature Schemes and Applications to Cryptographic Protocol
Design. PhD thesis, MIT, Cambridge, Massachusetts, September 2002.

M. Naor. On cryptographic assumptions and challenges. In CRYPTO °03, p. 96-109.
T. Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-
ing. In CRYPTO 92, p. 129-140.

M. Scott. Authenticated id-based key exchange and remote log-in with insecure token
and pin number. http://eprint.iacr.org/2002/164.

L. Teranishi, J. Furukawa, and K. Sako. k-times anonymous authentication (extended
abstract). In ASTACRYPT *04, p. 308-322.

I. Teranishi and K. Sako. k-times anonymous authentication with a constant proving
cost. In PKC ’06, p. 525-542.

A. Yao. How to generate and exchange secrets. In FOCS ’86, p. 162-167.

