
                          Wood, S. N. (2017). P-splines with derivative based penalties and
tensor product smoothing of unevenly distributed data. Statistics and
Computing, 27(4), 985-989. https://doi.org/10.1007/s11222-016-9666-
x

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1007/s11222-016-9666-x

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Springer at
10.1007/s11222-016-9666-x. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1007/s11222-016-9666-x
https://doi.org/10.1007/s11222-016-9666-x
https://doi.org/10.1007/s11222-016-9666-x
https://research-information.bris.ac.uk/en/publications/435450e2-c3c9-464b-af1a-b9694378e270
https://research-information.bris.ac.uk/en/publications/435450e2-c3c9-464b-af1a-b9694378e270


Stat Comput (2017) 27:985–989
DOI 10.1007/s11222-016-9666-x

P-splines with derivative based penalties and tensor product
smoothing of unevenly distributed data

Simon N. Wood1

Received: 5 February 2016 / Accepted: 29 April 2016 / Published online: 18 May 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The P-splines of Eilers andMarx (Stat Sci 11:89–
121, 1996) combine aB-spline basis with a discrete quadratic
penalty on the basis coefficients, to produce a reduced rank
spline like smoother. P-splines have three properties that
make them very popular as reduced rank smoothers: (i) the
basis and the penalty are sparse, enabling efficient compu-
tation, especially for Bayesian stochastic simulation; (ii) it
is possible to flexibly ‘mix-and-match’ the order of B-spline
basis and penalty, rather than the order of penalty control-
ling the order of the basis as in spline smoothing; (iii) it is
very easy to set up the B-spline basis functions and penal-
ties. The discrete penalties are somewhat less interpretable in
terms of function shape than the traditional derivative based
spline penalties, but tend towards penalties proportional to
traditional spline penalties in the limit of large basis size.
However part of the point of P-splines is not to use a large
basis size. In addition the spline basis functions arise from
solving functional optimization problems involving deriv-
ative based penalties, so moving to discrete penalties for
smoothing may not always be desirable. The purpose of this
note is to point out that the three properties of basis-penalty
sparsity, mix-and-match penalization and ease of setup are
readily obtainable with B-splines subject to derivative based
penalization. The penalty setup typically requires a few lines
of code, rather than the two lines typically required for
P-splines, but this one off disadvantage seems to be the only
one associated with using derivative based penalties. As an
example application, it is shown how basis-penalty sparsity
enables efficient computation with tensor product smoothers
of scattered data.
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1 Computing arbitrary derivative penalties for
B-splines

The main purpose of this note is to show that reduced rank
spline smootherswith derivative based penalties can be set up
almost as easily as the P-splines of Eilers and Marx (1996;
see also Eilers et al. 2015), while retaining sparsity of the
basis and penalty and the ability to mix-and-match the orders
of spline basis functions and penalties. The key idea is that
we want to represent a smooth function f (x) using a rank
k spline basis expansion f (x) = ∑k

j=1 β j Bm1, j (x), where
Bm1, j (x) is an order m1 B-spline basis function, and β j is a
coefficient to be estimated. In this paper order m1 = 3 will
denote a cubic spline. Associated with the spline will be a
derivative based penalty

J =
∫ b

a
f [m2](x)2dx

where f [m2](x) denotes them2th derivative of f with respect
to x , and [a, b] is the interval over which the spline is to be
evaluated. It is assumed thatm2 ≤ m1, otherwise the penalty
is formulated in terms of a derivative that is not properly
defined for the basis functions, which makes no sense. It is
possible to write J = βTSβ where S is a band diagonal
matrix of known coefficients. Computation of S is the only
part of setting up the smoother that presents any difficulty,
since standard routines for evaluating B-splines basis func-
tions (and their derivatives) are readily and widely available,
and in any case the recursion for basis function evaluation is
straightforward.
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The derivation of the algorithm for computing S is quite
straightforward. Given the basis expansion we have that

Si j =
∫ b

a
B[m2]
m1,i

(x)B[m2]
m1, j

(x)dx .

However by construction B[m2]
m1,i

(x) is made up of order p =
m1 − m2 polynomial segments between adjacent knots, xl ,
of the spline. So we are really interested in integrals of the
form

Si jl =
∫ xl+1

xl
B[m2]
m1,i

(x)B[m2]
m1, j

(x)dx

= hl
2

∫ 1

−1

p∑

i=0

ai x
i

p∑

j=0

d j x
j dx

for some polynomial coefficients ai and d j , where hl =
xl+1 − xl . The polynomial coefficients are the solution
obtained by evaluating B[m2]

m1,i
(x) at p+1 points spaced evenly

from xl to xl+1, to obtain a vector of evaluated derivatives, ga ,
and then solving Pa = ga , where Pi j = (−1+ 2(i − 1)/p) j

(d is obtained from gd similarly). Then Si j = ∑
l Si jl .

Given that
∫ 1
−1 x

qdx = (1+(−1)q)/(q+1) it is clear that

Si jl = hlaTHd/2 where Hi j = (1+ (−1)i+ j−2)/(i + j −1)
(i and j start at 1). In terms of the evaluated gradient vectors,

Si jl = hlgT
aP

−THP−1gd/2.

Letting G denote the matrix mapping β to the concatenated
(and duplicate deleted) gradient vectors for all intervals,
while W is just the overlapping-block diagonal matrix with
blocks given by hlP−THP−1/2 (see step 4 below), we have
that Si j = GT

i WG j , whereGi is the i th row ofG. Notice that
the construction applies equally well to a cyclic smoother:
all that changes is G.

The algorithm for finding S in general is then as follows.
p = m1 − m2 denotes the order of piecewise polynomial
defining the m2th derivative of the spline. Let x1, x2 . . .

xk−m+1 be the (ordered) ‘interior knots’ defining theB-spline
basis, that is the knots within whose range the spline and its
penalty are to be evaluated (so a = x1 and b = xk−m+1).
Let the inter-knot distances be h j = x j+1 − x j , for 0 < j ≤
k − m.

1. For each interval [x j , x j+1], generate p+1 evenly spaced
points within the interval. For p = 0 the point should be
at the interval centre, otherwise the points always include
the end points x j and x j+1. Let x′ contain the unique x
values so generated, in ascending order.

2. Obtain the matrix G mapping the spline coefficients to
the m2th derivative of the spline at the points x′.

3. If p = 0, W = diag(h).

4. It p > 0, let p + 1 × p + 1 matrices P and H
have elements Pi j = (−1 + 2(i − 1)/p) j and Hi j =
(1 + (−1)i+ j−2)/(i + j − 1) (i and j start at 1). Then
compute matrix W̃ = P−THP−1. Now compute W =
∑k−m

q=1 Wq where each Wq is zero everywhere except

at Wq
i+pq−p, j+pq−p = hq W̃i j/2, for i = 1, . . . , p + 1,

j = 1, . . . , p + 1. W is banded with 2p + 1 non-zero
diagonals.

5. The diagonally banded penalty coefficient matrix is S =
GTWG.

6. Optionally, compute the diagonally banded Cholesky
decomposition RTR = W, and form diagonally banded
matrix D = RG, such that S = DTD.

Step 2 can be accomplished by standard routines for gener-
ating B-spline bases and their derivatives of arbitrary order:
for example, the function splines:splineDesign in
R. Alternatively see the appendix. All that is required to pro-
duce a cyclic spline is to substitute the appropriate cyclic
routine at step 2: for example mgcv:cSplineDes in R.
Step 4 requires no more than a single rank p + 1 matrix
inversion of P. P is somewhat ill conditioned for p ≥ 20,
with breakdown for p > 30. However it is difficult to imag-
ine any sane application for which p would even be as high
as 10, and for p ≤ 10, P’s condition number is < 2 × 104.
Of course W is formed without explicitly forming the Wq

matrices. Step 6 can be accomplished by a banded Cholesky
decomposition such as dpbtrf from LAPACK (accessible
via routine mgcv:bandchol in R, for example). Alterna-
tively see the appendix. However for applications with k less
than 1000 or so, a dense Cholesky decomposition might be
deemed efficient enough. Note that step 6 is preferable to
construction ofD by decomposition of S, sinceW is positive
definite by construction, while, form2 > 0, S is only positive
semi-definite. As in the case of a discrete P-spline penalty,
the leading order computational cost of evaluating S (or D)
is O(bk) where b is the number of bands in S: the constant
of proportionality is lower for a discrete penalty of course,
but in either case the cost is trivial relative to that of model
fitting (which is O(nk2) using dense matrix methods).

The simplicity of the algorithm rests on the ease with
which G and W can be computed. Note that the construc-
tion is more general than that of Wand and Ormerod (2008),
in allowing m1 and m2 to be chosen freely (rather than m1

determining m2), and treating even m1 as well as odd.

2 Tensor product smoothing of unevenly
distributed data

An example where a compactly supported basis and sparse
penalty is computationally helpful is in tensor product
smoothing of unevenly distributed data. A three dimensional
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Fig. 1 Left conventional tensor product smooth reconstruction of the example function given in the text, based on noisy samples at the x, z locations
shown as black dots. Right as left, but using the reduced basis described in Sect. 2.

example suffices to illustrate how tensor product smooths
are constructed from one dimensional bases. Suppose we
want to smooth with respect to z1, z2 and z3. Firstly B-
spline bases are constructed for smooth functions of each
covariate separately. Suppressing subscripts for order, let
Bj1(z j ), Bj2(z j ), . . . denote the basis for the smooth func-
tion of z j , and let D j denote the corresponding ‘square root’
penalty matrix. The smooth function of all three variables is
then represented as

f (z) =
∑

i jl

βi jl B1i (z1)B2 j (z2)B3l(z3)

where the βi jl are coefficients. Notice that the tensor prod-
uct basis functions, B1i (z1)B2 j (z2)B3l(z3), inherit compact
support form the marginal basis functions. Now write the
coefficients in ‘column major’ order in one vector βT =
(β111, β112, . . . , β11k1 , β121, β122, . . . βk1k2k3), where k j is
the dimension of the j th basis. The tensor product smoother
then has three associated penalties,βTS jβ (eachwith its own
smoothing parameter), where S j = D̃T

j D̃ j ,

D̃1 = D1 ⊗ Ik2 ⊗ Ik3 , D̃2 = Ik1 ⊗ D2 ⊗ Ik3 and

D̃3 = Ik1 ⊗ Ik2 ⊗ D3.

This construction generalizes to other numbers of dimensions
in the obvious way (see e.g. Wood 2006).

By construction the domain of the tensor product smooth
is a rectangle, cuboid or hypercuboid, but it is often the case
that the covariates to be smoothed over occupy only part of
this domain. In this case it is possible for some basis functions
to evaluate to zero at every covariate observation, and there
is often little point in retaining these basis functions and their
associated coefficients. Let ι denote the index of a coefficient

to be dropped from β (along with its corresponding basis
function). The naïve approach of dropping row and column ι

of each S j is equivalent to setting βι to zero when evaluating
βTS jβ, which is not usually desirable. Rather than setting
βι = 0 in the penalty, we would like to omit those compo-
nents of the penalty dependent on βι. This is easily achieved
by dropping every row κ from D̃ j for which D̃ j,κι �= 0.
Notice (i) this construction applies equally well to P-splines,
and (ii) that without D being diagonally banded this would
be a rather drastic reduction of the penalty.

As an illustration 700 data were generated from the model

yi = exp
{
−(zi − 0.3)2/2 − (xi − 0.2)2/4

}

+ εi , where εi ∼ N (0, 0.12)

at the x, z locations shown as black dots in Fig. 1. The fig-
ure shows the reconstruction of the test function using a
tensor product smoother, based on cubic spline marginals
with second derivative penalties. The left figure is for the full
smoother, which had 625 coefficients, while the right figure is
for the reduced version which had 358 coefficients. Since the
S matrix of a smoother can be viewed as the prior precision
matrix of a Gaussian random field, the smoothing parame-
ters can be estimated by marginal likelihood maximization
(e.g. Wahba 1985), and the computational method of Wood
(2011) was used for this purpose. Including smoothing para-
meter selection the reduced rank fit took around 1/8 of the
computation time of the full rank fit, as a result of the reduc-
tion in basis size. The correlation between the fitted values
for the two fits is 0.999. In the example the reduced rank
fit has marginally smaller mean square reconstruction error
than the full rank version, a feature that seems to be robust
under repeated replication of the experiment.
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In this example penalty sparsity was important in order to
be able to reduce the penalty appropriately when eliminat-
ing irrelevant basis functions, but the sparsity was not further
exploited in the computations. In contrast, Bayesian stochas-
tic simulation with such models is much more efficient if the
basis matrix, X, is sparse, so that the likelihood is efficiently
computable at each step, and the penalty is sparse, so that
computations involving (XTX+ λS)−1 can be used to make
efficient proposals. Similarly for direct estimation in big data
settings, sparse evaluation of the REML expressions given in
Wood (2011), for example, rests on evaluation of terms like
log |XTX+ λS|, which can be made more efficient if both X
and S are sparse. See Davis (2006) for more on the compu-
tational exploitation of sparsity.

3 Conclusions

Given that the theoretical justification for using spline bases
for smoothing is that they arise as the solutions to variational
problems with derivative based penalties (see e.g. Wahba
1990; Duchon 1977), it is sometimes appealing to be able
to use derivative based penalties for reduced rank smoothing
also. Since the derivative based penalty is not reliant on even
knot spacing there may also be practical advantages when
uneven spacing of knots is desirable (e.g. Whitehorn et al.
2013). However if a sparse smoothing basis and penalty were
required alongside the ability tomix-and-match penalty order
and basis order, then the apparent complexity of obtaining
the penalty matrix for derivative based penalties has hitherto
presented an obstacle to their use. This note removes this
obstacle, allowing the statistician an essentially free choice
whether to use derivative based penalties or discrete penal-
ties. Notice that there is nothing to prevent computation of
several different orders of penalty for the same smoother,
thereby facilitating the use of more general differential oper-
ators as penalties (e.g. Ramsay et al. 2007).

The splines described here are available in R package
mgcv from version 1.8–12. They could be referred to as
‘D-splines’, but a new name is probably un-necessary. This
work was supported by EPSRC grant EP/K005251/1, and I
am grateful to two anonymous referees for several helpful
suggestions.
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Appendix: Standard recursions

B-spline bases, their derivatives and banded Cholesky de-
compositions are readily available in standard software
libraries and packages such as R and Matlab. However,
for completeness the required recursions are included here.

To define a k dimensional B-spline basis of order m we
need to define k + m + 1 knots x1 < x2 < · · · < xk+m+1.
The interval over which the spline is to be evaluated is
[xm+1, xk+1] so the locations of knots outside this interval are
rather unimportant. The B-spline basis functions are defined
recursively as

Bm,i (x) = x − xi
xi+m − xi

Bm−1,i (x)

+ xi+m+1 − x

xi+m+1 − xi+1
Bm−1,i+1(x),

i = 1, . . . , k, m > 0

where

B0,i (x) =
{
1 xi ≤ x < xi+1

0 otherwise.

It turns out that the derivative with respect to x of a B-spline
of order m can be expressed in terms of a B-spline basis of
order m − 1 as follows

∑

j

β j B
′
m, j (x) = (m − 1)

∑

j

β j − β j−1

x j+m − x j
Bm−1, j (x).

This can be applied recursively to obtain higher order deriv-
atives. For more on both of these recursions see p. 89 and p.
116 of de Boor (2001) (or de Boor 1978).

Now consider the banded Cholesky decomposition of a
symmetric positive definite matrix A with 2p − 1 non-zero
diagonals (clustered around the leading diagonal). We have

Rii =
√
√
√
√Aii −

i−1∑

k=i−p

R2
ki , and

Ri j = Ai j − ∑i−1
k=i−p Rki Rk j

Rii
, i < j < i + p.

all other elements of Cholesky factor R being 0. The expres-
sions are used one row at a time, starting from row 1, and
working across the columns from left to right. See anymatrix
algebra book for Cholesky decomposition (e.g. Golub and
Van Loan 2013).
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