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ABSTRACT 

I present a finite-difference method for modeling 

P-SV wave propagation in heterogeneous media. This 

is an extension of the method I previously proposed for 

modeling SH-wave propagation by using velocity and 

stress in a discrete grid. The two components of the 

velocity cannot be defined at the same node for a com- 

plete staggered grid: the stability condition and the 

P-wave phase velocity dispersion curve do not depend 

on the Poisson’s ratio, while the S-wave phase velocity 

dispersion curve behavior is rather insensitive to the 

Poisson’s ratio. Therefore, the same code used for elastic 

media can be used for liquid media, where S-wave ve- 

locity goes to zero, and no special treatment is needed 

for a liquid-solid interface. Typical physical phenomena 

arising with P-SV modeling, such as surface waves, are 

in agreement with analytical results. The weathered- 

layer and corner-edge models show in seismograms the 

same converted phases obtained by previous authors. 

This method gives stable results for step discontinuities, 

as shown for a liquid layer above an elastic half-space. 

The head wave preserves the correct amplitude. Finally, 

the corner-edge model illustrates a more complex geom- 

etry for the liquid-solid interface. As the Poisson’s ratio 

v increases from 0.25 to 0.5, the shear converted phases 

are removed from seismograms and from the time sec- 

tion of the wave field. 

INTRODUCTION 

Many different methods proposed for modeling waves in 

heterogeneous media have their own range of validity and in- 

terest. Ray theory (Cerveny et at., 1977), a high-frequency ap- 

proximation, breaks down in many common situations. At 

caustics the predicted amplitude is infinite, and in shadow 

zones the amplitude is zero. Using spectral transformations in 

space and time several extensions for overcoming these difi- 

culties have been proposed, depending on how the inverse 

transformations are performed. Reflectivity (Fuchs and 

Muller, 1971) which integrates numerically on the slowness 

vector, is routinely used for vertically heterogeneous media. 

Numerical integration over wavenumber is used by Aki and 

Larner (1970) and Bard and Bouchon (1980), who introduced 

the Rayleigh ansatz for the diffraction sources, in order to 

model laterally heterogeneous media. More recently, Alekseev 

and Mikhailenko (1980) and Mikhailenko and Korneev (1984) 

performed integration over wavenumber for any interface. 

Going to the complex slowness plane allows inversion by in- 

spcction, giving generalized ray theory (Helmberger, 1968). 

For computing reflection and refraction coefficients glorified 

optics (Hong and Helmberger, 1978) introduces two- 

dimensional (2-D) wave curvature at the interface, while Lee 

and Langston (1983) took into account two curvatures for a 

three-dimensional (3-D) wavefront. Chapman (1978) per- 

formed the frequency integration before the integration over 

real slowness, and obtained a WKBJ seismogram which is 

regular at caustics. By using the Maslov asymptotic transfor- 

mation, Chapman and Drummond (1982) extended the WKBJ 

seismogram for laterally inhomogeneous media. Another 

method called Gaussian beam, which also gives finite results 

at caustics, is seen as a perturbation of spectral decomposition 

(Madariaga and Papadimitriou, 1985). 
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On the other hand, fully numerical techniques in space-time 

domain, in the finite-difference formulation (Boore, 1972) or 

finite-element formulation (Smith, 1975), handle any kind of 

waves in complex media but are limited mainly because nu- 

merical dispersion prevents them from propagating waves 

over large distances, In other words, enough low-frequency 

waves must be used. Another difficulty that arises with nu- 

merical techniques is the interpretation of numerical seismo- 

grams. The situation is better than for the real Earth, because 

the medium is known and fields may be displayed inside the 

whole medium, thereby defining the shape of wavefronts. Of 

course, the interpretation becomes more difficult as the com- 

plexity of the medium increases. 

To model P-SV wave propagation, I apply a finite- 

difference scheme used in Madariaga (1976) for crack propa- 

gation modeling. SH-wave modeling has already been dis- 

cussed in a previous article (Virieux, 1984). Here I follow the 

same formulation of the problem. Numerical analysis is 

lengthier, because of several interesting features of the P-SV 

scheme. Explosive source and surface waves are compared 

with analytical results to gain confidence in this modeling. 

After comparing other numerical simulations with the 

weathered-layer model and the corner-edge model, I discuss 

the discrepancy between results obtained for the corner-edge 

model in the homogeneous and heterogeneous formulations 

(Kelly et al., 1976). Pictures of the medium display the evolu- 

tion of wavefronts with respect to time The liquid-solid inter- 

face is studied, and stable results obtained for a liquid layer 

over an elastic half-space are shown. The case of a complex 

interface is illustrated by a corner-edge and numerical seismo- 

grams for Poisson’s ratios v ranging from 0.25 to 0.5 are pre- 

sented. Pictures of the medium at a given time for different 

Poisson’s ratios help demonstrate its effects on seismograms. 

For modelinga more complex medium iike a salt dome, future 

work is necessary. 

PROBLEM FORMULATION 

I closely follow the development in my previous paper on 

W-wave propagation (Virieux, 1984). I consider a vertical 2-D 

medium with a horizontal axis x and a vertical axis z pointing 

downward. The medium is assumed linearly elastic and iso- 

tropic. 

Equations 

Instead of using the wave equation which is a second-order 

hyperbolic system, I go back to the elastodynamic equations 

which are: 

and 

In these equations, (u, , u,) is the displacement vector and (T,, , 
T,,, zx,) is the stress tensor. p(x, z) is the density, and X(x, z) 

and p(x, z) are Lame coefficients This system is transformed 

into the following first-order hyperbolic system: 

(2) 

and 

In these equations (ox, ziZ) is the velocity vector. b(x, z), the 

lightness or the buoyancy, is the inverse of density. 

Initial conditions 

The medium is supposed to be in equilibrium at time t = 0, 

i.e., stress and velocity are set to zero everywhere in the 

medium. Because of these Initial conditions, propagating stress 

and velocity is also equivalent to propagating “time- 

integrated stress” and displacement. 

Boundary conditions 

Internal interfaces are not treated by explicit boundary con- 

ditions because they are in a homogeneous formulation (Kelly 

et al., 1976). They are represented naturally by changes of 

elastic parameters and density as they are in a heterogeneous 

formulation. Only four explicit boundary conditions have to 
be considered: the four edges of the finite-sized vertical grid. 

Depending on the problem, different boundary conditions can 

be used on the edges: approximate-radiation conditions (for 

simulating an infinite medium), stress-free conditions (also 

known as the Neumann condition or free-surface condition), 

or zero-velocity conditions equivalent to zero-displacement 

conditions (the Dirichlet condition or rigid-surface condition). 

The radiation conditions are equivalent to the condition B-l 

of Clayton and Engquist (1980), and correspond to plane- 

wave radiation conditions. 

Source excitation 

I use an explosive source in this paper. Because, as shown 

later, stresses 5,, and ~~~ are defined at the same nodal point, 

equal incremental amplitudes are added to rXx and z,, at the 

point source to simulate a given source excitation. Because u, 

and ~1, are not computed at the source point, infinite ampli- 

tudes are avoided. As shown by Gauthier (1983) this imple- 

mentation of the source excitation is equivalent to the one 
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used in Alterman and Karal(l968) for this scheme and it saves 

computer time Two source excitations for stress are used: the 

Gaussian pulse 

f(r) = e *(t IO)2 (3) 

for the Lamb’s problem with the parameter a, which controls 

the wavelength content of the excitation, equal to 200, and the 

derivative of a Gaussian pulse for the other models 

g(t) = -2a(t - to)e-u(‘~‘UJ2 (4) 

with the parameter a equal to 40. This means that, for a 

P-wave velocity of 6 000 m/s, the P-wave half-wavelength is 

1 800 m and the S-wave half-wavelength is 1 000 m for a 

Poisson’s ratio v = 0.25. Consequently, a good choice for the 

grid spacing is around 100 m. t, is chosen to give a causal 

signal which is approximately zero for negative time

Throughout this paper,f’(t) is written for a Gaussian pulse and 

g(t) for its derivative. 

NUMERICAL ANALYSIS 

Derivatives are discretized by using centered finite- 

differences. Because the system is a first-order hyperbolic 

system, the interpolation functions are linear functions (Zien- 

kiewicz and Morgan, 1982, p. 154). Assuming equations are 

verified at nodes, discretization leads to a unique staggered 

grid, as shown in Figure 1. The discretization of the medium is 

the last step in the finite-difference formulation. The major 

difference from usual schemes is that the different components 

of the velocity field are not known at the same node. The 

explicit numerical scheme, equivalent to the system (2), is: 

@+ 1 
--i,j+112 = ':1,j+ljZ 

+ Mi.j+l/2 
- u;.:"') 

+ Mi.j+l/z 

(5) 

In these equations, k is the index for time discretization, i for 

x-axis discretization, and j for z-axis discretization. At is the 

grid step in time Ax and AZ are the grid steps for the x-axis 

and for the z-axis, respectively, which are assumed equal in the 

following applications. Numerical velocity (U, V) = (a,, u=) at 

time (k + 1/2)At, and numerical stress (C, s:, T) = (z,, , 7zz, T,,) 

at time (k + 1)At are computed explicitly from velocity at time

(k - 1/2)At and stress at time kAt. B represents the buoyancy 

inside the medium, while L, Jr4 represent Lame coefficients (h, 

u), as shown in Figure 1. 

For homogeneous media, standard spectral analysis gives 

the following numerical stability condition for this explicit 

scheme : 

&At 
J 

1 
=+&cl, (6) 

where VP is the P-wave velocity. The stability condition is 

independent of the S-wave velocity V,, or of the Poisson’s 

ratio v. For the special case Ax = AZ, the stability condition 

reduces to 

V$<‘. 

& 
(7) 

The generalization of this stability condition for an n-D space 

is straightforward and gives the following condition 

(8) 

and, for Axi = Ax, 

(9) 

l U;g 

n V;B 

A 1.T ; L+zM, L 

v Z:M 

FIG. I. Discretization of the medium on a staggered grid. 
Black symbols are for velocities and buoyancy at time kAt. 
White symbols are for stresses and Lame coefficients at time
(k + l/2)*1. 
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where n is the dimension of the space. This condition has been 

verified by Virieux and Madariaga (1982) for 3-D crack mod- 

eling. This stability condition is more restrictive than the one 

obtained for usual finite-difference schemes (Bamberger et al., 

1980 or Stephen, 1983) which, for Ax = AZ, gives 

Jv; + v; g < 1, 

because the S-wave velocity is lower than the P-wave velocity. 

This is the price paid for a complete staggered grid. 

Using the same mathematical framework in Bamberger et 

al., (1980), stability in heterogeneous media is expected provid- 

ed the condition in equation (6) or (7) holds everywhere on the 

grid. For the scheme used here, this seems to be true for any 

Poisson’s ratio, as shown later for a liquid-solid interface. 

I do not develop the numerical analysis of the finite- 

difference scheme here because it is lengthy and because it 

follows standard lines found in many textbooks on numerical 

analysis (Marchuk, 1975). However I do analyze phase veloci- 

ty, because it illustrates why a liquid-solid interface is correct- 

ly modeled with this finite-difference scheme. 

Consider a plane wave with wavenumber k, which makes an 

angle 8 with the x-axis. Following Bamberger et al. (1980), the 

quantity y given by 

(11) 

controls the numerical dispersion, and the quantity H defined 

by 

P-WAVE DISPERSION CURVES 

FOR- ISiFFERENT ANGLES i3 AND 

Z?D 
FOR ANY POISSON RATIO v 

FIG. 2. Dispersion curves for nondimensional P-wave phase 
velocity with a dispersion parameter y = 0.8. Results for differ- 
ent angles 0 of the plane wave with respect to the x-axis are 
shown. They are independent of Poisson’s ratio v. 

(12) 

controls the number of nodes per wavelength of the plane 

wave. The resulting nondimensional P-wave phase velocity 

(defined by the ratio of numerical P-wave phase velocity to 

true P-wave velocity) is: 

qp=J2sinm’ Y VH [ 
_ v/sin2 (7cH cos 9) + sin’ (7cH sin 0) J2 1 , 

(13) 

where qp is independent of Poisson’s ratio v. Similarly, the 

nondimensional S-wave phase velocity is: 

J 
sin’ (nH cos 0) + sin’ (rcH sin 0) 1 , (14) 

where q, depends on the Poisson’s ratio through V,/V,. For 

y = 0.8, q,(H) is shown on Figure 2 for different angles 8. The 

figure is valid for any Poisson’s ratio, which is not the case for 

standard finite-difference schemes. The quantity qp is always 

lower than 1 and approaches 1 for small H. For H % 0.1, 

qp z 1. This is the rule of thumb stating that ten nodes are 

needed inside a wavelength for correct modeling. For y = 0.8, 

q,(H) is shown on Figure 3 for different angles 8 and for 

different Poisson’s ratios v. The quantity q, is always lower 

than 1. This is not the case for usual finite-difference schemes 

where qs may be found to be higher than 1 (Bamberger et al., 

1980), which means that the numerical-S-wave propagates 

faster than- the_ true S-wave. The quantity 4, approaches~ 1 for 

small H, giving the same rule of thumb as for the P-wave 

modeling. Because the S-walJe velocity is !ower than the 

P-wave velocity, the condition on the S-wave is more re- 

strictive and will overrule the one on the P-wave. Moreover, 

the behavior of 4, does not degrade as v goes to 0.5, while q, 

becomes infinite inside liquids for standard finite-difference 

schemes (Bamberger et al., 1980). This suggests, as is con- 

firmed later, that our numerical scheme behaves correctly 

inside liquids, and at liquid-solid interfaces. 

Finally, for a medium of size 400 x 200, a computer 

memory of 850 K words is needed. 100 s are necessary to 

perform 1 200 time steps on a CRAY 1-S. Although the nu- 

merical code was designed to handle any size of medium by 

using its own virtual memory, this option was not used be- 

cause it increases drastically the I/O computing cost. 

COMPARISON WITH ANALYTICAL RESULTS 

Two problems arise in the modeling of P-SV wave propaga- 

tion which require a numerical solution. These are source 

modeling and surface wave (Rayleigh wave) modeling. These 

features are not simple extensions from the SH-wave case, and 

need to be checked with simple analytical solutions. 

Explosive source 

Although any kind of source may be implemented, an ex- 

plosive source is easily modeled by adding a known value to 
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stress (rXx, T~~) at the point source. A point force at the free 

surface of a half-space is modeled incrementing only rZZ at this 

point source. 

For a source excitation g(t) given by equation (4) with a 

parameter a equal to 40, I~ compared the radial numerical 

displacement with the analytical solution in an infinite 

medium of P-wave velocity equal to 4 COO m/s. Figure 4 pic- 

tures the seismogram at a station 400 m from the source. The 

tangential displacement, which is not zero because of numeri- 

cal dispersion, remains negligible. Its amplitude decreases 

when the parameter y diminishes or when the spectral content 

of the source shifts to lower frequencies. 

Lamb’s problem 

Rayleigh surface waves are strongly excited by a source at 

the free surface of a half-space. Since the work of Lamb (1904), 

analytical solutions have been presented in many textbooks 

(Ewing et al., 1957; Aki and Richards, 1980). The Cagniard-De 

Hoop method is an elegant way of computing body wave 

seismograms (Achenbach, 1975, p. 303). Moreover, the Cag- 

niard path is known analytically for a source at the free sur- 

face. A difficulty arises when the station is also at the free 

surface. The Rayleigh pole in the complex slowness plane is 

located on the Cagniard path: its contribution must be evalu- 

ated by the theorem of residues (Ben-menahem and Singh, 

1981, p. 545). The seismogram for any source excitation is 

obtained by convolution of the solution for Dirac’s 6 pulse 

with the source time function. 

Figure 5, shows the horizontal component due to a vertical 

Gaussian point source f(t) of the type (3) with a spectral 

parameter a = 200. Observe the propagation without disper- 

sion of the surface wave and the build-up of the conical wave. 

The numerical Rayleigh wave has a lower amplitude than 

does the analytical Rayleigh wave. This slight misfit, which is 

then same~ for X = 1 501 m or X -3OeB m; does not depend 

on the propagation and may be explained by the dis- 

cretization of the medium at the source. At early times, inter- 

action between the source and the free surface involves a few 

nodes. Because the propagation is correctly modeled, I consid- 

er that the agreement between numerical and analytical solu- 

tions is satisfactory. 

COMPARJSON WJTH NLJMERJCAL RESULTS 

For more complex models of the medium, only numerical 

solutions are available for comparison. Two models are pre- 

sented: the weathered-layer model for Rayleigh wave exci- 

tation by a point source at depth, and the corner-edge model 

for diffraction. These models were chosen because they present 

more complex wave patterns than do the analytical solutions 

and because they have been studied by Kelly et al. (1976) 

which makes qualitative comparison achievable. 

Weathered-layer model 

The geometry of the medium is shown in Figure 6. The 

upper layer has a very low P-wave velocity of 2 000 m/s com- 

pared to the velocity of the half-space which is 6 000 m/s. 

Density is taken as a constant of 2 500 kg/m3. The source g(r), 

with a spectral content defined by a = 40, see equation (4) is 

S-WAVE DISPERSION CURVES 

v = 0.25 71 = 0,499 

DISPERSION PARAMETER - H - DISPERSION PARAMETER - H - 

FIG. 3. Dispersion curves for nondimensional S-wave phase velocity with a dispersion parameter y = 0.8. Results for 
different angles 0 of the plane wave with respect to the x-axis are shown on the same graph for different Poisson’s 
ratios v. 
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located near the surface in order to obtain efficient Rayleigh 

wave excitation. In Figure 7, seismograms lasting 5 s present 

the features already studied in Kelly et al. (1976). A quantita- 

tive comparison is difficult because of the unknown spectral 

source content of Kelly et al. (1976) and because of the graph- 

ical representation of seismograms. The direct P-wave and the 

Rayleigh wave dominate the seismograms. The PP- and PS- 

wave reflections clearly show a phase shift after the critical 

angle. The reflection at the free surface, which seems to come 

from a ghost source above the free surface, is called GP for the 

P-wave reflection and GS for the S-wave reflection. These 

phases are usually called pP and sP but I use the nomencla- 

ture of Kelly et al. The GP phase is again reflected upward by 

the interface as a P-wave. This so-called GPP phase stands 

between the PP and PS reflection. The head wave can be 

guessed, mainly when it arrives before the direct P-wave. With 

another choice of saturation for the picture, it would have 

been clearly seen. Then, the S reflection of GP phase, called 

GPS, and the P reflectinn oT GS phase, called GSP, arrive in 

front of the phase obviously called GSS. The PPPP phase, 

which is the P incident phase twice reflected at the interface 

and once at the free surface, can hardly be seen at the bottom 

of the seismogram. 

I now show raster pictures instead of the more conventional 

representation in Figure 7. Small energetic phases are better 

seen on raster images. 

Corner-edge model 

This model is a stringent test for the quality of a finite- 

difference scheme. Kelly et al. (1976) showed unacceptable dis- 

crepancies between the solutions obtained with the homoge- 

ncous and heterogeneous formulations of the problem. 

The geometry of the medium is shown in Figure 8. The 
velocity of the upper medium is 6 000 m/s while the lower 

medium has a velocity of 9 000 m/s. The density of the lower 

medium is 2 500 kg/m3. The source g(t) has a spectral content 

HOMOGENEOUS SPACE 

ANALYTICAL SOLUTION CONTINUOUS LINE 

s 
NUMERICAL SOLUTION CROSSES 

FIG. 4. Comparison between numerical and analytical seismo- 
grams for an explosive source in an infinite medium. 

HALF-SPACE VELOCITY Vp = 4 000 M/S 

CAGNIARD-DE HOOP CONTINUOUS LINE 

FINITE-DIFFERENCE METHOD CROSSES 

X = 1 500 m 

‘t X= 2000m 

FIG. 5. Comparison between numerical and analytical hori- 
zontal components for Lamb’s problem at different stations 
on the free surface. 
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defined by a = 40, [see equation (4)]. Figure 9 presents seis- 

mograms lasting 6 s on the free surface for Ax = AZ = 100 m. 

Two models were considered : (1) homogeneous density, where 

the two media have the same density, and (2) homogeneous 

Lam&~coeficients, wkre i&e two media have rhe same h and 

p. They illustrate the phase shifts for the different waves at the 

interface. time arrivals of numerical waves are compared with 

those obtained by ray tracing. I use the same nomenclature of 

phases used in the previous example. After the direct P-wave, 

the PP,,r, reflection is associated with the PPdirf diffraction. 

SO”,Ce 

2 000 m/s 
L 

6 000 m/s 

I: 1 1 2 250 m 

1 I 

I 

66OOm 

The PS,,,, is clearly seen on the horizontal component, but 

interferes later with the ghost GPP,,,, reflection and the ghost 

GPP,,, diffraction, which are strong above the corner and 

source area. Another group of energetic waves, GPS and GSP 

waves, which are the S-wave reflection of the GP phase at the 

interface or the P-wave reflection of the GS phase, are not 

hidden by the residual reflection coming from the bottom 

where npmerical radiation conditions were applied. Kelly et 

al. (1976) mainly observed this reflection because they did not 

apply absorbing radiation conditions. 
These different phases may be followed by snapshots of the 

medium at successive times. Figure 10 shows the horizontal 

and vertical components. Wavefronts are indicated with 

arrows. Attention must be drawn on diffracted fronts, head 

fronts, and corner fronts. The corner front is the same one 

observed for the SH case (Virieux, 1984). This front, called C 

phase in Figure 10, corresponds to the P-wave refracted on 

the horizontal interface, and reflected again on the vertical 

wall as an S wave. 

C 

HORIZONTAL 

FIG. 6. Geometry of the weathered-layer model. 

phase nomenclature 

2.5 - 

GP 

A 
PPPP VERTICAL 

FIG. Z Numerical seismograms at the free surface for the weathered-layer model. The horizontal seismogram is shown 
on the left and the vertical seismogram is shown on the right. Phases are indicated by arrows following the ray 
nomenclature given in the upper right corner. 
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Returning to the discrepancy between the homogeneous 

and heterogeneous formulations of finite-differences at inter- 

faces, Kelly et al. (1976) argue that a possible explanations may 

come from the numerical smoothing of Lame coefficients in 

the heterogeneous formulation. There is a numerical transition 

zone which is not found in the homogeneous formulation be- 

cause of the explicit boundary conditions. With the increasing 

power of computers this argument may be reexamined by 

numerical scaling. By decreasing the grid size, the transition 

zone is reduced, and results for the heterogeneous formulation 

are expected to improve. This is not the case. Taking 

Ax = 200 m, Ax = 100 m and Ax = 50 m, results are remark- 

ably stable and give a very weak PS diffracted signal in the 

forward direction compared with that in the backward direc- 

tion. This signal is not as strong as that found by the homoge- 

neous formulation of Kelly et al. (1976) and the result con- 
firms numerically Gupta’s results (Gupta, 1966) on analytical 

transition zones. A source with a wavelength content between 

10 and 20 nodes cannot distinguish drastically a transition 

zone over 1, 2, or 3 nodes from an abrupt change of physical 

parameters because the source does not have enough resolu- 

tion. Therefore, another explanation may be sought. 1 give two 

arguments for a weak PS diffraction. 

The energy of the incident wave is divided in two parts at a 

plane interface: the reflected part, going upward and the re- 

fracted part, going downward. The diffraction phase, which 

comes from an abrupt end of the interface, connects the 

upward reflected phase to the downward incident phase. The 

incident phase, where the interface is missing, is stronger than 

the refracted phase. Therefore, only a small amount of energy 

is expected to go upward with the diffracted front, while the 

incident phase brings downward the main part of the energy. 

A possible analytical way is to look at asymptotic solutions 
in the high-frequency approximation. I could compare nu- 
merical solutions for a high-frequency source with solutions 

obtained by the geometrical theory of diffraction (Keller, 1962) 

applied to elastic waves. Instead, I argue qualitatively from 

results presented in Achenbach et al. (1982). The corner-edge 

model is not too different from the semiinfinite crack diffrac- 

tion problem. The contribution of the vertical wall of the 

corner is missing, but the contribution from the interruption 

of the horizontal wall is expected to be correctly modeled. 

Illuminating the horizontal wall by a compressional plane 

wave making an angle 8, with the x-axis, Achenbach et al. 

(1982, p. 126148) obtained PS diffraction coefficients. For any 

angle 8r between 0 and 3t/2 of this plane wave, the amplitude 

was an order of magnitude smaller in the forward direction 

than in the backward direction. 

38 000 m 

I 
58OOm I 

I 8 800 m 

2 obo m 
I 

9 000 m/s 

6 000 m/s p 25 000 m 

19ioom 

FIG. 8. The geometry of the corner-edge model. 

As a partial conclusion, the heterogeneous formulation of 

Kelly et al. (1976) or the heterogeneous formulation of this 

article present reasonable solutions while the homogeneous 

formulation of kelly et al. (1976) presents features difficult to 

explain. For a more precise analysis the computer program 

used by Kelly et al. for the homogeneous formulation is 

needed. 

LIQUID OVER SOLID INTERFACE: 

CORNER-EDGE MODEL 

Interest in the liquid-solid interface increases with marine 

seismic exploration. Waves propagate inside water before hit- 

ting the ocean basement and penetrating an elastic medium. 

Does the problem require a new formulation? 

The heterogeneous formulation of standard finite-difference 

schemes exhibits instabilities for step discontinuities at a 

liquid/solid interface or inaccuracies for gradient dis- 

continuities, as clearly shown in Stephen (1983). Solving this 

problem requires the homogeneous formulation of finite- 

difference schemes. Propagation inside water is solved by the 

acoustic equation, while the propagation inside an elastic 

medium is solved by the elastodynamic equations. The liquid- 

solid interface is a common boundary. Different approxi- 

mations used at this interface yield different numerical 

schemes. Modeling complex interfaces with a homogeneous 

formulation is a difficult computational task, and has not yet 

been performed, to my knowledge. 

I illustrate the liquid-solid interface with two models: the 

2-D step discontinuity model for showing stable results, and 

the corner-edge model for analyzing the complex liquid/solid 

interface. 

Step-discontinuity model 

Stephen (1983) studied the same problem but used cylindri- 

cal symmetry to simulate point sources He found unstable 

results for a step discontinuity of velocity and density with 

depth, using a heterogeneous formulation. This instability 

does not come from the cylindrical symmetry of his problem, 

but results from the numerical feature of the standard finite- 

difference scheme he used. Figure 11 presents results for the 

same medium, using my heterogeneous formulation which 

gives stable results. Unfortunately, comparison with Stephen’s 

results is not possible because~ my fiat- 2-i9 geometry is differ- 

ent from his cylindrical calculations. My results exhibit rea- 

sonable amplitudes at any range and a good modeling of 

conical phases at supercritical (4 000 m) range. 

Corner-edge model 

Now consider the corner-edge model presented previously. 

Figure 12 presents seismograms for the same medium as 

Figure 9, but for different Poisson’s ratios ranging from 0.25 

to 0.5. The pattern for the direct P-wave and the PP-wave 

remains essentially the same for the different Poisson’s ratios, 

while the P&wave moves downward because the S-wave ve- 

locity decreases and then disappears completely for the Pois- 

son’s ratio v = 0.5. Small oscillations coming from the S-wave 

generated by the free surface may be observed when the 

number of nodes inside the S wavelength is too small. For this 

scheme, they go to zero when v tends toward 0.5. 

A better understanding of these seismograms may be ob- 

tained from the snapshots of the medium for different Pois- 
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HORIZONTAL COMPONENT VEJZTICAL COMPONENT 

0 Range in meters 38 000 
n 

A, p perturbation 

p perturbation 

897 

FIG. 9. Numerical seismograms at the free surface for the corner-edge model. The horizontal seismogram is shown on 
the left and the vertical seismogram is shown on the right. Continuous lines are arrival times of different waves from 
ray tracing. 
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HORIZONTAL COMPONEYT 
0 RANGE IN METERS 38 000 

VERTICAL COMPONENT 

=I 0.995 

= 1.495 

FIG. 10. Pictures of the corner-edge medium for different times. Wavefronts are indicated by arrows. 
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son’s ratios v. Figure 13 shows vertical component at time

t =2.995 s inside the medium. To observe the modification of 

the wave pattern, look at the PS reflection/diffraction on the 

corner edge. As the Poisson’s ratio tends towx! 0.5, the PS- 

wavefront becomes increasingly confined near the interface. 

Another modification comes from the free surface. The PS 

reflection at the free surface precedes slightly the GPP reflec- 

tion for v = 0.25. For v = 0.45, the PS reflection is behind the 

GPP reflection, while, for greater v, the PS is unnoticeable and 

disappears for v = 0.5. 
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Stable and accurate results were obtained in Nicoletis (198 1) 

at a liquid-solid interface. Using variational methods, she de- 

signed a numerical scheme for the acoustic problem inside the 

liquid and another scheme for the elastic problem inside the 

solid with an explicit boundary between them. In our tech- 

nique, it is not necessary to use an explicit boundary condition 

between the solid and liquid. The same unique numerical 

scheme is applied to the liquid and solid media. Therefore, 

propagation of elastic waves and acoustic waves across a 

liquid-solid interface is modeled with the same code. No spe- 

cial treatment of the interfaces is needed to allow our method 

to model complex geometries of the interfaces. VERTICAL COMPONENT 

CONCLUSION 

I have shown that elastodynamic equations can be solved 

by a finite-difference technique using velocity and stress as 

conjugate physical quantities distributed on a staggered grid. 

The numerical solution is valid for any Poisson’s ratio. Liquid 

areas can be introduced inside the heterogeneous medium and 

the wave equation can be solved using the same formulation 

used for a solid, thereby avoiding use of the acoustic equation 

inside the liquid and escaping the rather complex problem of 

connecting the liquid and solid areas along an interface. 

The main limitations of our stress-velocity finite-difference 

method come from the numerical dispersion and the finite 

numerical size of the grid. With these restrictions, interpreta- 

tion of numerical seismograms may be very difficult for com- 

plex media. By choosing different hypothetical media, differ- 

ential seismograms may be built to analyze where the energy 

is coming from. Ray theory and its extension may also be used 

to locate different phases. These different methods are essential 

for understanding wave propagation in a complex medium 

(George et al. 1985). 

Another alternative to this trial-and-error method consists 

of applying inverse techniques to the nonlinear problem. 

Techniques are currently being developed using this stress- 

velocity formulation (Gauthier et al., 1985). 
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FIG 11. Numerical vertical seismograms above the interface 
between liquid and solid media, as depicted in the upper left. 
The seismogram at offset 4 000 m is amplified in order to see 
the conical phase propagating at 4 000 m/s. 
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FIG. 12. Evolution of vertical numerical seismograms from the solid-solid corner-edge model to the liquid-solid 
corner-edge model. Different Poisson’s ratios v are taken for 0.25 to 0.5. 
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FIG. 13. Pictures of the corner-edge medium for different Poisson’s ratios at the same time t = 2.995 s. See figure 10 for 
the wavefront interpretation. 


