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Abstract To understand the effect of third order Lovelock

gravity, P–V criticality of topological AdS black holes in

Lovelock–Born–Infeld gravity is investigated. The thermo-

dynamics is further explored with some more extensions and

in some more detail than the previous literature. A detailed

analysis of the limit case β → ∞ is performed for the seven-

dimensional black holes. It is shown that, for the spherical

topology, P–V criticality exists for both the uncharged and

the charged cases. Our results demonstrate again that the

charge is not the indispensable condition of P–V criticality.

It may be attributed to the effect of higher derivative terms of

the curvature because similar phenomenon was also found for

Gauss–Bonnet black holes. For k = 0, there would be no P–

V criticality. Interesting findings occur in the case k = −1, in

which positive solutions of critical points are found for both

the uncharged and the charged cases. However, the P–v dia-

gram is quite strange. To check whether these findings are

physical, we give the analysis on the non-negative definite-

ness condition of the entropy. It is shown that, for any nontriv-

ial value of α, the entropy is always positive for any specific

volume v. Since no P–V criticality exists for k = −1 in Ein-

stein gravity and Gauss–Bonnet gravity, we can relate our

findings with the peculiar property of third order Lovelock

gravity. The entropy in third order Lovelock gravity consists

of extra terms which are absent in the Gauss–Bonnet black

holes, which makes the critical points satisfy the constraint

of non-negative definiteness condition of the entropy. We

also check the Gibbs free energy graph and “swallow tail”

behavior can be observed. Moreover, the effect of nonlinear

electrodynamics is also included in our research.

a e-mail: mojiexiong@gmail.com

b e-mail: wbliu@bnu.edu.cn

1 Introduction

Gravity in higher dimensions has attained considerable atten-

tion with the development of string theory. Concerning the

effect of string theory on gravitational physics, one may con-

struct a low energy effective action which includes both the

Einstein–Hilbert Lagrangian (as the first order term) and the

higher curvature terms. However, this approach may lead to

field equations of fourth order and ghosts as well. This prob-

lem has been solved by a particular higher curvature gravity

theory called Lovelock gravity [1]. The field equation in this

gravity theory is only second order and the quantization of

Lovelock gravity theory is free of ghosts [2]. In this context,

it is of interest to investigate both the black hole solutions and

their thermodynamics in Lovelock gravity [3–29]. Moreover,

it is natural to consider the nonlinear terms in the matter side

of the action while accepting the nonlinear terms on the grav-

ity side [3]. Motivated by this, Ref. [3] presented topological

black hole solutions in Lovelock–Born–Infeld gravity. Both

the thermodynamics of asymptotically flat black holes for

k = 1 and the thermodynamics of asymptotically AdS rotat-

ing black branes with a flat horizon were investigated there

in detail. However, concerning the charged topological AdS

black holes in Lovelock–Born–Infeld gravity, only the tem-

perature was given in Ref. [3]. Reference [18] further studied

their entropy and specific heat at constant charge. However,

the expression of the entropy seems incomplete, for k is miss-

ing. The thermodynamics in the extended space needs to be

further explored. Probing this issue is important because it

is believed that the physics of black holes in higher dimen-

sions is essential to understand the full theory of quantum

gravity.

As is well known, the phase transition is a fascinating

phenomenon in classical thermodynamics. Over the past

decades, phase transitions of black holes have aroused more

and more attention. The pioneering phase transition research

of AdS black holes can be traced back to the discovery
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of the famous Hawking–Page phase transition between the

Schwarzschild AdS black hole and thermal AdS space [30].

Recently, a revolution in this field has been led by P–V

criticality research [31–44] in the extended phase space.

Kubizňák et al. [31] perfectly completed the analogy between

charged AdS black holes and the liquid–gas system first

observed by Chamblin et al. [45,46]. The approach of treating

the cosmological constant as thermodynamic pressure and

its conjugate quantity as thermodynamic volume is essen-

tial with the increasing attention of considering the variation

of the cosmological constant in the first law of black hole

thermodynamics recently [47–53].

Here, we would like to investigate the thermodynam-

ics and phase transition of charged topological AdS black

holes in Lovelock–Born–Infeld gravity in the extended

phase space. Some related efforts have been made recently.

P–V criticality of both four-dimensional [32] and higher-

dimensional [44] Born–Infeld AdS black holes has been

investigated. A new parameter, called the Born–Infeld vac-

uum polarization, was defined to be conjugate to the Born–

Infeld parameter [32]. It was argued that this quantity is

required for the consistency of both the first law of thermo-

dynamics and the Smarr relation. Moreover, Cai et al. [40]

studied P–V criticality of Gauss–Bonnet AdS black holes.

It was found that no P–V criticality can be observed for

Ricci flat and hyperbolic Gauss–Bonnet black holes. How-

ever, for the spherical case, P–V criticality can be observed

even when the charge is absent, implying that the charge

may not be an indispensable factor for the existence of P–V

criticality. Such an interesting result motivates us to probe

further third order Lovelock gravity to explore whether it is

a peculiar property due to the higher derivative terms of the

curvature. So we will mainly investigate their effects on P–V

criticality. Moreover, we will probe the combined effects of

higher derivative terms of curvature and the nonlinear elec-

trodynamics.

In Sect. 2, the solutions of charged topological AdS

black holes in Lovelock–Born–Infeld gravity will be briefly

reviewed and their thermodynamics will be further investi-

gated. In Sect. 3, a detailed study will be carried out in the

extended phase space for the limit case β → ∞ so that we

can concentrate on the effects of third order Lovelock grav-

ity. In Sect. 4, the effects of nonlinear electrodynamics will

also be included. In the end, a brief conclusion will be drawn

in Sect. 5.

2 Thermodynamics of charged topological black holes

in Lovelock–Born–Infeld gravity

The action of third order Lovelock gravity with nonlinear

Born–Infeld electromagnetic field is [3]

IG =
1

16π

∫

dn+1x
√

−g

×
(

− 2� + L1 + α2L2 + α3L3 + L(F)
)

, (1)

where

L1 = R, (2)

L2 = Rµνγ δ Rµνγ δ − 4Rµν Rµν + R2, (3)

L3 = 2Rµνσκ Rσκρτ Rρτ
µν + 8Rµν

σρ Rσκ
ντ Rρτ

µκ

+24Rµνσκ Rσκνρ Rρ
µ

+3R Rµνσκ Rσκµν + 24Rµνσκ Rσµ Rκν

+16Rµν Rνσ Rσ
µ − 12R Rµν Rµν + R3, (4)

L(F) = 4β2

⎛

⎝1 −

√

1 +
F2

2β2

⎞

⎠ . (5)

In the above action, β, α2 and α3 are Born–Infeld param-

eter, the second and third order Lovelock coefficients,

respectively, while L1, L2, L3 and L(F) are Einstein–

Hilbert, Gauss–Bonnet, third order Lovelock, and Born–

Infeld Lagrangians, respectively. Considering the case

α2 =
α

(n − 2)(n − 3)
, (6)

α3 =
α2

72

(

n − 2

4

) , (7)

Reference [3] derived the (n +1)-dimensional static solution

as

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2d2, (8)

where

f (r) = k +
r2

α
(1 − g(r)1/3), (9)

g(r) = 1 +
3αm

rn
−

12αβ2

n(n − 1)

×
[

1 −
√

1 + η −
�

2β2
+

(n − 1)η

(n − 2)
̥(η)

]

, (10)

d2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dθ2
1 +

∑n−1
i=2

∏i−1
j=1 sin2 θ j dθ2

i k = 1

dθ2
1 + sinh2 θ1dθ2

2

+ sinh2 θ1

∑i=3
n−1

∏i−1
j=2 sin2 θ j dθ2

i k = −1

∑n−1
i−1 dφ2

i k = 0

.

(11)

d2 denotes the line element of (n − 1)-dimensional hyper-

surface with constant curvature (n − 1)(n − 2)k and ̥(η)

denotes the hypergeometric function as follows:

̥(η) = 2 F1

([1

2
,

n − 2

2n − 2

]

,

[3n − 4

2n − 2

]

,−η

)

, (12)
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where

η =
(n − 1)(n − 2)q2

2β2r2n−2
. (13)

The Hawking temperature has been derived in Ref. [3] as

T =
(n − 1)k[3(n − 2)r4

+ + 3(n − 4)kαr2
+ + (n − 6)k2α2] + 12r6

+β2(1 −
√

1 + η+ ) − 6�r6
+

12π(n − 1)r+(r2
+ + kα)2

. (14)

However, only the Hawking temperature is not enough to

discuss P–V criticality in the extended phase space. So we

would like to calculate other relevant quantities.

Solving the equation f (r) = 0, one can obtain the param-

eter m in terms of the horizon radius r+ as

m =
rn
+

3α

⎧

⎨

⎩

− 1 +
(r2

+ + kα)3

r6
+

+
12αβ2

[

1 − �

2β2 −
√

1 + η + (n−1)̥(η)η
n−2

]

n(n − 1)

⎫

⎬

⎭

. (15)

Then the mass of (n +1)-dimensional topological AdS black

holes can be derived as

M =
(n − 1)�k

16π
m =

(n − 1)�krn
+

48πα

⎧

⎨

⎩

− 1 +
(r2

+ + kα)3

r6
+

+
12αβ2

[

1 − �

2β2 −
√

1 + η + (n−1)̥(η)η
n−2

]

n(n − 1)

⎫

⎬

⎭

, (16)

where �k denotes the volume of the (n − 1)-dimensional

hypersurface mentioned above.

The entropy can be calculated as

S =
r+
∫

0

1

T

(

∂ M

∂r+

)

dr

=
�k(n − 1)rn−5

+
4

(

r4
+

n − 1
+

2kr2
+α

n − 3
+

k2α2

n − 5

)

. (17)

Note that the above integration is accomplished under the

condition of n > 5. For n � 5 the integration is divergent. So

in this paper, we would mainly investigate the case of n = 6,

which corresponds to the seven-dimensional black holes. The

third term of the entropy in Eq. (17) does not appear in the

expression of the entropy of Gauss–Bonnet black holes [40].

Our result also extends the expression in Ref. [18] where k

was missing.

In the extended phase space, one may identify the pressure

of the black hole as [31]

P = −
�

8π
. (18)

The mass of black holes should be interpreted as enthalpy

rather than the internal energy. In this context, the Gibbs free

energy can be derived through

G = H − T S = M − T S. (19)

After a tedious calculation, we can obtain

G =
�krn−6

+
48πα(r2

+ + kα)2

{

(n − 1)r6
+(r2

+ + kα)2

×

[

−1 +
(r2

+ + kα)3

r6
+

+
12αβ2

(

1 − �

2β2 −
√

1 + η + (n−1)̥(η)η
n−2

)

n(n − 1)

⎤

⎦

−α

(

r4
+

n − 1
+

2kr2
+α

n − 3
+

k2α2

n − 5

)

×
[

(n − 1)k
(

3(n − 2)r4
+ + 3(n − 4)kαr2

+

+ (n − 6)k2α2
)

− 6�r6
+ + 12r6

+β2(1 −
√

1 + η+ )

]

}

(20)

Imitating the approach of Refs. [32,40], the first law of ther-

modynamics in the extended phase space can be rewritten

as

dM = T dS + �dQ + V dP + Adα + Bdβ, (21)

where A and B denote the quantities conjugated to the Love-

lock coefficient and the Born–Infeld parameter, respectively.

They can be obtained as

A =
(∂ M

∂α

)

S,Q,P,β
=

k2(n − 1)rn−6
+ (3r2

+ + 2kα)�k

48π

−
1

2
k(n − 1)rn−5

+ T
( r2

+
n − 3

+
kα

n − 5

)

�k, (22)

B =
(∂ M

∂β

)

S,Q,P,α
=

�kr−n
+

8nπβ

×

⎧

⎨

⎩

2r2n
+ β2

⎛

⎝2 −

√

4 +
2(n − 1)(n − 2)q2r2−2n

+
β2

⎞

⎠

+(n − 2)(n − 1)q2r2
+ 2 F1

([1

2
,

n − 2

2n − 2

]

,

[3n − 4

2n − 2

]

,

−
(n − 1)(n − 2)q2

2β2r2n−2

)

⎫

⎬

⎭

(23)
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Comparing Eq. (22) with the Gauss–Bonnet black holes in

Ref. [40], one may find extra terms due to third order Love-

lock gravity. Note that Eq. (21) is limited to the case of

charged topological black holes in Lovelock Born–Infeld

gravity in which the second and the third order Lovelock

coefficients are related via the Lovelock coefficient α. For

the general case and a nice physical interpretation of the

quantity conjugate to the Lovelock coefficient; see Ref. [15],

where the Smarr relation and the first law of thermodynamics

in Lovelock gravity were thoroughly investigated and it was

shown that the conjugate quantity �(k) to the Lovelock coef-

ficient bk consists of three terms related to mass, entropy, and

the anti-symmetric Killing–Lovelock potential, respectively.

3 P–V criticality of a limit case

To concentrate on the effects of third order Lovelock gravity,

we would like to investigate an interesting limit case in this

section and leave the issue of nonlinear electrodynamics to

be further investigated in Sect. 4.

When β → ∞, the Born–Infeld Lagrangian reduces to

the Maxwell form and ̥(η) → 1. So one can have

g(r) → 1 +
3αm

rn
+

6α�

n(n − 1)
−

3αq2

r2n−2
. (24)

The temperature for this limit case can be simplified as

T =
(n − 1)k[3(n − 2)r4

+ + 3(n − 4)kαr2
+ + (n − 6)k2α2] − 6�r6

+ − 3(n − 2)(n − 1)q2r8−2n
+

12π(n − 1)r+(r2
+ + kα)2

. (25)

Substituting Eq. (18) into Eq. (25), one can find the expres-

sion for P as

P =
n − 1

48π

[

12πT

r+
+

24kπαT

r3
+

+
12k2πα2T

r5
+

+
3k(2 − n)

r2
+

+
3k2α(4 − n)

r4
+

−
k3(n − 6)α2

r6
+

+ 3(n − 2)q2r2−2n
+

]

.

(26)

We can identify the specific volume v as

v =
4r+

n − 1
. (27)

Then Eq. (26) can be transformed into

P =
T

v
+

32kT α

(n − 1)2v3
+

256k2T α2

(n − 1)4v5
−

k(n − 2)

(n − 1)πv2

−
16k2(n − 4)α

(n − 1)3πv4
−

256k3(n − 6)α2

3(n − 1)5πv6
+

16n−2(n − 2)q2

π(n − 1)2n−3v2n−2
.

(28)

The possible critical point should satisfy the following con-

ditions:

∂ P

∂v
= 0, (29)

∂2 P

∂v2
= 0. (30)

Firstly, we would focus on the spherical case corresponding

to k = 1. The equation of state reads

P =
T

v
+

32T α

(n − 1)2v3
+

256T α2

(n − 1)4v5
−

(n − 2)

(n − 1)πv2

−
16(n−4)α

(n−1)3πv4
−

256(n−6)α2

3(n−1)5πv6
+

16n−2(n − 2)q2

π(n − 1)2n−3v2n−2
.

(31)

When q = 0, n = 6, Eqs. (29) and (30) can be analyt-

ically solved and the corresponding physical quantities can

be obtained as

Tc =
1

π
√

5α
, vc =

4
√

α
√

5
, Pc =

17

200πα
,

Pcvc

Tc

=
17

50
.

(32)

We can see clearly that the critical temperature is inversely

proportional to
√

α, while the critical specific volume is pro-

portional to it. The critical pressure is inversely proportional

to α. However, the ratio Pcvc

Tc
is independent of the parameter

α. Our results demonstrate again that P–V criticality may

exist even in the uncharged case. That may be attributed to

the effect of higher derivative terms of curvature.

When q �= 0, n = 6, one can obtain the corresponding

physical quantities at the critical point as listed in Table 1 by

solving Eqs. (29) and (30) numerically. From Table 1, one can

find that there exists only one critical point for all the cases

studied. The physical quantities at the critical point Tc, vc, Pc

depend on both the charge and the parameter α, which is

related to the second and the third order Lovelock coeffi-

cients. With the increasing of α or q, both Tc and Pc decrease,

while vc increases. However, the ratio Pcvc

Tc
decreases with α

but increases with q.

To learn about P–V criticality behavior more intuitively,

we plot the P–v diagram in Fig. 1. When the temperature

Table 1 Critical values for k = 1, n = 6, β → ∞

q α Tc vc Pc
Pcvc

Tc

0.5 1 0.14213 1.80992 0.02691 0.343

2 1 0.13989 1.97347 0.02553 0.360

1 1 0.14154 1.85884 0.02653 0.348

1 0.5 0.19287 1.53461 0.04727 0.376

1 2 0.10062 2.53773 0.01351 0.341
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Fig. 1 P vs. v for a n = 6, α = 1, q = 0, b n = 6, α = 1, q = 0.5, c n = 6, α = 1, q = 1, d n = 6, α = 1, q = 2, e n = 6, α = 0.5, q = 1 and

f n = 6, α = 2, q = 1
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Fig. 2 a G vs. T for k = 1, n = 6, α = 1, q = 0, “P = 0.015 < Pc, blue curve”, “P = 0.02 < Pc, black curve”, “P = Pc = 0.02706, red

curve”, “P = 0.04 > Pc, purple curve” b G vs. P and T for k = 1, n = 6, α = 1, q = 0
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T
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6

4
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(a) (b)

Fig. 3 a G vs. T for k = 1, n = 6, α = 1, q = 1, “P = 0.015 < Pc, blue curve”, “P = 0.02 < Pc, black curve”, “P = Pc = 0.02653, red

curve”, “P = 0.04 > Pc, purple curve” and b G vs. P and T for k = 1, n = 6, α = 1, q = 1

is less than the critical temperature Tc, the isotherm can be

divided into three branches. Both the large radius branch

and the small radius branch are stable, corresponding to a

positive compression coefficient, while the medium radius

branch is unstable, corresponding to a negative compression

coefficient. The phase transition between the small black

hole and the large black hole is analogous to the van der

Waals liquid–gas phase transition. Figure 1a–c, and d show

the impact of the charge on P–V criticality, while Fig. 1c,

e, and f show the effect of α. The comparisons are in accord

with the analytical results in Table 1. We also plot both

the two-dimensional and the three-dimensional Gibbs free

energy graph for q = 0, n = 6 in Fig. 2 and for the case

q = 1, n = 6 in Fig. 3. Below the critical temperature, the

Gibbs free energy graphs display the classical swallow tail

behavior implying the occurrence of the first order phase tran-

sition. Above the critical temperature, there is no swallow tail

behavior.

Secondly, we would discuss the k = 0 case corresponding

to Ricci flat topology. The equation of state reads

P =
T

v
+

16n−2(n − 2)q2

π(n − 1)2n−3v2n−2
. (33)

For n = 6, utilizing Eq. (33), one can obtain

∂ P

∂v
= −

T

v2
−

524288q2

390625πv11
, (34)
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which is always negative for nontrivial temperature. So there

would be no P–V criticality for k = 0.

Thirdly, we would investigate the k = −1 case corre-

sponding to hyperbolic topology. The equation of state reads

P =
T

v
−

32T α

(n − 1)2v3
+

256T α2

(n − 1)4v5
+

(n − 2)

(n − 1)πv2

−
16(n − 4)α

(n − 1)3πv4
+

256(n − 6)α2

3(n − 1)5πv6
+

16n−2(n − 2)q2

π(n − 1)2n−3v2n−2
.

(35)

Similarly, when q = 0, n = 6, Eqs. (29) and (30) can be

analytically solved and the corresponding physical quantities

can be obtained as

Tc =
1

2π
√

α
, vc =

4
√

α

5
, Pc =

5

8πα
,

Pcvc

Tc

= 1. (36)

When q �= 0, n = 6, one can obtain the numerical solu-

tions of Eqs. (29) and (30) as listed in Table 2. These results

are quite different from those in previous literature which

demonstrated that P–V criticality only exists in the k = 1

case for topological black holes in both Einstein gravity and

Gauss–Bonnet gravity [31,40].

Table 2 Critical values for k = −1, n = 6, β → ∞

q α Tc vc Pc
Pcvc

Tc

0.5 1 0.33836 1.07752 0.22718 0.723

2 1 0.72658 1.31811 0.35029 0.635

1 1 0.46900 1.19335 0.26507 0.674

1 0.5 1.88727 1.01514 1.12928 0.607

1 2 0.18669 1.38663 0.10503 0.780

To gain an intuitive picture, we plot the P–v diagram in

Fig. 4, which shows strange behaviors different from van der

Waals liquid–gas phase transition. The isotherm at the criti-

cal temperature is quite similar to the van der Waals liquid–

gas system. However, for the uncharged case in Fig. 4a,

the isotherms below or above the critical temperature both

behave as the coexistence phase which is similar to the behav-

iors of van der Waals liquid–gas system below the critical

temperature. For the charged case in Fig. 4b, the “phase tran-

sition” picture is quite the reverse of van der Waals liquid–gas

phase transition. Above the critical temperature the behav-

ior is “van der Waals like” while the behavior is “ideal gas

like” below the critical temperature. This process is achieved

by lowering the temperature rather than increasing the tem-

perature. We also plot the Gibbs free energy in Fig. 5 and

“swallow tail” behavior can be observed.

The results above are so strange that motivates us to check

whether they are physical. The non-negative definiteness of

the entropy demands that

r4
+

n − 1
+

2kr2
+α

n − 3
+

k2α2

n − 5
≥ 0. (37)

In fact, when n = 6, the L.H.S. of the above inequality can

be obtained by utilizing Eq. (27) as

125v4

256
−

25v2α

24
+ α2. (38)

Denoting v2 as x , one can consider the equation

125x2

256
−

25αx

24
+ α2 = 0, (39)

with the discriminant

� =
(

25α

24

)2

− 4 × α2 ×
125

256
= −

125α2

144
. (40)
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0.29
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Fig. 4 P vs. v for a k = −1, n = 6, α = 1, q = 0, b k = −1, n = 6, α = 1, q = 1
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Fig. 5 G vs. T for a k = −1, n = 6, α = 1, q = 0, “P = 0.15 < Pc, blue curve”, “P = Pc = 0.19894, red curve”, “P = 0.24 > Pc, black

curve” and b k = −1, n = 6, α = 1, q = 1, “P = 0.25 < Pc, blue curve”, “P = Pc = 0.26507, red curve”, “P = 0.29 > Pc, black curve”,

“P = 0.32 > Pc, purple curve”

Note that, for any nontrivial value of α, the discriminant

of Eq. (39) is always negative, implying that the values of

entropy are always positive for any specific volume v.

4 Inclusion of the nonlinear electrodynamics

In this section, we would like to take into account the effect of

nonlinear electrodynamics to complete the analysis of topo-

logical AdS black holes in Lovelock–Born–Infeld gravity.

Utilizing Eqs. (13) and (18), Eq. (14) can be rewritten as

P =
T

v
+

32kT α

(n − 1)2v3
+

256k2T α2

(n − 1)4v5
−

k(n − 2)

(n − 1)πv2

−
16k2(n − 4)α

(n − 1)3πv4
−

256k3(n − 6)α2

3(n − 1)5πv6

−
β2

4π

⎧

⎨

⎩

1 −

√

1 +
24n−5(n − 2)(n − 1)q2[(n − 1)v]2−2n

β2

⎫

⎬

⎭

.

(41)

Similarly, we would discuss the k = 1 case corresponding to

spherical topology first. The equation of state reads

P =
T

v
+

32T α

(n − 1)2v3
+

256T α2

(n − 1)4v5
−

(n − 2)

(n − 1)πv2

−
16(n − 4)α

(n − 1)3πv4
−

256(n − 6)α2

3(n − 1)5πv6

−
β2

4π

⎧

⎨

⎩

1 −

√

1 +
24n−5(n − 2)(n − 1)q2[(n − 1)v]2−2n

β2

⎫

⎬

⎭

.

(42)

Table 3 Critical values for different dimensions for k = 1, n = 6

β q α Tc vc Pc
Pcvc

Tc

10 1 1 0.141541 1.85884 0.026528 0.34839

0.5 1 1 0.141545 1.85829 0.026531 0.34832

1 1 1 0.141542 1.85871 0.026529 0.34838

1 0.5 1 0.142126 1.80991 0.02691 0.343

1 2 1 0.139898 1.97286 0.02554 0.360

1 1 0.5 0.192905 1.53258 0.04730 0.376

1 1 2 0.100617 2.53773 0.01351 0.341

One can obtain the corresponding physical quantities at the

critical point as listed in Table 3 by numerically solving

Eqs. (29) and (30) for the case n = 6. As is shown, the

physical quantities at the critical point Tc, vc, Pc depend

on the charge, the Lovelock coefficient α, and the Born–

Infeld parameter β. With the increasing of α or q, both Tc

and Pc decrease while vc increases. However, the ratio Pcvc

Tc

decreases with α but increases with q. These observations

are similar to the limit case β → ∞. With the increasing of

β, Tc, Pc decrease while vc and the ratio Pcvc

Tc
increase. How-

ever, only slight differences can be observed concerning the

impact of nonlinear electrodynamics. That may be attributed

to the parameter region we choose. Readers who are inter-

ested in the “Schwarzschild like” behavior of Born–Infeld

black holes can read the interesting paper Ref. [32]. For an

intuitive understanding, we plot the P–v diagram in Fig. 6a

and show the effect of the parameter q and α in Fig. 7.

Secondly, we would discuss the k = 0 case corresponding

to Ricci flat topology. The equation of state reads
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T 0.12 Tc

T 0.13 Tc

T Tc 0.141542

T 0.16 Tc

0 2 4 6 8 10
v

0.01

0.02

0.03

0.04

0.05

0.06

P

(a)

T 0.3 Tc

T Tc 0.457384

T 0.6 Tc

0 2 4 6 8 10
v

0.1

0.2

0.3

0.4

0.5

P

(b)

Fig. 6 P vs. v for a k = 1, n = 6, α = 1, β = 1, q = 1 and b k = −1, n = 6, α = 1, β = 1, q = 1
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Fig. 7 Isotherm at the critical temperature for a k = 1, n = 6, β = 1, q = 1 and b k = 1, n = 6, β = 1, α = 1

P =
T

v
−

β2

4π

×

⎧

⎨

⎩

1 −

√

1 +
24n−5(n − 2)(n − 1)q2[(n − 1)v]2−2n

β2

⎫

⎬

⎭

.

(43)

There would be no P–V criticality because P monotonically

decreases with v.

Thirdly, we would discuss the k = −1 case corresponding

to hyperbolic topology. The equation of state reads

P =
T

v
−

32T α

(n − 1)2v3
+

256T α2

(n − 1)4v5
+

(n − 2)

(n − 1)πv2

−
16(n − 4)α

(n − 1)3πv4
+

256(n − 6)α2

3(n − 1)5πv6

−
β2

4π

⎧

⎨

⎩

1−

√

1 +
24n−5(n−2)(n−1)q2[(n − 1)v]2−2n

β2

⎫

⎬

⎭

.

(44)

Numerical solutions of Eqs. (29) and (30) are listed in Table 4

and we also plot the P–v diagram in Fig. 6b, in which a sim-

ilar strange behavior is also observed. Note that the entropy

analysis also holds because the entropy in Eq. (17) is inde-

pendent of β. So we would not repeat the analysis here.

5 Conclusions

Topological AdS black holes in Lovelock–Born–Infeld grav-

ity are investigated in the extended phase space. The black

hole solutions are reviewed while their thermodynamics is
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Table 4 Critical values for different dimensions for k = −1, n = 6

β q α Tc vc Pc
Pcvc

Tc

10 1 1 0.468887 1.19315 0.26504 0.674

0.5 1 1 0.424488 1.11470 0.25296 0.664

1 1 1 0.457384 1.17317 0.26182 0.672

1 0.5 1 0.333977 1.06663 0.22621 0.722

1 2 1 0.690585 1.28270 0.33877 0.629

1 1 0.5 1.498501 0.92425 0.94270 0.581

1 1 2 0.186104 1.38311 0.10496 0.780

further explored in the extended phase space. We calculate

the entropy by integration and find that the result in the pre-

vious literature [18] was incomplete. Treating the cosmolog-

ical constant as pressure, we rewrite the first law of ther-

modynamics for the specific case in which the second order

and the third order Lovelock coefficients are related by the

Lovelock coefficient α. The quantity conjugated to the Love-

lock coefficient and the Born–Infeld parameter, respectively,

are calculated. Comparing our results of the above quanti-

ties with those in previous literature of Gauss–Bonnet black

holes [40], we find that there exist extra terms due to third

order Lovelock gravity. In order to make the phase transition

clearer, the Gibbs free energy is also calculated.

To figure out the effect of third order Lovelock gravity on

P–V criticality, a detailed analysis of the limit case β → ∞
has been performed. Since the entropy is convergent only

when n > 5, our investigation is carried out in the case of

n = 6, corresponding to the seven-dimensional black holes.

It is shown that, for the spherical topology, P–V criticality

exists even when q = 0. The critical physical quantities can

be analytically solved and they vary with the parameter α.

However, the ratio of Pcvc

Tc
is independent of the parameter α.

Our results demonstrate again that the charge is not an indis-

pensable condition of P–V criticality. It may be attributed to

the effect of higher derivative terms of the curvature because a

similar phenomenon was also found for Gauss–Bonnet black

holes [40]. For q �= 0, it is shown that the physical quantities

at the critical point, Tc, vc, Pc, depend on both the charge

and the parameter α. With the increasing of α or q, both

Tc and Pc decrease while vc increases. However, the ratio
Pcvc

Tc
decreases with α but increases with q. Similar behav-

iors as for the van der Waals liquid–gas phase transition can

be observed in the P–v diagram and the classical swallow tail

behaviors can be observed in both the two-dimensional and

the three-dimensional graph of the Gibbs free energy. These

observations indicate that a phase transition between small

black holes and large black holes takes place when k = 1.

For k = 0, no critical point can be found and there would

be no P–V criticality. Interesting findings occur in the case

k = −1, in which positive solutions of critical points are

found for both the uncharged and the charged case. How-

ever, the P–v diagram is very strange. For the uncharged

case, the isotherms below or above the critical temperature

both behave as the coexistence phase which is similar to

the behaviors of the van der Waals liquid–gas system below

the critical temperature. For the charged case, the “phase

transition” picture is quite the reverse of the van der Waals

liquid–gas phase transition. Above the critical temperature

the behavior is “van der Waals like” while the behavior is

“ideal gas like” below the critical temperature. This process is

achieved by lowering the temperature rather than increasing

the temperature. To check whether these findings are physi-

cal, we perform an analysis on the non-negative definiteness

condition of the entropy. It is shown that, for any nontrivial

value of α, the entropy is always positive for any specific

volume v. We relate the findings in the case k = −1 with the

peculiar property of third order Lovelock gravity. Because

the entropy in third order Lovelock gravity consists of extra

terms which are absent in the Gauss–Bonnet black holes, the

critical points satisfy the constraint of non-negative definite-

ness condition of the entropy. We also check the Gibbs free

energy graph and “swallow tail” behavior can be observed.

Moreover, the effect of nonlinear electrodynamics is

included in our work. Similar observations are made as

the limit case β → ∞ and only slight differences can be

observed when we choose different values of β. That may be

attributed to the parameter region we choose. More interest-

ing findings concerning “Schwarzschild like” behaviors can

be found in the previous literature [32] and we will not repeat

them here, because our main motivation is to investigate the

impact of third order Lovelock gravity on P–V criticality in

the extended phase space.
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