
1 Introduction

Testing problems are often complicated by the presence of a nuisance parameter

vector �. Consider first a model in which there is no nuisance parameter. Suppose the
data X have a probability distribution P� defined in terms of a parameter �, and we
wish to test the simple hypothesis H0 : � = �0. If the test statistic T is used to test H0
and if large values of T give evidence against H0, then for an observed value T = t, the
p-value is p = P�0 (T � t).

Now consider a model with a nuisance parameter �. The distribution of X has
two parameters, � and �. We still wish to test H0 : � = �0, but this hypothesis is no
longer simple, because the value of � is unspecified. Using a test statistic as above, the
p-value is now p = sup�P�0;�(T � t). (See, for example, Bickel and Doksum (1977), pp.
171-172). Unfortunately, the need to calculate the sup� has complicated the problem.

This complication is usually handled in one of three ways. First, in some problems

it can be shown that, for all values of t, the sup� is always attained at a particular value�0. In this case the p-value is simply p = P�0;�0(T � t), and the parameter (�0; �0) is called
the least favorable configuration. For example, in common one-sided testing problems,

the boundary of the null hypothesis space is least favorable.

A second way to handle the unknown � is to choose judiciously a test statistic T
(that usually depends on estimated values of �) whose distribution under H0 does not
depend on �. That is, T is ancillary under H0. Then, P�0;�(T � t) is the same for all � so
calculation of the sup� is avoided. For example, in normal means problems we replace
unknown variances with sample variances and use t or F distributions to account for

the estimated variances.

A third method to handle the unknown � is to condition on the value of a statistic S
that is sufficient for � underH0. Then the conditional distribution of any statistic, givenS, does not depend on � (under H0), and the p-value is taken to be p = P�0(T � tjS = s).
For example, in a two by two contingency table with common “success” probability �
under H0, one can condition on the marginals (a sufficient statistic for � under H0) and
use Fisher’s exact test.
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All three methods replace the calculation of the sup� by the calculation of a single
probability, and each method can result in a valid p-value, i.e., a statistic p such that,
under the null hypothesis,P (p � �) � �; for each � 2 [0;1]: (1)

We call a statistic that satisfies (1) a valid p-value because it can be used in the

standard way to define a level - � test. That is, consider the test that rejects the null
hypothesis if and only if p � �. Then under the null hypothesis, P (reject null) = P (p ��) � �. That is, the test so defined is a level - � test.

In many situations, however, none of the above three methods is satisfactory.

For example, the value of � at which the sup� occurs may depend on the value t in a
complicated way. Also, exact distributional results are often not available for statistics

with estimated parameters. And finally, it may not be possible to find an appropriate

sufficient statistic to condition upon.

In this paper we want to consider a different approach for obtaining valid p-

values. Suppose that a valid p-value p(�0) may be calculated when the true value �0 of
the nuisance parameter vector � is known. Here it should be noted that the calculation
of p(�0) does not have to be based on the same test statistic for different values of �0.
Indeed, the test statistic may depend directly on the assumed known value of �0. All
that is needed is that, for each value of �0, p(�0) is a statistic that satisfies (1). If �0 is
not known, then a valid p-value may be obtained by maximizing p(�) over the parameter
space of �. That is, psup = sup� p(�) clearly satisfies (1).

The use of psup has two potential difficulties, one computational and the other
statistical. If the parameter space for � is unbounded and if the sup� is calculated
numerically (as it often will be), then it may be uncertain whether the numerical method

indeed found the overall maximum. Of course, there is always uncertainty about

the result of a numerical maximization, but the uncertainty is worse if the set being

maximized over is unbounded. Statistically, it seems a waste of information in the data

to take the sup over all values of �. Having observed the data, we should be able to
estimate �, and it should be unnecessary to consider values of � that are completely
unsupported by the data. Authors such as Storer and Kim (1990) have used this idea to
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propose as a p-value p(�̂), where �̂ is an estimate of � (usually the maximum likelihood
estimate). But p-values defined in this way may not be valid. See the computations of

Storer and Kim (1990).

A valid p-value that addresses both of the above concerns is defined as follows.

Let C� be a 1 � � confidence set for the nuisance parameter when the null hypothesis
is true. Intuition suggests that we might be able to restrict the maximization to the setC�. Indeed we show below thatp� = sup�2C� p(�) + � (2)

is an alternative valid p-value. This p-value may be preferred to psup on computational
grounds (due to maximizing over bounded sets) and on statistical principles (restricting

interest to likely regions of �). The value of � and the confidence set C� should of course
be specified before looking at the data. Note that p� is never smaller than �. So, in
practice, � will be chosen rather small, such as .001 or .0001. If p� is to be used to
define a level - � test, then � must be less than � to obtain a useful test.

We will first give the theoretical justification for p� in the following lemma. The
rest of the paper is a series of illustrative examples. The first example, a pedagog-

ical example, concerns tests about a normal mean when the variance is unknown.

The remaining, more-realistic examples are about two by two contingency tables, the

Behrens-Fisher problem, nonparametric testing for skewness, and nonparametric test-

ing for scale differences.

2 Validity of p�
Lemma. Suppose that p(�) satisfies (1) for any assumed known value �. Let C�

satisfy P (� 2 C�) � 1� �, if the null hypothesis is true. Let p� be given by (2). Then, p�
is a valid p-value.

Proof. Suppose the null hypothesis is true. Denote the true but unknown � by�0. If � > �, then since p� is never smaller than �, P (p� � �) = 0 � �. If � � �, thenP (p� � �) = P (p� � �; �0 2 C�) + P (p� � �; �0 2 �C�)
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� P (p(�0) + � � �; �0 2 C�) + P (�0 2 �C�)� P (p(�0) � � � �) + �� � � � + � = �:
The first inequality follows because sup�2C� p(�) � p(�0) when �0 2 C�.

3 Examples

Example 1. Pedagogical example about a normal mean. Let X1; : : : ; Xn be a
random sample from a normal population with mean � and variance �2. We consider
testing H0 : � = �0 versus H1 : � 6= �0, where �0 is a fixed value and �2 is the nuisance
parameter. We consider this familiar example to illustrate our method, not to offer a

serious contender to the usual t-test.

If �2 were known, we could use the test statistic Z = pn( �X � �0)=�, where �X is
the sample mean. Then the two-sided p-value would bep(�2) = 2�(�jzobsj);
where zobs is the value of the test statistic calculated from the data, and �(z) is the
standard normal cumulative distribution function. As a confidence interval for �2, we
will use the upper confidence bound given byC� = (�2 : 0 � �2 � (n� 1)s2�2� ) ;
where s2 is the sample variance and �2� is the 100� percentile of a chi-squared distri-
bution with n � 1 degrees of freedom. The valid p-value we propose isp� = sup�22C� p(�2) + � = sup�22C� 2�(�jzobsj) + �:
Since jzobsj is a decreasing function of �, the supC� occurs at the upper endpoint. (This
is why we chose to use an upper confidence bound.) Thus p� = 2�(�jzmaxj) + �, wherezmax is the test statistic calculated with �2 = (n� 1)s2=�2�.
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In this example, the test statistic Z depends on the value of the nuisance pa-
rameter, a possibility mentioned in Section 1. Also, in this example, the p-value psup,
although valid, is useless because it always has the value 1, since jzobsj ! 0 as � !1.
So the fact that maximization is restricted to C� when calculating p� is of critical im-
portance in getting a reasonable answer.

This example is a bit unusual in that the supC� can be calculated exactly. In
many cases this will need to be calculated numerically.

This example is also unusual in that the exact size of the test based on p� can be
calculated. Suppose we reject H0 if p� � �. Then the actual size of the test isP (p� � �) = P (2�(�jZmaxj) + � � �)= P (�(�jZmaxj) � (�� �)=2)= P (�jZmaxj � z(���)=2)= 2P (T � q(n� 1)=�2�z(���)=2);
where T has a Student’s t distribution with n � 1 degrees of freedom and z� is the
100� percentile of a standard normal distribution. It can be shown that q(n� 1)=�2�
converges to 1 as n goes to infinity. So the actual size of the test, which is at most �
since the p-value is valid, converges to �� �.

Example 2. Two by two contingency table with independent binomial sampling.

Consider a two by two contingency table consisting of two independent binomial sam-

ples, 14 “successes” out of 47 trials for group 1 and 48 “successes” out of 283 trials

for group 2. This data appeared in Table 1 of Emerson and Moses (1985) who obtained

it from Taylor et al. (1982). We consider here the usual two by two table chi-squared

statisticZ2 = (�̂1 � �̂2)2�̂(1� �̂)( 1n1 + 1n2 ) ;
where �̂ = (n1�̂1 + n2�̂2)=(n1 + n2) and �̂1 and �̂2 are the sample proportions in the two
groups. Figure 1 shows the p-value p(�) for detecting the difference between the two
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Figure 1: Exact p-values for the two by two table chi-squared statistic. Calculations

are from independent binomial distributions with common proportion �.
binomial proportions �1 and �2 as a function of the unknown common � under the null
hypothesis H0 : �1 = �2 = �. The p-value p(�) for a fixed value of � is computed from
the binomial distribution asp(�) =X b(x; 47; �)b(y; 283; �)
where b(x; n; �) is the binomial probability of x successes in n trials with success prob-
ability �, and the sum is over all pairs (x; y) of x successes from group 1 and y suc-
cesses from group 2 that give a Z2 value bigger than or equal to the Z2 = 4:346
value calculated from this data. The usual, unconditional p-value for this problem

is psup = sup�2[0;1] p(�) = :061. Suissa and Shuster (1985) discuss this p-value and
recommend it as an appropriate p-value for this problem.

Looking at Figure 1, however, it would seem natural to restrict the region over

which the maximization takes place to a region around the null maximum likelihood

estimate �̂ = (48 + 14)=(283 + 47) = :188. A .999 confidence interval for � under
the null hypothesis is given by [.123,.267] (e.g., Casella and Berger, 1990, p. 499).

Numerically calculating the sup of p(�) over this interval yields the value .036. Thus,
the new p-value is p:001 = :036 + :001 = :037. This improvement in the p-value is not
unusual since the maximum over [0;1] often occurs near 0 or 1, far from the estimated
value of � (as we have found in numerous examples).
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In fact, the program EXACTB by Shuster (1988) will compute the maximum ofp(�) over a .999 confidence interval, and report it as a p-value. But the program
documentation does not provide any theory to justify this approach. Also, the value

reported is just the maximum, not the maximum plus � as in (2). So the reported
p-value may not be valid. As an aside, we note that EXACTB will also compute psup.
But for this data, the value computed by EXACTB was psup = :038. Apparently, the
maximization routine failed to detect the spikes in p(�) near 0 and 1. But the spikes
are real and the correct value is .061, as we reported above.

Example 3. Behrens-Fisher problem. The classical Behrens-Fisher problem has

two independent samples X1; : : : ; Xm and Y1; : : : ; Yn from normal distributions with
means �1 and �2 and variances �21 and �22. The null hypothesis is H0 : �1 = �2 where�21 is not assumed equal to �22.

Best and Rayner (1987) recently reaffirmed the practical value of the Welch solu-

tion based ontw = �X � �Yr s21m + s22n ;
where �X, �Y , s21, and s22 are the usual sample means and sample variances, and critical
values are obtained from a t distribution with estimated degrees of freedom. Numerous
studies have shown, however, that the Welch solution can be slightly liberal. In other

words the corresponding p-value does not satisfy (1) for certain combinations of m andn and � = � = �22=�21.
Here we can use our approach along with tw to get a valid p-value since, underH0 : �1 = �2, the distribution of tw depends only on the ratio of variances � = �22=�21.

Although the distribution of tw is not simple, we can easily simulate from normal
distributions to get a p-value for each value of �. Figure 2 shows the results for a data
set with sample means 0:0 and 6:225 and sample variances 18 and 78 (an example
taken from Barnard (1984)). A .999 confidence interval for � obtained from the F
distribution of s21=s22 is (.32,38.72). On this interval the maximum two-sided p-value is
.048 so that p:001 = :048+ :001 = :049. Since the p-value was obtained from 1,000,000
Monte Carlo replications, the standard error of the estimate .049 is around .0002. For
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Figure 2: Estimated p-values for Welch’s t as a function of the ratio of variances �.
Number of Monte Carlo replications = 1,000,000.

comparison purposes note that the Welch solution p-value is .041, the pooled t p-value
is .065, and the Behrens-Fisher p-value is .050.

Another way to use our approach in this problem follows from the quantityt(�) = �X � �Yr( 1m + �n ) (m�1)s21+(n�1)s2
2
=�m+n�2 ;

given by Fisher (1939, p. 176). For a given value of �, t(�) has a t distribution withm + n � 2 degrees of freedom under H0. Thus, we might consider using our approach
with t(�) and this latter t distribution. The appropriate p(�) is easy to calculate and has
intuitive appeal. Unfortunately this p(�) is much more sensitive to changes in � than
the simulation p(�) based on tw. We do not display the results for p(�) but note thatp:001 = :233+ :001 = :234 and p:01 = :15+ :01 = :16. Clearly the method based on tw is
superior.

In fact, we believe that there is a general principle here concerning our methods

to the effect that one should use statistics such as tw whose null distribution depends
on the nuisance parameter rather than use pivotal quantities such as t(�) which are
functions of the nuisance parameter but whose null distributions do not depend on

the nuisance parameter.

Our p-value based on tw may be the first nontrivial valid p-value for the Behrens-
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Fisher problem, although Barnard (1984, Sec. 6) claims that Robinson (1976) has

shown that the Behrens-Fisher solution p-value is valid. It is not clear to us that

Robinson (1976) has actually proved such a result. But from a practical view we must

point out that neither our solution nor the Behrens-Fisher solution are likely to be

robust to nonnormality since they both use the F distribution of s21=s22.
The three previous examples were parametric problems where the nuisance pa-

rameter � was confined to (0;1), [0,1] and (0;1), respectively. Now we turn to more
ambitious semi-parametric problems where � is a location parameter belonging to(�1;1), but in addition, there is a second infinite dimensional nuisance parame-
ter corresponding to an unknown distribution function. This is really not much harder

than the previous examples, however, because we can handle this latter nuisance pa-

rameter using classical permutation test methods. That is, for each given value of �,
we will obtain a permutation p-value and then carry on as in Examples 2 and 3.

Example 4. Testing for skewness with unknown location. We have a single iid

sample X1; : : : ; Xn and wish to test whether the X ’s are symmetrically distributed about
some unknown �. Formally the null hypothesis is H0 : F (� + x) = 1 � F ((� � x)�) allx 2 (�1;1) , F and � unknown. A variety of good test statistics have been proposed for
this problem, but no finite sample valid p-values have been given. In fact Schuster and

Barker (1987) have proposed bootstrap methods because even approximate validity

has been so elusive.

For illustration purposes we shall consider two simple statistics. The first is the

sample standardized third momentpb1 = m3=m3=22 ;
where mk = P(Xi � �X)k=n. D’Agostino, Belanger, and D’Agostino (1990) discuss the
use of

pb1 as a test for normality, but there has been no valid method for using it as
a test of asymmetry. For example, Randles, et al. (1980) show that the appropriate

standardization of
pb1 by an estimate of its asymptotic standard deviation results in a

normal test which is extremely liberal for a variety of symmetric distributions.

The second statistic we consider is the triples statistic
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T = �̂=�̂;
where �̂ is the U-statistic estimate of � = P (X1+X2 > 2X3)�P (X1+X2 < 2X3) and �̂ is
the corresponding estimate of standard deviation. T is asymptotically normal for any
symmetric F , but Table 2 of Randles et al. (1980) shows that using normal or t critical
values results in a test which is approximately valid in small samples but which can

be liberal for certain symmetric Fs.
Our method in this situation is as follows. For given �, a valid p-value can be

obtained by calculating the statistic of interest for each of the 2n possible samples of
the form �jX1��j; : : : ;�jXn��j. The permutation p-value is just the proportion of these
values which are greater than or equal to the statistic calculated from the original n
observations. Since 2n is often a very large number, we typically randomly sample from
the set of possible permutations.

The second ingredient of ourmethod is a confidence interval for �. The simplest in-
terval is the exact confidence interval for the median (which equals � under H0) given by(X(l); X(n�l+1)), where X(1) � � � � � X(n) are the order statistics and � = (1=2)n�1Pl�1i=0 �ni�
(see David, 1981, Sec. 2.5).

To illustrate, we consider the sample of n = 62 cholesterol values given in

D’Agostino, Belanger, and D’Agostino (1990). Figure 3 shows estimated right-tailed

p-values versus � for pb1 and T based on 10,000 random permutations. Using l=18 in
the above confidence procedure, we get � = :000497, and so a .9995 confidence interval
for � under H0 is (X(18); X(45)) = (220;267) resulting in p:0005 = :0370+ :0005 = :038 forpb1 and p:0005 = :0177+:0005 = :018 for T . Use of the random permutations (instead of
all 262 permutations) introduces a standard error of about ((0:03)(0:97)=10;000)1=2 =
0:0017.

The triples statistic for this data is T=2.501, and using a t distribution with n = 62
degrees of freedom as suggested by Randles et al. (1980), we get an approximate right-

tailed p-value of .0075. Since :018=:0075 := 2:4, we might say that there is a 2.4 "cost"
factor in this case to obtain the valid p-value of .018, rather than an approximate

value. Using
pb1 and the approximation given by D’Agostino, Belanger, and D’Agostino

(1990), we obtain .00085 for a one-tailed p-value for normality versus a right-skewed
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Figure 3: Estimated p-values for tests of skewness for cholesterol data. Number of

random permutations = 10,000.

distribution. Here though,it is unfair to compare with the valid p-value of .038 since

the null class of all symmetric distributions is much bigger than that of the set of

normal distributions.

The range of variation of the p-values in Figure 3 is much larger for
pb1 than

for T . We believe that the difference is due to the robustness of T compared to that
of
pb1. That is, the sample third moment is very sensitive to outliers and to small

changes in distributional shape. The triples T is an average of indicator functions and
insensitive on a large scale to such changes although wiggles do occur because of the

discontinuities caused by the indicator function. A second difference between
pb1 andT is the fact that T is studentized and pb1 is not. A plot of p-values for �̂ in place of T

(not displayed) is qualitatively similar to Figure 3b and suggests that studentization is

not a major cause of differences between Figures 3a and 3b.

Example 5. Testing for scale differences in two populations with unknown loca-

tions. Consider two iid samples X1; : : : ; Xm and Y1; : : : ; Yn with distribution functionsF ((x� �1)=�1) and F ((x � �2)=�2), respectively. The null hypothesis is H0 : �1 = �2; F ,�1 and �1 are unknown. This model is not identifiable, but an equivalent description in
which all parameters are identifiable is for the Xs and Y s to have distribution functionsF (x) and F ((x � �)=�), respectively. The null hypothesis is then H0 : � = 1; F and �
are unknown nuisance parameters.

11



As in Example 4, there are numerous good test statistics in the literature for

this problem but none accompanied by valid finite sample p-values. Actually, one can

randomly pair the data in each sample and create differencesXi�Xj and Yi�Yj, thereby
eliminating the unknown locations. Rank and permutation tests on the differences

then yield valid tests, but the loss in power due to the random pairing makes this

approach unsuitable. A good review of test statistics and practical methods is found

in Conover et al. (1981).

If the difference in locations � were known, we could subtract � from each of theY s, pool theXs and transformed Y s, and carry out the standard permutation approach.
That is, we compute a statistic T for each of the �m+nm �

distinct permutation data

sets (X�
1; : : : ; X�m; Y �

1 ; : : : ; Y �n ) drawn without replacement from the set (X1; : : : ; Xm; Y1 ��; : : : ; Yn � �). The permutation p-value is then the proportion of these values which
are greater than or equal to the statistic calculated from the original data.

For illustration we consider the weight gain of a group of m = 30 control rats
and of a second group of n = 20 rats whose diet included calcium EDTA. The observed
values for the control group are

34, 22, 51, 33, 20, 32, 35, 24, 13, 22, 26, 38, 34, 30, 20, 30, 25, 32, 36, 22, 26, 28,

31, 28, 32, 31, 28, 28, 31, 31,

and for the treated group are

9, 23, 16, 13,-13, 32, 10, 26, 14,-24, 8, 29, 24, 27, 22, 2, 19, 21, 27, -1.

Figure 4 shows the estimated p-values for jlog(s1=s2)j and jlog(g1=g2)j, where s21
and s22 are the sample variances and the gi are robust scale estimators with the formg1 = 1M � [M(:25)] M�[M(:25)]Xi=1 Z(i);
and the Z(i) are theM = m(m�1)=2 ordered values of jXj�Xkj. These trimmed versions
of Gini’s Mean Difference were studied in Janssen, Serfling, and Veraverbeke (1987)

and subsequently found to have good efficiency and robustness properties.

An exact 1�� confidence interval for� under H0may be obtained by inverting any
two-sample rank test for location differences. Here we use the interval based on the
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Figure 4: Estimated p-values for tests of scale for weight gain data. Number of random

permutations = 10,000.

Wilcoxon rank sum statistic which has the form [D(k); D(l)) where D(1); : : : ; D(mn) are the
ordered differences of the form Yj �Xi (see Randles and Wolfe, 1979, p. 180). The .999
confidence interval for the above data is [-24,-3]. This leads to p:001 = :062+:001 = :063
for the variance-based statistic of Figure 4a and to p:001 = :022 + :001 = :023 for the
robust statistic of Figure 4b. The standard errors of these p-values are about .002 due

to using 10,000 random permutations.

Asymptotic arguments are given in Boos, Janssen, and Veraverbeke (1989) which

justify the use in large samples of p(�̂), where �̂ is estimated from the data. For
example, �Y � �X = 14:2 � 29:1 = �14:9 leading to p(�14:9) = :018 and .006 from
Figures 4a and 4b, respectively. Taking the ratios .063/.018 and .023/.006 suggests

a "cost" factor around 3 to 4 for getting a valid p-value for this data in place of an

asymptotic approximate p-value.

We also note that, as in Example 4, the p-value for the nonrobust statistic based

on sample variances is much more sensitive to changes in �, ranging from .0012 to
.062 over � 2 [�24;�3], while the robust statistic based on g1 and g2 ranges from .005
to .022.
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4 Summary

Nuisance parameters may be handled in a variety of ways in testing problems.

In this paper we have introduced a new method for modifying the standard definition

of a p-value given by p = sup�P�0;�(T � t) to allow for taking the supremum over a
confidence interval for � instead of over the whole parameter space of �.

The new method is not intended to supplant standard methods for handling nui-

sance parameters, when those methods give tractable answers. But our examples

suggest that the new method can indeed give improved procedures, as in the case of

the two by two contingency table using the Z2 statistic. In other situations the new
method can give finite-sample level - � tests where none previously existed.
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