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S U M M A R Y

Fractures often play an important role in controlling the fluid flow in hydrocarbon reservoirs.

When the seismic wave propagates through media containing fracture corridors, significant

scattering dispersion and attenuation can occur. In this work, we study the P-wave dispersion

and attenuation due to the scattering caused by 2-D fluid-saturated aligned fractures with finite

thickness, which are embedded in an isotropic elastic background medium. Using the Foldy

approximation and the representation theorem, the P-wave dispersion and attenuation are

related to the displacement discontinuities across the fractures. These fracture displacement

discontinuities are obtained from the boundary conditions and the P-wave dispersion and

attenuation can thus be calculated. A numerical example shows that the fracture thickness has

significant influence on the dispersion and attenuation, especially in the low-frequency regime

when the fracture size is smaller than the seismic wavelength. The effects of the fluid bulk

modulus are also significant, which are opposite to those of the fracture thickness. However, the

effect of the fluid viscosity is found to be negligible for the studied configurations. To validate

the proposed model, the theoretical predictions are compared with ultrasonic measurements

on fractured samples. The comparison shows overall good agreement between theory and

experiment. This work reveals the important influence of fracture thickness and saturating fluid

properties on the P-wave scattering dispersion and attenuation. Hence, it shows a potential to

extract these parameters from seismic data.

Key words: Seismic attenuation; Theoretical seismology; Wave propagation; Wave scattering

and diffraction; Fractures, faults, and high strain deformation zones.

1 I N T RO D U C T I O N

Naturally fractured reservoirs constitute substantial part of oil and gas reserves worldwide. Importance of fractures was probably first

understood in the context of carbonate reservoirs. In recent years, there has been a renewed interest in fractured unconventional reservoirs

such as tight gas sands, gas shales and coal. Understanding of fractures is important as they play an important role in controlling the fluid flow.

In some reservoirs, so-called sweet spots (areas of intense fracturing) are the only areas where economic production is possible. Of particular

importance for production are fracture ‘swarms’ or ‘corridors’, which are large zones of densely spaced fractures tens of metres in height and

several hundred metres in length, up to several metres in width and with permeability on the order of several Darcies (Bush 2010). Hence, it

is important to detect and characterize the fracture corridors before drilling many wells. To this end, the seismic method presents a special

value due to its non-invasive nature and a large detection scale. As the size of fractures in such fractured zones is often comparable or even

larger than the seismic wavelength, the wave scattering by fractures can be significant (e.g. Wu & Aki 1985; Gurevich et al. 1997; Vlastos

et al. 2003, 2006, 2007; Sato et al. 2011). This can result in substantial dispersion and attenuation of seismic waves, which in turn can serve

as potential seismic attributes for the detection and characterization of fractured reservoirs (Vasconcelos & Jenner 2005; Burns et al. 2007).

For this purpose, it is essential to understand and quantify the mechanism of the dispersion and attenuation due to the scattering by fractures.

Scattering of elastic waves by fractures have been considered previously in the context of both geophysics and non-destructive testing

of materials. Dispersion and attenuation due to wave scattering by a single dry fracture have been considered by a number of authors (e.g.

Mal 1970a,b; Martin 1981; Krenk & Schmidt 1982; Keogh 1986; Martin & Rizzo 1989). Most of these studies investigate interactions of
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P-wave scattering in fractured rock 2115

the elastic waves with a 2-D (slit) or 3-D (penny-shaped) fracture in an infinite isotropic elastic solid. Based on these theoretical models, the

effects of multiple dry fractures can be studied using the non-interaction approximation proposed by Foldy (1945). This approach has been

used to compute wave scattering in an elastic solid containing a random distribution of fractures (e.g. Kikuchi 1981; Zhang & Achenbach

1991; Kawahara 1992; Kawahara & Yamashita 1992; Zhang & Gross 1993a,b). Besides the Foldy approximation, other approaches have

also been used to take into account the effects of fracture interactions and non-flat fractures (e.g. Sabina et al., 1993; Smyshlyaev & Willis

1993a,b; Murai et al. 1995; Murai 2007; Caleap et al. 2009). Some of these approaches have been validated by numerical simulations (e.g.

Suzuki et al. 2006, 2013).

The above studies of scattering have been done for dry fractures. Yet, fractures in hydrocarbon reservoirs and aquifers are important

conduits for the fluid flow and hence are often saturated with fluid (e.g. Bush 2010). Therefore, it is essential to model wave scattering

by the fluid saturated fractures. To the authors’ knowledge, however, only a few studies have been published on this aspect. Kawahara &

Yamashita (1992) modelled the scattering by aligned fluid saturated fractures, which focused on the effects of viscous friction of the fluid

on wave dispersion and attenuation. That study was then extended by Murai et al. (1995) by considering fracture interactions. Sabina et al.

(1993) and Smyshlyaev & Willis (1993a,b) applied a dynamic self-consistent approach to wave propagation in an elastic solid with a random

distribution of penny-shaped fluid saturated fractures. This problem was also studied by Eriksson et al. (1995) using the T-matrix and Foldy

approximations.

Most of the studies mentioned above consider the effects of fractures of infinitesimal thickness. For dry fractures both the effective

quasi-static moduli and scattering are controlled by the fracture density, while the influence of the fracture thickness is negligible, provided

that the fracture aspect ratio is not very large (usually smaller than 0.1) (e.g. Schoenberg & Douma 1988; Sabina et al. 1993; Smyshlyaev &

Willis 1993b). However, for fluid saturated fractures, the fracture thickness has a significant influence on the elastic properties of the fractured

rocks and therefore, on wave propagation even in the quasi-static regime (e.g. Kuster & Toksöz 1974; Guo et al. 2018a, 2018b). Hence, in

the dynamic regime, it is also essential to study the effects of the fracture thickness on wave scattering and the corresponding dispersion and

attenuation for the case of fluid saturated fractures.

In this paper, we develop a model for the P-wave scattering dispersion and attenuation by aligned fluid saturated 2-D fractures with

finite thickness, which are distributed randomly in an isotropic elastic background medium. The model is developed by extending the model

for dry open fractures proposed by Kawahara (1992). A numerical example is used to explore the effects of the fracture thickness and the

saturating fluid properties on wave scattering dispersion and attenuation. To validate this model, the theoretical predictions are also compared

to the ultrasonic measurements on fractured samples.

2 T H E O R E T I C A L B A C KG RO U N D

The P-wave scattering model for fluid saturated fractures can be developed based on the model for dry open slit fractures, which was proposed

by Kawahara (1992). In Kawahara’s model, aligned 2-D dry slit fractures are assumed to be distributed randomly and sparsely in an infinite

elastic (non-porous) isotropic background medium, as shown in Fig. 1. The coordinate system is chosen such that the fracture plane is

perpendicular to the X2-axis, and the fracture length along X3-axis is infinite. Hence, the plane strain condition in X1 – X2 plane is satisfied

and the 3-D problem can be reduced to a 2-D problem. It is assumed that all the fractures have an identical rectangular shape with a thickness

β along X2-axis and a length 2a along X1-axis. The number density of the fractures (number of fractures per unit area) is v. We consider a

longitudinal plane wave (P wave) propagating in the fractured rock at an incidence angle of θ with respect to the fracture normal (X2-axis).

The incident P-wave is assumed to be a plane time-harmonic wave with an angular frequency ω and displacement

u0
A = A0eikp X1 sin θ+ikp X2 cos θ (sin θ, cos θ ) , (1)

where A0 is the displacement amplitude, kp = ω/Vp the wave number, and Vp the P-wave velocity in the background medium (for brevity, the

time factor e−iωt is omitted).

Due to the scattering of the randomly distributed fractures, the total wavefield uA is the sum of the incident wave plus the scattered wave.

The ensemble average of this total field is called the mean field 〈uA〉 and has the following form (Kawahara 1992):

〈uA〉 = Aeikp X1 sin θ+i(kp cos θ+κ)X2
(

sin θ, cos θ + κ/kp

)

, (2)

where A is the initial displacement amplitude of the mean wavefield, and κ is the coefficient that determines the attenuation and dispersion of

the mean wave.

Since the fractures are distributed sparsely and randomly in the solid, the relationship between the incident wavefield and the ensemble

averaging can be replaced by spatial averaging using the Foldy (1945) approximation as follows:

〈uA〉 = u0
A + v

∫

SA 〈ui〉 dri, (3)

where SA〈ui〉is the scattered wave by the ith fracture due to the incidence of the mean wave 〈ui〉; ri denotes the central location of the ith

fracture. By integrating over the entire volume of the fractured rock, the total scattered displacement is obtained, which is added to the incident

displacement field to obtain the displacement field of the mean wave.
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2116 J. Guo et al.

Figure 1. Infinite elastic background medium embedded with randomly and sparsely distributed aligned 2-D slit fractures. The length and thickness of the

fracture is 2a and β, respectively. Both the global and local coordinate systems are established with the X1- (or x1-) and X2- (or x2-) parallel and perpendicular

to the fracture plane, respectively. The origin of the local coordinate system is located at the centre of the ith fracture with a global coordinate (p1, p2).

From eq. (2), the mean incident wave 〈ui〉 on the ith fracture can be written as

〈ui〉 = Aeikp(x1+p1) sin θ+i(kp cos θ+κ)(x2+p2)
(

sin θ, cos θ + κ/kp

)

, (4)

where (p1, p2) is the location of the centre of the ith fracture in the global coordinate system (X1, X2). (x1, x2) defines the location in the local

coordinate system with the origin at the centre of the ith fracture and the x1-axis and x2-axis parallel and perpendicular to the fracture plane,

respectively (Fig. 1).

Using the representation theorem, we can present the wavefield scattering by the ith fracture as (e.g. Achenbach 1973; Kawahara &

Yamashita 1992)

[Si 〈ui〉] j = −

∫ a

−a

[�ui (ζ1, p1, p2)]lŴ jl (x1, x2|ζ1, 0) dζ1, j, l = 1, 2, (5)

where [·] j represents the jth component of the vector field, the summation convention is employed for the repeated subscripts on the right-hand

side of the equation, �ui is the displacement discontinuity across the fracture while Ŵ jl has the form

Ŵ jl (x1, x2|ζ1, ζ2) =
i

4

[

δl2

(

1 − 2
k2

p

k2
s

)

∂

∂x j

H
(1)

0

(

kp R
)

+

(

δ jl

∂

∂x2

+ δ j2

∂

∂xl

)

H
(1)

0 (ks R)

−
2

k2
s

∂3

∂x j∂xl∂x2

(

H
(1)

0

(

kp R
)

− H
(1)

0 (ks R)
)

]

, j, l = 1, 2, (6)

where ks = ω/Vs is the wavenumber of the S wave in the background medium, Vs is its velocity, δ jl is the Kronecker’s delta; H
(1)

0 (·) is the

zeroth-order Hankel function of the first kind, and R is given by

R2 = (x1 − ζ1)2 + (x2 − ζ2)2. (7)

According to Hooke’s law for the isotropic elastic medium (Timoshenko & Goodier 1934), the stress field induced by 〈ui〉 and Si〈ui〉

can be represented as follows (Kawahara & Yamashita 1992):

σ E
jk = λδ jk

∂

∂xl

[〈ui〉]l + μ

(

∂

∂xk

[〈ui〉] j +
∂

∂x j

[〈ui〉]k

)

, j, k, l = 1, 2, (8)

σ S
jk = λδ jk

∂

∂xl

[Si 〈ui〉]l + μ

(

∂

∂xk

[Si 〈ui〉] j +
∂

∂x j

[Si 〈ui〉]k

)

, j, k, l = 1, 2, (9)

where σ E
jk and σ S

jk are the stress fields induced by 〈ui〉 and Si〈ui〉, respectively, while λ and μ are the Lamé constants of the fractured rock.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

-a
b
s
tra

c
t/2

1
5
/3

/2
1
1
4
/5

1
1
3
4
9
4
 b

y
 C

u
rtin

 U
n
iv

e
rs

ity
 L

ib
ra

ry
 u

s
e
r o

n
 1

8
 M

a
y
 2

0
2
0



P-wave scattering in fractured rock 2117

Substituting eqs (5) and (6) into eq. (9) yields

σ S
jk = −μ

∫ a

−a

[�ui (ζ1, p1, p2)]l T jkl (x1, x2|ζ1, 0) dζ1, j, k, l = 1, 2, (10)

where the expressions for Tjkl are shown in Appendix A.

For dry open fractures, the normal and shear stresses applied on the fracture surface vanish and hence

σ E
12 + σ S

12 = 0, −a < x1 < a, x2 = 0, (11)

and

σ E
22 + σ S

22 = 0, −a < x1 < a, x2 = 0. (12)

Substituting eqs (4), (8) and (10) into eqs (11) and (12) yields
∫ a

−a

D1 (ζ1) T121 (x1, 0|ζ1, 0) dζ1 − eik p x1 sin θ = 0, −a < x1 < a, (13)

and
∫ a

−a

D2 (ζ1) T222 (x1, 0|ζ1, 0) dζ1 − eik p x1 sin θ = 0, −a < x1 < a, (14)

where

D1 (ζ1) =
[�ui (ζ1, p1, p2)]1

2i
(

kp cos θ + κ
)

sin θ Aeikp p1 sin θ+i(kp cos θ+κ)p2

, (15)

and

D2 (ζ1) =
[�ui (ζ1, p1, p2)]2

ikp Aeikp p1 sin θ+i(kp cos θ+κ)p2

[

(

k2
s /k2

p − 2
)

sin2θ + k2
s /k2

p

(

cos θ + κ/kp

)2
] . (16)

The normal and shear displacement discontinuities across the fracture can be obtained by solving integral eqs (13) and (14). The

coefficient κ can then be calculated from the displacement discontinuities. To do so, we can first obtain SA〈ui〉 by rewriting Si〈ui〉 using the

global coordinate system. Then, by substituting SA〈ui〉 and eqs (15) and (16) into eq. (3) and comparing the result with eq. (2), we can obtain

the expression for κ (Kawahara 1992):

κ = vφ1γ kp sin 2θ sin θ + vφ2

kp

2γ cos θ

(

1 − 2γ sin2θ
)2

, (17)

where γ = V 2
s /V 2

p , and φ j has the following form:

φ j

(

kp, θ
)

=

∫ a

−a

D j (ζ1) e−ikpζ1 sin θ dζ1, j = 1, 2. (18)

After obtaining κ , the frequency dependency of the phase velocity Vpe and attenuation factor Q−1
p of the P wave can be calculated as

(Kawahara & Yamashita 1992):

Vpe/Vp = 1 −
cos θ

kp

Reκ, (19)

and

Q−1
p = 2

cos θ

kp

Imκ. (20)

3 M O D E L F O R T H E F LU I D S AT U R AT E D F R A C T U R E C A S E

When the fractures are saturated with a viscous fluid, the fracture displacement discontinuities will be influenced by the fluid. However, the

relation between the scattered wavefield and the fracture displacement discontinuities remains unchanged and hence eqs (17)–(20) are still

applicable (Kawahara 1992). Therefore, to obtain the P-wave scattering dispersion and attenuation for fluid filled fractures, the corresponding

displacement discontinuities (D1 and D2) across the fractures need to be calculated. In this case, the fluid will apply both normal and shear

stresses on the fracture surface as follows:

σ E
12 + σ S

12 = −iωη
[�ui (x1, p1, p2)]1

β
,−a < x1 < a, x2 = 0, (21)

σ E
22 + σ S

22 = K f

[�ui (x1, p1, p2)]2

β
,−a < x1 < a, x2 = 0, (22)
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2118 J. Guo et al.

where η and Kf are the shear viscosity and bulk modulus of the fluid, respectively. The shear stress is caused by the viscous friction between

the fluid and the fracture surface (Kawahara & Yamashita 1992), whereas the normal stress is equal to the fluid pressure in the fracture, which

is generated due to the fracture volume compression (or extension). It should be noted that, as we consider the fluid with relatively high

viscosity, the fluid flow inside the fracture is ignored and hence the fluid pressure is not equilibrated, and can vary with the location x1.

By substituting eqs (4), (8) and (10) into eqs (21) and (22), we obtain
∫ a

−a

D1 (ζ1) T121 (x1, 0|ζ1, 0) dζ1 − eikpx1 sin θ =
iωη

μ

D1 (x1)

β
,−a < x1 < a, (23)

and
∫ a

−a

D2 (ζ1) T222 (x1, 0|ζ1, 0) dζ1 − eikpx1 sin θ = −
K f

μ

D2 (x1)

β
− a < x1 < a, (24)

where the relationships between Dj and [�ui] j are given by eqs (15) and (16).

Hence, by solving eqs (23) and (24), the values of D1 and D2 can be obtained. It is difficult to solve eqs (23) and (24) analytically.

However, it is straightforward to solve them numerically using the method proposed by Kawahara & Yamashita (1992). This can be done by

first normalizing eqs (23) and (24) as follows:

∫ 1

−1

D̂1

(

ζ̂1

)

T̂121

(

s, 0|ζ̂1, 0
)

d ζ̂1 − ei k̂ps sin θ =
iωηa

μ

D̂1 (s)

β
, −1 < s < 1, (25)

and
∫ 1

−1

D̂2

(

ζ̂1

)

T̂222

(

s, 0|ζ̂1, 0
)

d ζ̂1 − ei k̂ps sin θ = −
K f a

μ

D̂2 (s)

β
, −1 < s < 1, (26)

where ζ̂1,s,k̂p,D̂1, D̂2, T̂121, and T̂222 are normalized values by the half of the fracture length a as follows:

ζ̂1 = ζ1/a, (27)

s = x1/a, (28)

k̂p = akp, (29)

D̂ j = D j/a, j = 1, 2 (30)

and

T̂ j2 j = a2T j2 j , j = 1, 2. (31)

Then, eqs (25) and (26) can be discretized as follows:

M−1
∑

n=1

(

T 121
mn − δmn

iωηa

μβ

)

D̂1n = ei k̂psm sin θ , m = 1, . . . , M − 1 (32)

and

M−1
∑

n=1

(

T 222
mn + δmn

K f a

μβ

)

D̂2n = ei k̂psm sin θ , m = 1, . . . , M − 1 (33)

where sm = −1 + m�s, and �s = 2/M , T 121
mn and T 222

mn are calculated from T̂121 and T̂222 as follows:

T j2 j
mn =

∫ sn+�s/2

sn−�s/2

T̂ j2 j

(

sm, 0|ζ̂1, 0
)

d ζ̂1, j = 1, 2. (34)

The expressions of T 121
mn and T 222

mn are given in Appendix B. Hence, D̂1 and D̂2 can be computed by solving the matrix eqs (32) and (33)

using the corresponding numerical algorithm. Then, φ1 and φ2 can be calculated as follows:

φ j = a2φ̂ j , j = 1, 2, (35)

where

φ̂ j =

M−1
∑

m=1

D̂ jme−i k̂psm sin θ�s, j = 1, 2. (36)
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P-wave scattering in fractured rock 2119

Substituting eq. (35) into eq. (17) yields

κ = εφ̂1γ kp sin 2θ sin θ + εφ̂2

kp

2γ cos θ

(

1 − 2γ sin2θ
)2

, (37)

where ε = va2 is called the fracture density for the slit fractures (e.g. Kachanov & Sevostianov 2005). It can be seen from eq. (37) that the

expression for the fracture density is the same for the dry and saturated fractures, the saturating fluid only influences the normal and shear

displacement discontinuities across the fractures. Furthermore, we can observe from eqs (32) and (33) that in the low-frequency limit, the

normalized fracture displacement discontinuities for the saturated fractures are affected by the fracture aspect ratio, whereas those for the dry

fractures are independent of the fracture aspect ratio. This is consistent with the Eshelby model (Mura 1987; Sevostianov & Kachanov 1999).

After the value of κ has been obtained, the P-wave scattering dispersion and attenuation for the fluid saturated fracture case can be

obtained from eqs (19) and (20). It can be noted that the scattering dispersion and attenuation are not controlled by the number density v, but

the combination of the number density and half of the fracture length (i.e. fracture density ε).

4 N U M E R I C A L E X A M P L E

4.1 Parameters

In this section, we give a numerical example to illustrate the P-wave scattering dispersion and attenuation in the fractured reservoir. We

consider a carbonate reservoir with negligible background porosity (e.g. Rashid et al. 2015). The properties of the isotropic elastic background

medium are taken as follows: bulk modulus Ks = 63.7 GPa, shear modulus Gs = 31.7 GPa, and density ρs = 2.70 g cm−3 (Mavko et al.

2009). Large 2-D fractures (fracture corridors) are developed in the reservoir with their planes parallel to each other and centres distributed

randomly and sparsely in the background medium. It is assumed that the size of the fractures is identical to a length 2a of 40 m and a thickness

β of 0.4 m (aspect ratio α = 0.01). The fractures are saturated with a viscous fluid, with a bulk modulus Kf of 2.25 GPa (close to that of

water) and a relatively high shear viscosity η of 0.1 Pa∗s.

Using these parameters, we can first analyse the variations of the scattering dispersion and attenuation with frequency, fracture density,

and incidence angle. Then, we can vary the fracture thickness and the saturating fluid properties to study their influence on the scattering

dispersion and attenuation. Since the peak scattering attenuation occurs when the seismic wavelength is comparable to the fracture length

(e.g. Kawahara & Yamashita 1992), the frequencies studied here range from 10 to 1000 Hz due to the large fracture length (40 m).

4.2 Variations of P-wave velocity and attenuation with frequency, fracture density, and incidence angles

The variations of the P-wave velocity and attenuation with frequency f, fracture density ε, and incidence angle θ are shown in Figs 2 and

3, respectively. It can be seen that in the low-frequency regime (Rayleigh scattering domain), the P-wave velocity decreases slightly with

the frequency. Then it increases rapidly when the resonant (or Mie) scattering (e.g. Ishimaru 1978) occurs at around 100 Hz, for which the

incidence wavelength is of the order of size of the fracture length. In the high-frequency regime, the P-wave velocity tends to the value of

the background medium with some small fluctuations. These small fluctuations are probably due to the interference pattern variations of the

scattered wavefield generated by the fracture tips (Kawahara & Yamashita 1992). This behaviour of the P-wave velocity with the frequency

is similar to the case of dry fractures (Kawahara 1992). This is due to the assumptions in the model that the fluid is isolated in the fractures

and no fluid flow occurs, hence, the effects of the fluid are similar to those of the elastic solid. For the dry fractures, the fracture infill material

can be treated as an elastic solid with zero moduli. Therefore, the P-wave velocity for the fluid saturated fracture case behaves similarly with

the dry fracture case, but with a smaller dispersion magnitude due to the reduced stiffness contrast between the fractures and the background

medium. In terms of the effects of the fracture density, it can be found from eqs (19) and (37) that the P-wave velocity dispersion increases

linearly with the fracture density due to the application of the Foldy approximation, which gives the solution in the first order in ε (Keller

1964; Ishimaru 1978). Comparing the wave dispersion at different incidence angles (Figs 2a–c), we note that the magnitude of the dispersion

decreases with the incidence angles to the smallest value at 90◦. Note that while the dispersion at 90◦ is very small, it is not zero. This is

due to the fact that, when the P-wave propagates parallel to the fracture plane, the compaction and extension of the rock in this direction

will also induce a small normal displacement discontinuity across the fractures due to the Poisson ratio effects. It can also be noted that, the

characteristic frequency for the dispersion is found to shift slightly between the oblique incidence angles and the normal (or grazing) incidence

angle (θ = 0◦ or 90◦). The reason is that the dispersion and attenuation at the normal (or grazing) incidence angle is only controlled by the

normal fracture displacement discontinuity, whereas that at oblique incidence angles is controlled by both the normal and shear displacement

discontinuities across the fracture.

The scattering attenuation (Fig. 3) first increases with the frequency and reaches the peak at around 100 Hz when the incidence

wavelength is of similar size with the fracture length. This corresponds to the resonant (or Mie) scattering domain, where the P-wave velocity

increases rapidly with the frequency. The attenuation (inverse quality factor Q−1
p ) in the low- and high-frequency regimes is approximately

proportional to f 2 and f −1, respectively. This is also observed by Yamashita (1990) and Kawahara & Yamashita (1992) for the dry fracture

case. In the high-frequency regime, the attenuation decreases with some small fluctuations, which is caused by interference pattern variations

of the scattered wavefields from the fracture tips (Kawahara & Yamashita 1992). Due to the assumption of random and sparse distribution
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2120 J. Guo et al.

Figure 2. Variations of P-wave velocity with frequency f, fracture density ε, and incidence angle θ . (a) θ = 0◦ (normal incidence); (b) θ = 45◦; (c) θ = 90◦

(grazing incidence). Note the much smaller scale of the y-axis for case (c) to show the small velocity dispersion.
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P-wave scattering in fractured rock 2121

Figure 3. Variations of P-wave scattering attenuation with frequency f, fracture density ε, and incidence angle θ . (a) θ = 0◦ (normal incidence); (b) θ = 45◦;

(c) θ = 90◦ (grazing incidence). Note the different scale of the y-axis for case (c) to show the small attenuation.
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2122 J. Guo et al.

Figure 4. Effects of the fracture thickness on the P-wave scattering dispersion and attenuation at the normal incidence (θ = 0◦) and different frequencies f

(ε = 0.05). (a) P-wave dispersion; (b) attenuation. Note that the dispersion and attenuation for the infinitesimal thickness case are zero.

of fractures, similar with the dispersion, the attenuation is also found to increase with the fracture density linearly. When changing the

incidence angles from 0◦ to 90◦, the attenuation decreases and reaches the smallest (but non-zero) value at 90◦. Similar to the dispersion, the

characteristic frequency for the attenuation also shifts slightly between the normal (or grazing) incidence case and the oblique incidence case.

4.3 Effects of fracture thickness on the scattering dispersion and attenuation

The effects of fracture thickness on the scattering dispersion and attenuation are found to be similar at different incidence angles. Hence, we

only show the results at the normal incidence (θ = 0◦) in Fig. 4 (ε = 0.05). In the low-frequency regime, it is found that the fracture thickness

has significant influence on the P-wave velocity. In agreement with the predictions by the static Eshelby model (Mura 1987; Sevostianov &

Kachanov 1999), the P-wave velocity decreases with fracture thickness. However, in the high-frequency regime, it is interesting to note that

the P-wave velocity increases with the fracture thickness. This is due to the fact that the magnitude of the scattering dispersion increases with

the fracture thickness, as shown in Fig. 4. Hence, the P-wave velocity in the Mie scattering regime increases more rapidly for the case with

larger fracture thickness. This will thus result in the reversed trend of the P-wave velocity with the fracture thickness in the high-frequency

regime.

It can be noted here that there is no dispersion or attenuation for the infinitesimal fracture thickness case at the normal incidence. This

is because both the normal and shear displacement discontinuities across the fracture vanish in this case. According to eqs (17)–(20), the

P-wave dispersion and attenuation will thus vanish. Similarly, at incidence angles other than 0◦, the P-wave dispersion and attenuation also

vanish if the fracture thickness is infinitesimal. Hence, the P-wave velocity equals to that of the background medium at all frequencies and

remains unaffected by the incidence angle in this case. This is different from the predictions of the Eshelby model (Mura 1987; Sevostianov

& Kachanov 1999) in the low-frequency limit, which predicts the largest velocity at the incidence angle of 0◦ or 90◦, but smallest at 45◦. The
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P-wave scattering in fractured rock 2123

Figure 5. Effects of the fluid bulk modulus on the P-wave scattering dispersion and attenuation at the normal incidence (θ = 0◦) and different frequencies f

(ε = 0.05). (a) P-wave dispersion; (b) attenuation.

reason is that while the normal fracture displacement discontinuity given by our model and the Eshelby model both vanish for the infinitesimal

thickness case, the shear displacement discontinuity is different in these two models. In our model, we consider the viscous fluid and hence

the viscous friction between the fracture surface and the fluid leads to zero shear fracture displacement discontinuity for the infinitesimal

thickness case, as indicated by eq. (23). However, no viscous friction exists in Eshelby model and hence the shear fracture displacement

discontinuity does not vanish at the incidence angles other than 0◦ and 90◦, which is largest at 45◦. It should be noted that, while not shown

here, the results of our model are consistent with those given by Eshelby model when the fluid viscosity reduces to zero.

We also find that the attenuation increases with the fracture thickness. This is primarily due to the increase of the normal displacement

discontinuity across the fracture with the fracture thickness. The effects of fracture thickness on the attenuation are found to be significant

in the low-frequency regime. However, in the high-frequency regime, the effects of the fracture thickness are smaller, they decrease with

the frequency and vanish when the seismic wavelength is much smaller than the fracture size. Furthermore, the peak of the attenuation

(characteristic frequency) shifts towards the low-frequency regime when the fracture thickness increases.

4.4 Effects of the saturating fluid properties on the scattering dispersion and attenuation

Similar to the effects of fracture thickness, the effects of the bulk modulus of the saturating fluid on the scattering dispersion and attenuation

are similar at different incidence angles. Hence, we only show the results at the normal incidence (θ = 0◦) in Fig. 5 (ε = 0.05). Significant

influence of the fluid bulk modulus on the velocity dispersion is observed. The scattering dispersion decreases with the increase of the fluid

bulk modulus and hence the largest dispersion occurs for the dry fracture case. The results for the dry fracture case in Fig. 5 are the same as

those given by the model of Kawahara (1992). In the low-frequency regime, the P-wave velocity increases with the fluid bulk modulus, which

agrees with the predictions of the static Eshelby model (Mura 1987; Sevostianov & Kachanov 1999). However, in the high-frequency regime,
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2124 J. Guo et al.

the P-wave velocity decreases with the fluid bulk modulus. These different trends of the P-wave velocity with the fluid bulk modulus in the

low- and high-frequency regimes were also observed by Sabina et al. (1993) and Smyshlyaev & Willis (1993b). The reason is that the P-wave

velocity increases more rapidly in the Mie scattering domain for the cases with lower fluid bulk modulus, which results in the reversal of the

trends of the P-wave velocity with the fluid bulk modulus in the high-frequency regime.

The scattering attenuation decreases with the fluid bulk modulus. This effect is significant in the low-frequency regime, but negligible

in the high-frequency regime. The characteristic frequency of the peak attenuation is found to shift towards the high-frequency regime with

the increase of the fluid bulk modulus. Here, we observe that the effects of the fluid bulk modulus on the scattering dispersion and attenuation

are opposite to those of the fracture thickness. This can be explained by eq. (24). From this equation, we can see that increasing the fluid bulk

modulus has similar effects on the normal fracture displacement discontinuity as decreasing the fracture thickness.

Apart from the fluid bulk modulus, the fluid viscosity should also have some effects on the scattering dispersion and attenuation. This

is expected because the viscous friction operating at the fracture surface affects the shear fracture displacement discontinuity and hence

the scattering dispersion and attenuation. From the wave motion characteristics of the P-wave, it is expected that the shear displacement

discontinuity should be largest at an incidence angle of around 45◦ (Kawahara & Yamashita 1992). Hence, the effects of fluid viscosity should

be most obvious at this angle, which is shown in Fig. 6. However, contrary to our expectation, the curves for different fluid viscosities nearly

overlap each other and hence the effect of the fluid viscosity is negligible, even when the viscosity reaches 10 Pa.s. The reason can be found

in eq. (23), which shows the effects of fluid viscosity in the right-hand side. As the term (ωη)/μis usually much smaller than 1, the shear

displacement discontinuity across the fracture will be nearly unaffected by the fluid viscosity and hence its value will be close to the case with

non-viscous fluid. Therefore, the fluid viscosity has little effects on the scattering dispersion and attenuation for the studied configurations.

However, it should be noted that, when the fracture thickness is extremely small, the effects of fluid viscosity may be significant, as indicated

by eq. (23). Furthermore, for the case with low fluid viscosity, the non-uniform normal displacement discontinuity across the fracture may

induce the fluid flow inside the fractures. This will affect the dispersion and attenuation of the P wave, which is not considered in our current

model. Its effects will be discussed in the discussion section.

5 C O M PA R I S O N W I T H E X P E R I M E N TA L DATA

5.1 Experiment configuration and sample parameters

To validate our theoretical model, we compare the theoretical predictions with the ultrasonic measurements on synthetic rock samples

containing penny-shaped fractures performed by Wei et al. (2013). The host medium of the samples was constructed using a rock powder-

epoxy mixture by a layering technique. The resulting layered medium has equal thickness for each layer. The layered background medium

shows very weak anisotropy (Wei et al. 2013) and hence can be treated as isotropic. The porosity of the background medium is negligible and

the density is 1.66 g cm−3. Fractures are added by placing randomly, on the surface of each layer, penny-shaped inclusions. Thus, the fractures

are aligned to each other and distributed randomly on the surface of each layer. The penny-shaped inclusions are punched out from a block

sample made of a mixture of silica rubber and epoxy. The P-wave velocity of this mixture is measured giving an average value of 1350 m s−1.

However, the S wave of this mixture cannot be identified due to its very small amplitude and signal-to-noise ratio (Fig. 7). This means that

the silica rubber–epoxy mixture behaves similar to a fluid, that is, its shear modulus is either zero or much smaller than its bulk modulus.

This indicates that for small deformations (such as in the ultrasonic measurements), the effect of the silica rubber–epoxy mixture properties

on the overall elastic properties of the fractured rock is similar to that of a fluid. This conclusion, although somewhat counterintuitive,

follows from the elastic/viscoelastic correspondence principle (Hashin 1970). According to this principle, effective properties of a two-phase

viscoelastic composite can be computed using the same mixture theories as for elastic media by replacing elastic component properties with

complex-valued moduli of viscoelastic components computed in the frequency domain. Since the shear modulus of the silica rubber–epoxy

mixture is negligibly small, the effect of this mixture on the overall elastic properties of the fractured rock should be similar to that of a fluid

based on the correspondence principle. Even though the shear modulus is probably real or nearly real for the silica rubber–epoxy mixture but

purely imaginary for a Newtonian fluid, this difference is insignificant as long as both are much smaller than their respective bulk moduli, and

the shear modulus of the host medium. Recently, this correspondence principle was used to compute the effect of squirt flow between cracks

and pores from a solution of an equivalent elasticity problem (e.g. Glubokovskikh & Gurevich 2017). Despite the fact that fluid flows but solid

does not, this approach leads to exactly the same solution as obtained using linearized Navier–Stokes equations for the pore fill (Gurevich

et al 2010). Hence, the theoretical model proposed in Section 3 can be used for the predictions of the experimental results here. Using the

P-wave velocity measured above (1350 m s−1) and the density (1.09 g cm−3) of the silica rubber–epoxy mixture, its bulk modulus can be

calculated to be around 2.02 GPa while its shear modulus is negligibly small. The other details on the sample microstructure and the procedure

of constructing the samples are given in Wei (2004) and Wei et al. (2013). Seven synthetic rock samples (Fig. 8) were then constructed: one

reference sample (with no fractures) and six fractured samples with fixed fracture density (around 0.083) and radius (1.5 mm), but varying

fracture thickness (Table 1).

Due to the small fracture size, the wave scattering can occur in the ultrasonic frequency range and hence we measure the P-wave

velocity and attenuation using the ultrasonic pulse transmission method in the direction perpendicular and parallel to the fracture plane.

The measurement system consists of the Panametrics-NDT 5077PR Pulser-Receiver connected to a TK-DPO3102 digital oscilloscope and a
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P-wave scattering in fractured rock 2125

(a) 

(b) 

Figure 6. Effects of fluid viscosity on the P-wave scattering dispersion and attenuation under different frequencies f at the incidence angle of 45◦. (a) P-wave

dispersion; (b) attenuation.
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2126 J. Guo et al.

Figure 7. Measurement of S-wave velocity of the fracture infilling material (silica rubber–epoxy mixture). Note that the first arrival is P wave, not S wave. The

S wave cannot be identified due to its very small amplitude and signal-to-noise ratio.

Figure 8. Synthetic rock samples containing penny-shaped fractures. The sample 11–0 is the reference sample with no fractures, whereas samples 11–1 to

11–6 have the same fracture density and radius, but with the increasing fracture thickness, as indicated in the figure (0.1 – 0.34 mm).

Table 1. Distribution of the fracture thickness of the samples.

Sample no. Fracture thickness (mm) Sample no. Fracture thickness (mm)

11–1 0.10 11–4 0.24

11–2 0.14 11–5 0.29

11–3 0.19 11–6 0.34

Table 2. Physical parameters of transducers used to record P- and S-wave seismograms.

P wave S wave

Nominal frequency

(MHz) Catalogue number

Transducer diameter

(mm) Catalogue number

Transducer diameter

(mm)

1 V102-RB 25 V152-RB 25

0.25 V1012 39 V150-RB 25

0.1 V1011 39 V1548 25

PC. To obtain the results at different frequencies, three pairs of transducers are used with the nominal frequencies of 1, 0.25 and 0.1 MHz,

respectively. The physical parameters of the transducers are shown in Table 2. More information about the transducers can be accessed at the

website of the manufacturer (www.olympus-ims.com/en/ultrasonic-transducers). By applying a Fourier transform to the recorded waveforms

of P waves transmitted through the reference sample, we can obtain their centroid frequencies, which are close to those of the incident P

waves. Hence, we can obtain the centroid frequencies of the incident P waves for the three pairs of transducers, whose values are around

0.66, 0.21 and 0.097 MHz, respectively. At different centroid frequencies, the P- and S-wave velocities of the background medium (reference
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P-wave scattering in fractured rock 2127

Table 3. Elastic moduli of the background medium at different centroid frequencies of the incident P waves.

Centroid frequency (MHz) Bulk modulus (GPa) Shear modulus (GPa)

0.66 9.39 3.81

0.21 9.15 3.76

0.097 9.30 3.61

Figure 9. An example of the amplitude spectra of the transmitted P waves through reference and fractured samples, respectively.

sample) are measured. Combining with the density of the background medium (1.66 g cm−3, the elastic moduli of the background medium

are obtained which vary slightly with the frequency, as shown in Table 3. This indicates that the background medium has slightly viscoelastic

(or near-elastic) properties. Hence, apart from the P-wave scattering, a small intrinsic attenuation may also occur in the background medium.

As the host medium of the fractured samples has nearly the same properties as the reference sample, the intrinsic attenuation should be similar

between them. Hence, the intrinsic attenuation in the background can be excluded by comparing the results with the measurements on the

reference sample, using the following expressions (e.g. Tang et al. 1990):

ln
|S2( f )|

|S1( f )|
+ ln

|G1 ( f )|

|G2 ( f )|
=

πL1 f

Vp

1

Qint

−
πL2 f

Vpe

(

1

Qint

+
1

Qsca

)

, (38)

and

G i ( f ) =
γ

ikp

[

1 −
(

1 −
ξ2

i

2k2
pr2

)

[J0(ξi ) + i J1(ξi )] e−iξi −
ξ2

i

k2
pr2

(

i J1(ξi )

ξi

)

e−iξi

]

, i = 1, 2, (39)

ξi =
k p

2

(

√

4r 2 + L2
i − L i

)

, i = 1, 2, (40)

where 1/Qint and 1/Qsca are intrinsic and scattering attenuation, respectively; f is the measurement frequency; S1 and S2 are the amplitude

spectra of the transmitted P waves through the reference and fractured samples, respectively; L1 and L2 are the length of the reference and

fractured samples in the wave propagation direction, respectively; r is the radius of the transducer; J0 and J1 are Bessel functions of the first

kind with order zero and one, respectively. Note that the second term on the left-hand side of eq. (38) is the correction of the geometric

spreading effects (Tang et al. 1990).

In this experiment, the size for the reference and fractured samples is similar (∼68 × 68 × 62 mm). Hence, the intrinsic attenuation

1/Qint in eq. (38) is cancelled and the following approximation is obtained:

ln
|S2( f )|

|S1( f )|
= −

πL2 f

Vpe

1

Qsca

. (41)

Thus, we can estimate the P-wave scattering attenuation using eq. (41) through the spectral ratio method (e.g. Bath 1974; Ganley &

Kanasewich 1980; Mavko et al. 2009). The full measured data for the velocities and waveforms are given in Wei et al. (2013). An example

of the amplitude spectra S1 and S2 is given in Fig. 9.

The results for the velocities and estimated scattering attenuation for the fractured samples are shown in Figs 10 and 11. We can observe

notable P-wave dispersion and attenuation. To validate our theoretical model, we can compute dispersion and attenuation theoretically, and

compare the theoretical predictions with the experimental results. When carrying out the theoretical predictions, it should be noted that our

model is for 2-D slit fractures while experiments use 3-D penny-shaped fractures. Since the wave scattering is controlled by the fracture

density for both the 2-D and 3-D cases (e.g. Zhang & Gross 1993a,b), we use the same fracture density in the 2-D model as that for the

3-D samples for the comparison of the theoretical predictions with the experimental results. Furthermore, as the primary component of the
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2128 J. Guo et al.

Figure 10. Measured and predicted P-wave velocities of the samples in the directions parallel and perpendicular to the fracture plane under different fracture

thicknesses and centroid frequencies. The green, blue and red colours represent the velocities measured at the centroid frequencies of 0.66, 0.21 and 0.097 MHz,

respectively. The dashed and solid lines represent the theoretical predictions in the directions parallel and perpendicular to the fracture plane, respectively. The

triangles and the stars are the corresponding experimental measurement results.

Figure 11. Measured and predicted P-wave attenuation in the directions perpendicular (a) and parallel (b) to the fracture plane under different fracture

thicknesses and frequencies. The green, blue and red colours represent the attenuation measured at the centroid frequencies of 0.66, 0.21 and 0.097 MHz,

respectively. The solid lines and the stars are the theoretical predictions and the experimental measurement results, respectively.
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incident P waves is that at the centroid frequencies, we use the centroid frequencies (instead of the nominal frequencies) as the inputs in

the theoretical predictions. In addition, to account for the effects of the slightly viscoelastic properties of the background medium on the

P-wave velocities, we use frequency-dependent elastic properties of the background medium (Table 3) in the theoretical predictions. Finally,

the viscosity of the fluid-like mixture in the fractures is not measured as there is no shear displacement discontinuity across the fractures for

the wave propagating perpendicular and parallel to the fracture plane. Hence, it is not needed in the theoretical predictions.

5.2 Comparison of experimental results with theoretical predictions

Fig. 10 shows the P-wave velocity measured at different frequencies and fracture thickness and the corresponding theoretical predictions. For

the P-wave propagating parallel to the fracture plane, it can be seen that the measured and predicted velocities are in good agreement with

each other. They both decrease with the fracture thickness and increase with the frequency. At higher frequency (0.66 MHz), the velocities

are obviously larger than those at lower frequencies (0.097 and 0.21 MHz), which should be due to the Mie scattering effects. At lower

frequencies, if the elastic properties of the background medium are frequency-independent, the velocities given by the theoretical predictions

will decrease slightly with the frequency due to the Rayleigh scattering effects. However, as the P-wave modulus of the background medium

increases slightly with the frequency in this regime (Table 3), the trend of the velocities with the frequency is reversed.

When the wave propagates perpendicular to the fracture plane, the theoretical predictions are also in overall good agreement with the

experimental results. Both of them show an increase of the velocity dispersion with the fracture thickness, which is consistent with the

observations in the numerical example section. The primary discrepancy is the slightly different trends of the P-wave velocity with the

frequency in the relatively low-frequency regime (0.097 and 0.21 MHz). In the theoretical predictions, the dispersion caused by Rayleigh

scattering for samples with relatively low fracture thickness is small and hence the velocities increase slightly due to the small increase of the

P-wave modulus of the background medium with the frequency. However, for samples with relatively large fracture thickness, the dispersion

due to Rayleigh scattering becomes larger, the theoretical predictions thus give lower velocities at 0.21 MHz than those at 0.097 MHz.

Different from the theoretical predictions, the experimental results show an increase of P-wave velocities with the frequency for all the

samples measured. The possible reason for the discrepancy is that our theoretical model is based on the Foldy approximation, which neglects

interactions between the fractures. This holds when the fracture density is low and the fractures are distributed randomly in the samples.

However, the fracture density of the samples (0.083) is close to 0.1 and hence is not that low (e.g. Grechka & Kachanov, 2006; Suzuki

et al. 2013). Furthermore, while the fractures are distributed randomly on the surface of each layer of the background medium, they are not

randomly distributed throughout the samples. Hence, the concentration of the relatively large number of fractures on the same plane may

increase interaction between the fractures (especially for the cases with relatively large fracture thickness), which may change the trend of the

P-wave velocity with the frequency. In addition, it should also be noted that our theoretical model deals with the 2-D slit fractures, whereas

the fractures in the samples are 3-D (penny-shaped). The difference in the geometries of the fractures may also lead to discrepancies between

the theoretical predictions and the experimental results.

The measured P-wave attenuation in the directions perpendicular and parallel to the fracture plane is shown in Fig. 11, along with

the corresponding theoretical predictions. It can be seen that the theoretical predictions are in overall good agreement with the measured

results. Both the theoretical predictions and the measured results show that the attenuation increases with the fracture thickness at different

measurement frequencies, which is consistent with the observations in the numerical example. Moreover, the effects of the fracture thickness

on the attenuation at higher frequencies (0.66 MHz) are smaller than those at lower frequencies (0.21 and 0.097 MHz). Again, this is also

observed in the numerical example. The discrepancies between the theoretical predictions and experimental results primarily occur in the

direction parallel to the fracture plane at lower frequencies (0.21 and 0.097 MHz). The theoretical predictions give lower values of attenuation

than the experimental results. The discrepancies may be due to the transmission loss occurred on the surface of the sample and also the

increased relative error in the measurement of the small attenuation, which is amplified by the logarithmic scale.

6 D I S C U S S I O N

In this paper, we have considered fractures filled with the fluid with a relatively high viscosity and hence the fluid flow inside the fractures

should be negligible in the scattering frequency regime. However, if the fluid has low viscosity, due to the non-uniform normal displacement

discontinuity across the fractures, the fluid flow can be induced inside the fractures in the scattering frequency regime. The fluid flow will

induce the intrinsic attenuation and also affect the scattering attenuation, which are not considered in our current model. To study this effect,

we can consider the limiting case when the fluid pressure is uniform in the fractures. This can be done by modifying the boundary condition

(24) for the normal stress as follows:
∫ a

−a

D2 (ζ1) T222 (x1, 0|ζ1, 0) dζ1 − eikpx1 sin θ = −
K f

2aβμ

∫ a

−a

D2 (ζ1) dζ1. (42)

Hence, using boundary conditions (23) and (42), the normal and tangential fracture displacement discontinuities can be computed by

employing the same numerical method as before. Then, the P-wave dispersion and attenuation for this case can be calculated. The uniform

fluid pressure case represents the situation where the fluid in the fractures is relaxed, whereas the no fluid flow case studied in Section 3

denotes the situation with unrelaxed fluid in the fractures. There is no intrinsic attenuation due to the fluid flow inside the fractures for both
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Figure 12. Comparison of the P-wave dispersion and attenuation between the no fluid flow case and the uniform fluid pressure case at the normal incidence

(θ = 0◦). (a) P-wave dispersion; (b) attenuation.

limiting cases. However, the differences in the velocities and attenuation at low frequencies (quasi-static regime) between these two cases can

indicate the magnitude of the intrinsic attenuation. Furthermore, they can also show the largest possible effects of the fluid flow inside the

fractures on the scattering dispersion and attenuation.

Fig. 12 shows the comparison between these two cases at the normal incidence (θ = 0◦). The parameters used are the same with those

in the numerical example section. The fracture density is assumed to be 0.1. Since the normal fracture displacement discontinuity is largest

at the normal incidence, the differences between these two limiting cases should also be largest at this incidence angle. We find that the

differences between these two cases are small at low frequencies, where the no fluid flow case has higher velocity and lower attenuation than

the uniform fluid pressure case. However, the differences are small even for a relatively large fracture density (0.1). The largest difference

between the velocities does not exceed 35 m s−1 and for the attenuation is negligible. This indicates that the fluid flow inside the fractures

induces negligible intrinsic attenuation and has very small effects on the scattering attenuation for the case with small aspect ratio (0.01).

Tests for larger aspect ratios (not presented here) show similar results even for the case with an aspect ratio of 0.1. Hence, we can conclude

that the fluid flow inside the fractures has negligible effects on the seismic dispersion and attenuation for the studied fracture configuration.

In addition, in our current model, we assume that fractures are embedded in an elastic non-porous background medium. However, for the

saturated porous rock with aligned fractures, apart from the wave scattering effects and the fluid flow inside the fractures, the wave-induced

fluid flow between the fractures and porous background medium can also occur, which will result in additional dispersion and attenuation

of the seismic wave (e.g. Müller et al. 2010; Ba et al. 2011, 2014, 2017; Rubino & Holliger 2013; Rubino et al. 2013). Hence, it is also

essential to study this effect for such rock. To this end, Galvin & Gurevich (2007) studied the scattering of a normal incident P wave on

a penny-shaped fracture in a fluid saturated porous medium. Both the elastic wave scattering and fluid flow effects are formulated in their

approach. However, the scattering effects were then neglected by assuming the incompressible fluid in the fractures. Hence, by taking into

account the compressibility of the fluid in the fracture and using a similar approach as that of Galvin & Gurevich (2007), we can study both
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the effects of the wave scattering and the fluid flow between the fractures and the porous background medium. This work will be carried out

in the future.

7 C O N C LU S I O N S

In this work, we study the P-wave dispersion and attenuation due to the scattering by the 2-D fluid saturated aligned fractures with finite

thickness, which are embedded in an isotropic elastic solid. We assumed that the fractures are distributed randomly and sparsely, which allowed

us to use the Foldy approximation, which, together with the representation theorem, gives the P-wave scattering dispersion and attenuation

for the given displacement discontinuities across the fractures. Using the boundary conditions, the fracture displacement discontinuities can

be computed numerically, which enables the calculation of P-wave dispersion and attenuation.

The behaviour of the theoretical results is illustrated using a numerical example. The analysis of this example shows that fracture thickness

has significant influence on the P-wave dispersion and attenuation, especially in the low-frequency regime. In this regime, the P-wave velocity

decreases with the increasing fracture thickness. However, due to the increase of the dispersion and attenuation with the fracture thickness,

the trend of the P-wave velocity with the fracture thickness is reversed in the high-frequency regime. The fluid bulk modulus is also found to

have significant effects on the dispersion and attenuation, but these effects are opposite to those of the fracture thickness. With respect to the

fluid viscosity, its effects on the dispersion and attenuation are found to be negligible for the studied configurations.

To validate our 2-D theoretical model, we compare the theoretical predictions with the ultrasonic measurements on the 3-D fractured

samples. The results show overall good agreement between the theoretical predictions and the experimental results. This work reveals the

important effects of the fracture thickness and the properties of the saturating fluid on the P-wave scattering dispersion and attenuation.

Hence, it provides a potential to extract these parameters from the seismic data.
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Expressions of Tjkl are given by Kawahara & Yamashita (1992), which are shown as follows:
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jkl (x1, x2|ζ1, ζ2) +

i

4

[(

δ jl

∂2

∂xk∂x2

+ δk2

∂2

∂x j∂xl

+ δkl

∂2

∂x j∂x2

+ δ j2

∂2

∂xk∂xl

)

×H
(1)

0 (ks R) −
4

k2
s

∂4

∂x j∂xk∂xl∂x2

(

H
(1)

0

(

kp R
)

− H
(1)

0 (ks R)
)

]

, (A1)

where R2 = (x1 − ζ1)2 + (x2 − ζ2)2, and

T ∗
111 (x1, x2|ζ1, ζ2) =

i

2

(

1 − 2
k2

p

k2
s

)

∂2

∂x1∂x2

H
(1)

0

(

kp R
)

, (A2)

T ∗
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221 (x1, x2|ζ1, ζ2) = T ∗

111 (x1, x2|ζ1, ζ2) , (A3)
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A P P E N D I X B : N U M E R I C A L C A L C U L AT I O N O F T jkl
mn

The expressions of T jkl
mn can also be found in Kawahara & Yamashita (1992). They are repeated here for the convenience of the readers as

follows:
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T 122
nn = T 221

nn = 0; (B3)

when m �= n,
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T 122
mn = T 221

mn = 0, (B6)

where H
(1)

1 (·) is the first-order Hankel function of the first kind; k̂s = aks is the normalized S-wave number in the elastic background medium;

C ≈ 0.5772 is Euler’s constant; sn and sm are equal to −1 + n�s and −1 + m�s, respectively; and smn = |sm − sn|. Note that eqs (B3) and

(B6) mean

T122 (x1, 0|ζ1, 0) = T221 (x1, 0|ζ1, 0) = 0. (B7)
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