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S U M M A R Y  
The variation of P-wave speed with direction in a weakly anisotropic homogeneous 
elastic medium of arbitrary symmetry is expanded as a series of spherical harmonics. 
The results given may be used to assess the information content of measurements of 
the P-wave speed acquired over a restricted angular range, and to design 
experiments with the objective of imaging a limited number of anisotropy 
parameters. Simplifications which occur for various symmetries typical of sedimen- 
tary rocks with and without fractures are discussed. Application is made to the 
determination of the azimuthal anisotropy of sedimentary rocks. For propagation 
direction n with polar angle x and azimuthal angle q defined with respect to some 
convenient choice of reference axes Ox IxzxJ, the variation of P-wave speed 
u&, q) with q for fixed x is described by 12 parameters in the absence of 
symmetry. If the material contains a plane of mirror symmetry, and the axes are 
chosen with Ox3 perpendicular to the symmetry plane, the variation of u&, q ) with 
q for fixed x depends on six anisotropy parameters. For orthotropic symmetry the 
number of required parameters is reduced to three. For small polar angles x ,  
v&, q )  then varies with azimuth as cos 277, with amplitude determined by a single 
anisotropy parameter (cI3 - c23 - 2C44 + 2c,,). 
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1 INTRODUCTION 

The elastic wave speeds in isotropic materials are 
independent of the propagation direction and, in the case of 
shear waves, the direction of polarization. However, many 
sedimentary rocks possess an anisotropic structure resulting, 
for example, from fine-scale layering, the presence of 
oriented microcracks or fractures, or the preferred 
orientation of non-spherical grains or anisotropic minerals. 
The resulting anisotropy in the elastic wavespeeds is, 
therefore, of interest as an indicator of lithology 
(Winterstein 1986). In the absence of any symmetry, a 
material that can be described by a strain-energy function 
requires 21 independent parameters to  completely specify its 
elastic behaviour (Nye 1957). The elastic-stiffness tensor 
may, therefore, be written in terms of two elastic constants 
of an isotropic comparison medium and 19 parameters 
which fully characterize the anisotropy of the medium. 
Material symmetry reduces the number of independent 
parameters, but this reduction is only applicable if the 
elastic stiffnesses are specified with respect to a coordinate 
system with axes aligned with the symmetry directions. 

Thomsen (1986) has pointed out that in most cases of 
interest to geophysicists the anisotropy is weak. Cervenq 
(1982) and Cervenf & Jech (1982) have developed a theory 

for linearized perturbations to  the traveltime in weakly 
anisotropic media. This has been extended to the case of 
degenerate 4s waves by Jech & PSenEik (1989). Chapman & 
Pratt (1992) have considered rays which, in an isotropic 
medium, are confined to  the xlx3  plane. In an anisotropic 
medium the perturbed rays may deviate from the plane, but 
if the anisotropy is weak the deviation will be small. For this 
example, Chapman & Pratt (1992) show that the 4P 
traveltimes are only sensitive to  the five parameters 
(c , , ,  c3J, cis, c3,,  and c I 3  + 2c,,). Every & S a c k  (1992) 
show that for an arbitrary propagation direction in a weakly 
anisotropic medium, the P-wave speed is most sensitive to  
c I I ,  cZ2. c . ~ ~ ,  c lh ,  c I 5 ,  cZh. c24, c3, and cj4 and the 
combinations c I 2  + 2 c , ,  cZ3 + 2c,,, c I 3  + 2c,,, c I 4  + 2c,,, 
c2, + 2c4, and cjh + 2c4,. This conclusion also follows from 
the expressions given by Chapman & Pratt (1992). 

Because of the large number of parameters necessary to  
describe the elastic behaviour of a material in the absence of 
symmetry, the inversion of seismic data suffers from 
non-uniqueness (MacBeth et al. 1993). In order to  quantify 
the information content of P-wave measurements it is 
convenient to  expand the angle-dependent P-wave speed in 
orthogonal functions. For anisotropic media the P-wave 
speed is a function of direction n. The functions which are 
orthogonal over all directions of n are the spherical 

799 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/116/3/799/727710 by guest on 16 August 2022



800 C. M. Sayers 

harmonics. In Section 3 the anglc-dependent P-wave speed 
in a weakly anisotropic homogeneous elastic medium of 
arbitrary symmetry is expanded in a series of spherical 
harmonics. The results given may be used to assess the 
information content of measurements of the P-wave speed 
acquired over a restricted angular range and to design 
experiments with the objective of imaging a limited number 
of anisotropy parameters. 

Many sedimentary rocks may be described, to a good 
approximation, as being transversely isotropic (Thomsen 
1986). For such rocks the elastic stiffness tensor is invariant 
with respect to rotation about a direction which is often 
oriented perpendicular to the bedding plane. However, 
many sedimentary rocks contain microcracks or fractures 
with orientations determined by the stress history of the 
rock rather than by the orientation of the bedding plane. 
Any cracks open at depth will tend to be oriented normal to 
the direction of the least compressive in situ stress. For such 
rocks, observations of the seismic anisotropy have the 
potential of providing the orientation of the least 
compressive in situ stress direction. For example. modelling 
of shear waveforms in three-component shear-wave vertical 
seismic profiles in the Paris Basin (Crampin et al. 1986; Bush 
& Crampin 1991) is consistent with a distribution of vertical 
fluid-filled cracks aligned with strikes along N3OoW, 
corresponding to the direction of maximum horizontal in 
situ stress in this area. 

In the general casc of a rock possessing both an 
anisotropic fabric and a preferred orientation of cracks, the 
rock will not be transversely isotropic but will display an 
azimuthal anisotropy. It is shown in Section 5 that for a 
propagation direction n with polar angle x and azimuthal 
angle 'I defined with respect to some convenient choice of 
reference axes Ox,x,x,, the variation of P-wave speed 
u,.(x, 'I) with q for fixed x is described by 12 anisotropy 
parameters in the absence of symmetry. If the material 
contains a plane of mirror symmetry it is convenient to 
choose Ox,x2x, such that Ox, is perpendicular t o  the 
symmetry plane. The variation of u&, 9 )  with 9 for fixed x 
is then given by six anisotropy parameters. For orthotropic 
symmetry the number of required parameters is reduced to 
3. For small angles from the vertical a single anisotropy 
parameter is found to dominate the azimuthal variation. 

2 THE ELASTIC STIFFNESS TENSOR 

I t  is convenient to write the fourth-order elastic stiffness 
tensor of the material, C,,,,, in the form 

ci/A/ = c:jk/  + Ytlkl. ( 1 )  

where 6,:,, is the elastic stiffness tensor of an isotropic 
Comparison mcdium and yi,,/ is the difference between C,,,, 
and C;jkb 

Backus (1970) has shown that an arbitrary fourth-rank 
tensor satisfying the 60 symmetry relations 

Y,/k/ = Y/tk/ = Yij/k = Yk/r, 

may be uniquely represented as a linear combination of 21 
canonical harmonic tensors of degree 0. 2 and 4 with 
components denoted by yFv in the notation of Smith & 
Dahlen (1973). Here, I may take the values 0, 2 and 

(2) 

4.0 5 m 5 I and v is either 'c' for cosine or 's' for sine. The 
subscript D may be either 'S' for symmetric or 'A' for 
anti-symmetric. Expressions for the y:" are given in terms 
of the yilkl in the appendix o f  Smith & Dahlen (1973). 

In the following analysis the conventional matrix notation 
will be used in which pairs of subscripts ij and kl are 
converted to single subscripts using the convention 11 1, 
22-2, 33-3, 23 and 32-4, 13 and 31-5 and 12 and 
21-6 (Nye 1957). In this notation, the first two y:" are 
given by: 

45YF = 3Yll + 3Y22 + 3Y33 + 2Yl2 + 2Y2, + 2Yl3 

(3) 

9 y y  = 2y12 + 2Y23 + 2Y13 - 2Y44 - 2YS5 - 2Yhh. (4) 

Since C:: is isotropic it has the following non-vanishing 
components: c',', = C:* = C'& = A + 2p, C" - C" - C" - 
c" - c" - cl' - A, c" = Cl' - co = p, 32- 13- 3 1 -  ,,, 5 5 -  M, where A and p 
are the second-order LamC constants of the isotropic- 
comparison medium. I t  is Convenient to choose the C:: such 
that y:" and qF vanish for arbitrary C,. This choice 
corresponds to 

+ 4Y4, + 4Ys5 + 4YW 

12 - 21 - 23 - 

15A=C,, + C22'~C,3+4Ci2+4Cz3+4C,j  

- 2c,, - 2c55 - 2c,, 

+ 3c,, + 3c,, + 3c,. 

( 5 )  

(6) 

15p = c,, + c 2 2  + c33 - c,2 - c*, - c,, 

The 19 remaining yF"  are linearly independent combina- 
tions of the y,{ which vanish if y,, is isotropic and fully 
characterize the elastic anisotropy of the material. The y:" 
are listed in the Appendix for completeness. 

3 T H E  VELOCITY O F  P W A V E S  

Consider the propagation of P waves in the direction n 
shown in Fig. 1. In this figure x and 'I are the polar and 
azimuthal angles of the vector n with respect to an arbitrary 
set of reference axes Ox,x,x3. It is convenient to introduce 
a normalized velocity r ( c ,  q )  (Sayers 1988) defined by: 

r ( 5 ,  'I) = ~ ~ 4 5 ,  '1)/4nUp, (7) 

where u,,(c, 'I) is the P-wave speed in the direction n, 

and (=cosx .  For weak anisotropy r ( 5 ,  q )  may be 
expanded as a linear combination of spherical harmonics 
with expansion coefficients H I ,  (Sayers 1988): 

. I /  

r(Cp 'I) = X C R , w , V ( C )  exp ( - i w ) .  (9) 
/ = o m = - /  

Here P;"( 5 )  is the normalized associated Legendre function 
and P;1(5) = (-l)"'PT(c) with 6 = - m  (Roe 1965). The 
coefficients R,, are, in general, complex and can be 
obtained from cq. (9) as follows: 
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directions for which P;"(f;) is large are essential for its 
determination. 

For general anisotropy, the 14 independent vim'' for I = 2 
and 1 = 4  may be obtained from the R,. Inverting the 
equations for the fFv given in the Appendix t o  obtain the 
y ,  and eliminating the y?" which cannot be obtained from 
P-wave measurements allows the following elastic constants 
to  be obtained: 

yI  I = 6 ygk + 6 yg2' + 3 y:k + y:" + y y ,  

yZ2 = 6~;'" - 6 ~ 2 ~ '  + 3yzk - 
y33 = - 12~:'" + fly:'", 

+ y y ,  

Y l h  = 3yf2' + y:2s + y?, 

y l s  = 3yf" + 3 yZIc + y y ,  
y26 = 3 yf2" + yZ2b - y?, 

y24 = 3 yf'" + 3 y%'s + y p ,  

y3.5 = 3 yf" - 4 y:lc, 

y.14 = 3yf" - 4 y y .  

In addition, the following combinations of elastic constants 
can also be determined using only P waves: 

y I 2  + 2y, = 6~;"' + 3~:" - 3 y y ,  

yz3+ 2 y, = -3 y:,= - 3 yf" - 12 y p  + 3 y:2c. 

y1.t + 2y,, = -3 y p  + 3 yZ2= - 12 y:'" - 3 y4sZc, 

yI4  + 2y,,= 3y$'"+ 3 y y  - 3y?", 

y2.5 + 2y, = 3 yf" + 3 y:" - 3 y p ,  

Y~~ + 2 y4s = 3 yf2" - 6 yZ2'. 

Thus, for a generally anisotropic medium yI1, y22,  y33,  y l h ,  
yIs ,  Y ~ ~ ,  y24, Y~~ and Y , ~  and the combinations yI2  + 2y,, 
Y 2 3 +  2Y44,  Y13+ 2Y.5.5, Y14 + 2Y.56, Y2.5 + 2Y46 and Y3h + 2Y4.5 

can be obtained using P waves alone. This conclusion is in 
agreement with that of Every & Sachse (1992) and also 
follows from the expressions given by Chapman & Pratt 
(1992). 

Since the P-wave velocities are centro-symmetric, 

r (5 ,  q )  = 4-5, a + n). 
Expanding both sides of this equation in spherical harmonics 
and utilizing the relation P;"( - 5 )  = (- l)'+"'P;"( 5 )  gives 
R I ,  = (- l)'R1,,. This requires R , ,  to  be identically zero 
when I is odd. 

It is convenient to write R,,,, in the form: 

R/m = CU, + iP /m.  (11) 
Since the velocity uI.(5, q )  is a real quantity, the following 
relationships hold: cu,-, = q,, = -PI,,, where rii = -m. 
hence PI,,, = 0 for m = 0. Eq. (9) may therefore be written in 
the form: 

4 1  

r(t? v )  = c c P;"(5"1m, c o s m a +  P h  sin mal .  (12) 
1 - 0  m - I  

The R,, may be obtained using the variational method 
(Jeffreys 1961; Aki & Richards 1980). Defining quantities 
A, and Blm by A/,,, = 8wV$N/,,,%,,, BI, = 8nPu$Nl,nPlm 
where 

21 + 1 (I - Iml)! J 2 ( I +  Iml)! ' 
N,, = -~ 

the non-zero A/,, and B,, are found to  be given in terms of 
the y:'' by the following equations: 

A,,, = 2pv;?, 
A,,, = -12yck, 
A,, = -2y:lc, B 21 --2ys - , 

B,,, = 0, 

B20 = 0, 
21% 

A,, = y f ,  B,,= yp, 
A,,, = 8y:", B40 = 0, 
A 4 1 -  - 4  Y S  41c Is* 
,142 = - y y / l S ,  
A,, = -2y4,"/105, 

B,, = 4yi1"/5, 
B4, = -2yz2"/15, 

B 4 3  = 2 y ~ I 1 0 5 ,  

A, = y ~ / 2 1 0 ,  B,, = y p / 2 1 0 .  

It follows from eq. (12) that the azimuthal anisotropy 
depends on 12 parameters (y;" ,  yf'". y;", Y?, Y:lc, Y4S1', 
Y:2c, ys 7 Ys . Y s  7 Ys and YF). 42s 43c 43% 44" 

The R ,  are seen to be independent of the quantities y y ,  
y?', y z s ,  y y  and y y a  which cannot, therefore, be 
obtained using P-wave velocities alone. In order to  
determine these quantities, a measurement of the 
shear-wave anisotropy is required. 

In the laboratory, ultrasonic P-wave velocity measure- 
ments can be made in a sufficient number of directions so 
that eq. (10) may be used directly to  obtain the yLm" (Sayers 
1988). An example is the data of Thill, Willard & Bur 
(1969) who measured the ultrasonic P-wave velocity in a 
large number of directions in a spherical sample of Salisbury 
granite. In seismic studies it is not possible to obtain 
a complete angular coverage. Eq. (10) may then be used to  
assess the information content of measurements of the 
P-wave velocity over a restricted angular range and to  
optimize the acquisition geometry for further measure- 
ments. For example, velocity measurements in directions for 
which P;"(5) in eq. (10) is small contain little information 
relevant for determining RI,,, whilst measurements in 

4 LONGITUDINAL DIRECTIONS 

A longitudinal direction is one in which three pure modes 
can propagate (Helbig 1993). Koloder (1966) has shown that 
three or  more longitudinal directions exist in every 
anisotropic solid. All symmetry axes are longitudinal 
directions but not all longitudinal axes are symmetry 
directions. If Ox3 is a longitudinal direction, the elastic 
stiffnesses cj4 and c , ~  are zero even if the material lacks any 
symmetry. Furthermore, a rotation of the coordinate system 
about Ox, exists such that the elastic stiffness component cqS 
is also zero. Norris (1989) has shown that even in the 
absence of any symmetry there are at least three coordinate 
systems with respect to  which there are only 18 non-zero 
elastic constants, the elastic constants cj4, c3.5 and cqS being 
zero when expressed in any of these coordinate systems. 
The 21 independent parameters describing the elastic 
behaviour may therefore be expressed in terms of the 18 
non-vanishing elastic constants and three Euler angles which 
define the orientation of the measurement coordinate 
system with respect to one of these coordinate systems. 

Consider a set of axes 0x;x;x; specified with respect to  
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absence of fractures, the rock is transversely isotropic with 
symmetry axis perpendicular to the bedding plane. For a 
material with a single plane of mirror symmetry it is 
convenient to  choose the coordinate axes O x  , x 2 x ,  with the 
normal to the mirror plane along O x , .  For an arbitrary 
choice of O x ,  and O x 2  within the mirror plane, the elastic 
behaviour of the material may then be described by 13 
independent parameters. I t  follows from Section 4 that a 
choice of O x ,  and O x ,  exists such that cJ5 = O and therefore 
the number of independent elastic constants in this 
coordinate frame is reduced to  12. It is not possible, 
however, to obtain the appropriate orientation of O x ,  and 
O x 2  from P-wave measurements alone, since P-wave 
measurements are only sensitive to the combination 
C , ~ + ~ C ~ ~  and cannot be used to obtain c~~~ and cj5 
separately. 

With O x ,  chosen to  lie along the normal to  the mirror 
plane, it follows that u r ( c ,  q )  = u,.(-t, q )  and that Rl,,, = 0 
if m is odd. yglc,  y f ' " ,  y;lc, y;", y;3c and y r s  are therefore 
identically zero for a material with a single plane of mirror 
symmetry with normal along O x ,  and the azimuthal 
anisotropy is seen from eq. ( 1 2 )  to depend on six anisotropy 
parameters (yCZE, y?, y y ,  y4,'", y y  and y p ) .  For an 
arbitrary choice of O x ,  and O x ,  within the mirror plane, the 

yhh, y l h ,  yZ6 ,  Y , ~  and y j s .  Thus y:' and y:" also vanish. 
The elastic anisotropy of the medium is therefore 

determined by 11 independent parameters. Eight of these 
parameters (y:", yf", y;", yjS(", Y : ~ ' ,  Y :~ ' ,  y p  and y p )  
may be determined using measured P-wave speeds. The 
remaining three parameters ( y y ,  y F  and y p )  require a 
measurement of the shear-wave anisotropy for their 
determination. Expressions for these parameters are given 
in the Appendix. 

13 non-zero Y ,  are Y I I ,  ~ 2 2 ,  Y, , ,  Y I Z ,  ~ 2 3 ,  Y I ~ ?  Y~~~ Y S ~ ?  

Figure 1. Orientation of the vector n with respect to a Cartesian set 
of axes Ox,x2x , .  

the axes O x , x , x ,  by three Euler angles a, /3 and y. The 
Euler angles are defined such that 0 x ; x ; x ;  is obtained by (i) 
a rotation of fi about O x , ,  (ii) a rotation of (Y about the new 
z axis that results, and (iii) a rotation of y about O x ; .  
Consider the measurement direction n defined with respect 
to O x , x 2 x ,  by polar angle x and azimuthal angle q (see Fig. 
1). If the polar and azimuthal angles of n in the coordinate 
system 0 x ; x ; x ;  are denoted by 8 and C#J then the normalized 
velocity introduced in Section 3 may be expanded in the 
coordinate system 0 x ; x ; x ;  as a linear combination of 
spherical harmonics with expansion coefficients Rim: 

4 1  

r(E, G) = C C R ; m P Y ( E )  exp ( - i m ~ # ~ ) ?  (14) 
1 - 0  m i  - I  

where 5 = cos 8. If O x ;  is a longitudinal direction then 
c.i4 = c ; ~  = 0 and therefore 

3 y y  = 4yk4'C (15) 

(16) 3 y ; 2 ~ ~  = 4y;41~ 

in the coordinate frame 0 x ; x ; x ; .  Using the addition 
theorem for spherical harmonics allows the expansion 
coefficients Rim, to be written in terms of the R,, appearing 
in eq. (9). This allows the polar angle p and azimuthal angle 
(Y of the longitudinal direction with respect to the coordinate 
axes O x , x 2 x ,  to be determined by searching for values of (Y 

and /3 such that eqs (15) and (16) are satisfied. The third 
Euler angle y requires shear-wave measurements for its 
determination. 

5 SIMPLIFICATIONS FOR V A R I O U S  
MATERIAL SYMMETRIES 

The equations given above are valid for arbitrary material 
symmetry. If the material displays symmetry the equations 
simplify as follows. 

5.1 Material with a single plane of mirror symmetry 

A sedimentary rock containing several sets of fractures with 
normals lying in the bedding plane is an example of a 
medium with a single plane of mirror symmetry if ,  in the 

5.2 Orthotropic symmetry 

A material with orthotropic symmetry has three orthogonal 
planes of mirror symmetry. A sedimentary rock containing a 
set of fractures with normals lying in the same direction 
within the bedding plane is an example of such a medium i f ,  
in the absence of fractures, the rock is transversely isotropic 
with a symmetry axis perpendicular to the bedding plane. If 
the normals to the three orthogonal mirror planes are 
chosen to lie along the coordinate axes, the elastic 
behaviour of the medium may be described by nine 
independent elastic constants. There are, of course, three 
different such choices of coordinate axes. 

With the coordinate axes chosen to lie along the normals 
to the three orthogonal mirror planes, it follows that Rl,,, = O 
if rn is odd and that Rl,,, = R ,  if m is even. I t  follows that 
the plrn are all zero and azI = a4, = (Y~,  = O .  Eq.  ( 1 2 )  
therefore reduces to the following simple form: 

4 n r ( 5 ,  q )  = I + 4 n [ ( ~ ~ ~ , P l 2 ) ( ~ )  + 2m2.Pf(5) cos 2q 

+ (Y4,)P~(5) + 2a4,P35;) cos 2 q  

+ 2a4,P:( 5 )  cos 4ql. (17) 

For orthotropic symmetry y;", y f " ,  y f2" ,  y:", y:", y?, 
y?, yZ3' and yJsj" are identically zero and the azimuthal 
anisotropy is seen from eq. (17) to depend on three 
anisotropy parameters (y?,  y"Sc and y y ) .  The nine 
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(12) becomes: 

4nr(c) = 1 + 4n[(u,,,P;(c) + L Y , , , , P ( ~ ( ~ ) ] .  (19) 

The elastic anisotropy of the medium is therefore 
determined by three independent anisotropy parameters 
(yg" ,  yz" and y;"). Two of these parameters may be 
determined using measured P-wave speeds and are given by 
the following equations: 

6 3 ~ $ ~ = 4 C , ,  -3C33-C1,-2C,,.,, (20) 

35y:"=C,, +c3,-2ci3-4c, , .  (21) 

The remaining parameter requires a measurement of the 
shear-wave anisotropy and is given by the following 
equation: 

9 ~ ~ " = = - C i i  +3Ci2-2Ci3+2C44. (22) 

V P ( X ) / U , 3  = 1 + GwcalrX2? (23) 

For small polar angle X ,  eq. (19) may be written in the form: 

where u,, is the P-wave speed for propagation along Ox, 
and 

Sweak = - ( c 3 3  - c13 - 2c44)/c33' (24) 

It is interesting to compare eq. (23) with Thomsen's result 
(Thomsen 1986) for small X :  

u f k ) / u 3 3  = + gThon,senX2, (25) 

where bThomscn is Thomsen's anisotropy factor S (Thomsen 
1986): 

x (degrees) 

Figure 2. Variation of the three normalized associated Legendre 
functions P l ( c ) .  P : ( Q  and P : ( c )  with polar angle x.  5 =cosx.  

non-zero yi, are y I I ,  yZ2,  Y ~ ~ ,  y l Z ,  Y , ~ ,  yi, .  y4,. ys5 and 
yhh. y:', y?' and y z a  are therefore also identically zero. 
The elastic anisotropy of the medium is therefore 
determined by seven independent anisotropy parameters 
which are given in the Appendix. Five of these parameters 
( yc " ,  yC2', yf", y? and y r )  may be determined using 
measured P-wave speeds. The remaining two parameters 
(yz" and y?) require a measurement of the shear-wave 
anisotropy for their determination. 

Figure 2 plots the three normalized associated Legendre 
functions P i ( < ) ,  P : ( f )  and P : ( c )  which occur in the 
azimuthally dependent terms in eq. (17). For polar angles 
less than about 30°, P:(c) is seen to be much smaller than 
P i ( ( )  and P : ( c ) .  For polar angles less than about 30", 
uf , ( c ,  r ] )  will therefore vary with r]  as C O S ~ ~ ] ,  the term in 
cos 4q being negligible. Thus, for polar angles less than 
about 30", the azimuthal anisotropy will be insensitive to  the 
anisotropy parameter c I I  + c22 - 2ci, - k,,. For small polar 
angle X ,  P : ( c )  and P : ( c )  vary as x 2  whilst P : ( c )  varies as 
x4. It follows that for small x the azimuthal anisotropy is 
given by a single anisotropy parameter (c13 - c23 - 2c4, + 
2c,,) and eq. (17) becomes: 

X 2  
2c33 

U,.(X? v) /u, ,  = 1 - - [(2c33 - ci.3 - c23 - 2c,, - 2c5,) 

- (Ci.3 - c 2 3  - 2c44 + 2c5,) cos 2Vl. (18) 

Here u3, is the P-wave speed for propagation along Ox,. 

5.3 Transverse isotropy 

The elastic stiffness tensor of a transversely isotropic 
material is invariant with respect to  rotations about a 
symmetry axis and may be described by five independent 
elastic constants. An example is a sedimentary rock for 
which the bedding plane is a plane of isotropy. 

If the axis of rotational symmetry is chosen to  lie along 
Ox,, it follows that u p ( f ,  r ] )  is independent of r]  and that 
R,,,, = 0 if m # 0. The non-vanishing y ,  are y l  I = yz2,  y33,  
Yl2V Y 2 3 = Y 1 3 *  Y 4 4 = Y s s  and Yhh=(YII-Y12)/2 and eq. 

Fig. 3 compares GwcXlk with hThom,cn using the elastic 
constants for the sedimentary rocks listed by Thomsen 
(1986). b,hom,cn may be written in the form: 

(27) - 
d l  homscn - bweak + b:c.ak/2(1 - c44/c33). 

This equation is plotted in Fig. 3 for the average value 

Figure 3. Comparison of Swerl defined by eq. (24) with hI.h<,mwn 
defined by eq. (26) for the sedimentary rocks listed by Thomsen 
(1986). The curve is the prediction of eq. (27) for the average value 
cU/cl3 = 0.3514. 
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c44/c33 = 0.3514 calculated for the sedimentary rocks listed 
by Thomsen (1986). 

6 CONCLUSION 

Because of the large number of parameters necessary to  
describe the elastic behaviour of a material in the absence of 
symmetry, the inversion of seismic data suffers from 
non-uniqueness (MacBeth el al. 1993). In order to quantify 
the information content of P-wave measurements it is 
convenient to expand the angle-dependent P-wave speed in 
orthogonal functions. For anisotropic media, the P-wave 
speed is a function of direction n. The functions which are 
orthogonal over all directions of n are the spherical 
harmonics. The angle-dependent P-wave speed in a weakly 
anisotropic homogeneous elastic medium of arbitrary 
symmetry is expanded in a series of spherical harmonics. 
This allows 14 of the parameters controlling the seismic 
anisotropy to be determined by numerical integration given 
P-wave speed measurements in a sufficient number of 
directions. In seismic studies it is not usually possible to  
obtain a complete angular covcrage. In this case the results 
given may be used to assess the information content of 
measurements of the P-wave speed acquired over a 
restricted angular range and t o  design experiments with the 
objective of imaging a limited number of anisotropy 
parameters. 

Application is made to the determination of the azimuthal 
anisotropy of sedimentary rocks. Since the P-wave velocity 
is centro-symmetric, the azimuthal anisotropy for arbitrary 
anisotropy is given by eq. (12). For propagation direction n 
with polar angle x and azimuthal angle q defined with 
respect to some convenient choice of reference axes 
Ox,x,x,, the variation of P-wave speed u,.(x, q )  with q for 
fixed x is therefore described by 12 parameters in the 
absence of any symmetry. If the material contains a plane of 
mirror symmetry, it is convenient to choose Ox,x2xt such 
that  OX,^ is perpendicular to the symmetry plane. The 
variation of u&, q )  with q for fixed x is then determined 
by six parameters. For orthotropic symmetry the number of 
required parameters is reduced to  three. Many seismic 
experiments are performed with polar angles less than 30". 
Such experiments are found to  be insensitive to one of the 
three parameters ( c I ,  + c22 - 2c,, - 4c,,) controlling the 
azimuthal variation. For small polar angles x ,  u&, q) is 
found to vary with azimuth as cos2q.  with a single 
anisotropy parameter (c13 - cZ3 - 2c,, + 2c,,) dominating 
the azimuthal variation. 
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APPENDIX 

With the choice of isotropic comparison medium given by 
eqs (5) and (6), y:" and yzk  vanish. The remaining 
anisotropy factors yz '  have been given by Smith & Dahlen 
(1973) and are listed below for completeness. 

The yk' which can be obtained from a measurement of 
the angular variation of the P-wave speed are given by: 
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8YF= Y I I  + Y22 - 2Y12 - 4YM7 
2Y? = Y I 6  - Y2h. 

In the above a misprint occuring in the equation for y r s  in 
Smith & Dahlen (1973) has been corrected. 

The y?" which cannot be obtained from P waves are 
given by: 

9Y:k = 2y,2 - Y 13 - Y23 + Y44 + Yss - 2Y-9 
3y2 i~  - 

A - 2Y25- 2Yh41 

3y:"= 2y1.4- 2y659 
3y22~ - 
3y22s - 

A 

A - 2y36 - 2YS4. 

- yl3 - Y23 + Y44 - YSSl 
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