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Generators are tools that automate well-understood software development tasks. Unfortu-

nately, generators are generally difficult to build and/or use, and often produce code with

poor run-time performance. GenVoca generators are a special class of generators that pro-

vide a domain-independent blueprint for constructing customized systems from pre-fabri-

cated software building blocks called components. Previously, GenVoca generators have

failed to simultaneously provide high run-time performance and programmer productivity

while scaling to produce complex systems.

Database management system (DBMS) construction is well-understood, but has

refused to be automated. Much data management functionality is hand-coded, because

appropriate DBMSs are not available, difficult to use, or offer inadequate run-time perfor-

mance. A lightweight database management system (LWDB) is a high-performance, appli-

cation-specific DBMS that omits one or more features and specializes the implementation

of its features to maximize performance. LWDBs offer the potential to extend DBMS sup-
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port to much of the data management functionality that is still hand-coded. GenVoca gen-

erators offer a powerful means of constructing LWDBs.

In this dissertation, we describe P2, a prototype GenVoca generator of LWDBs.

Given an application developed using an implementation-independent, domain-specific

programing language; together with a feature specification written using a concise, high-

level notation; P2 generates a high-performance LWDB specialized to the requirements of

the application. Our target applications are LWDBs for the LEAPS production system

compilers and the Smallbase high-performance, main-memory DBMS. We demonstrate

how P2 shows that GenVoca generators can scale to produce complex systems while

maintaining high generated code performance and programmer productivity.
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Chapter 1

Introduction

1.1  Overview

This dissertation shows that GenVoca generators can scale to produce complex systems

while maintaining performance and productivity. We developed P2 as a prototype to dem-

onstrate the scalability of the GenVoca model of software generation. P2 generates high-

performance, application-specific database management systems (DBMSs).

Generators (e.g., LEX [Les79] and YACC [Sch79]) are tools that automate well-

understood software development tasks. Generators are an old idea; many have been con-

structed and used to great advantage [Kru92]. Yet, in many domains, programming is still

done by hand, because of the unavailability of suitable generators. The problems are that

generators are generally difficult to build and/or use, and often produce code with poor

run-time performance.

GenVoca generators (e.g., Genesis and Avoca) [Bat92a, Bat94c] are a special

class of generators that combine aspects of domain-specific languages, parameterized pro-

gramming, reuse, software architectures, transformation systems, and subjectivity. The

GenVoca method of generator construction uses a domain-independent blueprint for con-

structing customized systems from pre-fabricated software building blocks (a.k.a., compo-

nents). Generators developed before P2 have failed to simultaneously provide high run-

time performance and programmer productivity while scaling to produce complex sys-

tems. GenVoca offers great promise to extend generator technology to the many well-

understood domains in which programming has not yet been successful automated.
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The construction of DBMSs is a domain that is particularly well-understood, but

has stubbornly refused to be automated. DBMSs abound in many shapes (e.g., main-mem-

ory-optimized, temporal, distributed) and sizes (e.g., heavyweight client-server systems,

lightweight persistent object stores, and libraries). But much data management functional-

ity is still hand-coded (e.g., without using any DBMS, by modifying a DBMS, or as mid-

dleware on top of a DBMS), because appropriate DBMSs are not available, difficult to

use, or offer inadequate run-time performance. The LEAPS production system compilers

[Mir90-91] are examples of systems with data management needs that have not (previ-

ously) been adequately supported performance-wise by conventional DBMSs.

A lightweight database management system (LWDB) (e.g., Smallbase [Hew96])

is a high-performance, application-specific DBMS [Tho95, Bat97b]. It differs from a gen-

eral-purpose (heavyweight) system in that it omits one or more features and specializes the

implementation of its features to maximize performance. LWDBs offer the potential to

extend DBMS support to much of the data management functionality that is still hand-

coded; GenVoca generators offer a powerful means of constructing LWDBs.

P2 is a prototype generator of LWDBs. P2 users follow a two-phase approach to

the development of LWDBs and their applications. The first phase is application develop-

ment using a implementation-independent, domain-specific programming language; the

second phase is feature specification using a concise, high-level notation. As input, P2

takes the product of these two phases. As output, P2 generates a high-performance DBMS

specialized to the requirements of the application. The separation of application develop-

ment from feature specification results in substantially higher programmer productivity,

and GenVoca generation does not compromise generated code performance.

In building the P2 prototype, the intellectual challenge was to scale GenVoca gen-

erators to generate systems the complexity of the LEAPS and Smallbase LWDBs while

maintaining generated code performance and application programmer productivity. Previ-

ous generators have failed to meet this challenge. For example, Genesis did not offer ade-

quate performance; P1 did not scale. GenVoca, however, was not formalized until after

these systems were constructed. By following the GenVoca blueprint from the ground up,
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developing the concept of a component definition language (xp, see Chapter 3), and solv-

ing some domain modeling problems (PROCESS and XACT, see Chapter 5) along the way, P2

has risen to this challenge.

1.2  Outline

This dissertation explores the problems of building LWDBs, explains our pro-

posed solution, describes its embodiment in P2, and analyzes our experimental results.

In Chapter 2 we put GenVoca in context with other technical approaches to soft-

ware engineering, and P2 in context with other LWDBs. First, we describe the following

approaches to software engineering: high-level languages, parameterized programming,

object-oriented programming and frameworks, software reuse, glue, domain analysis,

transformation systems, subjectivity, and generators and hybrid kits. Next, we explain how

GenVoca combines aspects of these approaches. GenVoca is a domain-independent model

and concise notation for defining families of hierarchical systems called realms as reus-

able component compositions specified as type expressions and annotations. Finally, we

examine lightweight systems as a natural evolution from heavyweight extensible systems.

In Chapter 3 we describe the P2 LWDB and its fundamental realms, top, data

structure, and memory (a.k.a., TOP, DS, and MEM). We present a two phase approach to

developing LWDBs and their applications. The first phase is application development. We

explain how in this phase, applications are coded using the data types and operations that

P2 adds to ANSI C. We describe the element , cursor , container , and schema data

types; operations added by; and components implementing the TOP, DS, and MEM realms.

The second phase is LWDB feature specification. We explain how in this phase, features

of the LWDB are declared using type expressions and annotations which describe how the

P2 generator will implement these data types and operations.

In Chapter 4 we present the link (a.k.a., LINK ) realm, the LEAPS algorithms, and

an experiment reengineering LEAPS to test P2’s productivity and performance relative to

hand-coding. First, we describe the composite cursor (a.k.a., compcurs ) data type, opera-
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tions added by, and components implementing the LINK  realm. Next, we explain the

LEAPS algorithms, and how our RL translator reengineers them using these data types,

operations, and components. Finally, we compare the productivity and performance of RL

versus the LEAPS compilers, OPS5.c and DATEX. We found that P2 increased program-

mer productivity by a factor of three versus hand-coding. We also found that the run-time

performance of the code generated by RL was substantially better than that generated by

the LEAPS compilers. When using the standard nested loops join algorithms, the code

generated by RL was typically two times faster than OPS5.c and fifty times faster than

DATEX. When we optimized RL (but not the LEAPS compilers) to use a hashed imple-

mentation of the nested loops join algorithm, the code generated by RL was up to two

orders of magnitude faster than OPS5.c and three orders of magnitude faster than DATEX.

In Chapter 5 we present the Smallbase DBMS, the process and transaction (a.k.a.,

PROCESS and XACT) realms, and an experiment reengineering Smallbase to test P2’s scal-

ability. First, we describe the Smallbase monolithic, lightweight, main-memory-optimized

DBMS and how we reengineered it by decomposing it into components. Then, we

describe the process , semaphore , and condition  data types; operations added by; and

component implementing the PROCESS realm. We also describe the transaction (a.k.a.,

xact ), lock , and log sequence number (a.k.a., lsn ) data types; operations added by; and

components implementing the XACT realm. Next, we describe the standard TPC-B bench-

mark, and a version of it modified for main-memory-optimized DBMSs. Finally, we com-

pare P2 and Smallbase using the modified version of the TPC-B benchmark. We found

that the P2 generated code performance and application programmer productivity was at

least as good as that of Smallbase. Thus, we conclude that we were able to scale P2 to gen-

erate systems the complexity of Smallbase while maintaining performance and productiv-

ity. In addition, the flexibility of GenVoca generation allows P2 to generate more compact

code and offer algorithmic optimizations that Smallbase cannot.

In Chapter 6 we analyze the lessons that P2 has taught us. We begin with specific

(low-level) details about the P2 tool itself. We continue with general issues concerning

GenVoca Generators. Finally, we consider (high-level) issues concerning LWDBs.
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In Chapter 7 we review the central results of our experimental work, summarize

the primary contributions of our research, and discuss a few areas of future research and

enhancement to P2.
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Chapter 2

Literature Review

It is difficult to construct software, particularly large systems with high run-time perfor-

mance. This difficulty is manifest in low programmer productivity, high initial and main-

tenance costs, long time to market, and large proportions of defects (a.k.a., bugs). These

problems have been known since (at least) 1968, when the NATO Software Engineering

Conference identified them, gave the name software crisis to them, and launched the field

of software engineering to solve them [Nau68]. They still have not been adequately

solved.

2.1  Effective Software Construction

Software engineers use many interrelated approaches to reduce the difficulty of software

construction. These approaches consider both technical and non-technical issues. While

the non-technical issues such as management, culture, and politics are (doubtless) quite

important, they are not the focus of our research. We limit our discussion here to technical

issues that many researchers have recognized to be important. For simplicity we impose

the following partition: high-level languages, parameterized programming, object-ori-

ented programming and frameworks, software reuse, glue, domain analysis, transforma-

tion systems, subjectivity, and generators and kits. We delay analysis of their similarities

and differences with GenVoca until Section 2.2.
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2.1.1  High-level Languages

High-level languages are perhaps the most effective approach to reduce the difficulty of

software construction, resulting in at least a factor of five improvement in programmer

productivity [Bro86]. Examples include Fortran [Met96], C [Ker88], and C++ [Ell90].

Although they do not allow programmers to perform some low-level machine-specific

optimizations, high-level languages have not been found to significantly reduce run-time

performance. This is due to the fact that, they make it significantly easier to construct soft-

ware, and thus allow programmers to concentrate on high-level domain-specific optimiza-

tions, rather than low-level details. Thus, high-level languages can actually increase run-

time performance.

Two interesting variants of high-level languages are so called very high level lan-

guages and domain-specific languages. Very high level languages emphasize formality

and elegance of expression [Kru92]; examples include SETL [Kru84] and SML [Pau96].

Domain-specific languages [USE97] (a.k.a., narrow spectrum languages [Nei89]) are spe-

cialized to a particular family [Par79] (a.k.a., class or product line) of related systems; they

are typically implemented using either transformation systems (see Section 2.1.8) or gen-

erators (see Section 2.1.10). Neither very high level languages nor domain-specific lan-

guages need be restricted to text-based languages, but may include graphical diagrams and

menu-driven dialogs (e.g. [Nov93, Bro95b]).

2.1.2  Parameterized Programming

Parameterized programming (a.k.a., software schemas) allows generic software to be

written once, and instantiated many times for different uses. Goguen identifies two types

of parameterization: horizontal and vertical [Gog86]. Horizontal parameterization is used

to factor out common design elements (e.g., constant values or data types). Vertical

parameterization is used to layer progressively higher programming abstractions (i.e.,

abstract machines) in order to progressively implement functionality. Goguen’s library

interconnection language, LIL, simultaneously provides both horizontal and vertical
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parameterization. This provides a powerful model of software, allowing maximum reuse

of existing software artifacts, and greatly increasing productivity. Other important parame-

terized programming systems include GLISP [Nov83], LILEANNA [Tra93], PARIS

[Kat89], and RESOLVE [Sit94].

2.1.3  Object-oriented Programming and Frameworks

Object-oriented programming combines the notions of objects and inheritance. Objects

encapsulate data and operations (called methods). Inheritance hierarchies allow new

object interfaces called classes and implementations to be derived from existing ones. Pro-

gramming language support for object-oriented programming originated with SIMULA

[Bea73]. The most important object-oriented programming languages are probably Small-

talk [Gol89], C++ [Ell90], and Java [Gos96]. Others include BETA [Mad93], Eiffel

[Mey91, Mey97], and Self [Ung87].

An object-oriented framework consists of a suite of interrelated abstract classes

that embodies an abstract design for software in a family of related systems [Joh88]. Each

major component of the system is represented by an abstract class. Thus, frameworks have

the advantage of allowing reuse at a granularity larger than a single abstract class. But

frameworks have the disadvantage that users may have to manually specify system-spe-

cific functionality.

In a white-box framework, users specify system-specific functionality by adding

methods to the framework’s classes. Each method must adhere to the internal conventions

of the classes. Thus, using white-box frameworks is difficult, because it requires knowl-

edge of their implementation details. In a black-box framework, the system-specific func-

tionality is provided by a set of classes. These classes need adhere only to the proper

external interface. Thus, using black-box frameworks is easier, because it does not require

knowledge of their implementation details. Using black-box frameworks is further simpli-

fied when they include a library of pre-written classes that can be used as-is with the

framework.
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The main advantages of object-oriented languages are that they promote encapsu-

lation and reuse [Lew91, Big92]. Encapsulation tends to lead to clean, compact, and ele-

gant designs. Classes and frameworks tend to encourage larger and more abstract reusable

components than functions.

2.1.4  Software Reuse

Software reuse is the process of creating new systems from existing artifacts

(a.k.a., assets) rather than building new systems from scratch [Kru92, Pri93]. Reuse has

obvious and significant appeal. It is much easier to reuse existing artifacts than build new

ones from scratch [Sel88]. The most obvious example of artifacts that can be reused are

source code fragments. But reusable artifacts may be drawn from the full life cycle:

requirements, analysis, specifications, designs, documentation, and object code. Poten-

tially reusable design artifacts include specifications written in a design modeling lan-

guage such as the Unified Modeling Language (UML) [Rat98], design patterns [Gam95],

and transformations (see Section 2.1.8).

The most naive approach to reuse is scavenging. Code scavenging (a.k.a., lever-

age, cloning, [Gri94] copying, or cut-and-paste) is an ad hoc technique by which software

engineers accumulate or locate source code of existing systems not specifically designed

to be reused (called legacy systems if they are still in use), find relevant fragments in these

systems, and either (1) use them as-is (a.k.a., black-box reuse) or (2) manually adapt them

for use in new systems (a.k.a., white-box reuse).1 Unfortunately, finding relevant source

code fragments may require considerable searching, and modifying existing systems for

reuse requires understanding them, which itself may require more effort than writing the

code from scratch. Thus, although credible, the benefits of scavenging are modest [Big87].

1. The term design scavenging is sometimes used to describe scavenging in which a large block of source
code is used, but many of the internal details are deleted, while the global template of the design is retained
[Kru92]. We avoid using this term, which we consider misleading, because the artifact that is being scav-
enged is still source code, rather than a design.
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A more successful approach to reuse is based on libraries. A library (a.k.a., repos-

itory or knowledge base [Nei94]) is a collection of artifacts called components specifically

designed to be reused. In 1968, McIlroy [McI68] originally envisioned that the compo-

nents in the library would be functions (a.k.a., subroutines or procedures), because func-

tions were the only suitable language feature available at that time. Since then, however,

libraries have been so successful that high level languages have evolved features specifi-

cally designed to support components: modules, packages, subsystems, and classes

[Kru92].

Reuse can greatly simplify software construction–it has the potential to provide an

order of magnitude increase in programmer productivity. Unfortunately, it has three major

disadvantages:

• Difficulty of construction. It is more difficult to build an object if it is intended to be

reused than if it isn’t. In general, it is 2 to 3 times more difficult [Bro95a]. But the

payoff of building for reuse can be substantial.

• Limited domain of applicability. The domain may be the most important factor in

reuse success. The domain must be narrow, well-understood, and slowly changing.

Biggerstaff estimates that these properties of the domain account for 80% of the

success of software reuse [Big92].

• The feature combinatorics problem. This is the subject of the next section.

2.1.5  The Feature Combinatorics Problem

Large components result in a higher gain in programmer productivity (a.k.a., payoff) than

small components, because when reusing a large component, a programmer typically has

to write fewer lines of code than when reusing a small component [Big94]. In fact, as com-

ponents grow, the payoff involved in reusing them increases more than linearly, because of

the additional costs introduced as the complexity of the objects grow [Big87]. In concrete

terms, building a system out of x components each with size 10 is more than 10 times

cheaper than building a system out of 10x components of size 1. Thus, large-scale reuse is

much better for the reuser than small-scale reuse.
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Component size (a.k.a., scale) is sometimes characterized in terms of features. A

feature is a granule of functionality. In McIlroy’s sine function domain, features would be

precision, floating-versus-fixed computation, argument ranges, and robustness [McI68].

Vertical scaling (a.k.a., encapsulation) refers to adding more features to the components in

a library; horizontal scaling (a.k.a., aggregation) refers to adding more variations of these

features to a library [Big94]. We would like to simultaneously increase both the vertical

and horizontal scale of libraries.

Brute force is one way to increase horizontal scale. That is, library implementors

may attempt to populate their library with enough components to provide all possible fea-

ture choices. Unfortunately, the number of such components increases exponentially in the

number of feature choices. In concrete terms, if there are at least 2 variations for each of x

features, at least 2x components are necessary to fully populate the library. In general,

there may be more than 2 variations for each feature, so the problem is even worse. For

example, McIlroy envisioned 10 precisions, 2 scalings, 5 ranges, and 3 robustnesses for a

total of (10)(2)(5)(3) = 300 > 24 = 16 variations of the sine routine [McI68]. This is known

as the feature combinatorics, combinatorial explosion, or library scalability problem

[Tho93, Bat93].

The feature combinatorics problem has several solutions: standards, parameteriza-

tion, and factoring. Unfortunately, all of these solutions tend to result in reduced run-time

performance.

• Standards are commonly agreed upon feature choices, which limit feature variation,

and enhance compatibility. Standards have mitigated the feature combinatorics

problem in many domains. For example, in the mathematics domain of McIlroy’s

sine function, by adhering to number representation and other mathematics stan-

dards, programmers can use sine and other functions and variables without having

to worry about precision, scaling, range, or robustness compatibility. Standards may

result in reduced run-time performance when they specify more generality (and thus

more computational expense) than an system requires. For example, in the mathe-
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matics domain the standards may specify higher (and thus computationally more

expensive) degree of precision, scaling, ranges, or robustness than an application

requires.

• The crux of the feature combinatorics problem is that components are excessively

concrete [Big94]. That is, each component embodies a particular set of feature

choices. Parameterization is good method to decrease component concreteness.

Instead of concretely embedding features in components, we can replace concrete

feature choices with parameters that may be instantiated as needed. The C++ Stan-

dard Template Library [Mus96] is an example of a highly parameterized library.

Parameterization can result in reduced run-time performance when vestiges of the

generality it introduces cannot be entirely eliminated at compile-time. For example,

when parameterization is implemented using virtual functions [Ell90], the virtual

dispatch overhead results in reduced run-time performance.

• Factoring is a good method to decrease component size. In a fully factored library,

each component embodies exactly one feature choice [Big94]. A large scale compo-

nent is built from these factored components (a.k.a., layers of abstraction) by com-

posing exactly the components needed to provide the chosen features. Factoring can

result in reduced run-time performance when vestiges of the layering remain at run-

time. For example, when factored components are implemented as functions, the

layers of abstraction remain at run-time as deep call chains, and the function call

overhead results in reduced run-time performance.

2.1.6  Glue

Some researchers see the main challenge to reuse as being the interconnection of compo-

nents [Tra95]. Components do not always fit together just right (by analogy to physics,

this phenomenon is often called impedance mismatch between components). Thus, the

software engineer must supply some sort of glue (or connectors) to make them fit.

Research into this glue includes both technological and engineering approaches, under
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various names including wrappers, module [DeR76, Pri86] (a.k.a., library [Gog86]) inter-

connection languages, and software buses. The primary disadvantage of glue is that it

tends to reduce run-time performance.

Wrappers (called method wrappers in object-oriented programming) are used to

encapsulate and manage interactions with existing artifacts. Wrappers can change what is

executed prior to (before method) or subsequent to (after method) the original method. In

object-oriented systems, such as SOM [For94] and CLOS [Kic91], wrappers are imple-

mented as class objects called metaclasses. Sometimes, wrappers can be used to modify an

existing method without modifying its source code or recompiling it. Sometimes, wrap-

pers are used to give an object-oriented interface to a non-object-oriented legacy system

[Jac97]. Other applications of wrappers include function tracing, invariant checking, and

object locking [For94].

Module interconnection languages extend high level languages with facilities

designed to integrate independently developed components (called modules) into a com-

plete system [Pri86]. Modules separate interface from implementation; they explicitly

export the functions they implement, and import the functions they (re)use. Modules are

assembled into a complete system by interconnecting modules with matching exports and

imports [Kru92]. Module interconnection languages provide syntax to formally specify

exports and imports, and semantics to automatically verify that they match. Important

module and library interconnection languages include MIL75 [DeR76] and LIL [Gog86].

But many other high level languages also support module interconnection language tech-

nology.

Software buses (a.k.a., middleware) emphasize support for heterogeneous, distrib-

uted processing. They are designed to allow software engineers to reuse objects written in

different programming languages or running in different processes. The most important

software buses are probably CORBA [OMG98], OLE/COM/DCOM/OCX/ActiveX

[Cha96, Mic98], and Java Beans [Sun98].
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2.1.7  Domain Analysis

Domain analysis (a.k.a., domain modeling) is the process of identifying and organizing

knowledge about a family of related systems–the domain–to support the description and

implementation of such systems [Nei81, Nei84, Ara91]. That is, domain analysis is about

finding commonalities among the systems; it is a learning process intended to determine a

domain model. A domain model (a.k.a., domain design) is a definition of the operations,

data objects, properties, abstractions, requirements, relationships, and variations appropri-

ate for designing software in the domain. That is, a domain model is a representation of the

essential aspects of the domain [Pri95]. A domain architecture (a.k.a., domain specific

software architecture (DSSA) [SEI90, Tra94], application framework [Joh88], reference

architecture [Bat95], or software architecture) is a domain model that embodies an

abstract design for software in a family of related systems. Thus, a domain architecture is

analogous to an object-oriented framework, but without the object-oriented implementa-

tion detail. Domain engineering includes domain analysis and modeling, as well as the

development of reusable artifacts in the domain, and tools to assist in these tasks.

Domain analysis is a metalevel version of requirements analysis; domain analysis

differs from requirements analysis in that its goal is the construction of a domain model,

rather than a specification or design. Domain analysis is a specialization of knowledge

engineering; domain analysis differs from knowledge engineering in that its goal is specif-

ically to produce a domain model, rather then solving some more general problem. But,

many of the techniques used in requirements analysis and knowledge engineering can be

applied to domain analysis [Ara91].

Domain analysis must be performed before implementing many of the approaches

to reduce the difficulty of software construction discussed in this chapter. Domain analysis

is particularly important for object-oriented frameworks and reuse [Pri91]. Historically,

this domain analysis has been performed informally–neither systematically nor explicitly.

Sometimes domain analysis is the implicit result of years of learning. Sometimes domain

analysis is embedded in standards arrived at by a community of software engineers

[Ara91]. Researchers are unhappy with this informal state of affairs [Pri91]. An active
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area of research is to make domain analysis systematic and explicit. These researchers

hope that the body of knowledge concerning domain analysis can be usefully applied to

improve the practice of software engineering.

2.1.8  Transformation Systems

Transformation systems are generalizations of conventional high level language compil-

ers.2 In a transformation system, software is constructed in two clearly separated phases,

definition and transformation:

• Definition. In the definition phase, the programmer writes a specification that

defines the desired semantics (i.e., behavior). The definition phase is exactly analo-

gous to writing a program in a high level language, except that the high-level lan-

guage is usually domain specific.

• Transformation. In the transformation (a.k.a., synthesis) phase, the system applies

correctness-preserving transforms, with the goal of enhancing program efficiency

without changing its behavior, until the specification has been transformed to exe-

cutable code.3

General-purpose transformation systems and models of transformation systems include

Draco [Nei84, Nei89], Draco-PUC [Lei94], IP [Sim95], Kids [Smi85, Smi91] and

REFINE [Rea92], POPART/Paddle [Wil93], TAMPR [Boy89], and TXL [Cor95].

Domain-specific transformation systems include AP5 [Coh93] in the domain of data struc-

tures and Sinapse [Kan93] in the domain of mathematical-modeling.

2. Conventional high-level language compilers are analogous to transformation systems with fixed specifica-
tion languages, predefined transformation libraries, and fully automatic choice of transformations
[Bax97a].

3. Many researchers take a more expansive view of transformation systems, admitting non-correctness-pre-
serving transforms and/or seeing the goal of the transformation phase being more generally to navigate the
space of possible implementations, rather than merely generate code [Fea87]. In this view, the transforma-
tion of specification into code is only one possible goal. Other possible goals include the transformation of
code into code (e.g., porting, restructuring, maintenance), and code into specification (i.e., comprehension
or reverse engineering). We omit discussion of these other goals, however, since they are beyond the scope
of our present research.
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A transform (a.k.a., enzyme [Sim95], refinement, or optimization) is a partial func-

tion from specifications to specifications and/or code [Bax95]. Transforms are often repre-

sented as rewrite rules with pattern variables. A rewrite rule has a match pattern,

applicability conditions, and a substitution pattern. The match pattern (a.k.a., input

schema) is a template that defines what to search for in the initial program. The substitu-

tion pattern (a.k.a., output schema) defines the code that replaces the constructs in the

transformed program. The applicability conditions define the domain of a transform by

giving semantic constraints on when the transformation should be applied [Par90, Kru92].

Transformations include, for example, decomposition, generalization/specialization, algo-

rithm and data structure selection, interleaving, delocalization, resource sharing, data

caching/memoization, [Bax97b] as well as standard compiler optimizations such as

fusion, loop combination, peephole optimization, register allocation, tupling, and unfold/

fold.

The goal of the transformation phase is to produce an executable system that satis-

fies the high-level specification. The sequence of transformations applied during this

phase is called a history. This phase is analogous to the code generation phase of a conven-

tional compiler, except that the control regime is often not fully automatic and requires

human guidance. The artificial intelligence (AI) field of automatic programming [Ric88]

attempts to eliminate the need for human guidance, but domain-independent algorithm

and data structure synthesis is generally beyond current compiler technology [Kru92].4 

Rather than transforming the specification directly into the desired target code,

many systems use an intermediate (a.k.a, internal) format (a.k.a., abstract syntax). The

process of translating the specification into an intermediate format is called abstraction

[Wat88]. The use of intermediate formats is quite common, for example, in high level lan-

guage compilers. Typically, these formats are three address codes or abstract syntax trees

4. The AI fields of knowledge based software engineering (KBSE) and automated software engineering
(ASE) do not attempt to eliminate the need for human guidance. KBSE and ASE are distinguished from
transformation systems and the rest of the software engineering community in general primarily by their
emphasis on classical AI techniques, such as automated reasoning and knowledge representation.
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(ASTs) or directed acyclic graphs (DAGs). The Stanford University Intermediate Format

(SUIF) [Hal96, SUI98] and Register Transfer Language (RTL) [Dav89] used by GNU’s

gcc compiler are two such formats. The AST internal format of IP is interesting in that it is

designed to capture the programmer’s “intentions” in a language independent fashion

[Sim95]. Some transformation systems generalize from the idea of a single intermediate

format to a hierarchy of several intermediate formats called intermediate programming

models [Boy89] or modeling domains [Nei89].

The transform control (a.k.a., navigation) problem is how to choose what trans-

forms to apply and why. Solutions to this problem include totally manual selection of

transforms, repeated domain refinement/optimization, performance-directed search,

metaprograms, and replay [Bal85] of previous transformation sequences. A metaprogram

is a program that determines transform sequences; many systems emphasize reusable

metaprograms [Che84]. A design history records previous transform sequences together

with the methods used for selecting those transforms [Bax94, Bax95, Bax97a-b].

2.1.9  Subjectivity

Objects written for one application may not be reusable in another, because their interfaces

are different, even though both application may deal with what is fundamentally the same

object. The principle of subjectivity asserts that no single interface can adequately describe

any object; objects are described by a family of related interfaces [Har93, Har94, Oss92,

Oss95]. The appropriate interface for an object is application-dependent (or subjective).

Subjectivity arose from the need for simplifying programming abstractions–e.g.,

defining views that emphasize relevant aspects of objects and that hide irrelevant details

[Shi89, Hai90, Gam94]. This lead to a connection of object modeling with view integra-

tion in databases [Elm89]–i.e., object models can be defined as a result of integrating dif-

ferent application (or sub-application) views of objects [Gol81, Har92]. Ossher and

Harrison took an important step further by recognizing that application-specific views of

inheritance hierarchies can be produced automatically by composing “building blocks”

called extensions [Oss92]. An extension encapsulates a primitive aspect or “view” of a
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hierarchy, whose implementation requires a set of additions (e.g., new data and method

members) to one or more classes of the hierarchy. A customized “view” of an inheritance

hierarchy could therefore be defined by composing extensions.

A rather different and powerful approach to views and software reuse has been

proposed by Goguen [Gog86], Novak [Nov92, Nov97], and VanHilst [Van96]. The

essence of this approach is to define generic abstract components that are automatically

specialized to present a customized concrete implementation. A view is an isomorphism

that defines a mapping of an object to a customized “perspective”. A view cluster encap-

sulates a suite of interrelated views that maps multiple data objects simultaneously.

2.1.10  Generators and Hybrid Kits

The primary goal of generators and kits is to eliminate the mundane aspects of software

construction and to permit the expenditure of proportionally more effort on the critical

parts of target systems.

Domain-specific software generators are tools that automate well-known soft-

ware development tasks. Generators are compilers for domain specific languages; they

may be implemented as transformation systems. Examples of generators include fourth

generation languages (4GLs), report generators, compiler-compilers such as YACC,

graphical-user interface (GUI) builders, and language-based editors. By virtue of their

domain-specificity, generators can automatically select algorithms and data structures

from a fixed set of possibilities [Kru92]. Thus, they can result in an order of magnitude

gain in productivity.

Domain-specific kits [Gri94] are a set of products designed to make it easy to

build any of a family of related systems. All kits provide reusable components, a frame-

work, and a glue language. Some kits may also provide design fragments, tests, templates,

macros, documentation, tools, and examples. Hybrid kits combine kits with generators–in

addition to the standard products provided by other kits, hybrid kits also provide a

domain-specific language and a compiler for that language.
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Like reuse, generators and kits can greatly simplify software construction–they

have the potential to provide an order of magnitude increase in programmer productivity.

Unfortunately, they have three major disadvantages:

• Limited domain of applicability. The domain of applicability (a.k.a., domain width

or domain coverage [Cle88]) is the size of the family of related systems that a gen-

erator or kit can produce. The relatedness of these systems is the source of the

strength, but also the fundamental weakness, of generators and kits–they greatly

increase productivity in one domain, but one domain only.

• Difficulty of construction. Just as it is more difficult to build an object if it is

intended to be reused that if it isn’t, it is more difficult to build a generator or kit

than to build a system by hand. But, instead of 2 to 3 times more difficult, it can be

an order of magnitude more difficult to build a generator. Solutions to this difficulty

including building the generator on top of a transformation system, using a special-

ized language such as P++ [Sin93a-b, Sin96], or using a generator kit such as Stage/

MetaTool Specification-Driven Tool Builder [Cle88] or JTS [Bat98a].

• Poor run-time performance relative to hand-coding. Generators and kits may not be

able to perform certain low-level optimizations or select optimal algorithm and data

structures, and the resulting system may contain vestiges of generality (e.g., layer-

ing and interpretation) that add additional run-time overhead. This was clearly the

case for Genesis. Part of our thesis is that generators can automatically build com-

plex systems that have run-time performance that is comparable to or that exceeds

that of hand-coded systems.

2.2  GenVoca

GenVoca is a domain-independent model and concise notation for defining families of

hierarchical systems as compositions of reusable components. GenVoca takes its name

from the first two GenVoca generators that were recognized as such: Genesis and Avoca,

but our experiences with domain-specific software generators are not unique. Similar
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experiences have been noted and virtually identical software organizations have been used

in independently-conceived generators in many disparate domains: Avoca in network pro-

tocols [Oma92], Rosetta in data manipulation languages [Vil94, Vil97], Ficus in distrib-

uted file systems [Hei94], Brale in host-at-sea buoy systems [Wei90], and ADAGE in real-

time avionics software [Bat95]. Thus it seems worthwhile to factor out the common,

domain-independent ideas that underlie different software generators, and to build tools

and develop design techniques that support these particular methods of software organiza-

tion and construction. By doing so, we believe that other researchers in software engineer-

ing can benefit from these collective experiences without having to delve into the obscure

details and vagaries of the particular domains from which they came:

• Subsystems are the building blocks of generated systems. Effective software synthe-

sis requires that systems be constructed from combinations of subsystems (a.k.a.,

components) consisting of suites of interrelated functions and/or classes. It is too

unwieldy to construct a large software by selecting and assembling hundreds or

thousands of functions and classes from a reuse library (see Section 2.1.5). Thus,

larger units of software encapsulation are needed.

• Components import and export standardized interfaces. The key to software synthe-

sis is composition. Composition is much easier when component interfaces corre-

spond to fundamental abstractions of the target domain and these interfaces have

been standardized. Standardization encourages functionally similar components to

be plug-compatible and interchangeable.

• Component composition and customization is achieved through parameterization.

Parameterization is an easy-to-understand model for combining and customizing

components. Simple forms of parameterization, i.e., constant and type parameters,

are necessary but not sufficient for software generators. Components must also be

able to import other components as parameters [Gog86, Tra93].

In GenVoca, the basic unit of software construction is the component. A component

(a.k.a., layer or subsystem) encapsulates a suite of interrelated variables, functions, and

classes that work together as a unit to implement a particular feature [Sin96]. Components
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clearly separate interface from implementation. The interface of a component is anything

that is visible externally of the component. Everything else belongs to its implementation.

See Figure 2.1.

A realm is a set of components that implement a compatible interface in different

ways. That is, all the components in a realm share what is to a first approximation the

same interface, but have different implementations (see Section 2.1.9). Because their

interfaces are compatible, all the members of a realm are plug-compatible and inter-

changeable. See Figure 2.2.

A GenVoca component encapsulates a set of data and function refinements, the

purpose of which is to convert an abstract interface into a concrete implementation. Such

refinements consistently refine multiple data types simultaneously. The application of

Figure 2.1  Anatomy of a component.

Figure 2.2  Members of a realm are interchangeable.

Imported Interface

Component

Exported Interface

Implementation details
(hidden)

Component a Component b

Members of a realm export a compatible interface,
but implement it differently

Component c

Realm R
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these refinements is controlled by certain domain-specific rules, which dictate under what

circumstances the refinements are legal, whether optimizations of the refinements are pos-

sible, etc. The abstract interface of a component corresponds to a suite of function and data

type declarations; the role of a component is the refinement of each function declaration to

a concrete algorithm and each data type declaration to a concrete representation. When

several components are combined to form a composite system, that system is a composite

refinement corresponding to a sequence of individual component refinements.

To better explain this interpretation of components as refinements, GenVoca

offers a concise notation for representing components, realms, and systems. If a compo-

nent imports another component’s interface, it is designated as a parameter. Thus, in the

GenVoca notation, a component is denoted by its name, followed by a bracketed list of the

names of the realms it imports, followed by a colon and the name of the realm it exports.

For example, Figure 2.3 shows a component c that imports realm S and exports realm R.

A realm is denoted as a set of elements, where each element represents a compo-

nent belonging to the realm. For example, Figure 2.4 shows three realms: R, S, and T.

Realm R has three components: a, b, and c; realm S has three: d, e, and f ; and realm T has

one: g. Component b imports realm R and component c imports realm S. Because it has

two parameters, component f  imports the two realm interfaces S and R. In essence, this

notation treats a realm as if it were a type. A component from a realm is simply a function

of some type, and a component that imports an interface has a parameter of some type. So,

d is an object of type S, where d has a parameter of type T.

c[S] : R

Figure 2.3  Example component c importing realm S and exporting realm R.

R = { a, b[R], c[S] }
S = { d[T], e, f[S, T] }
T = { g }

Figure 2.4  Example realms R, S, and T, and components a through g.
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A type expression (a.k.a., equation) is a named composition of components that

form a composite system. For example, Figure 2.5 shows type expression A that specifies

how the components c, d, and g are combined to form a composite system.

Note that component syntactic compatibility is easily checked by verifying that

each parameter’s imported interface matches the corresponding component’s exported

interface. Thus, A is syntactically valid, because the c ’s imported and d’s exported inter-

face are both realm S, and d’s imported and g’s exported interface are both realm T.

Component semantic compatibility is a more complicated issue. Note that some

combinations of components may be syntactically but not semantically correct. That is,

each pair of components in the system imports and exports compatible interfaces, but the

resulting algorithms may be invalid for some reason. To verify the semantic correctness of

a system, each component must supply domain-specific information that describes the

assumptions and restrictions on the use of the component. See [Bat96] for details.

Consider the meaning of type expression A when components are viewed as

refinements. The notation appears to suggest that GenVoca components are combined in a

manner analogous to mathematical functions. This is, however, not the case–GenVoca

components are relatively sophisticated, which makes a refinement model more appropri-

ate for understanding component combinations than a model based on mathematical func-

tions. When two components are interconnected, they exchange function, data type, and

customization information with one another. The semantics of this exchange are more

complicated than simple mathematical function composition. A functional interpretation

of A would have an innermost-to-outermost evaluation semantics. That is, component g

would be evaluated first, followed by d, then c. In GenVoca, the refinements of A start at

the top component c, which provides data type information to component d; d, in turn,

provides its own data types to g; which then supplies implemented data types and func-

A = c[d[g]]

Figure 2.5  Example type expression A that specifies a system built from 
components c, d, and g.
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tions back to d; and so on. Note that the refinements start at the top component, work their

way down to the bottom component, and then back up to the top component.

In addition to imported and exported realm parameters, components often take

additional imported parameters called annotations. Annotations (a.k.a., nonrealm parame-

ters or configuration parameters) are instantiated by key field names, predicates, times-

tamp field names, file names, and other constants.  

2.3  Lightweight DBMSs

General-purpose DBMSs are heavyweight; they are feature-laden systems that are

designed to support the data management needs of a broad class of applications. Among

the common features of DBMSs are support for databases larger than main memory, cli-

ent-server architectures, and checkpoints and recovery. A central theme in the history of

DBMS development has been to add more features to enlarge the class of applications that

can be addressed. As the number of supported features increased, there was sometimes a

Figure 2.6  The system A built from the type expression A = c[d[g]].
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Component d

Component g
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and data types
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concomitant (and possibly substantial) reduction in performance. A hand-written applica-

tion that does not use a DBMS might access data in main memory in tens of machine

cycles; a comparable data access through a DBMS may take tens of thousands of machine

cycles. It is well-known that there are many applications (e. g., LEAPS [Mir90-91]) that,

in principle, could use a database system, but are precluded from doing so by performance

constraints.

Extensible or open database management systems were a major step toward

DBMS customization. Early work on extensible DBMS systems includes TI’s Open

OODB [Wel92], IBM’s Starburst [Haa90], Berkeley’s Postgres/Miro/Illustra [Sto91-93],

Wisconsin’s Exodus [Car90], and Texas’s Genesis [Bat88a-b]). These systems enable indi-

vidual features or groups of features to be added or removed from a general-purpose

DBMS to produce a database system that more closely matched the needs of target appli-

cations. Unfortunately, extensible DBMSs are basically customizable heavyweight

DBMSs; their architecture and implementations (e. g., layered designs, interpretive execu-

tions of queries) still imposed the onerous overheads of heavyweight DBMSs. While fea-

ture customization of DBMSs can indeed improve performance, it has been our

experience that the gains are rarely sufficient to satisfy the requirements of performance-

critical applications.

Extensible DBMSs have grown significantly beyond these early efforts to become

universal servers. A universal server is a heavyweight extensible DBMS that permits

extensions to its type system to support arbitrary data types, such as document, time series,

image, and spatial data [Ube94, Nor96]. These extensions (called DataBlades by Mon-

tage, Illustra, and Informix) are often packaged as modules that users can plug-in to serv-

ers at run-time. To support arbitrary data types, universal servers allow the addition of

base and composite types, functions, functional indices, access methods, and storage man-

agers. These extensions may permit very special-purpose, efficient algorithms, but univer-

sal servers themselves must be very general to support such extensions. For example, Data

Blades require virtual dispatch of database functions, which adds overhead to all applica-

tions, even those that do not use the extensions [Nor96]. The generative techniques of P2
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are general enough to permit similar extensions to the type system, but P2 makes the

extensions at compile-time, rather than run-time, which allows P2 to compile away unnec-

essary overhead.

Lightweight database management systems (LWDBs) appear to be the next major

evolutionary trend in DBMS design [Tho95, Bat97b]. A lightweight DBMS is an applica-

tion-specific, high-performance DBMS that omits one or more features of a heavyweight

DBMS and specializes the implementations of its features to maximize performance.

Examples of LWDBs include main memory DBMSs (e. g., Smallbase [Hey95]), persistent

stores (e. g., Texas [Sin92]), and primitive code libraries (e. g., Booch Components

[Boo87], Code Farms C++ Data Object Library [Cod95]). Each of these examples strips

features from a general-purpose DBMS (e. g., Smallbase removes the databases larger

than main memory feature, Texas removes client-server architectures, and the Booch

Components further strip checkpoints and recovery) and demonstrates the performance

advantages gained by doing so. In principle, an application achieves its best performance

when it uses a “lean and mean” LWDB that exactly matches its needs.

There are broad application classes that require lightweight, not heavyweight,

DBMSs [Sou92, Bat92b]. Consider the lock manager of a DBMS. It maintains a set of

tables whose structures resemble that of relations. Each table stores a different number of

tuples (e.g., lock names and lock requests); operations on tables (e.g., set or remove locks)

are atomic; and in the case of locks for long transactions, the tables are persistent and

recoverable. Multi-table queries (e.g., retrieving identifiers of transactions that are

unblocked by an unlock operation) arise frequently. Because performance is critical, the

processing of queries is highly optimized. Clearly, a lock manager could use a general-

purpose DBMS to manage its data, yet DBMSs are not used because of their inadequate

performance and unnecessary generality. Operating systems provide another example.

Page, segment, and process tables contain tuples (e.g., page-table entries, segment entries,

and process control blocks) that are interrelated. Multi-table queries are common (e.g.,

return the identifiers of pages that were referenced by a given process in the last time inter-

val) and operations in a multiprocessor environment must be atomic. Although these
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tables are generally neither persistent nor recoverable, the basic features that are needed to

maintain page, segment, and process data are offered by general-purpose DBMSs. Once

again, performance precludes DBMS usage. There are many other similar examples: com-

pilers query and update symbol tables, network managers access and modify routing

tables, name servers maintain a horizontally partitioned and distributed table of service

names and network addresses, mail systems query address/alias tables, and persistent

object stores maintain page translation tables to map virtual memory page slots to pages

on disk. Essentially any application fits this paradigm if it includes code for updating and

querying data structures and does not use a conventional DBMS.

Because there are no formalizations, tools, or architectural support, LWDBs are

hand-crafted monolithic systems that are expensive to build and tune. There is an opportu-

nity for researchers to significantly improve this situation. The database community has

solved very general problems of reliable and efficient data management. Clearly, what is

needed are lightweight DBMSs that are extensible. The challenge is to focus these general

solutions to very specific situations in order to create a technology for constructing high-

performance lightweight systems quickly and cheaply.

In this dissertation we describe P2, an extensible lightweight DBMS. P2 provides

architectural support and implementation techniques to assemble high-performance light-

weight DBMSs from component libraries. P2 users code their applications in a database

programming language that is a superset of C. P2 automatically builds (a.k.a., generates) a

custom LWDB by analyzing the application code and by following user-specified direc-

tives that define the database features that are to be supported. P2 performs many optimi-

zations at compile-time: it compiles queries, inlines code to manipulate indices, and

partially evaluates code statically, thus enabling the performance of P2-generated LWDBs

to be comparable or exceed that of hand-written LWDBs.



28

Chapter 3

P2

The conventional approach to LWDB construction is fraught with problems. With a partial

understanding of the work loads that a LWDB is to support, LWDB designers invent data/

storage structures and algorithms that match the perceived need. Implementing the design

is tedious, expensive, and time-consuming, as it often involves adapting, coding, and

debugging well-known algorithms. Once completed, the LWDB is integrated with the tar-

get application to see how well it performs. Without exception, the anticipated work load

is different than the actual work load, and thus some of the design decisions/features of the

hand-coded LWDB are recognized to be sub-optimal. At this point, designers face two

unpleasant options: either leave the LWDB as is, knowing that its performance could be

improved, or redesign and recode the LWDB for yet another round of testing. Redesigning

has the further unpleasant side-effect that the interface to the LWDB may change, which in

turn, would cause parts of the application that use the LWDB to be recoded.

There are two fundamental problems with this approach. First, LWDBs should not

have ad hoc interfaces. A LWDB should provide a stable, well-designed interface that

would permit applications to be insulated from changes in LWDB implementations. Sec-

ond, there needs to be a way of reusing well-known algorithms, so that the rote tasks of

adapting, coding, etc., can be largely avoided. These are the motivating objectives of P2.

To accomplish them, P2 users follow a two-phase approach to the development of LWDBs

and their applications.

The first phase of this approach is application development. P2 extends ANSI C

with special data types (e.g., elements, containers, cursors, and schemas). LWDB applica-
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tions are coded in terms of these data types without regard to how these types are imple-

mented. This approach radically simplifies programming: application development using

high-level database abstractions is substantially easier than using low-level, ad hoc inter-

faces of hand-crafted LWDB modules. In Section 3.1, we present the data model and

embedded language of P2.

The second phase of this approach is LWDB feature specification, i.e., how the

features of a LWDB are declared and how implementations of the P2 data types are to be

generated. For P2, a lightweight database system for an application is the implementation

of the P2 data types that it references. We will see in Section 3.2 that both feature specifi-

cation and data type implementations are accomplished by composing components from

the P2 library. An important advantage of this approach is that it is possible to radically

alter the implementations of cursors, containers, etc., of an application (via a different

combination of components) to improve application efficiency without modifying applica-

tion code. Thus, tuning P2 LWDBs is considerably simplified.

3.1  Application Development

The P2 data modeling concepts are rather conventional: element, container, cursor, and

schema. Our choice of these abstractions was deliberate. We wanted the P2 API to be as

familiar and easy to learn as possible for database programmers.

3.1.1  Abstractions

An element 1 is P2’s basic unit of retrieval, update, and insert. Thus, a P2 element is anal-

ogous to what other systems call a record, row, tuple, or object. An element is simply a C

struct. The fields of the element can be of any number and type, but P2 acts specially on

fields of certain recognized data types, currently limited to C integers and null-terminated

character strings. In addition to the standard C strings of type array of character (char[] )

1. We use boldface for P2 data types.
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and pointer to character (char* ), P2 supports fields of type varchar . Fields of type var-

char  are declared in the same manner as fixed-length arrays, but P2 treats them as vari-

able-length arrays. That is, fields of type varchar  are declared with a length, but P2

ignores this length and treats the field as if it has indeterminate length. An element can

have at most one field of type varchar , and it must be the last field in the element.

Figure 3.1 shows an example declaration of PERSON, an element with fields of type integer,

fixed-length string, and variable-length string.

The int and character string data types have proven to be sufficient to handle a

wide variety of applications. When they are not exactly appropriate, we can usually treat

them as if they were. For example, in the log manager, we cast int  to unsigned , and treat

varchar  as untyped binary data. In addition, we modularized as much as possible the

data type specific portions of P2, so if the need arises in the future, it should be possible to

add more data types (for example, float , double , long ).

A container  is a collection of elements that are all instances of a single type.

Thus, a P2 container is analogous to what other systems call a relation, table, or file; the

P2 element type is analogous to what other relational systems call a relational schema.

Containers are parameterized by the type of element that is to be stored; several containers

may have the same data type. Before an element is inserted into a container, it is merely an

instance of a C struct. When an element is inserted into a container, it is copied by value,

so it loses its object identity. That is, each insertion of the element into the same or a dif-

ferent container, yields a new element (even though the elements all have the same values

in their user-visible fields). After an element is inserted into a container, it may only be

referenced via a cursor. Figure 3.2 shows an example declaration of faculty_container

and student_container , which are both containers of PERSON elements.

// Element declaration.
typedef struct {

int group; // Integer.
char name[10]; // Fixed-length character string.
varchar  misc[10]; // Variable-length character string.

} PERSON;

Figure 3.1  Example element declarations.
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A cursor  is a placemarker into a container that imposes a one-at-at-time ordering

on the elements in a container. Thus, a P2 cursor is analogous to an embedded SQL cursor.

Cursors are parameterized by the container to be traversed and optionally by a selection

predicate and/or sort criterion. A container may be traversed by more than one cursor.

Figure 3.3 shows an example declaration of faculty_cursor , a cursor over

faculty_container , with a selection predicate and sort criterion; and student_cursor , a

cursor over student_container . Note that predicates are encoded in P2 in quotes, as if

they were strings. Within a predicate, the dollar sign ($) denotes the element referenced by

the cursor, and string constants are enclosed in single quotes. Thus, in our example,

$.dept  denotes the dept  field of the element referenced by the cursor, and ‘Bob’  repre-

sents a string constant.

A schema  is a collection of containers. Thus, a P2 schema is analogous to what

other systems call a database; the schema type is analogous to what other relational sys-

tems call a database schema. A P2 application may reference at most one schema. Since

not every container need be an element of a schema, schemas may seem unnecessary. This

is not the case. Schemas are useful, because by combining several containers into a single

object, they increase encapsulation; schemas are necessary for joins (as we will see in

Chapter 4) and transactions (as we will see in Chapter 5). Figure 3.4 shows an example

declaration of s, a schema with container members named faculty_container  and

// Container declarations using type expression A.
container  <PERSON> stored_as A  with { } faculty_container;
container  <PERSON> stored_as A  with { } student_container;

Figure 3.2  Example container declarations using type expression A.

// Cursor declarations.

cursor  <faculty_container> // Cursor traversing the faculty container.
where “$.name != ‘Bob’” // Selection predicate.
orderby  group // Sort criterion.

faculty_cursor; // Cursor variable.

cursor  <student_container> // Cursor traversing the student container.
student_cursor; // Cursor variable.

Figure 3.3  Example cursor declarations.
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student_container . Note that the schema container is analogous to the containers named

faculty_container  and student_container  declared in Figure 3.2, except that the

schema containers are named s.faculty_container  and s.student_container , since

they are members of the schema s.

The relationship between the elements, containers, cursors, and schema is

depicted in Figure 3.5.  

We chose C as the basis language for P2, because in 1992 when we began our

implementation, it was the only language that satisfied the following criteria:

(1) compatible with our target applications (written in C), (2) permits both high perfor-

mance and system level programming, (3) standardized (as ANSI C), (4) easy to parse and

extend (C grammars were freely available). P2 extends C in much the same way that C++

// Schema declaration.
schema  {

container  <PERSON> faculty_container;
container  <PERSON> student_container;

} stored_as A  with { } s;

Figure 3.4  Example schema declaration using type expression A.

Figure 3.5  Relationships between elements, containers, cursors, and schema.
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extends C. In fact, we observe in retrospect that C++ might have made a better basis for P2

than C, because C++ automatically provides several features (such as objects and poly-

morphism) that we had to implement manually in P2, and because C++ is backwards-com-

patible with C, it satisfies criteria (1) and (2). But in 1992, C++ was not very mature, and

it did not satisfy criteria (3) and (4).

P2 fully integrates the element, container, cursor, and schema special data types

with the C type system. All of these special data types are first-class; they can be used like

any C type. Elements are simply C structures, so they are obviously integrated with the C

type system. Containers, cursors, and schemas are integrated with the C type system by

placing them in the same syntactic category as structures and unions. This is analogous to

the way C++ places objects in the same category as structures and unions [Ell90].

Since containers and cursors are first-class, we are able to pass arguments of these

types to procedures. But, each container and cursor declaration yields a new type. For

example, faculty_container  and student_container  have different types. If we imple-

ment a procedure to print faculty_container , we cannot reuse this procedure to print the

student_container ; we would get a type mismatch error. We would like to be able to

write a polymorphic procedure that accepts arguments of both types. To this end, P2 pro-

vides the generic_container  and generic_cursor  data types. Generics are specific

to an element type, but not a container and cursor type. Figure 3.6 shows the declaration of

a generic container and cursor for PERSON elements, a procedure that prints the cardinality

and contents of a generic container and cursor, and a pair of calls to that procedure. Gener-

ics are analogous to virtual base types in C++: GK is the virtual base type of

faculty_container  and student_container , GC is the virtual base type of

faculty_cursor  and student_cursor . Generics are implemented using operation vec-

tors, which are analogous to virtual function tables in C++ [Ell90].



34

3.1.2  Operations

P2 currently supports the realms shown in Figure 3.7. The MEM realm contains the lowest-

level memory manager operations, typically operations on elements and containers, but

not cursors. The DS realm contains higher level functionality, including cursor operations.

The LINK  and XACT realms are discussed in Chapters 4 and 5, respectively. The TOP realm

contains all the operations that are user-visible. Typically, TOP inherits these operations

from lower levels, but the foreach  and rofeach  operations are unique to the TOP realm.

Figure 3.10 shows all the user-visible operations in the DS and MEM realms, as well as the

operations unique to the TOP realm.

Note that we deliberately specified the semantics of these operations vaguely–that

is, informally and at a very high level. A more formal and detailed specification of these

semantics would doubtless be useful. But, such a specification is impractical, because the

exact semantics of the operations depends on their implementation. The large variety of

implementations possible for these operations yields a large variety of interpretations for

// Generic container and cursor declarations.
typedef generic_container <PERSON> GK;
typedef generic_cursor <PERSON> GC;

// Generic procedure declaration.
void print_people (GK gk, GC gc)
{

printf(“cardinality = %d\n”, cardinality(gk));
foreach(gc) { printf(“{ %d, \”%s\” }\n”, gc.group, gc.name); }

}

// Generic procedure calls.
print_people((GK) &faculty_container, (GC) &faculty_cursor);
print_people((GK) &student_container, (GC) &student_cursor);

Figure 3.6  Generics.

Realm Semantics
TOP Topmost, highest-level. User-callable.
XACT Resource manager
LINK Links and joins.
DS Data structure.
MEM Memory manager, lowest-level.

Figure 3.7  Realms.
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these operations, as we will see in Section 3.2. Attempting to enforce a more exact seman-

tics could limit the variety and efficiency of possible implementations. Figure 3.8 shows

the user-visible operations of the DS and MEM realms.

As a convenience for users, P2 also provides shorthands (a.k.a., syntactic sugar)

for the upd()  and ref()  operations. Figure 3.9 shows these shorthands. We found that

these shorthands substantially reduce source code size and increase readability, especially

in complicated expressions.

Figure 3.10 shows those operations of the DS and MEM realms that are not user-vis-

ible. These operations are used internally during the code generation process (see Section

3.2).

3.2  Feature Specification

Coding LWDB applications in terms of P2 data types is straightforward. The second phase

of P2 application development is to define the features that the application’s LWDB is to

support and to declare how implementations of the P2 data types are to be generated. The

key to our generative approach is to use a domain model of families of P2 data type imple-

mentations (i.e., families of LWDBs), where individual members of this family have a pre-

cise and unique specification in the model. We used GenVoca to express our domain

model of LWDBs.

The motivation for these generators is the feature combinatorics problem outlined

in Chapter 2–customized systems implement m features out of a possible n features.

Rather than building an exponential number of monolithic systems that offer unique sets

of features, one should build systems by composing primitive components that encapsu-

late individual features. Thus, by making feature combinatorics explicit, it is possible to

describe vast families of systems with a relatively small number of components. In P2, a

target LWDB is specified as a composition of P2 components.
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DS MEMOperation Semantics
• void adv(cursor) Advance cursor  to next qualified element.

• void alloc(cursor) Allocate an element of fixed-size.
• void allocv(cursor, expr) Allocate an element of variable-size expr .

• unsigned 
cardinality(container)

Return number of elements in container .

• • void close_cont(container) Close connection to container .
• int cont_id(container) Return container  operation vector identifier.
• int curs_id(cursor) Return cursor  operation vector identifier.
• void delete(cursor) Remove referenced element from container.
• void delete_curs(cursor) Finalize cursor (e.g., delete referenced element if its 

reference count becomes 0). Opposite of init_curs .
• BOOLEAN deleted(cursor) Return TRUE iff element currently referenced by 

cursor  has been deleted.
• BOOLEAN end_adv(cursor) Return TRUE iff cursor  has been advanced past end 

of container.
• BOOLEAN end_rev(cursor) Return TRUE iff cursor  has been reversed past 

beginning of container.
foreach(cursor)

{ statement ; }
Iterate forward using cursor . Execute statement  
for every element. Analogous to:

reset_start(cursor);
while (!end_adv(cursor));

{ statement;  adv(cursor); }
• void getrec(cursor, element) Copy referenced element into element.
• • void init_cont(container) Initialize container  to empty. Opposite of 

delete_curs .
• void init_curs(cursor) Initialize cursor  (position is undefined).
• void insert(cursor, element) Add element  to container referenced by cursor .
• void insertv(cursor, element, 

expr0, expr1)
Add element of (variable) size expr0  into container 
referenced by cursor , copy only first expr1  bytes.

• datatype iref(cursor, field) Return field  of element referenced by *cursor .
• • void open_cont(container) Open container .
• • void open_cont_number(

container, number)
Open container  with file name suffix number
(used primarily by log manager, see Chapter 5).

• BOOLEAN overflow(container) Return TRUE iff inserting element of fixed-size into 
container  will cause it to overflow.

• BOOLEAN overflowv(
container, expr)

Return TRUE iff inserting element of variable-size 
expr into container  will cause it to overflow.

• void put_op_vec_c(cursor) Store cursor  operation vector.
• void put_op_vec_k(container) Store container  operation vector.
• BOOLEAN query(cursor) Return value of applying retrieval predicate to 

referenced element.
• datatype ref(cursor, field) Return field  of referenced element.
• unsigned refcount(cursor) Return number of cursors referencing element.
• void reset_end(cursor) Position cursor  on last element in container.
• void reset_start(cursor) Position cursor  on first element in container.
• void rev(cursor) Position cursor  on previous element in container.

rofeach(cursor){ statement  } Like foreach , but iterate backwards.
• unsigned serial_number(

container)
Like cardinality , but return number of elements 
ever added to container .

• void swap(cursor0, cursor1) Swap elements referenced by cursor0  and cursor1
• • void sync_cont(container, 

expr0, expr1, BOOLEAN)
Write to disk container  memory in range 
[expr0 , expr1 ). If BOOLEAN is TRUE, wait for 
operation to complete before returning.

• unsigned timestamp(cursor) Return timestamp of referenced element.
• void upd(cursor, field, expr) Assign expr  to field  of referenced element.

Figure 3.8  DS and MEM realm user-visible operations.
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3.2.1  Components

Figures 3.11, 3.12, and 3.13 show the components that implement the TOP, DS, and MEM

realms respectively. Ideally, every GenVoca component encapsulates a single feature. In

general, this is true in P2, but Figure 3.14 shows the few exceptions. The conceptual

component encapsulates many features for convenience. The user can specify this single

layer and get many useful features. The top2ds_qualify  component combines two fea-

tures for performance. The code generated by top2ds_qualify  can be significantly faster

than the code generated by top2ds  and qualify  separately. This is an example of two fea-

tures that cannot be fully decomposed (see Chapter 6). It is interesting to note that

hash_array  and hash_array_overwrite  do not combine features. Rather, they are spe-

cializations of the array component in which the placement of elements in the array is not

sequential, but is instead determined by a hash function.

Shorthand Semantics
cursor.field = expr; This assignment statement is translated to:

upd(cursor, field, expr)
cursor.field Except when it appears as the left hand side of an assignment 

statement, this is translated to:
ref(cursor, field)

Figure 3.9  Shorthands for the upd() and ref() operations.

DS MEMOperation Semantics
• • void ddlhint(argc, argv) Process annotations.
• • void optimize(cursor) Perform static query optimization on cursor .
• • void verbatim_c(cursor) Generate cursor -specific code.
• • void verbatim_k(container) Generate container -specific code.
• • void verbatim_l(layer) Generate layer -specific code.
• • void verbatim_s(schema) Generate schema-specific code.
• • void xform(element, container, 

cursor)
Transform element , container , and cursor .

Figure 3.10  DS and MEM realm internal operations.

Component Semantics
conceptual [DS] Many features. Intended as a convenience for novice users.
top2ds [DS] Add foreach()  and rofeach()  operations.
top2ds_qualify [DS] Like top2ds , but also provide qualification.

Figure 3.11  TOP realm components. See Figure 3.14 for details.
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Component Semantics
array [MEM] Allocate elements sequentially.
avail [DS] Free list of deleted elements available for reuse.
bintree [DS] Binary tree (unbalanced).
cardinality [DS] Add cardinality()  operation.
container_structure [DS] Add all fields of a given structure to container.
cursor_structure [DS] Add all fields of a given structure to cursor.
delflag [DS] Flag deleted elements, but do not reuse them.
dlist [DS] Doubly-linked list.
dlist_deque [DS] Double-ended queue implemented by a doubly-linked list.
free [DS] free()  deleted elements with refcount()  equal to 0.
generic [DS] Implement generic_container  and generic_cursor

by proceduralizing operations on them using operation vector.
generic_funcall [DS] Proceduralize (a.k.a., outline) all operations using operation vector; 

That is, put code into separate function body. Opposite of inline.
generic_init [DS] Initialize operation vector.
hash [DS] Hash table.
hash_array [DS] Combined hash  and array  layer. Hash conflicts are errors.
hash_array_overwrite [DS] Like hash_array , but hash conflicts are not errors. 
hashcmp [DS] Speed string comparisons by pre-hashing strings.
hpredindx [DS] Predicate indexed hash table.
htlist [DS] Timestamp ordered hash list.
id [DS] Add cont_id()  and curs_id()  operations.
inbetween [DS] After deletion, position cursor on next element.
init_cont_function [DS] Call given function when container is initialized.
kcur [DS] Add pointer from member cursors to composite cursor.
lpredindx [DS] Predicate indexed linked list.
ltlist [DS] Timestamp ordered linked list.
malloc [MEM] Allocate elements from a heap using malloc() .
malloc_free [MEM] Like malloc , but free()  deleted elements.
malloc_multi [MEM] Like malloc , but allocate multiple elements per malloc  block.
mlist [DS, TOP] Multi-list indexing.
named_funcall [DS] Proceduralize operations using named functions.
null [DS] Do nothing. Intended for debugging.
odlist [DS] Ordered, doubly-linked list.
orderby [DS, TOP] Implement the cursor sort criterion (orderby ).
part [TOP, TOP] Partition elements into two separate structures.
predindx [DS] Predicate index.
qsort [MEM] Like array , but quicksorted.
qualify [DS] Implement the cursor selection predicate (where ).
red_black_tree [DS] Red-black tree (balanced binary tree).
refcount [DS] Adds refcount()  operation.
serial_number [DS] Adds serial_number()  operation.
slist [DS] Singly-linked list.
slist_prev [DS] Like slist , but cursor maintains pointer to previous element.
slist_queue [DS] Queue implemented by a slist .
splaytree [DS] Splaytree (balanced binary tree).
timestamp [DS] Add timestamp()  operation.
tlist [DS] Timestamp ordered list.
trace [DS] Print operation names before execution. Intended for debugging.
vtimestamp [DS] User-specified timestamp.

Figure 3.12  DS realm components.
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3.2.2  Implementation

P2 is an extensible language. Whenever a new layer is added to P2, new lexical

tokens and grammar rules may be needed to parse the layer’s annotation. We found the

grammar for ANSI C to be too complicated to modify when new annotations were added.

Instead, we chose to organize P2 as a pipeline of translators. The ddl  translator is defined

by a simple grammar that parses typex  and container  declarations into an “internal”

syntax that can be easily parsed by an ANSI C grammar in the P2 backend (pb) translator.

If a new layer is added to P2, the ddl  translator is automatically regenerated; the pb com-

piler remains unchanged.

P2 employs a third translator (xp ) for transforming high-level layer specifications

into ANSI C. One of the lessons learned from the Genesis [Bat88] and Predator [Sir94]

projects was that layer implementors had to know far too many details about generator

internals to write new layers. A simple specification language was needed to write the

translation rules for data types and operations; the compiler for this language would

expand these rules and mechanically generate boilerplate information (e.g., standard type

declarations, type definitions, code templates, standard error checking) that is common to

all components.

The pipeline of xp , ddl , and P2 backend preprocessors that forms the P2 compiler

is show in Figure 3.15.

Component Semantics
transient [MEM] Transient, non-shared memory.
mmap_persistent [MEM] Persistent, shared memory implemented using UNIX mmap() .
mmap_shared [MEM] Like mmap_persistent , but transient.

Figure 3.13  MEM realm components.

conceptual[DS] = top2ds_qualify[generic_init[generic[generic_funcall[
orderby[inbetween[qualify[DS]],

top2ds[inbetween[dlist[malloc[transient]]]]]]]]]

top2ds_qualify[DS] = top2ds[qualify[DS]]

Figure 3.14  conceptual and top2ds_qualify component type expressions.
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As an example of the xp  component specification language, consider the upd()

operation which updates field f  of the object referenced by cursor c with the value v. For

the bintree  layer, if f  is the sort field, then the object to be updated must be unlinked

from the list, updated, and then relinked into its new position. Otherwise, the update is

passed directly to the next lower layer, as it would have no effect on this list data structure.

This rewrite would be specified as shown in Figure 3.16.

Note that xp  generates all data type declarations for this specification. Further-

more, all text enclosed within %{...%}  is a code fragment that is to be generated; state-

ments outside of %{...%}  are to be executed by the P2 compiler. The %a symbol refers to a

Figure 3.15  P2 architecture.

// Generate the code necessary to add an element to a binary tree.
upd( cursor , field , expr )
{

// If f is the sort field.
if (strcmp (f, %a.sort_field) == 0)
%{

unlink( cursor ); // Remove object from binary tree.
upd( cursor , field , expr ); // Call down to lower layers.
link( cursor ); // Add object to binary tree.

%}
else
%{

upd( cursor , field , expr ); // Call down to lower layers.
%}

}

Figure 3.16  upd() operation of bintree component

P2

component
(.xp ) source

ddl
translator

translator
xp

P2 backend
(.p2 ) source

component
(.c ) source

C
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C structure that contains the information about the layer’s annotations. The %a symbol is

expanded by xp  into the C expression that references this structure.

The P2 backend (pb) recognizes operations on special data types and replaces

them with the fragment that is generated for the operation by the first layer of that con-

tainer’s type expression. Calls to lower level operations are replaced, recursively, with

their implementing fragments until a terminal layer is reached. Note that data structure

specific optimizations in the form of partial evaluations are part of this expansion process.

This can be seen in the upd()  specification above, where depending on the field input to

upd() , different code fragments are generated. Thus, embodied in layers are domain-spe-

cific optimizations that no general-purpose compiler could offer.

P2 also has a query optimizer. Given a retrieval (a.k.a., qualification) predicate,

several layers in a data structure could process the query; P2 determines which layer

would perform the retrieval most efficiently. P2 associates with each layer a cost function

which estimates the cost of processing the query. P2 polls each layer and selects the layer

that returns the lowest cost estimate. In this way, the cheapest plan (data structure tra-

versal) for processing a query is selected.

3.2.3  Transformation

All P2 components simultaneously and consistently refine element, container, cursor, and

schema data types. For example, the dlist  component refines a container of elements into

a container whose elements are linked together onto a doubly-linked list. That is, dlist

encapsulates the following data refinements:

• element types are augmented with next  and prev  pointer fields

(for double linking).

• cursor types are unchanged.

• container types are augmented with first  and last  pointer fields

(for head and tail list accessing).

• schema type is unchanged.
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Figure 3.17 shows how these data refinements are specified using the xform()  operation

of the dlist  component.

Figure 3.18 shows the result of applying the refinements encapsulated by dlist  to

the unrefined element, container, cursor, and schema shown in Figure 3.5.

Figure 3.19 shows how the insertion algorithm is specified using the insert()

operation of the dlist  component.

The dlist  component is a large-scale transformation because it automatically

refines element, container, and cursor data types by adding new data members, algorithms,

// Perform the data refinements specified by the dlist component.
xform ( element , container , cursor )
{

// Add to element, pointers to next and previous elements.
add  element : struct element  *next;
add  element : struct element  *prev;
// Add to container, pointers to first and last elements.
add  container  : struct element  *first;
add  container  : struct element  *last;
// Call down to lower layers. That is, perform any data refinements
// specified by components that appear below this one in the type
// expression.
xform ( element , container , cursor );

}

Figure 3.17  xform() operation of dlist component.

Figure 3.18  dlist refinements. Contrast with Figure 3.5.
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and optimizations (e.g., query optimization, code inlining, partial evaluation) for the dou-

bly-linked list feature. So, the way to understand the dlist  transformation is that it takes a

P2 program (with cursors, containers, elements) as input, and produces a refined P2 pro-

gram (with refined cursors, containers, elements) as output. By cascading transformations

(i.e., composing components in type expressions), implementation details of the target

LWDB are progressively revealed.

Some simple P2 type expressions are shown in Figure 3.18; we will first explain

A, and then B. Type expression A means that the elements of the container will be linked

together onto a doubly-linked list (by dlist ). List nodes will be marked deleted, but not

reused (by delflag ). List nodes with the delete flag will be allocated from a heap using

malloc()  (by malloc ). The heap will be stored in transient, non-shared memory (by

transient ). Note that none of the components in type expression A require additional

information in order to perform their transformations; thus, Figure 3.2 provides complete

container declarations.

Figure 3.21 shows the element, container, and cursor types that result when P2

cascades the data refinements specified by the components in type expression A; com-

ments indicate which component added each field, and what its purpose is.2

// Generate the code necessary to add an element to doubly-linked list.
insert ( cursor , element )
%{

// Call down to lower layers. That is, generate any code specified by
// components that appear below this one in the type expression.
insert ( cursor , element );
// Insert element into doubly-linked list.
call  link( cursor );

%}

Figure 3.19  insert() operation of dlist component.

// Declaration of type expressions A and B.
typex  {

A = conceptual[cardinality[dlist[delflag[malloc[transient]]]]];
B = conceptual[bintree[dlist[avail[malloc[mmap_persistent]]]]];

}

Figure 3.20  Simple P2 type expressions.
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Figure 3.22 shows the insert()  algorithm that results when P2 cascades the data

refinements specified by the components in type expression A; comments indicate which

component added each lines. cardinality  increments its count of the number of elements

in the container. malloc  allocates memory and copies the new element into it. delflag

clears the element’s delete flag. dlist  links the element into the doubly linked list. Thus,

code from different layers is weaved together.

Type expression B, on the other hand, declares a very different storage structure

than A. B means that the elements of the container will be linked together onto a binary tree

2. A stable component leaves the cursor referencing an element after it is deleted. An unstable component
does not; it advances the cursor to the next (non-deleted) element. The inbetween  field is needed to
implement this advance.

Code Component Semantics
struct element {

int group;
char name[10];
struct element *next;
struct element *prev;
int delete_flag;
char misc[10];

}
struct container {

BOOLEAN initialized;
int (**operation_vector);
unsigned cardinality;
struct element *first;
struct element *last;

}
struct cursor {

struct element *obj;
struct container *con;
int (**operation_vector);
BOOLEAN inbetween;

}

// dlist
// dlist
// delflag

// conceptual
// conceptual
// cardinality
// dlist
// dlist

// conceptual
// conceptual
// conceptual
// conceptual

Pointer to next element.
Pointer to previous element.
TRUE iff element was deleted.

TRUE iff container was initialized.
Array of addresses of container operations.
Number of elements in container.
Pointer to first element.
Pointer to last element.

Element referenced by cursor.
Container referenced by cursor.
Array of addresses of cursor operations.
TRUE iff cursor was advanced after delete.

Figure 3.21  element, container, and cursor types as refined by type expression A.

Code Component
insert(cursor, element)
{

(cursor.con)->cardinality++;
(cursor).obj = malloc (sizeof(struct element));
memcpy(cursor.obj, element, sizeof(struct element));
(cursor.obj)->delete_flag = FALSE;
link(cursor);

}

// cardinality
// malloc
// malloc
// delflag
// dlist

Figure 3.22  insert() operation as refined by type expression A.
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(by bintree ). Tree nodes will be linked together onto a doubly-linked list (by dlist ). List

nodes with the delete flag will be allocated from a heap using malloc()  (by malloc ). The

heap will be stored in persistent, shared memory implemented using UNIX mmap()  (by

mmap_persistent ). Note that some of the components in type expression B, unlike A,

require additional information in order to perform their transformations: a key for

bintree , and filename and size (in bytes) for mmap_persistent . This additional

information is passed to components in the form of realm parameters called annotations;

thus, Figure 3.2 must be modified with annotations as shown in Figure 3.23 to provide

complete container declarations.

As these examples suggest, P2 programmers are armed with a small handful of P2

components that can be composed in vast numbers of ways to produce large families of

distinct LWDB implementations. This powerful feature allows P2 users to explore differ-

ent LWDBs’s implementations easily by altering just a container’s type expression and

recompiling; no other source code modifications are needed. Further details about type

expressions and P2 components are discussed in [Bat93, Bat94a-c].

// Container declarations using type expression B.

container  <PERSON> stored_as B with {
bintree key is name;
mmap_persistent file is “/tmp/foo” with size 10000;

} faculty_container;

container  <PERSON> stored_as B with {
bintree key is name;
mmap_persistent file is “/tmp/foo” with size 10000;

} student_container;

Figure 3.23  Example container declarations using type expression B.
Contrast with Figure 3.2.
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Chapter 4

LEAPS

The LEAPS (Lazy Evaluation Algorithm for Production Systems) production system com-

pilers, OPS5.c and DATEX, are classical lightweight database applications. The LEAPS

compilers produce sequential executables of OPS5 rule sets that are orders of magnitude

faster than those produced by previous systems [Mir90-91, Bra91]. A LEAPS executable

is a lightweight database application, because it represents its database of assertions as a

set of containers, and because it uses unusual search algorithms and novel container

implementations to enhance rule processing efficiency; no heavyweight DBMS offers the

performance or features needed by LEAPS.

4.1  The LINK Realm

The LEAPS algorithms require multi-container joins. Support for joins requires additional

abstractions and operations not provided by the TOP, DS, or MEM realms. P2 uses composite

cursors to abstract joins, and the LINK  realm to implement operations on them.

A link is a relationship between two elements. A join of containers C1, C2, ..., Cn

is a set of n-tuples (e1, e2, ..., en) where element ei is a member of container Ci and for

each i = 1, 2, ..., n-1, there is a link between ei and ei+1. A composite cursor is a place-

marker into a join that imposes a one-at-a-time ordering to the tuples of the join. Compos-

ite cursors are constructed from n member cursors, one per container of the join. When
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each member cursor i references element ei, the composite cursor references the tuple of

elements (e1, e2, ..., en).

An example join of faculty_container  and student_container  is depicted in

Figure 4.1. This join consists of the elements (f1 , s1 ), (f1 , s2 ), (f1 , s3 ), (f2 , s4 ), (f2 , s5 ),

(f3 , s6 ). This composite cursor currently references the tuple (f3 , s6 ).

In P2, composite cursors are declared using the compcurs  data type. Composite

cursors are parameterized by the n containers to be joined and optionally by a given

clause, join predicate, and/or valid  predicate. The n containers need not be unique; that

is, a container may be joined with itself (self-join). Figures 4.2 and 4.3 show the declara-

tion of g and c, composite cursors over the schema s member cursors

faculty_container  and student_container  (defined in Chapter 3).

Figure 4.1  Example join.

// Composite cursor declaration with given clause.
compcurs

<faculty_cursor s.faculty_container, student_cursor s.student_container>
given  < faculty_cursor > // Given clause.
where  “$student_cursor.group == $faculty_cursor.group” // Join predicate.

g;

Figure 4.2  Example composite cursor declaration with given clause.

composite cursor

schema
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STUDENT

student_container

FACULTY
elements

elements

1

2

3

2
1

3 4

5

6

join



48

These composite cursors have a join predicate, and given  clause or valid  predi-

cate, respectively. Note that the member cursor names are merely aliases, and do not refer

to previously declared cursors. The dollar sign syntax of single container cursor declara-

tions is extended for composite cursors such that the dollar sign is followed by the member

cursor name. Thus in our example, the join predicate “$student_cursor.group ==

$faculty_cursor.group”  denotes those tuples where the group  field of the elements ref-

erenced by the student_cursor  and faculty_cursor  member cursors are equal. Thus

these composite cursors specify equijoins on the group  field. The given  clause and

valid  predicate specify subsets of the tuples of a join

The given  clause specifies a subset of join tuples by fixing the element refer-

enced by one or more member cursors. That is, a composite cursor with a given  clause

will not change the position of the given  member cursor. Thus, if the given  clause spec-

ifies member cursor i, which currently references (i.e., seeds) element ei, the join will

include only those tuples that contain element ei. For example, suppose that we position

the faculty_cursor  on element f2  and then during the join we print the faculty and stu-

dent elements. Figure 4.4 (Full Join) shows how if tuples were computed using a full join,

we would print tuples containing faculty elements other than f2 –(f1 , s1 ), (f1 , s2 ), and

(f1 , s3 ), with element f1 ; and (f3 , s6 ) with element f3 . Figure 4.4 (Given Join) shows

how when tuples are computed using the given  join of Figure 4.2, the tuples containing

faculty elements other than f2 are skipped.

The valid  predicate specifies a subset of join tuples via an arbitrary predicate.

Unlike a selection or join predicate, a valid  predicate is tested for every tuple and can not

be optimized away. Thus, the valid  predicate permits the elements in the join to be

updated or deleted during the join. This is perhaps the most novel aspect of composite cur-

// Composite cursor declaration with valid predicate.
compcurs

<faculty_cursor s.faculty_container, student_cursor s.student_container>
where  “$student_cursor.group == $faculty_cursor.group” // Join predicate.
valid  “!deleted($faculty_cursor)” // Valid predicate.

v;

Figure 4.3  Example composite cursor declaration with valid predicate.
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sors. Unlike view updates (where changes are restricted [Kel82]), P2 updates are unre-

stricted and may effect the tuples that are subsequently retrieved. Thus, once an element of

a tuple is deleted, that element should not belong to any subsequently retrieved tuple. For

example, suppose that during the join we print the faculty and student elements and then

delete the faculty element (see Figure 4.8). Figure 4.5 (Eager Join) shows how if tuples

were computed using an eager (i.e. blind or set-at-a-time) join, we would print tuples with

deleted elements–(f1 , s2 ) and (f1 , s3 ) after f1  has been deleted and (f2 , s5 ) after f2  has

been deleted. Figure 4.5 (Valid Join) shows how, when tuples are computed using the

valid  join of Figure 4.3, deletions are noted and tuples containing deleted elements are

skipped.

Figure 4.4  Full join vs. join given faculty_cursor  = f2 .
See Figure 4.2.

Figure 4.5  Eager join vs. join with valid clause 
!deleted($faculty_cursor) . See Figure 4.3.
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Note that tuple validation is more general than merely testing for element dele-

tion. A valid  join can be used to skip elements satisfying other conditions. For example,

the group  field of a faculty or student element might be updated within a join. In this case,

the element has not been deleted, but its modification may effect the sequence of (valid)

tuples that can be produced. Thus tuple validation is a general-purpose feature that is use-

ful, for example, in graph traversal and garbage collection algorithms to ensure correct

executions.

The interface of composite cursors is called the LINK  realm. This realm extends

the DS realm with the additional operations shown in Figure 4.6.

Figure 4.7 shows an example of code using the foreachk()  operation. The code

positions the faculty_cursor  member cursor of composite cursor g on faculty element

f2 , and for each tuple in the join, prints the name field of the faculty_container  and

student_container  elements. Thus this code demonstrates the given  join shown in

Figure 4.4.

Operation Semantics
void advk(compcurs) Advance compcurs  to the next tuple in join.
BOOLEAN endk(compcurs) Return TRUE iff comcpcurs  has been advanced beyond the 

last tuple in join.
void foreachk(compcurs)

{ statement ; }
Iterate forward using compcurs . Execute statement for every 
tuple in the join. Analogous to:

resetk(compcurs);
while (!endk(compcurs));

{ statement; adv(compcurs); }
void initk(compcurs) Initialize compcurs  (position is undefined).
void resetk(compcurs) Position compcurs  on the first tuple in join.

Figure 4.6  LINK  realm operations.

// Position g.faculty_cursor on f2.
reset_start(faculty_cursor);
adv(g.faculty_cursor);
// Print.
foreachk(g)
{

printf(“(%s, %s)\n”, g.faculty_cursor.name, g.student_cursor.name);
}

Figure 4.7  Example given  join.
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Figure 4.8 shows another example of code using the foreachk()  operation. For

each tuple in the join, the code prints the name field of the faculty_container  and

student_container  elements, and then deletes the element from the

faculty_container . Thus this code demonstrates the valid  join shown in Figure 4.5.

Figure 4.9 shows the components that implement the LINK  realm. Each of these

components maps a schema with links to a schema with fewer links. The stacking of LINK

realm components defines a transformation that progressively removes links. Ultimately,

the resulting schema is a collection of non-linked containers, that can be implemented via

DS and MEM realm components. The link2top  layer transmits TOP operations as is; if it

receives any LINK  operations, this means that no layer above it could process the opera-

tion. This is a fatal error and should not occur; thus link2ds  is a safety net.

4.2  The LEAPS Algorithms

As mentioned earlier, the LEAPS compilers, OPS5.c and DATEX, produce executables of

OPS5 rule sets that are faster than those produced by previous systems, often outperform-

ing OPS5 interpreters that use RETE-match or TREAT-match algorithms by several

orders of magnitude [Mir90-91, Bra91]. These compilers translate OPS5 programs into C

// Print and delete.
foreachk(c)
{

printf(“(%s, %s)\n”, c.faculty_cursor.name, c.student_cursor.name);
delete(c.faculty_cursor);

}

Figure 4.8  Example valid  join.

Component Semantics
LINK nloops[LINK] Implement links as nested loops joins.
LINK ringlist[LINK] Implement links as pointers.
LINK link2top[TOP] Treat LINK  operations as errors, translate TOP operations as is.

Figure 4.9  LINK  realm components.
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programs. Besides the expected performance gains made by compilation, LEAPS relies on

special algorithms and sophisticated data structures to make rule processing efficient. See

[Bat94a].

Figure 4.10 shows the relationship between the LEAPS compilers, OPS5.c and

DATEX, and P2. To reengineer LEAPS required us to translate OPS5 rule sets into a P2

program; this translator is called RL (Reengineered Leaps). The RL-generated P2 program

is then translated into a C program by the P2 compiler, thus effectively accomplishing in

two translation steps what the LEAPS compilers do in one. All of the LEAPS algorithms

are embedded in the generated P2 program. In this section, we show that the LEAPS algo-

rithms have an elegant specification in P2.

4.2.1  literalize  Statements and OPS5 Terminology

OPS5 rule sets begin with “container” declarations called literalize  statements of the

form shown in Figure 4.11.

The literalize statement in Figure 4.11 declares a container guest  whose elements

have fields name, sex , and hobby . The LEAPS compilers infer the data types of element

fields; we chose to augment literalize statements by supplying the data type for each field.

Figure 4.10  Relationship between the LEAPS compilers and RL.

(literalize guest name sex hobby)

Figure 4.11  Example OPS5 literalize  statement.
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Although this is a minor difference between the LEAPS compilers and RL, we note that

the next generation LEAPS compiler (called VENUS [Bro94]), like RL, uses explicit typ-

ing of fields.

An OPS5 rule set is a sequence of rules/productions of the form shown in

Figure 4.12.

The name of the above production is make_path . Each of the clauses prior to the

arrow (-->)  are called condition elements (CEs). The first three are positive; the last (with

the minus sign) is negative. Positive condition elements serve two purposes: (1) to express

qualifications on containers and (2) to declare variable bindings. For example, the first CE

of the make_path  rule qualifies elements from the context  container to those whose

value  field is “make_path ”. The second CE qualifies elements from the seating container

to those whose path_done  field is “no”; in addition, it sets variable id  to the value of the

id  field of the qualified element and sets variable pid  to the value of the pid  field. The

third CE qualifies elements from the path container whose id  field equals the value of the

variable pid ; in addition, variable n1 is assigned the value of the name field and variable s

is assigned the value of the seat  field. In all, the positive CEs of this rule identify 3-tuples

(context  element, seating  element, path  element) that satisfy a simple selection predi-

cate.

Negated CEs are disqualification filters. The negated CE above disqualifies

selected 3-tuples if there exists a path  element whose id  field matches the value of vari-

able id  and whose name field matches the value of variable n1 and whose seat  field

matches the value of s. In general, there can be any number of negated CEs in a rule; how-

ever, there must at least one positive CE.

(p make_path
(context ^value make_path)
(seating ^id <id> ^pid <pid> ^path_done no)
(path ^id <pid> ^name <n1> ^seat <s>)
-(path ^id <id> ^name <n1>)
-->
(make path ^id <id> ^name <n1> ^seat <s>))

Figure 4.12  Example OPS5 rule.
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Clauses that follow the arrow (--> ) are the actions of the rule. Once a tuple has

been qualified, it fires the actions of the rule. Actions of OPS5 rules include element cre-

ation, deletion, and modification; calls to routines external to OPS5 are possible. In the

make_path  rule, the sole action is to insert a path  tuple whose id  field equals variable id ,

whose name field equals variable n1, and whose seat  field equals variable s.

4.2.2  LEAPS Overview

Forward-chaining inference engines, including LEAPS, use a match-select-action cycle.

Rules that can be matched (i.e., tuples found to satisfy their predicates) are determined;

one tuple is selected and its corresponding rule is fired. This cycle continues until a fix

point has been reached (i.e., no more rules can be fired). RETE-match [For82] and

TREAT-match [Mir91] algorithms are inherently slow, as they materialize all tuples that

satisfy the predicate of a rule. Materialized tuples are stored in data structures and have a

negative impact on performance as they must be updated as a result of executing rule

actions. A fundamental contribution of LEAPS is the lazy evaluation of tuples; that is,

tuples are materialized only when needed. This approach drastically reduces both the

space and time complexity of forward-chaining inference engines and provides LEAPS

with its phenomenal increase in rule execution efficiency.

LEAPS assigns a timestamp to every element to indicate when the element was

inserted or deleted. (For reasons that we will explain later, elements are not updated.

Instead, the old version is deleted and a new version is inserted). Whenever an element is

inserted or deleted, a handle to that element is placed on a stack. In general, the stack

maintains a timestamp ordering of elements, where the most recently updated element is at

the top of the stack and the least recently updated element is at the bottom.1

During a rule execution cycle, the top element of the stack is selected. This ele-

ment is called the dominant object (DO). The DO is used to seed the selection predicates

1. There is an exception: an important LEAPS optimization violates the timestamp ordering. This optimiza-
tion, called shadow optimization, is discussed in Section 4.2.5.
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of all rules. Rules are considered for seeding in a particular order. Rules are sorted by their

number of positive condition elements; the more positive CEs, the sooner the rule will be

seeded. Many rules have the same number of positive CEs; these rules are seeded in order

in which they were defined in the rule set. As soon as it is determined that the DO cannot

seed a tuple for a given rule, the next rule is examined.2 When all rules have been consid-

ered, the DO is popped from the stack.

When a DO-seeded tuple is found, the corresponding rule is fired. The actions of

the rule may invoke element insertions, deletions, and updates, which in turn will cause

more elements to be pushed onto the stack. After a rule is fired, the selection of the next

dominant object takes place. This execution cycle repeats; execution terminates when a

fix-point is reached. This occurs when the stack is empty.

Note that an element may be pushed onto the stack twice: once when it is inserted

and a second time when it is deleted. It is possible that a deleted element may be pushed

onto the stack prior to the popping of its inserted element. That is, the stack may contain

zero, one, or two references to any given element at any point in time.

The seeding of rule selection predicates by nondeleted elements has its obvious

meaning. However, the seeding of rule predicates by deleted elements is not intuitively

obvious, and its meaning is closely associated with the semantics of negation. Associated

with every container C is a shadow container S. Every element that is deleted from C is

inserted in S. The timestamp of an element e in C indicates when e was inserted; the times-

tamp of an element s in S indicates when s was deleted. Elements in S never undergo

changes; they simply define the legacy of elements in C that previously existed. The pur-

pose of shadow containers is to support time travel. The evaluation of negated CEs

involves evaluating its predicate P on its container C over a period of time. That is,

LEAPS asks questions like: is predicate P true from time t0 to time t1? The reason for this

will become evident once the evaluation of negation is explained more fully.

2. Actually, DOs cannot be used to seed all rules in general. If a DO is from container C and C is not refer-
enced in the selection predicate of rule R, then the DO cannot seed R. Thus, the set of rules that a DO can
seed can be pruned at compile time to only those that actually reference the DO’s container.
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In the following sections, we will give more technical precision to the above

description.

4.2.3  Rule Translation

The difficult part of converting OPS5 rules into P2 code is the translation of rule predi-

cates to P2 composite cursor declarations; translating the actions of rules is straightfor-

ward. There are six steps in rule predicate translation.

Step 1 is conversion of qualifications of positive CEs to P2 predicates. Figure 4.13

(Original) shows the correspondence of a nonnegated rule predicate with a composite cur-

sor declaration (Transformed). Note that each CE of the rule corresponds directly to a con-

tainer that is to be joined. Also note that the use of compcurs  aliases permit containers to

be joined with themselves in an unambiguous way (container cont_edge  is joined with

itself using the aliases c and d).

Recall that a central concept of rule processing in LEAPS is the seeding of rules

by dominant objects. In order to support seeding, multiple copies of an OPS5 rule are

spawned, one copy of each different condition element that is being seeded. Step 2 in the

rule translation process is to replicate a composite cursor definition, one copy for each

possible seed position. Figure 4.14 (Original) shows the format of a cursor declaration

Original
(p rule14

(stage ^value labeling)
(junction ^type tee ^base_point <bp> ^p2 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p1>)
(edge ^p1 <bp> ^p2 <p3> ^label nil)
-->

Transformed
#define query14 \

“$a.value == ‘labeling’ \
&& $b.type == ‘tee’ \
&& $c.p1 == $b.base_point && $c.p2 == $b.p1 \
&& $d.p1 == $b.base_point && $d.p2 == $b.p3 && $d.label == ‘nil’”

typedef compcurs < a stage, b cont_junction, c cont_edge, d cont_edge >
where query14

curs14;

Figure 4.13  Rule Translation Step 1:
Conversion of Selection Predicates.
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produced in Step 1 and replication of this rule with different seeds (Transformed). Note

that the effect of this rewrite is to translate an n-way join to a more efficient (n-1)-way

join.

OPS5 semantics imposes a fairness criterion that no tuple can fire a rule more than

once. Fairness is achieved in LEAPS through the use of timestamps and temporal qualifi-

cations. Every element has a timestamp that indicates when it was last updated (i.e.,

inserted or deleted). OPS5 semantics are realized by requiring all elements of a tuple to

have their timestamps less than or equal to the timestamp of the dominant object that

seeded the tuple.3 Figure 4.15 (Original) shows the format of a Step 2 cursor declaration

Original
typedef compcurs < a ..., b ..., c ..., d ... >

where query14
curs14;

Transformed
typedef compcurs < a ..., b ..., c ..., d ... >

given < a >
where query14

curs14_a;

typedef compcurs < a ..., b ..., c ..., d ... >
given < b >
where query14

curs14_b;

typedef compcurs < a ..., b ..., c ..., d ... >
given < c >
where query14

curs14_c;

typedef compcurs < a ..., b ..., c ..., d ... >
given < d >
where query14

curs14_d;

Figure 4.14  Rule Translation Step 2:
Replication of Composite Cursors by Seeding.

3. Things are actually a bit more complicated. In the case where a container C is being joined with itself, we
want to eliminate pairs of the same object (c , c ) which could be generated more than once. To avoid such
duplication, timestamp qualifications on containers “to the left” of the container of the seeding dominant
object to have timestamps ≤ the timestamp of the DO and qualifications on containers “to the right” of the
seeding container to be < the timestamp of the DO [Bra93b]. The notion of “left” and “right” is determined
by the order in which containers are listed to be joined. Note that the LEAPS compilers did generate multi-
ple tuples as they did not enforce the ideas outlined in this footnote.
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and the addition of temporal predicates to the where clause of the cursor (Transformed).

Note that ts  is the name of the timestamp  field of every element.

Once a rule is fired, the composite cursor is placed on a stack, thereby suspending

its execution. At some later time, when the element that seeded the composite cursor again

becomes dominant, the composite cursor is popped and advanced to the next tuple. During

the time the cursor is on the stack, any or all of the elements of the last tuple it produced

could have been modified or deleted. Consequently, advancements of composite cursors

must be validated. This is accomplished by adding a valid  predicate to each cursor decla-

ration. Figure 4.16 (Original) shows a Step 3 cursor definition; and the addition of the

valid  predicates (Transformed).4

Negated CEs are disqualification filters. The LEAPS interpretation of negation is

depicted in Figure 4.17. An element e is created at time t0 and seeds a tuple by advancing

a composite cursor at times t1 ... t4. Let P be the predicate of a negated CE and t be the

time of a composite cursor advancement. LEAPS determines if P is true at time t or at any

time since e has been created.

Original
typedef compcurs < a ..., b ..., c ..., d ... >

given < a >
where query14

curs14_a;

Transformed
#define temporal_query14 \

“$b.ts <= dominant_timestamp \
&& $c.ts <= dominant_timestamp \
&& $d.ts <= dominant_timestamp”

typedef compcurs < a ..., b ..., c ..., d ... >
given < a >
where query14 “&&” temporal_query14

curs14_a;

Figure 4.15  Rule Translation Step 3:
Addition of Temporal Predicates.

4. Technically, cursors are not popped off the stack; pointers to cursors are overwritten. A stack item contains
a pointer to an element, the identifier of the container to which the element belongs, a pointer to a compos-
ite cursor whose execution has been suspended, and an identifier of the rule to which the composite cursor
belongs. When a cursor is popped, the cursor pointer is set to null. A stack item is popped only when all
rules have been seeded.
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This interpretation has two significant consequences. First, LEAPS must maintain

a history of all container elements so that time can be “rolled back” to evaluate P. This is

realized by creating a shadow container for each container to be a repository of the ver-

sions of elements that have since been modified or deleted. Because shadow elements are

tagged with the timestamp of their removal from the primary (nonshadow) container, time

travel is possible. Shadow containers are a major source of complexity in LEAPS. Second,

because predicate P may be valid at some time t does not mean that P is valid at later

times. Consequently, predicate P must be used to filter elements both in the where  clause

of a composite cursor and in the valid  clause. Figure 4.18 shows a rule with negation

(Original) and its P2 composite cursor counterpart that seeds in position a (Transformed).

Note that N5_4()  is a BOOLEAN function (generated by RL) that expresses the filter of the

negated CE.5

Original
typedef compcurs < a ..., b ..., c ..., d ... >

given < a >
where query1 “&&” temporal_query14

curs14_a;

Transformed
#define valid_query \

“!deleted($a) \
&& !deleted($b) \
&& !deleted($c) \
&& !deleted($d)”

typedef compcurs < a ..., b ..., c ..., d ... >
given < a >
where query14 “&&” temporal_query14
valid valid_query14

curs14_a;

Figure 4.16  Rule Translation Step 4:
Addition of Validation Predicates.

Figure 4.17  Interpretation of Negation.

• • • ••
t0 t1 t2 t4t3

(element created) (composite cursor advanced)



60

Finally, it is possible for shadow container elements to become dominant. The

idea here is that a container element may block the qualification of tuples because it satis-

fied a negated CE filter. With the deletion of this element, previously disqualified (or

blocked) tuples may now be qualified (unblocked). Tests for unblocked tuples are created

by (a) modifying the original OPS5 rule by replicating the negated CE as a positive CE,

(b) converting the resulting rule via the translation steps we have just outlined, and (c)

seeding the resultant composite cursor with the shadow object. Figure 4.19 (Original)

5. Negated CE filters, like N5_4()  have a simple realization in P2. The filter is (1) to test the container of the
negated CE for any element that satisfies predicate P of the negated CE, and (2) to examine the correspond-
ing shadow container if any element satisfies P and whose timestamp is greater than the dominant times-
tamp. If qualified elements are found in either container, N5_4()  returns FALSE. Both qualifications can
be easily expressed using cursors with the obvious selection predicates over the container and shadow con-
tainer.

Original
(p rule5

(stage ^value detect_junctions)
(edge ^p1 <bp> ^p2 <p2> ^joined false)
(edge ^p1 <bp> ^p2 <p3> ^p2 <> <p2> ^joined false)
-(edge ^p1 <bp> ^p2 <> <p2> ^p2 <> <p3>)
-->

Transformed
#define query5 \

“$a.value == ‘detect_junctions’ \
&& $b.joined == ‘false’ \
&& $c.p1 == $b.p1 && $c.p2 != $b.p2 && $c.joined == ‘false’ \
&& N5_4(&$b,&$c)”

#define temporal_query5 \
“$a.ts <= dominant_timestamp \

&& $b.ts <= dominant_timestamp \
&& $c.ts <= dominant_timestamp”

#define valid_query5 \
“!deleted($a) \

&& !deleted($b) \
&& !deleted($c) \
&& N5_4(&$b,&$c)”

typedef compcurs < a cont_stage, b cont_edge, c cont_edge >
given < a >
where query5 && temporal_query5
valid valid_query5

curs5_a;

Figure 4.18  Rule Translation Step 5:
Placement of Negated Predicate Filters.
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shows the result of applying (a) to the rule of Step 5; Figure 4.19 (Transformed) shows the

result of applying (b) and (c). For perspicuity, we have underlined the relevant code.

4.2.4  Other Issues

There are additional issues regarding the translation of OPS5 rule sets into P2 programs

that are worth mentioning. First, when an element is inserted in LEAPS, it is pushed onto

a wait-list stack for subsequent seeding. Composite cursors, whose execution was sus-

pended, are placed on a join-stack. The stack whose top element has the most recent times-

tamp is chosen to be the dominant object on the next execution cycle. In RL (and in news

versions of LEAPS than OPS5.c and DATEX), the wait-list stack and join stack are uni-

Original
(p rule5

(stage ^value detect_junctions)
(edge ^p1 <bp> ^p2 <p2> ^joined false)
(edge ^p1 <bp> ^p2 <p3> ^p2 <> <p2> ^joined false)
(edge ^p1 <bp> ^p2 <> <p2> ^p2 <> <p3>)
-(edge ^p1 <bp> ^p2 <> <p2> ^p2 <> <p3>)
-->

Transformed
#define query5 d \

“$a.value == ‘detect_junctions’ \
&& $b.joined == ‘false’ \
&& $c.p1 == $b.p1 && $c.p2 != $b.p2 && $c.joined == ‘false’ \
&& $d.p1 == $b.p2 && $d.p2 != $b.p2 && $d.p2 != $c.p2
&& N5_4(&$b,&$c)”

#define temporal_query5 d \
“$a.ts <= dominant_timestamp \

&& $b.ts <= dominant_timestamp \
&& $c.ts <= dominant_timestamp \
&& $d.ts <= dominant_timestamp ”

#define valid_query5 d \
“!deleted($a) \

&& !deleted($b) \
&& !deleted($c) \
&& !deleted($d)  \
&& N5_4(&$b,&$c)”

typedef compcurs < a cont_stage, b cont_edge, c cont_edge, d shadow edge  >
given < d >
where query5 d && temporal_query5 d
valid valid_query5 d

curs5_d;

Figure 4.19  Rule Translation Step 6:
Seeding of Shadow Elements.
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fied. This gives a very compact and elegant representation of the primary cycle loop (see

Figure 4.20). Note that the “unified” stack is represented as a container, and top is a cursor

that references the top element of the stack.

The procedures for rule firings are also compact (see Figure 4.21). If a cursor has

not yet been created (i.e., fresh  is FALSE), one is allocated from the heap, initialized, and

positioned on the seeding element. Control then falls to the foreachk  statement. If a cur-

sor has been created (and whose execution has been suspended), control continues at the

end of the foreach  statement (where validation tests are performed by P2). Once a tuple is

generated, the rule is fired and the procedure is exited. After all tuples have been gener-

ated, control passes to the next rule for possible firing.

4.2.5  Notes on Data Structures

We stated earlier that elements are not updated, but rather deleted and then reinserted.

While this seems odd, it actually plays an integral role in the design of the LEAPS data

structures for containers. The basic idea is that composite cursors on the unified stack may

point to elements that have been deleted. To advance a composite cursor in such situations,

elements can only be logically deleted (i.e., flagged deleted); their storage space cannot be

physically reclaimed. (Or more accurately, their storage space cannot be reclaimed until

no cursors are referencing them). Hence the need for modeling updates as deletions fol-

lowed by insertions.

void execute_production_system (void)
{

while(1) {
// Get the top of the stack.
reset_start(top);
if (end_of_container(top))

// The stack is empty. We’re at a fix-point.
break;

else {
// The stack is not empty.
fresh = !top.curs;
dominant_timestamp = top.time_stamp;
(*top.current_rule)();

}
}

}

Figure 4.20  Execution cycle.



63

The LEAPS compilers performed rudimentary garbage collection, where the

physical space of elements is reclaimed. We noted that maintaining reference counts (or

whatever the LEAPS compilers actually do) adds considerable run-time overhead. For the

applications of LEAPS that we have seen, garbage collection at fix-point time offers a

much faster and simpler way to accomplish garbage collection.

Another unusual requirement for a LEAPS container data structure is that ele-

ments must be stored in descending timestamp order. One reason is to maintain OPS5

semantics. Another is to be consistent with the general expert-system philosophy that the

tuple that is selected for rule firing should have the most recent timestamps. The simplest

data structure that LEAPS could use as a container implementation is a doubly-linked list,

where deleted elements are still “connected” in that cursors on deleted elements can be

advanced to nondeleted elements. Figure 4.22 shows two cursors on a container (imple-

void seed_rule14_a (void)
{

curs14_a *c;

if (fresh) {
c = (curs14_a*) malloc(sizeof(curs14_a));
top.curs = (void*) c;
initk(*c);
pos(c->a,top.cursor_position);

}
else {

c = (curs14_a *) top.curs;
goto valid_tests;

}

foreachk(*c) {
fire_rule14_a( c );
return;

valid_tests:
// Perform valid tests here.

}

free(c);
fresh = TRUE;
top.current_rule = skip_rule;
// Call next_rule procedure for next rule firing.
next_rule();

}

Figure 4.21  Rule seeding procedure.
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mented by a list). Cursor A points to an element with timestamp 3; cursor B points to a

deleted element with timestamp 2. When cursor B is advanced, it will be positioned on the

next undeleted element of the container whose timestamp is less than 2 (in this case, the

element with timestamp 1). In general, it is possible that B may need to traverse a chain of

deleted elements before the first undeleted element is reached.

4.2.6  Optimizations

The LEAPS compilers (and RL) include a variety of optimizations than enhance the basic

algorithms outlined in Section 3. We explain the major optimizations in this section.

Timestamp Ordered Lists. A timestamp ordered list is a doubly-linked list where

(undeleted) elements are maintained in descending timestamp order. Unlike “standard”

doubly-linked lists, timestamp ordered lists perform query modifications for optimiza-

tions. For example, a typical rule selection predicate requires element timestamps to be

less than or equal to the dominant timestamp. A timestamp ordered list would use this

requirement to optimize the reset_start  operation, which positions a cursor on the first

record that satisfies the selection predicate. What happens is that the timestamp predicate

is applied to the first elements of the list until an element qualifies. From that point on,

there is no need for qualifying subsequent elements due to timestamp ordering. Thus,

predicates applied to subsequent elements do not involve temporal qualification. Other

types of query optimizations with timestamp ordered lists are possible; readers are encour-

aged to see the tlist  component in the P2 library.

Figure 4.22  Container with deleted element.

ts = 3 ts = 2 ts = 1

A B

(deleted)
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Predicate Indices. A predicate index is a list of elements of a container that satisfy

a given predicate. (In the AI literature, predicate indices are called alpha memories). Pred-

icate indices are quite useful in LEAPS/RL, as the selection predicates of rules are static.

For example, to minimize the search time for finding stage elements whose value  field is

“ labeling ” (in rule14  of Figures 4.13-4.16), a predicate index for stage using predicate

“$.value == ‘labeling’”  is used. In general, a predicate index is created for each posi-

tive (and negative) condition element of a rule that references constants. Again, looking at

rule14  as an example, Figure 4.23 shows the predicate indices that would be created. A

predicate index component in P2, predindx , is a minor modification of tlist .

Active Rule Optimization. k-way joins can lead to O(nk) execution times, where n

is the number of elements in a container. Eliminating costly searches that are known, a pri-

ori, not to yield tuples, often provides great performance advantages. The active rule opti-

mization is the skipping of rules to be seeded because it is known that the rule cannot

generate tuples. This optimization requires the presence of predicate indices. When a pred-

icate index is an empty list (i.e., there are no elements in the container that satisfy the

given selection predicate), we know that a seeded rule cannot produce tuples. It is a simple

matter to augment the definition of the predicate index layer to accept as a further annota-

tion two procedures. One procedure is called when the predicate index becomes empty;

another procedure is called when the predicate index becomes nonempty. The procedures

themselves merely increment a counter for each rule that uses the predicate index. If the

counter for a rule is nonzero (meaning that there are one or more predicate indices that are

null), we know that the rule can be skipped for seeding. If the count is zero, seeding the

rule may produce tuples. In RL, we examine the counter for every rule that could be

seeded by a dominant object. Thus, if there are n rules, there are n tests. In general, the

Condition Element Container Predicate to Index
(stage ^value labeling) stage $.value == ‘labeling’
(junction ^type tee ...) junction $.type == ‘tee’
(edge ^p1 <bp> ^p2 <p1>) edge (none)
(edge ^p1 <bp> ^p2 <p3> ^label nil edge $.label = ‘nil’

Figure 4.23  Predicate indices.
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number of rules that are active at any one time is rather small. Thus, if the list of active

rules is maintained dynamically, performance of LEAPS should be enhanced. In particu-

lar, we conjecture that as the number of rules per rule set increases, a scheme to maintain

dynamically the list of rules may offer significant performance advantages.

Symbol Tables. String comparisons are always costly. A more efficient way to per-

form string comparisons is to enter strings into a symbol table and to compare handles to

strings. Since OPS5 allows only == and != operations on strings, handle comparisons

work well. This optimization is also called string constant enumeration.

Shadow Stacking. We explained earlier that the unified stack maintains a times-

tamp ordering of its elements; the top element has the most recent timestamp and the bot-

tom element has the oldest. Deleted objects are called shadows. Experience has shown that

shadows rarely succeed in seeding rules (i.e., producing tuples to fire). As there can be

many shadows on the stack at any given moment, a large fraction of LEAPS run time is

consumed processing shadows. A way to minimize the processing time for shadows is to

place them at bottom of the stack, rather than at the top. This invalidates the property that

the stack maintains elements in descending timestamp order, but has the advantage that

shadow processing becomes more efficient (i.e., particularly in the presence of active rule

optimizations). The increase in LEAPS performance can be dramatic with shadow stack-

ing.

Hashed Timestamp Ordered Lists. The standard LEAPS data structure is a times-

tamp ordered list, described above. The standard LEAPS join algorithm is nested loops. A

way to improve the performance of LEAPS dramatically is to use hashed timestamp

ordered lists. The idea is simple: instead of maintaining a single list of timestamp ordered

elements, b lists are maintained, one list per bucket. Bucket assignments of elements are

based on a hash key, which is also a join key. As a result, search times for elements on

inner loops of joins are reduced by a factor of b (i.e., a fraction of (b-1)/b of the elements

have been eliminated as they don’t hash to the right join key). Hashed timestamp ordered

lists (htlist ) is a simple variation on timestamp ordered lists (tlist ); hashed timestamp

ordered predicate indices (hpredindx ) is a simple variation on predicate indices (pred-
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indx ). In general, the idea of using “hash” joins to obtain improved performance is an

obvious consequence of the work of Brant and Miranker [Bra93a].

Negation Optimization. Experience has shown that the following is not an effec-

tive optimization, but it is an interesting idea never-the-less. Figure 4.24 recalls

Figure 4.17 which helps illustrate the meaning of negation. A great deal of time is spent

evaluating predicates of negated condition elements. In the case that a dominant object can

seed multiple tuples (as in Figure 4.24 where object e seeds 4 tuples), it is possible to opti-

mize the processing of predicates of negated CEs. The idea is simple: when the negated

CE is applied to tuple at time t2, the truth value of its predicate must be determined for the

interval [t0, t2]. Note that the predicate must have been true for all previously tested inter-

vals, e.g., [t0, t1], since had the predicate failed, it would not be possible to seed further

tuples. The optimization is to avoid replicate evaluation of a negated predicate over the

same interval. To test the validity of a predicate in interval [t0, t2], it is sufficient to test the

validity only over the interval [t1, t2], as the truth of the predicate in [t0, t1] has already

been established. Experience has shown that a dominant object typically seeds at most one

tuple per rule. Consequently, the conditions for the above optimization don’t seem to

arise.

Malloc optimization. The Unix malloc operation is very slow. The LEAPS com-

pilers relied on their own memory allocation scheme. We tried to do something similar

with a layer in P2 which performs the duties of malloc on our own, home-grown memory

Figure 4.24  Negation Optimization.

• • • ••
t0 t1 t2 t4t3

(element created) (composite cursor advanced)

[t0, t4]
[t0, t3]

[t0, t2]
[t0, t1]
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allocation scheme. As it turns out, gnu malloc is more efficient, so we did not pursue mal-

loc optimization further.

4.3  Results

The LEAPS algorithms are notoriously difficult to understand. In interviews with the

OPS5.c development team, they felt that their expertise would enable them to rewrite a

LEAPS compiler in 2-3 months, whereas novices (us) would take at least twice that long

to code (e.g., 6 months). It did take us several months to comprehend the algorithms, but

only took us two months to code RL.6 As supporting evidence, RL is less than 5K lines of

C, lex , and yacc . OPS5.c is four times larger–almost 20K lines: 10K for the basic com-

piler and another 10K for the run-time system included in all OPS5.c-produced executa-

bles. Thus for the LEAPS application and LWDBs, using P2 reduced the development time

and code size by a factor of three.

We discovered two reasons for this. First, P2 offers substantial leverage in devel-

oping LWDBs and their applications. P2 currently consists of over 75K lines of code; it

performs general optimizations that LEAPS experts had to hand-code into their compilers.

Second, by far the most substantial productivity gain was using P2 data types to express

the LEAPS algorithms. Although complicated, the LEAPS algorithms are elegant when

expressed in P2. The P2 separation of LWDB implementation details from its client appli-

cations significantly reduced the complexity RL’s development and the understanding,

coding, and debugging of the LEAPS algorithms.

To help us evaluate the performance of RL/P2-generated programs, the LEAPS

compilers development team provided us with OPS5 rule set benchmarks:

• tripl  (3 rules that output 3-tuples of numbers ranked in descending order).

• manners  (8 rules that find seating arrangements with constraints).

6. The un-optimized RL implementation of the LEAPS algorithms were coded in one week. P2 was being
written at the time of our RL work; the remainder of the two months included the time spent waiting for P2
to be debugged and the time needed to add the myriad optimizations to RL that LEAPS uses.
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• waltz  (33 rules that define a 2-D line labeling program).

• waltzdb  (38 rules that define a more complex version of waltz ).

Each of these rule sets processed scalable input data sets; programs that generated these

data sets were included with each rule set. The LEAPS compilers development team also

provided us with two versions of LEAPS:

• OPS5.c (a version that generates programs whose databases are main-memory resi-

dent [Mir90-91])

• DATEX (a version that generates programs whose databases are disk-resident

[Bra93a]).

DATEX databases are stored by Jupiter, the (heavyweight) Genesis file management sys-

tem [Bat88]. Thus, OPS5.c and DATEX provided us with an ideal opportunity to evaluate

the scalability of P2: we could compare P2-generated LWDBs with both hand-coded

main-memory LWDBs and a heavyweight extensible disk-resident DBMS. We accom-

plished this using the same P2 programs generated by RL, but swapping type expressions.

Figure 4.25 shows the type expressions that we used to store RL databases.

RL1(RL3) differ from RL2(RL4) only in the transient or persistent storage of containers.

RL3(RL4) differ from RL1(RL2) only in the use of the hashed timestamp ordered lists optimi-

zation. All of the RL databases use the following optimizations: timestamp ordered lists,

predicate indices, active rule optimization, symbol tables, and shadow stacking. RL3 and

RL4 also uses the hashed timestamp ordered lists optimization.

Prior to benchmarking, it was our goal to have RL/P2 generated programs have a

performance within 10% of the LEAPS compilers, OPS5.c and DATEX. We expected RL/

#define RL(PREDINDX_LAYER, TLIST_LAYER, MEM_LAYER) \
nloops[link2top[top2ds_qualify[PREDINDX_LAYER[ \

TLIST_LAYER[delflag[malloc[MEM_LAYER]]]]]]]

typex  {
RL1 = RL(predindx, tlist, transient);
RL2 = RL(predindx, tlist, mmap_persistent);
RL3 = RL(hpredindx, htlist, transient);
RL4 = RL(hpredindx, htlist, mmap_persistent);

}

Figure 4.25  RL type expressions.
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P2 to be slower than the LEAPS compilers, because (1) P2 is a general-purpose tool,

whereas LEAPS was hand-coded by experts, and (2) we converted OPS5 programs to C

programs in two translation steps, whereas the LEAPS compilers accomplished this in one

step (see Figure 4.10).

Figures 4.26, 4.27, 4.28, and 4.29 show the performance results for the tripl ,

manners , waltz , and waltzdb  benchmarks respectively. The results presented here were

obtained on a SPARCstation 5 with 32 MB of RAM running SunOS 4.1.3  using the

gcc2.5.8  compiler with the -O2  option. Similar results have been obtained on other

systems.

Let’s consider first the performance of RL1 and RL2. In all cases, their performance

exceeded that of OPS5.c and DATEX. RL1 was typically two times faster than OPS5.c,

while RL2 was typically fifty times faster than DATEX.

Figure 4.26  tripl  running time vs. input data set size.
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Figure 4.27  manners  running time vs. input data set size.

Figure 4.28  waltz  running time vs. input data set size.
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RL1’s improved performance over OPS5.c was due to several reasons. First, P2

generated code is more efficient than that of OPS5.c; P2 performs optimizations automati-

cally that are difficult, if not impractical, to do by hand. Second, expressing the LEAPS

algorithms in terms of P2 abstractions clearly revealed some simple optimizations that

were otherwise obscured. Third, the design and implementation of OPS5.c was so compli-

cated that it was necessary to replicate predicate indices for understandability; eliminating

replicated indices was trivial in the RL/P2 version. Fourth, OPS5.c used a tagged type sys-

tem and performed dynamic garbage collection unnecessarily. (This was an example of a

LWDB being designed to meet perceived needs that never arose.) It was through our

experiments with RL/P2 that the LEAPS compilers implementors learned that garbage

collection was unnecessary.

RL2’s improved performance over DATEX was due in part to the reasons cited

over OPS5.c, but by far the most substantial gains came from eliminating the large over-

heads of heavyweight (extensible) DBMS construction. These included: layered software

Figure 4.29  waltzdb  running time vs. input data set size.
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designs, interpretive execution of queries, buffer management, and general-purpose stor-

age structures that were not as efficient as the LEAPS-optimized storage structures of

OPS5.c. These overheads caused DATEX to be slower than OPS5.c by more than an order

of magnitude, whereas swapping the transient  component in RL1 with mmap_persistent

to produce RL2 (i.e., replacing transient memory with memory-mapped I/O) reduced per-

formance by only a few percent.

When we swapped RL1(RL2) with RL3(RL4) (i.e., when we used hashed structures

instead of non-hashed), we observed an astounding performance improvement for three of

the rule sets. For manners , waltz , and waltzdb , RL3 executed over an order of magnitude

faster than OPS5.c and RL1; RL4 was three orders of magnitude faster than DATEX. The

reason is simple: nested loops is an inefficient join algorithm; by emulating hash joins, we

obtained big improvements in performance. We did not achieve speedups for tripl , as

tripl  has only inequality-joins and thus hash-joins could not improve its performance.

We can make three important observations here. First, experimenting with very

different LWDB implementations was effortless: all we needed to do was to alter type

expressions and recompile. Second, when needed components were absent from the P2

library (as was the case for htlist  and hpredindx ), it took us only a few days to write

them. We were able to reuse other components of the P2 library to minimize our coding

efforts. In contrast, DATEX was a full rewrite of OPS5.c and took many months to com-

plete. Third, P2 provides a technology by which customized LWDBs (i.e., customized

type expressions) can be generated per rule set to maximize performance; this capability is

impossible with standard LWDB implementation techniques, including those used by

LEAPS.
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Chapter 5

Smallbase

We used P2 to reengineer the Smallbase LWDB [Hew96] in order to demonstrate that

GenVoca can scale to generate complex systems, while at the same time maintaining good

generated code performance and high programmer productivity.

Smallbase is a meaningful basis for comparison because it shares many design

goals with P2 but differs mainly in construction methodology. Smallbase [Hey95] is a

modern LWDB from HP labs. Like P2, the primary design goal of Smallbase is high per-

formance: an order of magnitude performance improvement over traditional DBMSs for

transaction processing queries and even more for decision support queries. Unlike P2,

Smallbase has been hand-crafted and optimized as a single, monolithic system.

Our goal in these experiments was to reengineer Smallbase as accurately as possi-

ble within the framework of P2. We did not improve upon the Smallbase algorithms and

data structures, as we had done with LEAPS. Rather, we eliminated differences, in order to

isolate the effects of construction methodology on generated code performance and pro-

grammer productivity.

In order to reproduce Smallbase exactly, we would have to start with the complete

Smallbase source code. Unfortunately, this was not possible, both because HP corporate

policy forbid the release of the Smallbase source code, and because, when we began our

experiment, Smallbase was not yet finished. Thus, we begin with Smallbase design docu-

ments and code snippets for only the most important features (e.g., latches). Where the

Smallbase design documents were unclear and code snippets were unavailable, we
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appealed to freely available DBMS code. We drew, in particular, from [Gra93b, Cla86,

Exo94].

Despite the unavailability of the complete source code, we believe we have ade-

quately reproduced the functionality of Smallbase in P2. This belief is reinforced by two

observations. First, the implementations of various DBMSs are strikingly similar. In par-

ticular, [Gra93b, Cla86, Exo94] have more similarities than differences. This is typical of

a mature, well understood domain–the type of domain that is amenable to GenVoca gener-

ation [Bat92a]. Second, the finished Smallbase1 and P2 systems have remarkably similar

performance.

5.1  Decomposition

Smallbase consists of a single, monolithic, pre-compiled executable. Smallbase user pro-

grams are compiled and linked with this executable. All Smallbase functionality is embed-

ded into the executable, and users extract the behavior they require via run-time

arguments. For example, when they open a connection to a database, Smallbase users can

opt for single (a.k.a., private) or multiple (a.k.a., shared) user process support; transient

(a.k.a., main memory) or persistent (a.k.a., disk) storage of data; logging or no logging;

and if logging is selected, synchronous or asynchronous flushing of the log from memory

to disk. Thus, Smallbase encapsulates a family of related systems in a single executable.

The primary challenge in reengineering Smallbase was decomposing it into Gen-

Voca components. We chose a decomposition based on resource managers. A resource

manager is a subsystem (e.g., log manager or lock manager) of a DBMS that encapsulates

the data and code that provide access to some shared object (e.g., the log or the lock table);

a collection of resource managers together provide the ACID properties of transactions

1. Note that HP Labs spun-off the Smallbase project before it was fully completed. For example, the final ver-
sion of Smallbase provides transactional isolation only by locking the entire database for the duration of the
transaction, thus serializing all transactions, whereas the original design for Smallbase included support for
finer granularity concurrency control [Hey95]. Since P2 was intended to reengineer this original design, P2
provides several features that were not necessary for the experiments comparing Smallbase and P2 (see
Section 5.4). For example, P2 supports fine grain concurrency control (see Section 5.3.2).
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[Gra93b]. In particular, we chose a decomposition of one resource manager per compo-

nent; this decomposition is the most obvious and natural, and it is appropriate for both

users and component implementors.2

A complete DBMS is specified using the type expression pattern shown in

Figure 5.1. Note that this is a pattern rather than an actual type expression, because pro-

tocol , log , and process  represent parameters that may be instantiated by any member

of a family of components. A family of components is a subset of components from a par-

ticular realm. For example, the retrieval family consists of the subset of DS realm compo-

nents that are capable of processing queries (e.g., bintree , dlist , hash ). The lock

protocol manager family consists of the XACT realm components protocol_coarse ,

protocol_fine , protocol_xact_mutex , and protocol_smallbase  (see Section 5.3.2).

The log manager family consists of the XACT realm components log , log_async , and

log_sync  (see Section 5.3.4). The process manager family consists of the PROCESS realm

components process_uniprocess , process_unix , process_thread , process_pthread ,

and process_smallbase  (see Section 5.2.1).3 

Any component in the family may be used to instantiate the parameters in the type

expression pattern. For example, Figure 5.2 shows an example actual DBMS type expres-

2. This encapsulation is appropriate for users, so they can easily comprehend and use type expressions. A
smaller granule would force users to include several components in a type expression to specify a single
high-level function (e.g., logging or locking). This would be inconvenient and subject to error. A larger
granule (e.g., a combined logging plus locking component) would force users to include unnecessary func-
tionality. This, in turn, would necessitate additional runtime overhead and/or additional mechanisms (e.g.,
annotations or compile-time arguments) to select the desired sub-functionality. This encapsulation is also
appropriate for component implementors, because it maximizes decomposition while minimizing depen-
dencies between components. Resource managers are, unfortunately, not completely self contained. For
example, at restart, the transaction manager gets its anchor from the log, which naturally, is maintained by
the log manager. A smaller granule would increase decomposition, but would introduce more such depen-
dencies. A larger granule would reduce these dependencies, but reduce decomposition. One resource man-
ager per component appears to yield the best compromise between decomposition and dependencies.

3. We use the Courier typeface to distinguish families of components from individual components (e.g., the
log manager family of components includes the log  component); underlining to distinguish the parameters
in the pattern from actual components (e.g., the process  parameter may be instantiated by the process
component); and uppercase to distinguish realms from families of components and individual components
(e.g., the XACT realm includes the transaction manager family of components which includes the xact
component)
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sion, instantiating protocol  using protocol_fine , log  using log_sync , process  using

process_unix , and the LINK  realm parameter using

link2top[top2ds_qualify[hash[array[transient]]]] . Since all containers in the

schema share the same type expression, they must use the same instantiations. In particu-

lar, they share a single log and lock table.

This decomposition required us to add the two new realms, PROCESS and XACT,

shown in Figure 5.3. PROCESS realm components provide primitive, low-level operating

system specific process and thread synchronization and control (see Section 5.2). XACT

realm components are high-level resource managers (see Section 5.3). The process2link

layer transmits PROCESS operations as is; if it receives any PROCESS operations, this means

that no layer above it could process the operation; the xact2process  layer provides analo-

gous semantics for XACT and PROCESS operations. These are fatal errors and should not

occur; thus process2link  and xact2process  are safety nets.

A higher performance database can be generated by customizing the type expres-

sion: either by specifying a more efficient member of a family of components, or by omit-

ting an unnecessary component. Ideally, a user could independently include or omit any

component from Figure 5.1. We were not able to achieve this level of independence. But,

by careful design of components and interfaces, we were able to substantially reduce

dependencies to those shown in Figure 5.4.

dbms = trace[ protocol [ log [xact[lock[
op_vec[xact2process[ process [

process2link[LINK]]]]]]]]]]

Figure 5.1  Pattern for DBMS type expressions.

dbms = trace[protocol_fine[log_sync[xact[lock[
op_vec[xact2process[process_unix[

process2link[link2top[top2ds_qualify[hash[array[transient]]]]]]]]]]]]

Figure 5.2  Example DBMS type expression.
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5.2  The PROCESS Realm

Several resource managers require the ability to synchronize and control execution con-

texts. For example, the lock and transaction managers need mutual exclusion on their

internal data structures, the lock manager needs to explicitly schedule processes, and the

protocol_smallbase  protocol manager needs to regulate concurrent access to shared

data. This functionality is not provided by the TOP, DS, MEM, or LINK  realms. P2 uses pro-

cesses, semaphores, and conditions to abstract this functionality, and the PROCESS realm to

implement operations on them.

In P2, the process  data type is an abstract model of an execution context; that is,

some code and private data; it may be implemented by various mechanisms, for example,

Unix processes or POSIX threads. The semaphore  data type is a mechanism used to

LINK : process2link[PROCESS] // Treat PROCESS operations as errors,
// translate LINK operations as is.

PROCESS = {
process [LINK] // Process and thread synchronization and control.
xact2process[XACT] // Treat XACT operations as errors,

// translate PROCESS operations as is.
}

XACT = {
trace[XACT], // For debugging, print operations executed.
protocol [XACT], // Lock protocol for transactional isolation.
log [XACT], // Manage the log.
xact[XACT], // Manage transaction state and transaction identifiers
lock[XACT], // Manage the lock table.
op_vec[PROCESS] // Manage operation vectors.

}

Figure 5.3  XACT and PROCESS realms.

Manager Design Rule
lock Requires a process  manager.
log Requires generic_init  (or conceptual ).

Requires the xact  manager.
Must appear above the xact  manager.

process A protocol  manager is required by process_smallbase .
protocol The lock  manager is required by protocol_coarse , 

protocol_fine , and protocol_xact_mutex .
trace The trace  and process  managers must appear above the 

log  manager.
xact Requires a process  manager.

Figure 5.4  Resource manager design rules.
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implement mutual exclusion between processes; it may be implemented, for example, by

System V IPC semaphores or POSIX semaphores. The condition  data type is a mecha-

nism used for communication between processes; it may be implemented, for example, by

Unix signals or POSIX condition variables. Processes, semaphores, and conditions all

have unique names called identifiers.

The interface exported by the process manager components is called the PROCESS

realm. This realm extends the LINK  realm with the additional operations shown in

Figure 5.5

As described in Chapter 2, construction of a GenVoca generator for a new realm

requires a careful domain analysis, which is only possible for well understood domains.

We did not fully understand the process domain when we began the implementation of P2.

This is clear from the fact that the PROCESS realm interface has changed several times in

Operation Semantics
int delete_process(void) Finalize and delete process manager.
int exit_process(int i) Terminate current process.
process  get_process_id(void) Return process identifier of current process.
int fork_process(

process *p,
void *f(),
void *arg)

Create new process with start function f(arg) .
Return process identifier of new process in p.

int init_process(void) Create and initialize process manager.
int join_process( process p) Wait for process p to terminate.
int init_semaphore(

semaphore *s,
unsigned c)

Create new semaphore with initial value c . Return 
semaphore identifier of new semaphore in s . Some 
process managers (i.e., process_uniprocess , 
process_unix , and process_smallbase ) 
permit c  to be any value greater than or equal to 0 
(counting semaphore), while other process managers 
(i.e., process_pthread  and process_thread ) 
restrict c  to 0 or 1 (i.e., binary semaphore or mutex).

int lock_semaphore( semaphore *s) P(s) : if semaphore s  is greater than 0, decrement it 
by 1. Otherwise wait until s  becomes greater than 0.

int trylock_semaphore( semaphore *s) If semaphore s  is greater than 0, decrement it by 1.
Otherwise, return error.

int unlock_semaphore( semaphore *s) V(s) : increment semaphore s  by 1.
int delete_semaphore( semaphore *s) Delete semaphore s .
int sleep_process(

condition *c,
semaphore *s,
unsigned *t)

Suspend current process. Return new condition 
identifier in c . If condition is not signaled within t  
seconds, return an error.

int wakeup_process( condition *c) Signal condition c  in order to resume process 
sleeping on condition.

Figure 5.5  PROCESS realm operations.
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the course of out implementation. In particular, when we began, the interface had much

more the flavor of Unix processes (e.g., the condition  data type did not exist, and the

sleep_process()  operation was based on process , and had nearly the same interface as

the Unix sleep()  operation). Yet, we had to modify the interface substantially to also sup-

port threads, and now the interface has much more the flavor of POSIX threads (e.g., the

wakeup_process()  operation is now based on condition , and has nearly the same inter-

face as the POSIX pthread_cond_timedwait()  operation). The interface has now

evolved to the point where it should support additional process and thread models without

modification. For example, although we have not yet implemented such components, we

speculate that the interface should now support remote procedure call (a.k.a., RPC) as well

as non-Unix process and thread models (e.g., Microsoft Windows Win32 API processes

and threads [Ric95]).

5.2.1  Process Manager

The process manager abstracts away the details of various process and thread implementa-

tions, and allows any of a set of plug-compatible components to provide the underlying

implementation. Each of the components in the process manager family implements a dif-

ferent process, semaphore, and condition mechanism, as shown in Figure 5.6. These com-

ponents are the only components that export the PROCESS realm; xact2process  is the only

component that imports it.

The process manager components must consistently refine process , sema-

phore , and condition  data types simultaneously. Thus, their implementations must be

Component Semantics
PROCESS process_uniprocess [LINK] Single process, no semaphores or conditions.

Procedures degenerate to constants or no-ops.
PROCESS process_unix [LINK] Unix processes, System V IPC semaphores, Unix signals.
PROCESS process_thread [LINK] Unix (e.g., UnixWare 2.x and Solaris 2.x)

threads, semaphores, and condition variables.
PROCESS process_pthread [LINK] POSIX threads, semaphores, and condition variables.
PROCESS process_smallbase [LINK] Unix processes, Smallbase latches, Unix signals.

Figure 5.6  Process manager components.
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compatible. For example, a component could not implement Unix processes with POSIX

semaphores.

The process_unix  component, for example, implements standard Unix pro-

cesses, System V interprocess communication (IPC) semaphores, and Unix signals

[Ste90]. The process  and condition  data types are refined to pid_t  (defined in sys/

types.h ) and semaphore  is refined to sembuf  (defined in sys/sem.h ). For example, with

these refinements, the fork_process()  operation calls fork() , lock_semaphore()  calls

semctl() , and wakeup_process(c)  calls kill(c, SIGALRM) .

The process_pthread  component, for comparison, implements POSIX threads,

semaphores, and condition variables [But97]. The process  data type is refined to

pthread_t  (defined in pthread.h ), semaphore  to sem_t  (defined in semaphore.h ), and

condition  to pthread_cont_t  (defined in pthread.h ). For example, with these refine-

ments, the fork_process()  operation calls pthread_create() , lock_semaphore()  calls

sem_wait() , and wakeup_process()  calls pthread_cond_signal() .
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5.3  The XACT Realm

The resource managers require functionality not provided by the TOP, DS, MEM, LINK , or

PROCESS realms. This functionality is implemented by the XACT realm, and abstracted

using schema and the following new data types: transactions, locks, and log sequence

numbers.

In P2, the transaction or xact  data type abstracts an ACID unit of work [Gra93b].

It has a unique name called an identifier, and a status (e.g., active, committing, aborting).

The lock  data type abstracts transaction isolation (the “I” in ACID). A lock has a unique

name, a degree of sharing called a mode, a duration called a class, and possibly an error

status (e.g., granted, waiting, denied). The log sequence number or lsn  data type repre-

sents the location of a particular element within the log.

The interface exported by resource manager components is called the XACT realm.

This realm extends the PROCESS realm with the additional operations shown in Figure 5.7.

5.3.1  Lock Manager

The lock manager provides a generic, high-level, operating system independent mecha-

nism to regulate concurrent access to objects. It schedules processes explicitly using the

PROCESS realm provided by the process manager (see Section 5.2).4 The lock manager

consists of the component shown in Figure 5.8.

The design and implementation of the lock manager is based directly on [Gra93b],

with reference to [Cla86], and [Exo94] to fill-in some missing details. We have diverged

from the lock manager in [Gra93b] primarily in lock naming, granularity of parallelism on

the internal lock manager data structures, and deadlock detection.5

The lock manager provides the standard set of intention locks shown in

Figure 5.9, and lock classes (a.k.a., durations) shown in Figure 5.10.

4. Thus we have the design rule that the lock manager requires the process manager (see Figure 5.4). 
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The lock manager uses two containers internally: a container of lock requests and

a container of lock headers. These containers may have different implementations. Thus,

in addition to the XACT realm parameter for the DBMS component beneath it, the lock

manager component takes two DS realm parameters to specify the implementation of these

containers. Their declarations are shown in Figure 5.11.

The lock manager’s first internal container, the lock header container, represents

all lock names; that is, the (static) set of all possible locks. Since this set is too large to rep-

resent explicitly, the container represents explicitly only the (dynamic) set of busy locks;

free locks are represented implicitly by their absence. Thus, an element is inserted in the

container when a lock becomes busy, and deleted when the lock subsequently becomes

free. The lock manager assumes that the space of all possible locks is sparse with respect

to the number of locks that are busy at any given time. Thus, we can allocate the container

as a hashed array that supports deletion. That is, by the type expression

hash[avail[array[DS]]] .6

5. Although [Gra93b] allocates for lock names a structure consisting of a 2 byte integer together with a 14
byte string, we use only a standard size unsigned integer (4 bytes on most machines). We chose this lock
naming for simplicity, performance, and because we store the lock names in a P2 container and P2 does not
fully support non-standard size integers; if it did, we would have chosen long unsigned integers (8 bytes on
most machines) as a better compromise. Although [Gra93b] uses a fine grained parallelism, we use a single
exclusive semaphore to protect all of the internal lock manager data structures. We chose this coarser gran-
ularity for performance and ease of implementation. Debugging, in particular, is greatly simplified by this
coarser granularity. Although [Gra93b] provides a simple local deadlock detector, we rely entirely upon
timeouts for deadlock detection.

6. We have made the optimization in the lock header type expression of using the hash_array  component
instead of the type expression hash[avail[array[DS]]] . The hash_array  component has the
advantage of handling both deletions and key retrievals very efficiently, but the disadvantage that it must be
able to hash its keys perfectly, which is not possible for lock names. The solution to this problem is not to
use the hash_array_overwrite  component, because it overwrites the old lock header with a new one,
and thus loses the old lock. Instead, the solution to this problem is to hash the lock names before
hash_array  ever sees them. Since they are pre-hashed, hash_array  can now very easily hash its keys
perfectly (e.g., using the identity function). Unfortunately, now hash_array  treats the two different lock
names that pre-hash to the same value as if they were the same lock name. In the uncommon case when this
does happen, the lock manager still functions correctly, but possibly with some unnecessary spurious wait-
ing, and a concomitant decrease in throughput and perhaps accidental deadlock. In the common case when
this does not happen, latency decreases, with a concomitant increase in system throughput. In general, the
overall effect should be increased system throughput.
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Operation Semantics
void abort_xact(void) Terminate transaction and undo its state changes.
void begin_xact(void) Initiate transaction.
void checkpoint_schema( schema) Write copy of schema state to log.
void close_schema(void) Finalize and delete connection to schema.
void commit_xact(void) Make transaction’s state changes public and durable.
lsn  get_max_lsn(void) Return maximum log sequence number used by current 

transaction. This is necessary for UNDO, which begins at 
maximum log sequence number and works backwards. 

OP_VEC get_op_vec(cursor) Return operation vector of given cursor.
OP_VEC get_op_name_vec(cursor) Return operation name vector of given cursor.
XACT_ID get_xact_id(void) Get transaction identifier of current transaction.
XACT_STATUS get_xact_status(void) Return status of current transaction.
void init_schema(void) Initialize schema.
LOCK_REPLY
lock(LOCK_NAME name,

LOCK_MODE mode,
LOCK_CLASS class,
unsigned timeout)

Attempt to acquire lock name in mode with duration 
class . If caller successfully acquires lock within timeout 
seconds, return LOCK_OK. If timeout expires, return 
LOCK_TIMEOUT. If lock request container overflows, 
return LOCK_REQUEST_OVERFLOW. If lock header 
container overflows, return LOCK_HEADER_OVERFLOW.

lsn  log_insert(LOG_STRUCT *x,
unsigned fixed_size,
int narg, ...)

Where variable argument list consists of narg  
of the following pairs:

char *v,
unsigned variable_size

Allocate a new log record and copy given data into it.
Copy fixed_size  bytes from x , and for each of narg  
(v, variable_size ) pairs in variable argument list, 
copy variable_size  bytes from v.
The narg  (v, variable_size ) pairs in argument list are 
optimization used, for example, by insert() , 
delete() , and upd()  to reduce unnecessary copying. 
Without this optimization, these operations would have to 
pass the entire log record in x , which would require 
copying the data twice: once from its original location into 
x , and once from x  into the log.

LOG_STRUCT *log_read_lsn( lsn ) Return log record with given log sequence number.
lsn  log_read_anchor(void) Return log sequence number of most recent checkpoint. 
lsn  log_transaction( lsn ) Inform transaction manager that new log record has been 

created. Return log sequence number of previous log 
record. Necessary because log records are created by log 
manager, and log sequence numbers (e.g., maximum log 
sequence number used by each transaction and by DBMS 
as a whole) are maintained by transaction manager.

void log_write_anchor( lsn ) Store given log sequence number as that of most recent 
checkpoint.

void open_schema(void) Create connection to and initialize schema.
void put_op_vec(void) Store schema operation vector.
void set_xact_status(XACT_STATUS) Set status of current transaction.
LOCK_REPLY unlock(LOCK_NAME name) Unlock lock name. Return LOCK_OK.
LOCK_REPLY
unlock_class(LOCK_CLASS class)

Release all locks of duration less than or equal to class . 
Return LOCK_OK. This procedure is called, for example, at 
end of transaction to release all locks of duration less than 
or equal to LOCK_LONG.

void warm_restart(void) Start DBMS from persistent memory.

Figure 5.7  XACT realm operations.

Component Semantics
lock [op_vec : XACT, request : DS, header : DS] : XACT The lock manager.

Figure 5.8  Lock manager component.
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Mode Semantics
IS Intent to request shared
IX Intent to request exclusive.
S Shared (read).
SIX Shared, intent to request exclusive.
U Update (read followed by write).
X Exclusive (write)

Figure 5.9  Lock modes.

Class Semantics
INSTANT Combined lock/unlock operation.
SHORT Released at the end of operation.
MEDIUM Released explicitly.
LONG Held to end of transaction.
VERY_LONG Held across transaction boundaries.

Figure 5.10  Lock classes.

// Type expressions.
typex  {

request_typex = top2ds_qualify[slist_queue[avail[array[mmap_shared]]]];
head_typex = top2ds_qualify[hash_array[mmap_shared]];

}

// Lock request.
typedef struct {
LOCK_NAME name; // The name of this lock.
LOCK_STATUS status; // Granted, waiting, converting, denied.
LOCK_MODE mode; // Mode requested (and granted).
LOCK_MODE convert_mode; // If in convert wait, mode desired.
int count; // The number of times lock was locked.
LOCK_CLASS class; // Lock class (a.k.a., duration).
condition condition_id; // Condition to signal when lock granted.
XACT_ID xact_id; // Transaction identifier.
} REQUEST;

container  <REQUEST> stored_as  request_typex with {
array size is MAX_REQUEST;
mmap_shared file is “/tmp/lock-manager-data” with size MMAP_SHARED_SIZE;

} request_cont

// Lock header.
typedef struct {
LOCK_NAME name; // The name of this lock.
LOCK_MODE granted_mode; // The mode of the granted group.
BOOLEAN waiting; // Flag indicates nonempty wait group.
} HEAD

container  <HEAD> stored_as  head_typex with {
hash_array key is name with size MAX_HEAD;
mmap_shared file is “/tmp/lock-manager-data” with size MMAP_SHARED_SIZE;

} head_cont

Figure 5.11  Lock request container and lock header container.
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The lock manager’s second internal container, the lock request container, repre-

sents the (dynamic) set of locks that are not free. That is, this container is a list of requests

that are either waiting for or that have been granted locks. Under normal circumstances, an

element is inserted in this container by a call to lock()  and deleted by a subsequent call to

unlock()  or unlock_class() . Of course, there are many exceptions. For instance, instead

of inserting a new element in the container, a call to lock()  may increment the count  field

of an element previously added by the same transaction; or instead of being deleted by a

call to unlock()  or unlock_class() , an element may be deleted from the container if the

timeout expires before the request is granted. The only way to fully appreciate the com-

plexity of the lock manager (as well as the elegance of its expression in P2) is to examine

the code itself (see Appendix).

5.3.2  Lock Protocol Manager

The lock protocol manager automatically adds to user programs calls to the lock manager

to regulate concurrent access to data, providing transactional isolation. The specific calls

added by the lock protocol manager are a function of (1) the protocol implemented by the

particular lock protocol manager component and (2) the pattern of data accesses in the

user program. The lock protocol manager consists of a family of components, each imple-

menting a different protocol, as shown in Figure 5.12.

All of the current lock protocol manager components use strict two-phase locking.

In the protocol_coarse  and protocol_fine  components, the growing phase consists of

acquiring zero or more locks in X and S mode during the transaction; the shrinking phase

consists of a call to unlock_class()  at the end of the transaction, which releases all of

these locks. The protocol_xact_mutex  and protocol_smallbase  components use

exactly one X mode lock per transaction. In these components, the growing phase consists

of acquiring a single lock at the beginning of the transaction, and the shrinking phase con-

sists of releasing this lock at the end of the transaction. All of the current lock protocol

manager components provide true isolation (a.k.a., degree 3 consistency, or repeatable
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reads). In particular, they do not allow dirty reads, and thus do not have the problem of

phantoms [Gra93b].

Only the lock protocol manager components call the lock manager directly. Thus,

it was tempting to eliminate the user-visible lock manager component, and encapsulate its

functionality in the lock protocol manager components. Doing so would have had the

advantage of increasing encapsulation. We chose, however, to make the lock manager a

separate component, because doing so yields a generally more elegant decomposition:

• Simplifies unit testing of the lock manager. Making it a separate component allows

our regression tests to bypass the lock protocol manager to test it directly without

excess baggage. Ease of testing is especially important for lock managers, which are

famously difficult to debug.7

• Simplifies the implementation of future lock managers, or lock protocol managers.

Future lock managers can provide more features (e.g., lock modes, queueing disci-

plines, and guarantees of service) or better performance; they could implemented

Component Semantics
protocol_coarse [XACT] : XACT Lazily acquire locks as necessary for individual operations 

that access and/or modify tuples. Use locks of the 
largest  possible granularity: always the entire schema. 
Thus, for the insert()  operation, lock the entire schema 
in mode X and class LONG; and for the ref()  operation, 
lock the entire schema in mode S and class LONG. Release 
all locks at the end of the transaction. That is, for the 
commit_xact()  and abort_xact()  operations, call 
unlock_class(LONG) .

protocol_fine [XACT] : XACT Like protocol_coarse , but use locks of the 
smallest  possible granularity: container or element, 
depending on the particular operation. Thus, for the 
insert()  operation lock the container in mode X; and 
for the ref()  operation, lock the element in mode S.

protocol_xact_mutex [XACT] : XACT Eagerly acquire a lock on the entire schema at the 
beginning of the transaction. Always lock the schema in 
mode X and class MEDIUM. Release the lock at the end of 
the transaction. That is, for the commit_xact()  and 
abort_xact()  operations, call unlock() . Thus, this 
component serializes all transactions.

protocol_smallbase [XACT] : XACT Like protocol_xact_mutex,  but use process manager 
semaphores, rather than lock manager locks.

Figure 5.12  Lock protocol manager components.

7. “Even well-designed lock managers have some of the most difficult bugs. If the history of lock managers
has one lesson, it is this: don’t get stuck maintaining a lock manager, and if you do, take out all the optimi-
zations and fancy features as a first step” [Gra93b, p. 485].
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either as components or embedded directly in user programs. Future lock protocol

managers could be embedded in user programs and call the lock manager directly,

in a manner analogous to our regression tests that call the lock manager directly.8

• Makes explicit in the type expression the fact that not all protocol managers call the

lock manager. For example, the protocol_smallbase  component, uses process

manager semaphores directly, rather than going through the lock manager.

5.3.3  Transaction Manager

Combined with the log manager, the transaction manager provides transactional atomicity,

consistency, and durability (the “A”, “C”, and “D” in ACID). In particular, the transaction

manager keeps track of transaction state (i.e., DO, UNDO, or REDO) and maintains trans-

action identifiers. The basic design and implementation of the transaction manager is

based on [Gra93b], but we have made numerous simplifications.9 The transaction man-

ager consists of the component shown in Figure 5.13.

The transaction anchor maintains the state of the transaction manager, in particu-

lar, the next transaction identifier. The anchor and some per-transaction data are shared by

8. Note that some of the lock modes (see Figure 5.9) and classes (see Figure 5.10) are not used by any of the
current lock protocol managers. Nevertheless, we have provided these modes (1) because they are part of
standard lock managers [Gra93b] and (2) to support future lock protocol managers.

9.  Although [Gra93b] implements UNDO and REDO of transactions in the transaction manager, we imple-
ment this functionality in the log manager. Although [Gra93b] provides support for distributed transactions
in the transaction manager, we have tried to encapsulate these details in the process manager. Although
[Gra93b] provides a framework to support a dynamic set of resource managers, in P2 the set of resource
managers is fixed at DBMS compile-time; thus, we have omitted their resource manager control blocks,
resource manager transaction control blocks, and the resource manager identifier field of the transaction
identifier. Although [Gra93b] allocates for transaction identifiers a structure consisting of a resource man-
ager identifier and long unsigned integer, we use only a standard size unsigned integer. Although [Gra93b]
adds a field to the transaction control block for deadlock detection, we omit this field, because our lock
manager uses timeouts for deadlock detection (see Section 5.3.1).

Component Semantics
xact [lock : XACT, xact_cb : DS] : XACT The transaction 

manager.

Figure 5.13  Transaction manager component.



89

all transactions. The anchor is initialized by the init_xact_cb_cont()  operation which is

called by the open_cont()  operation of the init_cont_function  component when the

container is initialized. The anchor is stored using the container_structure  compo-

nent.10 The per-transaction data is stored as transaction control blocks in the as shown in

Figure 5.14. Each transaction control block contains the transaction’s identifier, and the

log sequence numbers of the transaction’s first log record and most recent log record. 

The transaction manager’s internal container may be shared by more than one

process , but need not be persistent, since it can be constructed from the log. Thus, we

store the container in shared, but not persistent, memory using the mmap_shared  compo-

nent. Access to the container is protected by a single exclusive semaphore . As an optimi-

zation, when we have a single process , we can disable the declaration and use of the

semaphore  (see Section 5.3.1), and reduce the container to a single element, since a pro-

cess  can not be active in more than one transaction.11

5.3.4  Log Manager

Combined with the transaction manager, the log manager provides transactional atomicity,

consistency, and durability. There is a single log per schema; that is, all containers share

the same log. The design and implementation of the log manager is based directly on

10.The transaction anchor can not simply be stored as a normal global variable, because it must be shared by
all processes. Data sharing functionality is provided by P2 components such as mmap_shared , so we
would like to store the anchor in a container. But, since the anchor and per-transaction data have different
element types, we would have to store them in separate containers, and the anchor container would have
only a single element. When we implemented the anchor as a single-element container, we were struck by
the inelegance of this solution both conceptually and practically. Conceptually, the anchor and per-transac-
tion data are very tightly related, we would like to store it in the same container. Practically, a single-ele-
ment container has some inefficiencies, because the components that implement the container were
designed for multiple, rather than single elements, and thus include unnecessary functionality. We could
have implemented some specialized components optimized for single-element containers, but this didn’t
seem like a very general solution. Instead, we decided to store the anchor in the container structure (rather
than the container elements), using the container_structure  component.

11.An xact  may have more than one process  active in it, but a process  may not be active in more than
one xact .
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// Type expression.
typex  {

xact_cb_typex = top2ds_qualify[init_cont_function[container_structure[
avail[array[mmap_shared]]]]];

}

// Transaction identifier.
typedef unsigned XACT_ID;

// Log sequence number.
typedef unsigned LSN_INDEX;
typedef void *LSN_RBA;
typedef struct {

LSN_INDEX index;       // Sequence number of log file.
LSN_RBA rba;           // relative byte address (offset) in file.

} LSN;

// Transaction control block.
typedef struct {

XACT_ID xact_id;       // This transaction’s id.
LSN min_lsn;           // LSN of transaction’s first log record.
LSN max_lsn;           // LSN of transaction’s most recent record.

} XACT_CB;

// Transaction manager anchor.
typedef struct {

XACT_ID next_xact_id;
} XACT_ANCHOR;

#if defined(PROCESS_UNIPROCESS)
// Uniprocess: maximum concurrent transactions = 1
XACT_ANCHOR xact_cb_cont;
#else
// Multiprocess: maximum concurrent transactions > 1
container  <XACT_CB> stored_as  xact_cb_typex with {

init_cont_function “init_xact_cb_cont”
container_structure “XACT_ANCHOR”;
array size is MAX_XACT;
mmap_shared file is “/tmp/xact-manager-data”

with size XACT_MANAGER_DATA_SIZE;
} xact_cb_cont;
#endif // PROCESS_UNIPROCESS

Figure 5.14  Transaction manager internal container.
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[Gra93b].12 The log manager family consists of a family of components, each implement-

ing operation logging, but using a different discipline for flushing the log from memory to

disk, as shown in Figure 5.15.

[Gra93b] identifies three types of logging: physical, operation, and physiological

logging. Physical (a.k.a., value) logging records the physical address and values of objects.

Operation (a.k.a., logical) logging records the operations and their parameters. Physiolog-

ical (a.k.a., physical-to-a-page logical-within-a-page) logging is a compromise between

physical and operation logging, where each log record applies to a single page, but is logi-

cal within the page. Both physical and physiological logging are page-based, while P2 is

operation-based. If we implemented a page-based log manager for P2, we would probably

simply use an existing object oriented database or persistent store to provide the function-

ality.13 Such an implementation, although it would provide a useful tool, would be trivial

to implement, and would not be nearly as interesting from a software engineering research

perspective as the operation logging implementation that we have provided. And, of

course, since the implementation of the log manager is encapsulated in a component, our

12.Although [Gra93b] implements UNDO and REDO of transactions in the transaction manager, we imple-
ment this functionality in the log manager. [Gra93b] can not (and does not) implement UNDO and REDO
in the log manager, because the interface to the log manager does not contain the operations:
abort_xact() , begin_xact() , commit_xact() , and warm_restart() . In P2, it is possible to
implement UNDO and REDO in the log manger, because the log manager implements the XACT realm,
and thus the interface to the log manager includes these operations. It is desirable to implement UNDO and
REDO in the log manager to increase encapsulation and minimize dependencies between the log and trans-
action managers. In fact, it is possible to use the transaction manager without the log manager (although the
value of doing so is dubious). Without the log manager, the transaction manager still, for example, main-
tains the transaction control block, including the transaction identifier (which is useful to the lock man-
ager), but does not UNDO or REDO transactions.

Component Semantics
log [xact : XACT, log : DS,

log_anchor : DS] : XACT
The default log manager. Synchronously flush 
log but not log anchor at commit_xact().

log_async [xact : XACT, log : DS,
log_anchor : DS] : XACT

The asynchronous log manager. Do not flush log 
or log anchor at commit_xact().

log_sync [xact : XACT, log : DS,
log_anchor : DS] : XACT

The synchronous log manager. Synchronously 
flush log and log anchor at commit_xact().

Figure 5.15  Log manager components.

13.P2 has previously been combined with the Texas uniprocess persistent store [Sin92, Jim98].
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decision to use operation logging does not exclude the possibility that we may implement

page-based logging in a future log manager.

Operation logging has two fundamental problems: partial actions and action con-

sistency [Gra93b]. The partial action problem is that individual operations are not atomic

and may fail in the middle and need to be undone. This is not a problem in P2, because all

such failures are fatal, and thus are not undone, but rather redone at restart. The action

consistency problem is that at restart we don’t know the order in which the state changes

made by an individual operation became persistent. This is not a problem in P2, because

we can always REDO the entire log from the last init_cont()  operation.

The declaration of the log manger’s internal containers are shown in Figure 5.16.

The log anchor maintains the state of the log. This state includes the sequence number

typex  {
log_typex = top2ds[container_structure[

slist_queue[malloc[mmap_persistent]]]];
log_anchor_typex = top2ds[init_cont_function[container_structure[

mmap_persistent]]];
}

// Log file index.
// This is stored in mmap memory to make sure this process has the
// most recent log file in mmap memory.
typedef struct {

LSN_INDEX index;
} LOG_CONT_INDEX;

typedef struct {
semaphore  lock; // Log lock semaphore regulating log write access.
LSN_INDEX index; // Sequence number of current log file.
LSN lsn; // LSN of next record.
LSN prev_lsn; // LSN of most recent record.
LSN xact_manager_anchor_lsn;  // xact mgr’s most recent checkpoint
LSN persist_lsn; // Max LSN recorded in durable storage.

} LOG_ANCHOR;

container  <LOG_STRUCT> stored_as  log_typex with {
container_structure “LOG_CONT_INDEX”;
mmap_persistent file is “/tmp/log-data” with size LOG_SIZE;

} log_cont;

container  <LOG_ANCHOR> stored_as  log_anchor_typex with {
init_cont_function “init_log_anchor”;
container_structure “LOG_ANCHOR”;
mmap_persistent file is “/tmp/log-anchor-data”

with size SIZEOF_ELEMENT_LOG_ANCHOR_CONT;
} log_anchor_cont;

Figure 5.16  Log manager internal container declarations.
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(from which we can derive the name) of the current log file, the log sequence numbers of

the next and most recent log records, checkpoint information, and the log lock: an exclu-

sive semaphore protecting access to the log. Note that, once written, log records do not

change, so only writes to the log anchor and the end of the log need to acquire the log lock.

For example, log_insert() , which writes log records, needs to acquire the log lock; and

log_read_lsn() , which reads log records, need not acquire the log lock.

The log is a container of log records. Each log record contains either the informa-

tion needed to UNDO or REDO a particular operation, or the transaction manager anchor.

Except for some standard header fields, each log record has a different length and internal

structure, depending on the particular operation or anchor. Thus, a log record is a union.

Unfortunately, P2 does not allow elements to have any type other than struct. Thus, we

declare a log record to be the struct of the type LOG_STRUCT, which besides the standard

header fields, is mainly a large P2 varchar field. When necessary, we cast log records to

the union of the type LOG_UNION. Each field of the union is a struct specific to a particular

operation or anchor. Figure 5.17 shows the declarations of LOG_STRUCT and LOG_UNION.

// Standard header fields.
#define LOG_FIELDS \

LSN lsn; \
LSN prev_lsn; \
XACT_ID xact_id; \
LSN xact_prev_lsn; \
OP_CODE op_code

// Struct.
typedef struct {

LOG_FIELDS
varchar v[LOG_STRUCT_VARCHAR_SIZE];

} LOG_STRUCT;

// Union
typedef union {

XACT_LOG_STRUCT x; // schema (a.k.a., transaction) ops.
CONT_LOG_STRUCT k; // Container operations.
INSERT_DELETE_LOG_STRUCT i, d; // insert(), delete()
SWAP_LOG_STRUCT s; // swap()
INT_UPD_LOG_STRUCT ui; // upd() of an int field.
STR_UPD_LOG_STRUCT us; // upd() of a str field.
XACT_MANAGER_ANCHOR_LOG_STRUCT a;// Transaction manager anchor.

} LOG_UNION;

Figure 5.17  Log record.



94

The log records every operation that changes the schema state: the contents of

either individual containers or the schema as a whole. REDO using operation logging is

trivial: we just perform the same operation again. Figure 5.18 shows for every logged

operation a corresponding UNDO operation (if applicable), and the log record struct used

to store the UNDO and REDO information for that operation. The log manager requires

the operation vector manager to locate the operations to implement UNDO and REDO.

The design rule that the log manager requires the generic_init  component (see

Figure 5.4) is due to the fact that the operation vector manager, in turn, requires the

generic_init  (or conceptual ) component.

There is only one schema, and schema operations have no other arguments. Thus, 

for schema (a.k.a., transaction) operations, the log manager needs to record only the fact

that the operation was performed. Figure 5.19 shows the declaration of XACT_LOG_STRUCT

which is used to store this information.

DO UNDO Log record type
init_schema() XACT_LOG_STRUCT
open_schema() XACT_LOG_STRUCT
close_schema() XACT_LOG_STRUCT
checkpoint_schema() XACT_LOG_STRUCT
begin_xact() XACT_LOG_STRUCT
commit_xact() XACT_LOG_STRUCT
abort_xact() XACT_LOG_STRUCT
init_cont CONT_LOG_STRUCT
open_cont close_cont() CONT_LOG_STRUCT
close_cont() open_cont() CONT_LOG_STRUCT
delete() insert() DELETE_LOG_STRUCT
insert() delete() INSERT_LOG_STRUCT
swap() swap() SWAP_LOG_STRUCT
upd() upd() INT_UPD_LOG_STRUCT  if the updated field is an int .

STR_UPD_LOG_STRUCT if the updated field is a str .

Figure 5.18  Logged operations.

typedef struct {
LOG_FIELDS

} XACT_LOG_STRUCT;

Figure 5.19  Schema operation log structure: XACT_LOG_STRUCT.
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There may be multiple containers, but container operations have no other argu-

ments. Thus, for container operations, the log manager needs to record only the identity of

the container. We do this by recording both the operation vector manager’s internal identi-

fier for the container, and the object identifier (address) of the container. Note that record-

ing both of these fields is possibly redundant. But container operations are performed so

rarely (compared to cursor operations) that the increased log bandwidth and decreased

performance created by this redundancy was deemed insignificant. Figure 5.20 shows the

declaration of CONT_LOG_STRUCT which is used to store this information.

The log manager does not need to record every cursor operation, only those that

change the schema state. Except for some standard header fields, for each such operation,

the log manager records different information. The insert()  and delete()  operation are

opposites. To REDO an insert()  or UNDO a delete()  operation, we re-insert() the

element; thus we must log the object identifier of the element. To REDO a delete()  or

UNDO an insert()  operation, we re-delete()  the element; thus we must log the con-

tents of the element. INSERT_DELETE_LOG_STRUCT is used store the information. To REDO

a swap()  operation, we re-swap()  the elements; to UNDO a swap()  operation, we un-

swap()  the elements; thus we must log the object identifiers of the elements.

SWAP_LOG_STRUCT is used to store this information. To REDO an upd()  operation, we re-

upd()  the element; thus we must log the new value of the field. To UNDO an upd()  oper-

ation, re un-upd()  the element; thus we must log the old value of the field. This informa-

tion depends on the type of the field. INT_UPD_LOG_STRUCT and STR_UPD_LOG_STRUCT

store this information, for fields of type int  and str , respectively. Figure 5.21 shows the

declaration of these structs.

typedef struct {
LOG_FIELDS
CONT_ID cont_id; // Operation vector manager’s container identifier.
void *cont_obj_id; // Container object identifier.

} CONT_LOG_STRUCT;

Figure 5.20  Container operation log structure: CONT_LOG_STRUCT.
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The insert()  operation assumes that all elements have the same size. This is not

the case for log records. We could, of course, have the insert()  operation assume that all

log records have the maximum possible size. This would work correctly, but would sub-

stantially increase log size and decrease performance. The I/O system bandwidth required

by the log manager is often the bottleneck for DBMS performance, especially in systems

with high update rates, such as the TPC-B benchmark (see Section 5.4.1). In order to

increase efficiency, we added the insertv()  operation. This operation takes a parameter

that specifies the size of the element.

As a further optimization, insertv()  takes an additional parameter that specifies

the size of the prefix of the element to copy upon insert. We use this prefix size parameter

as an optimization to avoid unnecessary copying of data. Instead of copying the data into

the element to be inserted, only to have the data (automatically) copied again out of the

element by the insert()  operation, the log manager uses the insertv()  operation, and

the log manager (manually) copies the data after calling insertv() .

#define CURS_LOG_FIELDS \
LOG_FIELDS; \
CURS_ID curs_id; \ // Operation vector manager’s cursor identifier.
void *obj_id; \ // Object identifier.

typedef struct {
CURS_LOG_FIELDS;
varchar v[LOG_STRUCT_VARCHAR_SIZE];

} INSERT_DELETE_LOG_STRUCT;

typedef struct {
CURS_LOG_FIELDS;
void *obj_id1; // Object identifier.
CURS_ID curs_id1; // Operation vector manager’s cursor identifier.

} SWAP_LOG_STRUCT;

typedef struct {
CURS_LOG_FIELDS;
int int0; // Old value.
int int1; // New value.

} INT_UPD_LOG_STRUCT;

typedef struct {
CURS_LOG_FIELDS;
varchar v[LOG_STRUCT_VARCHAR_SIZE]; // Old and new values.

} STR_UPD_LOG_STRUCT;

Figure 5.21  Cursor operation log structures: INSERT_DELETE_LOG_STRUCT, 
SWAP_LOG_STRUCT, INT_UPD_LOG_STRUCT, and STR_UPD_LOG_STRUCT.
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The log may grow too large logically and/or physically to fit into a single file.

Thus, the log is spread across several sequentially-numbered log files. When one file

becomes full, we begin writing to a new file. The log manager treats files as separate

finite-size containers, even though the log is conceptually a single infinite-size container.

Much of the functionality of the log manager is dedicated to explicitly managing the files.

For example, the log manager calls init_cont()  to initialize a new, empty file, and

close_cont()  to close an old, full file.

The semantics of P2 containers and cursors are general enough to allow infinite-

size containers. Thus, upon first glance, we thought it would be trivial to encapsulate in a

P2 component the details of sequentially-numbered log files. Upon closer investigation,

this proved to be too difficult to be practical. Much of this difficulty derived from our early

decision to equate object identifiers and memory addresses (i.e., cursor.obj  is a pointer).

This is a common assumption for main-memory optimized DBMSs and has improved the

performance and simplified the implementation of P2. Unfortunately, memory addresses

are inadequate as object identifiers for log records, since the log can be too large to fit into

the logical address space (4 bytes on most machines). Log records use log sequence num-

bers as object identifiers; log sequence numbers consist of a standard size integer (4 bytes

on most machines) file index together with a memory address (4 bytes on most machines)

within the file (see Section 5.14). Encapsulating sequentially-numbered log files in a P2

component would have required reconciling memory address object identifiers and log

sequence numbers. This would have required a major re-write of much of P2.

By explicitly managing the sequentially-numbered log files in the log manager,

we were able to continue to use memory addresses as object identifiers. And, the only

change necessary was adding the open_cont_number()  operation to the MEM realm. Since

the log manager maintains the index number of the file, we had to provide a means for the

log manager to pass the index to the MEM realm memory manager component (e.g., tran-

sient , mmap_persistent , or mmap_shared ). Since it is not a constant, we could not pass

the index via an annotation. Instead, we added the open_cont_number()  operation, which

takes the index as an argument.
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5.3.5  Operation Vector Manager

Together with the generic_init  (or conceptual ) component, the operation vector man-

ager persistently maintains the association of cursor identifiers with operation and opera-

tion name vectors.

An operation vector is an association between operation identifiers and the

address of the functions that implement those operations. As explained in Chapter 3, oper-

ation vectors are analogous to virtual function tables in C++ [Ell90], and are used to

implement the generic_container  and generic_cursor  data types, which permit

the use of polymorphic procedures.

An operation name vector is analogous to an operation vector, except it associates

operation identifiers and the names of those functions. Operation name vectors are used to

print the log in human readable format.14

UNDO and REDO are polymorphic; thus they require operation vectors. They

may be invoked by different programs or different invocations of the same program (for

recovery); thus the operation vectors must be persistent. The operation vector manager

automatically initializes and persistently maintains operation vectors.

The operation vector manager consists of the component shown in Figure 5.22.

The operation vector manager’s internal container declarations are shown in

Figure 5.23. The hash_array_overwrite  component is appropriate in this type expres-

sion, because a new operation or operation name vector with the same cursor identifier as

an old vector always obsoletes the old one, and may thus overwrite it.  

14.The compile-time switch PRINT_LOG is used to turn on/off the operation name vector functionality.
Because of the high cost of this functionality, we usually compile P2 with this functionality disabled.

Component Semantics
op_vec [process : PROCESS, op_vec : DS,

op_name_vec : DS] : XACT
Operation vector manager.

Figure 5.22  Operation vector manager component.
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5.4  Methodology

We compared Smallbase and P2 using a modified version of the TPC-B benchmark. This

version of the benchmark was written by the implementors of Smallbase as the measure of

the performance of their system, thus it provides a fair basis for comparison.

5.4.1  Standard TPC-B benchmark

The standard TPC-B benchmark [Gra93a] is characterized by significant disk

input/output, moderate system and application execution time, and transaction integrity.

The benchmark uses an integer update workload. The benchmark is not on line transaction

processing (a.k.a., OLTP) because it does not require terminals, network, or think time.

typex  {
op_vec_typex = top2ds_qualify[hash_array_overwrite[transient]];
op_name_vec_typex = top2ds_qualify[hash_array_overwrite[mmap_persistent]];

}

// Operation vector.
typedef int (**OP_VEC)();

typedef struct {
CURS_ID id;
OP_VEC op_vec;

} OP_VEC_STRUCT;

container  <OP_VEC_STRUCT> stored_as  op_vec_typex with {
hash_array_overwrite key is id with size MAX_OP_VEC;

} head_cont;

#if defined(PRINT_LOG)

// Operation name vector.
typedef char OP_NAME_VEC[MAX_OP_ID][100];

typedef struct {
CURS_ID id;
OP_NAME_VEC op_name_vec;

} OP_NAME_VEC_STRUCT;

container  <OP_NAME_VEC_STRUCT> stored_as  op_name_vec_typex with {
hash_array_overwrite key is id with size MAX_OP_VEC;
mmap_persistent file is “/tmp/op-name-vec-data”

with size MMAP_PERSISTENT_SIZE;
} op_name_vec_cont;

#endif // PRINT_LOG

Figure 5.23  Operation vector manager internal container.
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The benchmark is stated in terms of a hypothetical bank with one or more

branches, each with 10 tellers, and 100,000 accounts. The number of branches of the bank

is known as the scale factor, which must be at least as high as the number of transactions

per second (TPS) that a system claims to perform. The system maintains the cash balance

for each branch, teller, and account. Each branch, teller, and account element must have a

size of at least 100 bytes. The system must also maintain a history table which records the

transactions performed. Each history element must have a size of at least 50 bytes. Thus,

the database must have a size of at least 100 + 10*100 + 100,000*100 + 50 = 10,001,150

bytes or approximately 10 MB per TPS. The schema is shown in Figure 5.24. The logical

relationships among the branch, teller, account, and history tables are shown in

Figure 5.25. The declaration of the branch, teller, account, and history structures is shown

in Figure 5.26. The abbreviated declaration of the TPC-B containers is shown in

Figure 5.27; we have omitted the container annotations for perspicuity. Note that the only

difference in the type expressions for the multiple and single-user cases is that the former

requires protocol and process managers, while the latter doesn’t. Since the

protocol_smallbase  protocol manager is used, no lock manager is necessary (see

Figure 5.4).

Figure 5.24  TPC-B schema.

Account Account_ID Branch_IDAccount_Balance

Teller Teller_ID

Branch

History Account_ID Teller_ID Branch_ID Amount Time_Stamp

Branch_IDTeller_Balance

Branch_ID Branch_Balance
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Figure 5.25  TPC-B entity/relationship diagram showing the logical relationships 
among branch, teller, account, and history tables, where N is the scale factor.

typedef struct {
float BALANCE;
int NUMBER;
char FILLER[80];
unsigned char FILLER_nb;
unsigned char SYS_fill[3];

} BRANCHES_t;

typedef struct {
float BALANCE;
int NUMBER;
int BRANCHNUM;
char FILLER[84];
unsigned char FILLER_nb;
unsigned char SYS_fill[3];

} TELLERS_t;

typedef struct {
float BALANCE;
int NUMBER;
int BRANCHNUM;
char FILLER[80];
unsigned char FILLER_nb;
unsigned char SYS_fill[7];

} ACCOUNTS_t;

typedef struct {
float DELTA;
int TELLERNUM;
int BRANCHNUM;
int ACCOUNTNUM;
int TIMESTAMP;
char FILLER[24];
unsigned char FILLER_nb;
unsigned char SYS_fill[7];

} HISTORY_t;

Figure 5.26  Branch, teller, account and history structures.

Branch

Teller Account

History

1:10 1:100,000

1:N

1:N1:N



102

Each transaction can be represented by the 6 SQL statements: 3 updates, 1 select,

1 insert, and 1 commit as shown in Figure 5.28 [Hey95]. The transaction has four parame-

ters: Account_ID, Teller_ID, Branch_ID, and Delta. These parameters are generated ran-

domly with a uniform distribution. The Teller_ID must always belong to the Branch_ID.

The Account_ID should belong to the Branch_ID with a probability of 0.85 and to a dif-

ferent branch with a probability of 0.15. The Delta should be in the range [-999999,

+999999]. The ACID properties must be supported. The benchmark must run for at least

15 minutes. 

5.4.2  Modified TPC-B Benchmark

The modified TPC-B benchmark was adapted to Smallbase by the implementors of Small-

base. It differs from the standard benchmark in two fundamental ways. First, Smallbase is

a LWDB, which is able to sacrifice features for performance. As described in 5.1, Small-

base is designed to be able to omit features, including some of the ACID properties, in

order to improve the performance of applications that do not require them.15 Thus, several

of these benchmarks do not provide all of the ACID properties. Second, Smallbase is opti-

// Type expressions.
typex  {
#if defined(MULTI_USER)

indexed_typex =
protocol_smallbase[LOG_LAYER[xact[op_vec[

xact2process[process_smallbase[process2link[link2top[
top2ds[GENERIC_INIT[INDEX_LAYER[ARRAY_LAYER[mmap_persistent]]]]]]]]]]]]

#else // MULTI_USER
indexed_typex =

LOG_LAYER[xact[op_vec[
xact2process[process2link[link2top[
top2ds[GENERIC_INIT[INDEX_LAYER[ARRAY_LAYER[mmap_persistent]]]]]]]]]]

#endif // MULTI_USER
history_typex = top2ds[array[mmap_persistent]];

}

// Schema.
schema  {

container  <ACCOUNTS_t> *accountContainer;
container  <BRANCHES_t> *branchContainer;
container  <TELLERS_t> *tellerContainer;

} stored_as  indexed_typex with {...} s;
container  <HISTORY_t> stored_as history_typex with {...} historyContainer;

Figure 5.27  TPC-B containers.
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mized for databases that are main-memory resident. Thus, the database can not be scaled

by 10 MB per TPS, nor run for the full required 15 minutes, because the database would

overflow physical memory.

We repeated our benchmarks for a variety of DBMS configurations: both single

and multi user, and with a variety of logging methods: no log, asynchronous log, and syn-

chronous log. The single-user database supports a single thread of execution, and thus

does not need to regulate concurrent access to objects. The multiple-user database sup-

ports multiple threads of execution, and thus must regulate concurrent access to objects.

The no log benchmarks do not maintain a log. The asynchronous log benchmarks maintain

a log and write the log to disk at the end of each transaction, but do not wait for this write

to finish before committing. The synchronous log benchmarks maintain a log, write the

log to disk at the end of each transaction, and wait for this write to finish before commit-

ting. Only the synchronous log benchmark implements the full ACID properties. In Small-

base, these configurations are specified by the access and options parameters to the

dbCreate()  operation. In P2, these configurations are specified using the type expressions

in Figure 5.27. These configurations are summarized in Figure 5.29.

15.Smallbase can omit concurrency control, persistence, and logging. Even if logging is included, Smallbase
can flush it from memory to disk asynchronously. If persistence is omitted, then durability is lost. If log-
ging is either omitted or performed asynchronously, then atomicity, consistency, and durability are lost.

(1) UPDATE Account SET Account_Balance = Account_Balance + :Delta
WHERE Account_ID = :Account_ID

(2) UPDATE Teller SET Teller_Balance = Teller_Balance + :Delta
WHERE Teller_ID = :Teller_ID

(3) UPDATE Branch SET Branch_Balance = Branch_Balance + :Delta
WHERE Branch_ID = :Branch_ID

(4) SELECT Account_Balance
INTO :Var
FROM Account
WHERE Account_ID = :Account_ID

(5) INSERT INTO History
VALUES (:Account_ID, :Teller_ID, :Branch_ID, :Delta, :Time_Stamp)

(6) COMMIT WORK

Figure 5.28  TPC-B transaction profile.
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Smallbase uses a fixed indexing method: hash indexes for exact value searches,

and T-trees for range queries. P2 supports a variety of indexing methods. These indexing

methods are specified using the type expressions in Figure 5.27. For each of the configura-

tions in Figure 5.29, we used each of the indexing methods shown in Figure 5.30. These

indexing methods are named after their retrieval component. The hash0  and hash1  index-

ing methods are identical, except that hash0  uses the default hash function, and hash1

uses a hash function that is customized for the TPC-B benchmark: the identity function.

Besides being efficient to compute, the identity function is perfect (i.e., has no collisions)

for the TPC-B benchmark. Thus, we can (and do) use the identify function for the

hash_array_overwrite  indexing method.

Semantics Smallbase P2
Single-user
No log

access = Excl
options = DbPrivate|DbNoLogging

#undef MULTI_USER
#define GENERIC_INIT null
#define LOG_LAYER null

Single-user
Async log

access = Excl
options = DbPrivate

#undef MULTI_USER
#define GENERIC_INIT generic_init
#define LOG_COMPONENT log_async

Single-user
Synch log

access = Excl
options = 
DbPrivate|DbXactDurable

#undef MULTI_USER
#define GENERIC_INIT generic_init
#define LOG_COMPONENT log_sync

Multi User
No log

access = Share
options = DbNoLogging

#define MULTI_USER
#define GENERIC_INIT null
#define LOG_COMPONENT null

Figure 5.29  Experimental DBMS configurations.

Indexing Method P2
red_black_tree #define INDEX_COMPONENT red_black_tree

#define ARRAY_COMPONENT array
hash0 #define INDEX_COMPONENT hash

#define ARRAY_COMPONENT array
hash1 #define INDEX_COMPONENT hash

#define ARRAY_COMPONENT array
hash_array_overwrite #define INDEX_COMPONENT hash_array_overwrite

#define ARRAY_COMPONENT null

Figure 5.30  P2 indexing methods.
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5.5  Results

Figures 5.31, 5.32, and 5.33 show the performance results for single-user benchmark with

respectively no log, an asynchronous log, and a synchronous log. Figure 5.34 shows the

performance results for the multiple-user benchmark with no log.

The single-user configurations are based on the Smallbase program tpcbAp-

iCT.c;  the multiple-user configuration is based on the Smallbase program tpcbApiMU.c .

These programs use the storage manager, rather than the SQL, interface to Smallbase. The

storage manager interface is significantly more efficient than the SQL interface, and much

more similar to P2’s interface. The P2 version of the benchmarks were adapted from the

Smallbase programs by replacing the Smallbase statements with analogous P2 statements.

We used Smallbase version 4.5 and P2 version 1.0 for our benchmarks. Our

benchmarking platform was a HP 9000/770 (single HP-PA 120 MHz processor) machine

with 128 MB of physical memory running HP-UX version 10.20. We compiled the

Figure 5.31  Modified TPC-B Benchmark: Single-user, No Log.
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Figure 5.32  Modified TPC-B Benchmark: Single-user, Asynchronous Log.

Figure 5.33  Modified TPC-B Benchmark: Single-user, Synchronous Log.
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Smallbase benchmarks using the HP-UX C compiler (/bin/cc ) version 10.32.15 with the

options for unlimited optimization: -O +Onolimit , and the P2 benchmarks using the GNU

CC compiler (gcc) version 2.8.1 with the option: -O2 .

This experimental methodology is almost identical to [Hey95]. We ran each

benchmark with a scale factor of 3 (the largest supported by Smallbase). The single-user

no log and asynchronous log configurations consisted of 300,000 transactions; the

synchronous log configuration consisted of 3,000 transactions; the multiple-user

configuration consisted of 30,000 transactions, divided evenly between 4 concurrent

processes (i.e., 7,500 transactions per process, with a maximum of 4 concurrent

transactions). The TPS for the multiple-user configuration is the sum of the TPS for each

individual process. We ran each benchmark 25 times16, once for each of the random

number seeds 1 through 25. Let’s consider each benchmark in turn:

Figure 5.34  Modified TPC-B Benchmark: Multiple-user, No Log.

16.[Hey95] ran each benchmark only 5 times. 
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• For the single-user, no log benchmark, P2 displays significantly better performance

than Smallbase. This benchmark requires only a very lightweight system. Thus,

miscellaneous (e.g., initialization, finalization, updates, transaction management)

and retrieval costs dominate. hash0  is about a factor of 3 faster than Smallbase,

indicating that P2 is able to significantly reduce these miscellaneous costs. We spec-

ulate that the significantly higher miscellaneous costs incurred by Smallbase are due

to vestiges of unnecessary generality. hash_array_overwrite  and hash1  are about

a factor of 4 faster than Smallbase, indicating that more advanced retrieval algo-

rithms are able to further improve performance.

• For the single-user, asynchronous log benchmark, P2 and Smallbase display very

similar performance. This benchmark requires a large amount of system time to

write the log to disk, but since the writes are asynchronous, it need not wait for the

data to be actually, physically written to disk. Thus, system call costs dominate, and

retrieval costs are much less important. hash_array_overwrite , hash1 , hash0 , and

Smallbase all use O(1) hash indices, and have nearly identical performance.

red_black_tree  uses a O(log n) self-balancing tree indices, and has only slightly

lower performance. Note that the performance of this benchmark is very sensitive to

the size of the log. By increasing or decreasing the amount of data written to the log

for each transaction, the performance of this benchmark can be significantly

increased or decreased. For example, [Gra93b] writes the log sequence number of

every record to the log. Although useful as a consistency check, this information can

be recalculated as necessary. Thus, to improve performance, P2 omits this informa-

tion. In the results presented here, both P2 and Smallbase, write 5 log files, of size

about 8 MB each, a total of about 40 MB.

• For the single-user, synchronous log benchmark, P2 displays slightly better perfor-

mance than Smallbase. This benchmark must wait for the log to be actually, physi-

cally written to disk. The mechanical disk latencies are huge, and there is a drastic

reduction in performance. Because of these latencies, retrieval costs are largely
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irrelevant. hash1 , hash0 , and red_black_tree  all have approximately the same

performance. hash_array_overwrite  has slightly higher performance. Smallbase

has slightly lower performance.

• For the multiple-user, no log benchmark, P2 displays slightly better performance

than Smallbase. Both P2 and Smallbase use the same lock implementation (Small-

base latches) and locking protocol (serialize all transactions). Thus, this benchmark

is very similar to the single-user, no log benchmark, except with the significant

overhead due of concurrency control.

Notice that overall, the performance of P2 and Smallbase are remarkably similar. The

results for the various benchmarks vary from nearly 100,000 TPS for the P2

hash_array_overwrite  implementation of the single-user, no log benchmark to less than

25 TPS for the Smallbase implementation of the single-user, synchronous benchmark: a

factor of 4000 difference in performance. Yet, for each benchmark, the best and worst per-

formance for P2 and Smallbase differ by less than a factor of 5. Since they both use gen-

eral-purpose hash indexes, hash0  is most similar to Smallbase. For each benchmark, the

best and worst performance for hash0  and Smallbase differ by less than a factor of 3; for

the benchmarks that perform logging, they differ by only a few percent. Thus, P2 main-

tains performance.

The programmer productivity provided by P2 is at least as high as that of Small-

base, as measured by source code size, compilation times, or ease of customization. The

P2 version of the source code for the modified TPC-B benchmarks is slightly shorter than

the Smallbase version. Due to the high cost of the +Onolimit  option, it takes significantly

longer to compile the executables (LWDBs) for the Smallbase benchmarks than for the P2

benchmarks, which do not use this option. The P2 and Smallbase LWDBs are equally easy

to customize: in Smallbase, customizations are specified via the access and options param-

eters to the dbCreate()  operation; in P2, via type expressions. Thus, P2 maintains produc-

tivity.

Yet it is important to remember that while maintaining performance and produc-

tivity, P2 offers the advantages of GenVoca generation. The purpose of the experiment
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described in this chapter was to test P2’s scalability, not demonstrate these advantages.

Nevertheless, these advantages are readily observable. P2 is significantly more flexible

than Smallbase. Due to its conventional parameterization mechanism, Smallbase can pro-

vide only a limited, pre-defined set of feature choices, and this customization is not per-

formed until run-time. By exploiting GenVoca generation, P2 provides a much broader,

extensible set of feature choices, and performs this customization at compile-time. As the

performance improvements of hash_array_overwrite  and hash1  versus hash0  and

Smallbase hint at, P2’s greater capacity for customization can result in significant perfor-

mance improvements.17 As the performance improvements of hash0  versus Smallbase

show, P2’s run-time customization is more complete, and better able to eliminate unneces-

sary generality. This is also evident by looking at the size of the executables. Smallbase

executables are approximately 2MB in size; P2 executables 200KB. P2 executables are an

order of magnitude smaller, because Smallbase executables are linked with a monolithic,

pre-compiled system which contains significant un-necessary functionality (e.g., an SQL

interpreter and query optimizer).

5.6  Conclusions

The goal of our work is to prove that we can scale a GenVoca generator to produce com-

plex systems, and at the same time maintain good generated code performance and high

programmer productivity.

The goal of this experiment was to reengineer Smallbase as accurately as possible

within the framework of the GenVoca model. We did not attempt to improve upon the

Smallbase algorithms and data structures, as we had done with LEAPS. Rather, we wished

to eliminate differences, in order to isolate the effects of construction methodology on

17.If the purpose of the experiment described in this chapter was to produce the fastest possible system, we
could have introduced algorithmic optimizations, such as group commit [Gra93b] or compression of the
log before writing it to disk. We speculate that these optimizations would produce a performance improve-
ment similar to orders of magnitude improvement produced by the LEAPS hash optimization described in
Chapter 4.
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generated code performance and programmer productivity. If we had achieved our goal

fully, Smallbase and P2 would have exactly the same performance as measured by TPS.

As shown in Section 5.5, the finished Smallbase and P2 systems have remarkably

similar performance. We believe that the slight performance advantage of P2 can be

explained by the differences in construction methodology and how it effects feature cus-

tomization. Smallbase is a single, monolithic, pre-compiled executable, P2 a GenVoca

generator. Customization of features is accomplished at run-time in Smallbase by parame-

ters to the dbCreate()  operation, at compile-time in P2 by type expressions (see

Figure 5.29). Because P2 knows at compile-time what features are needed, it is able to

omit unnecessary features and specialize the implementation of the features that are

needed to maximize performance.

We believe that this experiment demonstrates that we were able to reengineer

Smallbase, and thus scale P2 to generate complex systems, while maintaining perfor-

mance and productivity.
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Chapter 6

Retrospective

In this chapter, we analyze the lessons of P2. We consider the advantages and disadvan-

tages of our implementation, approach, and field; what we did right and what we did

wrong; possibilities and limitations. We proceed from specific (low level) details about the

P2 tool itself, through GenVoca generators, to general (high level) issues concerning

LWDBs.

6.1  P2

P2 was conceived as a “better” Predator (P1) to help us re-engineer LEAPS; we succeeded

in this goal.1 For instance, although we began P2 after P1, we finished re-engineering

LEAPS with P2 before P1. Additionally, we were able to add hash optimizations to P2 that

we were never able to add to P1. As discussed in Chapter 4, these optimizations resulted in

a performance improvement of several orders of magnitude.

Our choice of C as the host language for P2 was the right one at the time, but the

wrong one in retrospect. As discussed in Chapter 3, we chose C as the basis language for

P2, because in 1992 when we began our implementation, it was the only language that sat-

isfied the following criteria: (1) compatible with our target applications (written in C),

1. We had to abandon the P1 prototype because it did not scale to large systems. Although by the standards of
P3 [Bat98b], the component definition facilities of P2 are primitive, P2 represents a significant step for-
ward from P1.
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(2) permits high performance, system-level programming, (3) standardized (as ANSI/ISO

9899-1990), and (4) easy to parse and extend (C grammars were freely available).

If we were to re-implement P2, we could possibly use C++, since it now satisfies

all of these criteria: (1) C++ is a superset of C, (2) C++, like C, permits high performance,

systems level programming, (3) C++ was standardized in 1997 as ISO/IEC FDIS 14882,

(4) several C++ source-to-source translators are now available, for example Sage++ from

Indiana University [Bod94] and the C++ front end from Edison Design Group [Edi98].

But we would probably use P++ [Sin96], since it is a superset of C++ that satisfies all of

these criteria, and in addition provides linguistic features specifically designed to support

the GenVoca model. We would not use IP [Sim95], which satisfies criteria (1), (2), and (4),

but not (3); nor Java, which satisfies criteria (3) and (4), but not (1) and (2).2

6.1.1  ddl

The job of the ddl  translator is to convert type expressions and annotations from the data

definition language (ddl ) to the internal language of the backend. We chose a very struc-

tured DBMS-like language close to English for the ddl  (see Figure 6.1). This has advan-

tages and disadvantages versus a less structured language closer to a programming

language–the approach used for example in DiSTiL [Sma97] (see Figure 6.2) and P3

[Bat98b]. The primary advantage of the P2 ddl  approach is that it makes it easy for users

to read the annotations. The disadvantages of the P2 ddl  approach are (1) that it is difficult

for users to write annotations, and (2) difficult for implementors to design and maintain

the ddl .3

• Annotations. In both ddl  approaches, the user must remember the order that the

parameters are listed in the annotations (e.g., mmap_persistent  requires the param-

eters to be in the order file name, size). But, in the P2 ddl  approach users must also

2. P3 is analogous to P2, but is written in Java using JTS [Bat98b], and therefore does not satisfy criteria (1)
or (2). This is not surprising, because P3 was not designed to reengineer LEAPS or Smallbase.

3. The format of the ddl  actually follows the DBMS approach to annotating schema with pragmas. Thus the
format the ddl  took was not unprecedented (or entirely stupid).
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remember what combinations of keywords proceed each parameter (e.g.

mmap_persistent  requires that “file is ” proceed file name and “with size ” pro-

ceed size). These keywords are extraneous, and have proven to be difficult for users

to remember.

• Design and Maintenance. The P2 ddl  is difficult to design and maintain because it

is a complete translator with its own lexicographical analyzer, parser, and output

language. Thus, every time we add a new type of annotation, we have to add a new

reserved word to the ddl  language, rebuild the entire ddl  system, and hope that are

no conflicts in the grammar. To simplify the design and maintenance of the ddl

translator we implemented it as macro processor with no symbol table that looks for

specific keywords (typex  and with ) and outputs what follows in a fixed format.

Because of the fixed format of the ddl  output language, the ddl  translator has difficulty

handling components with a variable number of annotations. Thus, in many cases, minor

variations of components cannot be specified using annotations (additional parameters to

the component). These variations include for example, optimizations for the case that the

retrieval key is primary. The limitations of ddl  have forced us to embed these variations

into separate components (specializing the component to reflect fixed values of the addi-

// Declaration of type expression C.
typex  {

C = top2ds_qualify[inbetween[dlist[array[mmap_persistent]]]];
}

// Container declaration using type expression C.
container  <PERSON> stored_as  C with  {

array size is 10;
mmap_persistent file is “/tmp/foo” with size 10000;

} faculty_container;

Figure 6.1  Example P2 type expression and annotations.

// Declaration of type expression C.
typeq (PERSON, Dlist(Array(Transient))) C;

// Container declaration using type expression C.
Container (C, (Array(10), Persistent(“/tmp/foo”, 10000))) faculty_container;

Figure 6.2  Example DiSTiL type expression and annotations.



115

tional parameters). Thus, in addition to the original binary tree component

(red_black_tree ), P2 also provides a component (red_black_tree_primary ) special-

ized for the case that the retrieval key is primary.

Because ddl  has no symbol table, it is unable to provide several features that

would have greatly enhanced its usability; for example, static type checking of type

expressions (to catch design errors as soon as possible), type expressions that take other

type expressions as parameters, and forming new type expressions by combining existing

type expressions. For example, see Figure 6.3. In general, we would like the ddl  to be

much more robust and powerful. Ideally, it would combine design rule checking and a

graphical user interface, as do Genesis [Bat88] and P3 [Bat98b].

6.1.2  Design Rule Checking

The job of the design rule checker (DRC) is to identify type expressions that are semanti-

cally incorrect [Bat97a]. Unfortunately, the P2 DRC has two flaws: (1) the implementation

is not properly integrated with the rest of P2 and (2) the paradigm does not allow for con-

sideration of the actual usage of type expressions:

• Integration with the rest of P2. The information that the DRC uses is a system of

attributes invented and encoded by a domain expert. Since the domain expert is

writing rules about combinations of components, he or she must be familiar with the

semantics of all the components and their interactions. If the semantics of any com-

ponent changes, or a component is added to or deleted from the library, the DRC

attributes may need to be modified. To force the updating of a component’s DRC

attributes when the component is changed, the DRC attributes should be encapsu-

typex  {
// Type expression A with static type DS.
A : DS = array[mmap_persistent];
// Type expression B with parameter X.
B[X : DS] : TOP = top2ds_qualify[inbetween[X]];
// Type expression C formed by combining A, B, and dlist. Equivalent to
// C : TOP = top2ds_qualify[inbetween[dlist[array[mmap_persistent]]]]
C : TOP = B[dlist[A]];

}

Figure 6.3  Example of type expression static typing, parameters, and combination.
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lated in the component proper. This is not done in P2. The DRC information from

the components is stored in a separate text file and no language mechanisms force

component implementors to update the DRC information to reflect their changes.

Thus, the P2 DRC information became obsolete soon after is was first implemented.

• Actual usage of type expressions. P2 DRC does not consider the actual usage of type

expressions. For example, consider type expression C shown in Figure 6.1. DRC

decides that type expression C is semantically incorrect only because it does not

contain a delete flag component (e.g. the delflag  or avail  components). In fact,

the correctness of C depends on what cursor and container operations will be per-

formed. C is correct for some operations, but C is incorrect for the delete()  opera-

tion (the only operation that requires a delete flag component), incorrect for the

insertv()  operation (not supported by the array  component), incorrect for the

cardinality()  operation (only supported by the cardinality  component), and

even with a delete flag component, incorrect if we are going to be performing the

delete()  operation inside of a loop (red_black_tree  is unstable, instead of it, we

need to use the component red_black_tree_stable ). Somehow, DRC needs to

consider what operations will actually be performed. Note that this problem is anal-

ogous to the problem pb has with increased code size due to proceduralized4 opera-

tions that are never used (see Section 6.1.4). One solution to this problem is to

generate DRC errors only when the code for a particular operation is generated.

This solution is used in DiSTiL. This solution will not solve this problem entirely,

since the code for a particular operation may be generated but never executed. Nev-

ertheless this would make DRC much more accurate. Another solution to this prob-

lem would be to allow users to cast the realm of the type expression to an

appropriate super-realm that reflects the operations that will actually be performed5.

This solution works well, except that the number of super-realms is exponential in

the number of operations, so a more powerful realm notation is required.

4. To proceduralize (a.k.a., outline) is to put code into a separate function body; it is the opposite of inline.
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6.1.3  xp

The job of the xp  translator is to convert component definitions from the component defi-

nition language (xp ) to the internal language of the backend. The concept of a component

definition language is perhaps the most valuable contribution of P2. xp  helped us define

both the problems and promise of component definition languages. xp  results in an order

of magnitude productivity improvement for component definition, but because of its inel-

egant implementation, still falls short of its potential by an order of magnitude. 

Previous GenVoca generators such as Genesis [Bat88] and P1 [Sir94] had no com-

ponent definition language; that is, components were written by hand, in an ad hoc man-

ner. Lack of a component definition language was not a major problem in Genesis, which

is compositional; that is components specify application code directly. But lack of a com-

ponent definition language became a major problem in P1, which is generational; that is,

components specify the code that generates the application code. This extra level of indi-

rection is a major conceptual hurdle for the component implementor. For example,

Figure 6.4 shows hypothetical source code for the adv()  operation of a singly-linked list

written in a compositional system. Figure 6.5 shows analogous source code written in a

generative system. Notice that the printf()  obscures the source code that it produces. In

addition, none of the type checking or function definition and invocation facilities of the

host language can be used until the application code is generated.6

A primary goal of xp  is to make the source code of the generative system at least a

simple as that of a compositional system, and allow type checking and function definition/

invocation facilities to be used. Figure 6.6 shows the actual xp  source code for the adv()

5. The notion of sub-realms is discussed in [Bat97a] as a means to formalize subjectivity. There, by analogy
to the object-oriented notion of sub-classes, a sub-realm is a superset of an existing realm; that is, a sub-
realm adds operation(s) to the existing realm. Here, a super-realm is a subset of an existing realm; by anal-
ogy to the object-oriented notion of super-classes, a super-realm is subset of an existing realm, that is
super-realm removes operation(s) from the existing realm.

6.  The use of code templates in DiSTiL and JTS/P3 provides an elegant means of supporting generation, and
allows a single language to support both component definition and use. A code template converts a code
fragment into an internal representation (e.g., abstract syntax tree). Code templates combine tree construc-
tors (analogous to backquote in LISP) with escapes (analogous to comma a.k.a., unquote in LISP)
[Bat98a].
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operation of the singly-linked list component, slist . Notice how the actual xp  source

code is very similar to the example compositional source code. The differences in the

actual xp  source code are (1) the function return type (void ) and layer name (slist ) can

be is omitted, since xp  knows this information already (they are part of the realm and layer

definition), (2) the explicit call down (type_expression->down[0]::adv(cursor) ) can

be omitted (since this is the default action), and (3) the curly braces ({ ...} ) enclosing the

function definition have been replaced by percent curly braces (%{...%}). These percent

curly braces indicate to xp  that the enclosed source code is a template for code to be gener-

ated, rather than executed, at translation time. Thus, xp  is much better than printf() . But

xp  has many problems that prevent it from fully realizing its potential.

As with the ddl  translator, to simplify the design and maintenance of the xp  trans-

lator, we implemented it as macro processor with no symbol table that looks for specific

keywords (e.g., %{, %}, container , cursor ) and outputs what follows in a fixed format.

xp  does not perform type checking, cannot understand function definition and use, and is

void slist::adv (type_expression, cursor)
{

// Application code added by this component.
cursor.obj = cursor.next;
// Call the adv operation of the next component down.
type_expression->down[0]::adv(cursor);

}

Figure 6.4  Example compositional singly-linked list adv().

void slist::adv (type_expression, cursor)
{

// Generate the application code added by this component.
printf(“(%s).obj = (%s).next\n”, cursor->name, cursor->name);
// Call the adv operation of the next component down.
type_expression->down[0]::adv(cursor);

}

Figure 6.5  Example generative singly-linked list adv().

adv ( cursor )
%{

// Generate the application code added by this component.
cursor .obj = cursor .next;

%}

Figure 6.6  Actual xp singly-linked list adv().
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confused by complex expressions, but is nevertheless able to process a significant subset

of C. When we translated a component (red_black_tree ) from DiSTiL to xp , we found

that because of these limitations, xp  suffers an order of magnitude decrease in programmer

productivity relative to the more elegant component definition language in DiSTiL. We

estimate that xp  nevertheless yields an order of magnitude improvement in programmer

productivity relative to printf() . This estimate is largely subjective, but empirical evi-

dence comes from the fact that xp  typically expands code size by well over an order of

magnitude. That is, the generator code output by xp  is typically well over an order of mag-

nitude larger than the component source code input to xp .

Overall, xp  has taught us several important lessons: (1) the component definition

language should be easy to use, (2) the component definition language should be easy to

modify, (3) component definition and use should be supported in a single, unified lan-

guage, (4) a facility for specifying default implementations of operations is very useful for

component definition languages:

• Ease of use. The ease of using xp  versus printf()  can be seen in the increased size

of the library of P2 versus P1, approximately 75 versus 20 components. But xp  is

more difficult to use than it could be. This difficulty of use can be seen in the fact

that the library is not as big as it should be. We were never, for example, able to get

the AVL tree component to work correctly, despite the fact that we began with cor-

rect source code from the gnu library. Eventually, we gave up on this component

and removed it from the P2 library. We also, for example, have numerous compo-

nents on our “to do” list: tree and list components with dummy head and tail nodes,

2-3 tree, T-tree, B-tree, more sophisticated (e.g. Texas [Sin92]) and less sophisti-

cated (e.g. flatten and write to a file) persistence, compression, encryption, and

more LINK  realm components. Despite the availability of correct source code for all

of these components, the difficulty of using xp  has kept us from translating them to

xp .
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• Ease of modification. The difficulty of modifying xp  has kept us from making the

formal realm interfaces of certain components match their actual semantics. This is

particularly apparent for the XACT and PROCESS realms (see Chapter 5), and particu-

larly disappointing because the design and validation of these GenVoca realms is

one of the primary research contributions of our work.

• Single language for component definition and use. P2 provides separate languages

(xp  and p2) for component definition and use, and this was a major problem. In

many components, we needed to use the p2 language, but could not. In the orderby

components, for example, we need to specify and use cursors over an auxiliary,

sorted container. We implemented this functionality in the .xp  files, but it was very

difficult. As explained in Chapter 5, the lock, log, operation vector, trace, and trans-

action managers also use containers internally. Because of the difficulty of imple-

menting this functionality in xp , we implemented it in .p2  files, which are compiled

outside of the xp  system. In many circumstances, we found ourselves implementing

similar functionality in the xp  and backend translators, or wishing that such func-

tionality existed.

• Default implementation of operations. xp  provides a facility for specifying default

implementations of operations, and this facility has proven very helpful. Without

such functionality, each component would need to implement all of the operations

in its realm, which would greatly expand the size of each component, and necessi-

tate the retrofitting of existing components every time a new operation is added or

renamed. In the DS realms, for example, the most common implementation is to do

nothing and merely call down. Most operations can be given this default. There are

approximately 40 operations in the DS realm, but the average number of operations

per DS component is approximately 12. Thus, the fact that most operations are

defaulted significantly reduces the size of components. Also, adding new operations

and renaming existing operations is very common. In the process of implementing
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the resource managers, for example, we added or renamed 12 operations in the DS

realm alone. The fact that most operations are defaulted in most components saved

us from having to retrofit many layers to reflect these new and renamed operations.

6.1.4  pb

The job of the predator backend (pb) is to integrate the P2 (.p2 ) source translated by ddl ,

with the component (.xp ) source translated by xp , to produce C code. That is, pb is P2’s

code generator. The input to pb is C code with extensions for special data types (e.g., cur-

sors and containers). pb calls the code generated by xp  to generate the code to implement

operations on these special data types. The output from pb is standard C. Thus, pb is basi-

cally a glorified C source-to-source translator. The primary concerns of pb are (1) the

extensions to C that it supports as input code, and the (2) correctness and other properties

of the generated output code: (3) basic properties, (4) query optimization, and (5) code

size:

• Extensions. The extensions to C that pb supports are fairly cleanly integrated into C.

As discussed in Chapter 3, the element, container, cursor, and schema special data

types are first-class; they can be used like any C type. Elements are simply C structs.

Containers, cursors, and schemas are integrated with the C type system by placing

them in the same syntactic category as structures and unions. The only major prob-

lem with the extensions is that pb does not allow extern  container, cursor, and

schema declarations. This limits pb’s ability to support separate compilation–all

code that uses a given container, cursor, or schema must be included in the same

file. The root of this problem is that container, cursor, and schema declarations may

cause pb to call code generated by xp  to generate other declarations. For example,

when a container has its operations proceduralized (via the generic_funcall  or

named_funcall  components), the container declarations will generate functions to

implement all of the container operations. Or when a schema uses the log compo-

nent, the schema declaration will call the verbatim_s()  operation to generate a

function to implement warm restart. Neither pb or xp  is smart enough to make the
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other declarations extern  when the original declarations are extern . Unfortunately,

it is not clear how to make pb or xp  smart enough to handle extern  container, cur-

sor, and schema declarations without making them much more complicated and dif-

ficult to write.

• Correctness. pb does a fairly good job at generating correct code. pb produces cor-

rect C source-to-source transformations for almost all “real” programs written

entirely in standard C. When pb produces incorrect output, it is almost always for

programs written using the P2 extensions to standard C (e.g., cursors and contain-

ers), or “test” programs designed specifically to break pb. These “test” programs are

typically designed to overflow statically allocated data structures, of which pb has

many. Correct C source-to-source translation turns out to be a more difficult job

than we imagined. Even though we started with a correct C grammar, we wasted a

lot of time doing only a fairly good job. If we had to do it again, we would start with

a complete source-to-source translator, so that we could concentrate on the P2

extensions rather than the basis language.

• Basic properties. pb performs some transformations that are correct but not neces-

sarily desirable. Probably the least desirable is that pb transforms every declaration

with a multiple variable declaring list into multiple declarations with a single vari-

able per declaring list. Figure 6.7 shows an example of such a transformation. This

transformation was required in the original specification, but now serves no purpose

in P2. This transformation is undesirable, because it adds complexity to pb, and

obscures the output code, which makes debugging more difficult. Other transforma-

tions performed by pb serve useful purposes, but are undesirable for the same rea-

sons. Name mangling is necessary to avoid conflicts, but makes symbols hard to

recognize in the output code. Translation by the C pre-processor is necessary to sup-

port macros, separate compilation, etc., but severely obscures the output code by

appending #include  files and eliminating comments. If we were to re-implement

pb we would try to eliminate or reduce these transformations.
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• Query optimization. A LWDB achieves high performance because it is specialized

to the needs of the target application. Because specialization has a cost, pb performs

as much specialization as possible at compile time rather than run time. In fact, pb

even performs query optimization at compile time. Thus, pb ’s query optimizer can

consider only information that is available at compile time, such as type expressions

and qualification predicates; pb can not consider information that is available only

at run time, such as container cardinality and predicate selectivity. pb optimizes

retrievals using only the components specified by the user; pb does not add or

remove components from type expressions to improve application performance7. pb

joins containers in the order they are specified in composite cursors (see Chapter 4),

using the LINK  components specified by the user; pb does not perform any inter-

container query optimization. The savings due to eliminating the cost of run time

query optimization, however, can easily be outweighed by the huge penalty due to

potentially sub-optimal query plans. Most users of P2 so far (us) have been experts

at selecting type expressions and join orders. Thus, we have avoided this penalty.

But in the future, it will be necessary to provide more sophisticated query optimiza-

tion to allow novices to more effectively use P2. The accurate estimate of intermedi-

ate results warrants particular attention, because it greatly effects the cost of the

query.

Original
// Declaration with a multiple variable declaring list.
int i, j, k

Transformed
// Multiple declarations with a single variable per declaring list.
int i;
int j;
int k;

Figure 6.7  Example unnecessary transformation.

7. xp  can add or remove certain components from type expressions to match the number of annotations given
to the component, but not to improve performance.
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• Code size. The code generated by pb is much too large. This is due to three main

problems: pb may (i) link-in unnecessary libraries, (ii) generate functions for unused

operations, and (iii) generate redundant code, especially for predicate testing:

Unnecessary Libraries. After application generation and C compilation, pb

links in a static library. This library includes functionality written directly in

P2 or C, such as the data type (i.e., int  and str ) specific functions (e.g.

int_hash()  and str_hash() ), and the memory mapped persistence and shar-

ing layer (i.e. mmap_persistent  and mmap_shared ) specific helper functions

(e.g. open_mmap_memory()  and new_persistent_var() ). Unfortunately, pb

links in this library with all applications regardless of whether or not they use

any of this functionality. This library is fairly large, so it would be preferable

to have pb link in only the required functionality, either by putting code from

different components into different libraries and keeping track of what com-

ponents were actually used, or dynamically linking the library.

Unused Operations. When a container has its operations proceduralized, pb

generates functions for all operations, regardless of whether or not these

operations are ever used. Note that this problem is analogous to the problem

design rule checking has with illegal but unused operations (see Section

6.1.2). The potential solutions to this problem include those for that problem.

Alternatively, we could declare these functions as inline static , and hope

that the C compiler will be smart enough to optimize-away those functions

that are unused.8

8. The GNU CC compiler, for example, is smart enough to optimize-away such functions. “When a function
is both inline and ‘static ’, if all calls to the function are integrated into the caller, and the function’s
address is never used, then the function's own assembler code is never referenced. In this case, GNU CC
does not actually output assembler code for the function, unless you specify the option ‘-fkeep-
inline-functions ’.” [GNU98]



125

Redundant code. When a container uses certain components (i.e., qualify ,

top2ds_qualify , or inbetween ) P2 generates redundant code, especially for

predicate testing. For example, consider the source code shown in Figure 6.8

(Original) for a cursor with predicate “$.name != ‘Bob’”  and type expression

C (see Figure 6.1). The code generated from this consists of many conditional

and iterative statements involving boolean expressions as shown in

Figure 6.8 (No Optimizations). Upon examination of the generated code, we

often find that these expressions can be simplified, or these statements opti-

mized-away using domain-independent optimizations such as constant prop-

agation, double negation elimination, etc. [Har95] as shown in Figure 6.8

(Domain-Independent Optimizations). We hope that the C compiler will be

smart enough to perform these optimizations. Other optimizations can only

be achieved by application of higher-level, domain-specific (e.g., container

and cursor) semantics such as the optimization shown in Figure 6.8

(Domain-Specific Optimizations) that an adv()  followed by a rev()  has no

net effect. The C compiler will not be able to perform these optimizations.

Both the domain-independent and domain-specific optimizations would

result in significant decreases in code size and increases in application

performance.

6.2  GenVoca

6.2.1  Realms

Our experience with P2 has confirmed what we knew already about decomposability and

domain analysis. It has also confirmed the usefulness of the established realms LINK , TOP,

DS, and MEM, and added to our knowledge the new realms XACT and PROCESS.
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Original
reset_start(cursor);
adv(cursor);
rev(cursor);

No optimizations
// reset_start(cursor);
cursor.obj = (faculty_container).first2;
while (!(cursor.obj == 0) && !(strcmp (cursor.obj->name, “Bob”) != 0))

if (!(cursor.obj == 0))
if (cursor.inbetween && strcmp (cursor.obj->name, “Bob”) != 0)

cursor.inbetween = 0;
else

cursor.obj = cursor.obj->next2;
// adv(cursor);
if (!(cursor.obj == 0))

if (cursor.inbetween && strcmp (cursor.obj->name, “Bob”) != 0)
cursor.inbetween = 0;

else
cursor.obj = cursor.obj->next2;

while (!(cursor.obj == 0) && !(strcmp (cursor.obj->name, “Bob”) != 0))
if (!(cursor.obj == 0))

if (cursor.inbetween && strcmp (cursor.obj->name, “Bob”) != 0)
cursor.inbetween = 0;

else
cursor.obj = cursor.obj->next2;

// rev(cursor);
if (cursor.inbetween && (cursor.obj == 0))

cursor.obj = (faculty_container).last2;
else

cursor.obj = cursor.obj->prev2;
cursor.inbetween = 0;
while (!(cursor.obj == 0) && !(strcmp (cursor.obj->name, “Bob”) != 0)) {

if (cursor.inbetween && (cursor.obj == 0))
cursor.obj = (faculty_container).last2;

else
cursor.obj = cursor.obj->prev2;

cursor.inbetween = 0;
}

Domain-Independent Optimizations
// reset_start(cursor);
cursor.inbetween = 0;
cursor.obj = (faculty_container).first2;
while (cursor.obj != 0 && strcmp(cursor.obj->name, “Bob”) == 0)

cursor.obj = cursor.obj->next2;
// adv(cursor);
if (cursor.obj != 0)

cursor.obj = cursor.obj->next2;
while (cursor.obj != 0 && strcmp(cursor.obj->name, “Bob”) == 0)

cursor.obj = cursor.obj->next2;
// rev(cursor);
cursor.obj = cursor.obj->prev2;
while (cursor.obj != 0 && strcmp (cursor.obj->name, “Bob”) == 0)

cursor.obj = cursor.obj->prev2;

Domain-Specific Optimizations
// reset_start(cursor);
cursor.inbetween = 0;
cursor.obj = (faculty_container).first2;
while (cursor.obj != 0 && strcmp(cursor.obj->name, “Bob”) == 0)

cursor.obj = cursor.obj->next2;
// adv(cursor); rev(cursor); => empty statement

Figure 6.8  Example generated code.
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Even before we began P2, we knew that GenVoca generators are most successful

in mature domains [Bat92]. This is because generators automate software construction,

and it is difficult if not impossible, to automate anything that is not already well-under-

stood. Before implementing a GenVoca generator, one must perform an appropriate

domain analysis, yielding high-level abstractions, standardized interfaces, and layered

decompositions. This domain analysis had already been performed by the implementors of

Genesis and P1 for the LINK , TOP, DS, and MEM realms. Our experience with P2 further con-

firmed the appropriateness of these realms. 

Our experience with P2 leads us to suggest some minor changes to the LINK , TOP,

DS, and MEM realms. For example, the name of the delete()  operation is poorly chosen,

since it conflicts with the delete operator in C++; if we were to re-implement P2, we

would rename it, possibly to remove() . But, for the most part, with the addition of only a

few new operations, these realms proved appropriate for hundreds of applications includ-

ing LEAPS and Smallbase. These additional operations were mostly for performance or

convenience. For example, the insertv()  and allocv()  operations are new to P2, having

been added to support the varchar  data type, which is also new to P2. But the varchar

data type is really just an optimization; we could simulate the functionality of varchar  by

always inserting a record of the largest possible size, although this would impose a signif-

icant performance penalty. Likewise, the cardinality()  operation is new to P2, but is

also just an optimization; we could simulate the functionality of cardinality()  by manu-

ally maintaining a count of the number of elements in the container, although this would

be much less convenient.

The only significant change to the realms that we can suggest is that operations

should be capable of taking a variable number of arguments. This capability is needed to

conveniently and efficiently support multiple versions of an operation. Multiple versions

of an operation are needed when additional features are added. P2 currently provides mul-

tiple versions of several operations. For example, consider the insertion operation. In addi-

tion to the standard insert()  operation, P2 currently provides the insertv()  operation to

support the varchar data type feature. And, we can easily envision many more features for
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the insertion operation. For example, P1 provided a version of the insertion operation that

allowed new elements to be positioned at the beginning of the container, end of the con-

tainer, before the cursor, or after the cursor. There are three ways to provide multiple ver-

sions of an operation. (1) Provide a different operation for each version. This is the

solution P2 currently uses. The problem with this approach is that the number of opera-

tions is exponential in the number of features (the feature combinatorics). It is inconve-

nient for component implementors to maintain more than one version of an operation,

especially when the operation appears in a large number of components. We already expe-

rienced this problem with the insert()  and insertv() operation. (2) Have the operation

take a large number of arguments, and have the user select different versions via these

arguments. The problems with this approach are that it is inconvenient for users to specify

a large number of arguments, and decoding the arguments incurs increased runtime over-

head. (3) Allow operations to take a variable number of arguments. This is convenient for

both component implementors and users, and does not incur any runtime overhead.

The design and validation of the new realms XACT and PROCESS is one of the pri-

mary research contributions of our work; these realms were essential for successfully

reengineering Smallbase. Unfortunately, due to limitations of xp  (see Section 6.1.3), P2

does not implement either of these realms as cleanly as they should be implemented–the

entire PROCESS realm and several operations in XACT were implemented by hand, with-

out using xp. But ignoring the limitations of xp , we believe that our analysis of the XACT

and PROCESS domains was done correctly, and our experiments involving TPC-B have val-

idated this result. Future GenVoca generators with component specification facilities that

are more powerful than xp  should be able to incorporate the XACT and PROCESS realms

with little trouble.

6.2.2  Components

Because P2 provides so many components, it gave us a unique opportunity to observe the

software engineering costs and benefits of GenVoca.9 One of the most interesting observa-

tions we made is that components seem easier to validate than non-componentized soft-
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ware. We observed that, ignoring errors introduced by bugs in xp , the density of errors in

component code is roughly the same as that in hand-written application. Furthermore, we

found that components can be more easily and thoroughly unit-tested than non-componen-

tized software. Plug-compatibility, the same feature that makes components ease to reuse,

also makes them easy to validate. For example, P2 provides over 100 regression tests

which new components can be plugged-into merely by changing a type expression in a

header file. This allows new components to be easily tested in variety of situations, thor-

oughly exercising the component code, and revealing errors that might otherwise remain

latent. For example, these regression tests found an error in the red_black_tree  compo-

nent that had remained latent in the analogous component in DiSTiL, which has a less

extensive set of regression tests.

6.2.3  Generators

P2 is not the largest GenVoca generator, even in the domain of databases (Genesis is about

the same size as P2). But P2 does produce the fastest executables of any generator in this

domain. In fact, P2 produces executables that are several orders of magnitude faster than

heavyweight systems such as Genesis (see Chapter 4) and at least as fast as hand-coded

lightweight systems such as Smallbase (see Chapter 5). Thus, P2 proves that generators

can scale to generate complex, high performance systems while preserving the reuse bene-

fits of increased programmer productivity.

That it would be possible to achieve such high performance was not at all obvious

when we began our work. A key concern was that composing locally optimal code frag-

ments does not imply that their composition will be optimal. Even before we began, we

knew that some things would necessarily be sub-optimal versus hand-coding. For exam-

ple, we knew that P2 would generate unnecessary conditional and iterative statements

with boolean expressions involving predicates, as discussed in Section 6.1.4. Despite these

potential performance problems, however, the actual performance delivered by P2 is very

9. Of course, more rigorous testing is needed to quantify and validate these observations.
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good. Thus the performance of P2 versus hand-coded systems is analogous to the perfor-

mance of high-level languages (such as C) versus assembly language. In high level lan-

guages, it is known that some things are necessarily sub-optimal versus assembly

language. Despite these potential performance problems, however, the actual performance

delivered by high level languages is very good. The reason for this is that these potential

performance rarely arise in practice. In fact, the large productivity gains afforded by high

level languages allow the programmer to worry about high level (i.e. global, algorithmic)

rather than low level (i.e. local, instruction choice) optimizations. The end result is that

programs written in a high level language often use more sophisticated algorithms and

thus have better performance than analogous programs written in assembly language. This

is analogous to how programs written in P2 (e.g. RL using hash-joins) often use more

sophisticated algorithms and thus have better performance than analogous programs writ-

ten by hand (e.g. LEAPS).

6.3  Lightweight DBMSs

LWDBs are clearly an idea whose time has come. The interest in lightweight systems is

evident in the buzz surrounding data structure template libraries, persistent stores, object

oriented DBMSs, main-memory optimized DBMSs, extensible (or open) DBMSs, and

universal servers (see Chapter 2). Lightweight systems can offer huge performance advan-

tages versus heavyweight systems, and huge productivity and performance advantages

versus hand-coded data manipulation functionality. In particular, P2 has shown orders of

magnitude performance improvements versus heavyweight systems, and a factor of three

productivity and orders of magnitude performance improvement versus hand coded data

manipulation functionality. There are, however, problematic issues with lightweight sys-

tems that are currently inhibiting their widespread adoption. These include limits to the

performance improvement that their use can offer and software engineering challenges

inherent to their construction and use. Fortunately, GenVoca techniques give us leverage

to overcome these difficulties, and P2 is a demonstration of a system that does so.
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6.3.1  Performance Improvement Limits

Two factors limit the performance improvement that an application will realize from using

a lightweight system: (1) the fraction of the application that can be enhanced, and (2) of

that fraction, how much it can be enhanced. Both of these limiting factors are best under-

stood in terms of Amdahl’s law, which is shown in Figure 6.9.

Fraction that can be enhanced. A DBMS application sees a performance benefit

from a lightweight (or any enhanced) system in proportion to the fraction of time it spends

in data manipulation, Fraction enhanced . An application that spends only a small fraction

of its time in data manipulation code will realize only a small performance benefit, no

matter how much the enhanced system can speed-up that code, Speedup enhanced . An

application such as LEAPS that spends a large fraction of its time in data manipulation

code, on the other hand, will realize a large performance benefit.

How much that fraction can be enhanced. A lightweight system achieves high

performance by omitting and/or specializing features. An application that uses many fea-

tures and does not allow many features to be specialized will not realize much perfor-

mance benefit, Speedup enhanced , from using a lightweight system. Some features are

particularly expensive. For example, consider the TPC-B benchmark of Chapter 5. When

the benchmark was implemented using no logging, the indexing strategy was the major

factor in execution time. When this benchmark was implemented with the synchronous

logging feature, this cost of synchronous logging dominated the cost of execution to a very

large extent, and specializations to the indexing strategy were largely irrelevant.

Figure 6.9  Amdahl’s Law.

Speedup overall  = 
(1 - Fraction enhanced ) + 

Fraction enhanced

Speedup enhanced

1
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6.3.2  Software Engineering Challenges

There are several software engineering challenges inherent to the construction and use of

lightweight systems: (1) feature combinatorics, (2) difficulty of customization, (3) non-

standard interfaces, and (4) economic and societal issues. These difficulties are in addition

to the quite formidable difficulties inherent in to the construction of DBMSs in general:

• Feature combinatorics. The feature combinatorics problem for lightweight systems

is the same as the feature combinatorics problem for software libraries: different

systems embody different combinations of features. An exponential number of dif-

ferent systems must be available in order to exactly satisfy the needs of every possi-

ble application.

• Difficulty of customization. Extensible (or open) DBMSs, and universal servers

attempt to solve the feature combinatorics problem by allowing users to add exten-

sions as required. For the highest possible performance, however, an LWDB must

be exactly matched to the needs of the target application. Often, the only person

who know these needs is the implementor of the application. Thus, LWDBs must be

customizable by application programmers. Application programmers will custom-

ize an LWDB only if it is very easy to do so. They are not often prepared for the

challenge of implementing an extension. A typical extension may consist of hun-

dreds or thousands of lines of code. And, of course, even when this work is done,

the result of extending a heavyweight system is still a heavyweight system, and it

still suffers the performance problems of generality.

• Non-standard interfaces. Implementors of any system, including data management

systems, tend to create an API that is specific to the particular functionality pro-

vided by the system. This is very natural, and everyone does it. But this has disas-

trous consequences for the user–switching to a different system requires re-writing

the application in terms of the new interface. Users often get stuck with the first sys-

tem they choose, rather than being able to experiment with various systems in order

to find the one that offers the best performance. In the data management domain,

users are aware of the non-standard interfaces problem and other non-compatibility
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problems and thus tend to choose the system with the most features, rather than the

best performance, in order to avoid the problem of choosing another system and re-

writing their application in case it “outgrows” their original system. Universal serv-

ers are the ultimate expression of this problem, providing systems that can grow

with the application.

• Economic and societal issues. The greatest difficulties with the construction and use

of lightweight systems are economic and societal. The construction of a DBMS

requires a huge investment. For example, P2 represents approximately ten years of

programmer time, yet it is a research system, consisting of only one hundred thou-

sand lines of code. Commercial DBMSs comprise millions of lines of code, and

hundreds of years of programmer time. Since a DBMS represents such a huge

investment, its cost must be amortized by marketing to as many customers and for

as many applications as possible. Each potential customer or application demands a

single DBMS that can provide all these features, and the union of all these sets of

features is a very heavyweight system. Thus, these economic and social issues cause

the construction and use of increasingly heavyweight systems.

6.3.3  GenVoca and P2 Solutions

The LWDB domain is ideally suited to GenVoca techniques10. The DBMS domain is very

mature and inherently yields the high-level abstractions, standardized interfaces, and lay-

ered decompositions necessary for GenVoca generator construction. And GenVoca tech-

niques are ideally suited to the LWDB domain. GenVoca techniques give us leverage to

overcome the software engineering challenges inherent to the construction and use of

lightweight systems. P2 serves as a demonstration of a system that does so:

10.Some researchers have suggested that, other than network protocols (the Voca in GenVoca), their are pre-
cious few domains to which GenVoca is so ideally suited. But, this research is solely concerned with the
LWDB domain, so we do not attempt to refute them here.
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• Feature combinatorics. The GenVoca solution to the feature combinatorics problem

for lightweight systems is the same as the solution for software libraries: encapsu-

late exactly one feature per component and combine components to generate sys-

tems with the desired features. In this way, a linear number of components is all that

is needed to generate an exponential number of systems.

• Difficulty of customization. The GenVoca mechanism of feature specification via

type expressions greatly ameliorates the difficulty of customization problem. Type

expressions permit the extreme ease of customization needed by application pro-

grammers. A typical type expression consists of a single line of code. The support-

ing tools that we developed, such as design rule checkers, graphical user interfaces,

and design wizards [Bat98b] make customization even easier. Of course, the only

customizations that can be accomplished via type equations are those that use exist-

ing components, so GenVoca techniques do not completely eliminate the difficulty

of customization problem. But P2 provides a fairly large library of existing compo-

nents, and this greatly reduces the chances that users will have to write new compo-

nents. In the eventuality that users will have to write new components, P2 provides

mechanisms (xp ) that greatly simplify component construction.

• Non-standard interfaces. GenVoca components have standardized interfaces (that

is, the realms XACT, PROCESS, LINK , TOP, DS, and MEM). All the lightweight systems

that P2 can generate use these standard interfaces. All the lightweight systems that

P2 can generate comprise a very large family of systems. Thus, P2 goes a long way

toward ameliorating the non-standard interfaces problem, but it does not solve it. P2

cannot generate all systems. Other lightweight systems use different interfaces and

P2 is introducing yet another interface. Important future work is to attempt to pro-

vide for P2 a more industry standard interface, such as SQL. Since SQL is such a

large language, implementing a full SQL to P2 translator was beyond our research

interests.
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• Economic and societal issues. P2 is a significant advance in understanding of light-

weight systems and their construction. Unfortunately, P2 is a research prototype, not

a product. P2 has the problems discussed in this chapter and many known (and, no

doubt, unknown) bugs. Few programmers are prepared to implement a GenVoca

LWDB product, since it requires the rare combination of knowledge of both Gen-

Voca techniques and DBMS internals. Most programmers with knowledge of Gen-

Voca techniques are software engineering researchers; and most DBMS researchers

are concerned with implementing new features (parallel, distributed, multimedia),

not software engineering techniques for re-packaging old ones. Thus, a GenVoca

LWDB product is not likely to be developed anytime soon. And few DBMS appli-

cation programmers are brave enough to use a research prototype. But as shown in

Chapters 4 and 5, P2 offers compelling performance and productivity advantages

for those users brave enough to try it.
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Chapter 7

Conclusions

This dissertation described the P2 lightweight DBMS generator. This chapter reviews the

central results of our experimental work, summarizes the primary contributions of our

research, and discusses a few areas of future research and enhancement to P2.

7.1  Results

We draw the following conclusions from the results of our experiments building P2 and

comparing it to the LEAPS compilers and Smallbase LWDB:

• Performance. GenVoca generators can provide better runtime performance than

hand-coding. Our experiments with LEAPS and Smallbase showed that P2 pro-

duced code with runtime performance at least as good as hand-written code when

using analogous algorithms and data structures, and up to several orders of magni-

tude faster when using more advanced algorithms and data structures.

• Productivity. GenVoca generators can provide better programmer productivity than

hand-coding. Our experiments with LEAPS showed that P2 reduced development

time and code size by a factor of three, relative to hand-coding.

• Scale. GenVoca generators can scale to very large systems without sacrificing per-

formance or productivity. In our experiments with Smallbase, we were able to gen-

erate all the features needed by the modified TPC-B benchmark without suffering a

decrease in runtime performance or programmer productivity.
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7.2  Contributions

Our work makes the following contributions:

• LWDB Principles. Developed a comprehensive theory of LWDBs. We unified a

class of disparate systems that are related by the fact that they all achieve high-per-

formance in an analogous manner, and coined the term lightweight DBMS to

describe this class of systems.  See Section 2.3.

• LWDB Construction. Demonstrated that GenVoca generation is well suited to

LWDB construction. Before P2, there were no formalizations, tools, or architectural

support for LWDB construction and thus LWDBs were hand-crafted monolithic sys-

tems that were expensive to build and tune. With P2, LWDBs are much easier to

build and tune. See Section 6.3.

• XACT and PROCESS. Carefully analyzed the LWDB domain, developed the XACT and

PROCESS realms. See Sections 5.2 and 5.3.

• TOP, DS, and MEM. Exercised the data structures and link domains, validated the

LINK , TOP, DS, and MEM realms. See Sections 3.1, 3.2, and 4.1.

• Component Definition Language. Demonstrated advantages of and requirements for

component definition languages: ease of use and modification; single, unified lan-

guage for component definition and use; facility for specifying default implementa-

tions of operations. See Section 6.1.3.

• DRC. Provided a vehicle for design rule checking (DRC) research that researchers

[Bat97a] could use for testing concepts and implementations of DRC. Learned that

DRC should be tightly integrated with the component definition facilities and that

DRC cannot determine the correctness of type expressions without considering their

actual usage. See Section 6.1.2.

• Lock Manager. Implemented a lock manager using the P2 data language. This per-

mitted the lock manager described in Gray and Reuter [Gra93b] to be specified

cleanly and concisely; and the P2 LWDB allowed efficient code to be generated

from this specification. The code given in [Gra93b], combines specification (con-
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tainer of lock requests and a container of lock headers) and implementation (hash

table, singly-linked list). P2 allowed the specification and implementation to be

cleanly separated (the specification via cursor and container operations, and imple-

mentation via type expressions). See  Section 5.3.1 and the Appendix.

7.3  Future Research

Future work will look at how GenVoca generators can be scaled to even larger sizes, while

further increasing programmer productivity and generated code performance.

• Components. Since LWDBs achieve high performance by specializing the imple-

mentation of features to meet the needs of individual applications, building addi-

tional components will yield systems with even higher performance. Building more

components will also allow us to determine if the existing P2 interfaces are general

enough to allow a variety of feature implementations.

• Component Definition Language. The advantages of and requirements for compo-

nent definition languages that P2 has demonstrated have already lead to work on

generation scoping in DiSTiL [Sma96-97] and JTS [Bat98a].

• Formal Semantics. We have not attempted a formal specification of operation

semantics, since we have an informal idea of operation semantics that was adequate

for our purposes. But, a formal specification would be useful for future P2 users and

implementors, and invaluable for further automation such as improved DRC and

automatic selection of type expressions.

• DRC. More work is needed to more tightly integrate DRC with component defini-

tion facilities and to determine the correctness of type expressions from actual

usage.

• Type Expressions. A primary advantage of GenVoca generators relative to other

approaches to reducing the difficulty of software construction is their high degree of

automation. One aspect that has not yet been automated, but seems amenable to
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automation is the selection of type expressions. It seems likely that by combining a

cost model with improved DRC, automated selection of type expressions would be

straightforward [Bat98b].

• Code Size. The code generated by P2 is much too large. Our work has concentrated

almost entirely on optimizing generated code performance. Nevertheless, other

properties of generated code also are important, particularly with the proliferation of

embedded devices. Despite the fact that P2 generated LWDBs are typically smaller

than comparable hand-written systems (e.g. LEAPS and Smallbase), we feel that the

code generated by P2 could be made much more compact.

• Experiments. Many more experiments are needed. We have no illusions that our

experiments with LEAPS and Smallbase are exhaustive. The problem is that reengi-

neering systems the size of LEAPS and Smallbase requires a great deal of work,

both to develop applications using cursor and container operations and to implement

any necessary components.

• Dynamic Optimization. P2 currently does as much as possible statically, at compile-

time. This has the advantages of reducing run-time overhead and being easier to

implement, but the disadvantages of requiring all queries to be known statically, and

not being able to use dynamic information such as relation size or predicate selectiv-

ity. An interesting experiment would be to see if run-time query optimization, per-

haps even with run-time selection of components, could be added to P2 for those

applications that require this functionality without adding run-time overhead for

those that don’t.

• SQL. Adding an SQL front-end to P2 would provide a useful tool, but poses signifi-

cant research and engineering challenges. Perhaps the best advantage to having such

a tool would be that it would allow P2 to support many existing applications without

a large reengineering effort per application. The biggest research challenge might be

to preserve the performance advantages of P2 in the face of the generality entailed

by SQL (e.g., atomic retrieval semantics don’t allow lazy retrieval implementation).

The biggest engineering challenge would be the sheer size of the SQL language.
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Appendix

The P2 Log Manager

Following is the P2 log manager, expressed as a P2 program adapted from [Gra93b]. Note

that we have omitted the symbol name prefix P2_ from the discussion in the previous

chapters (for perspicuity), but have included it here (for completeness).

/* $Id: P2_log-manager.p2,v 45.46 1998/01/20 08:37:00 jthomas Exp $ */
/* Copyright (C) 1998, The University of Texas at Austin. */

/* Recovery log table manager. */

/***********************************************************************/
/*                  Includes.                                          */
/***********************************************************************/

#ifdef HAVE_CONFIG_H
#include “config.h”
#endif

#include <assert.h>    /* assert() */
#include <stdarg.h>    /* va_list */

#include “op-id.h”     /* P2_LOG_BEGIN_XACT_OP */
#include “print-log.h” /* P2_PRINT_LOG */
#include “util.h”      /* P2_MIN */
#if 1
#include “round.h”     /* P2_ROUND_UP */
#endif

#include “P2_paces.h”  /* BOOLEAN */

/***********************************************************************/
/*                  Defines.                                           */
/***********************************************************************/
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/* To store the log anchor, use a container structure (preferred), rather
   than a container with a single element (useful for debugging). */
#if 1
#if !defined(LOG_ANCHOR_CONTAINER_STRUCTURE)
#define LOG_ANCHOR_CONTAINER_STRUCTURE
#endif /* LOG_ANCHOR_CONTAINER_STRUCTURE */
#endif

/* P2_TRACE. */
#if 0
#if !defined(P2_TRACE)
#define P2_TRACE
#endif /* P2_TRACE */
#endif

/***********************************************************************/
/*                  Log and Anchor.                                    */
/***********************************************************************/

#if 1
/* Normal case: use large log_size, for efficiency. */
/* For release/distribution: ~8 MB (1 MB = 1048576) */
#define LOG_SIZE 8000000
#else
/* For debugging: use small log_size, so boundary conditions get
   exercised. */
#define LOG_SIZE 10000
#endif

/* sizeof(element<log_anchor{,_cont})):
     Size of (transformed) log anchor {,container} element. */
#define SIZEOF_ELEMENT_LOG_ANCHOR_CONT sizeof(P2_LOG_ANCHOR)

typex {
  /* If you change log_typex, make sure
     paces/P2_log-manager.h:P2_LOG_STRUCT_DUMMY_SIZE represents the
     total size of fields added by xform. */
  /* The queue layer guarantees that elements will be ordered from
     oldest to newest.  This is useful for printing the log, or
     performing a system restart. */
  log_typex = top2ds[container_structure[
                       slist_queue[malloc[mmap_persistent]]]];

#if defined(LOG_ANCHOR_CONTAINER_STRUCTURE)
  log_anchor_typex = top2ds[init_cont_function[container_structure[
                       mmap_persistent]]];
#else
  log_anchor_typex = top2ds[init_cont_function[array[
                       mmap_persistent]]];
#endif /* LOG_ANCHOR_CONTAINER_STRUCTURE */
}
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/* Log file index. */

/* This is stored in mmap memory to make sure this process has the
   most recent log file in mmap memory. */
typedef struct {
  P2_LSN_INDEX index;
} LOG_CONT_INDEX;

container <P2_LOG_STRUCT> stored_as log_typex with {
  container_structure “LOG_CONT_INDEX”;
  mmap_persistent file is “/tmp/P2_log-data”
    with size LOG_SIZE;
} log_cont;

container <P2_LOG_ANCHOR> stored_as log_anchor_typex with {
  init_cont_function “P2_init_log_anchor”;
#if defined(LOG_ANCHOR_CONTAINER_STRUCTURE)
  container_structure “P2_LOG_ANCHOR”;
#else
  array size is 1;
#endif /* LOG_ANCHOR_CONTAINER_STRUCTURE */
  mmap_persistent file is “/tmp/P2_log-anchor-data”
    with size SIZEOF_ELEMENT_LOG_ANCHOR_CONT;
} log_anchor_cont;

#if defined(LOG_ANCHOR_CONTAINER_STRUCTURE)
#define log_anchor log_anchor_cont
#endif /* LOG_ANCHOR_CONTAINER_STRUCTURE */

cursor <log_cont> log_curs;
#if !defined(LOG_ANCHOR_CONTAINER_STRUCTURE)
cursor <log_anchor_cont> log_anchor;
#endif /* LOG_ANCHOR_CONTAINER_STRUCTURE */

/***********************************************************************/
/*                  Global Variables.                                  */
/***********************************************************************/

/*** These declarations are examples of overhead added by generality. ***/
/*** These are initialized in x/log.xph:init_schema() ***/

/* TRUE iff the log manger layer hash been initialized. */
int P2_log_manager_initialized = 0;
/* Durable or non-durable transaction log manager.
/* (Do or do not flush LOG at commit). */
int P2_log_manager_sync;
/* (Do or do not flush log HEADER at commit). */
int P2_log_manager_anchor_sync;

/***********************************************************************/
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/*                  P2_lsncmp.                                         */
/***********************************************************************/

#ifndef NDEBUG

/* HACK!!! */
/* Analogous to intcmp and strcmp (see paces/P2.h). */
/* Only used in assertions. */

int
P2_lsncmp (P2_LSN lsn1, P2_LSN lsn2)
{
#if 0
  /* Faster?  gcc won’t let us cast a struct to a long. */
  assert(sizeof(P2_LSN) == sizeof(long));
  if ((long) lsn1 < (long) lsn2)
    return(-1);
  else if ((long) lsn1 > (long) lsn2)
    return(1);
  return(0);
#else
  /* Slower?  Field-by-field comparison. */
  if (lsn1.index < lsn2.index
      || (lsn1.index == lsn2.index && lsn1.rba < lsn2.rba))
    return(-1);
  else if (lsn1.index > lsn2.index
      || (lsn1.index == lsn2.index && lsn1.rba > lsn2.rba))
    return(1);
  assert(lsn1.index == lsn2.index && lsn1.rba == lsn2.rba);
  return(0);
#endif
}

#endif

/***********************************************************************/
/*                  Miscellaneous (Local) Procedures.                  */
/***********************************************************************/

/* Operation identifier validity test. */

static BOOLEAN
op_id_valid (P2_OP_ID op_id)
{
  /* Make sure the operation identifier is in the range 0 ... MAX_OP_ID */
  if (op_id < 0 || op_id > P2_MAX_OP_ID)
    return(FALSE);
  return(TRUE);
}

/* Maximum LSN. */
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static P2_LSN
max_lsn (P2_LSN lsn1, P2_LSN lsn2)
{
  if (lsn1.index > lsn2.index)
    return(lsn1);
  else if (lsn2.index > lsn1.index)
    return(lsn2);
  else if (lsn1.rba > lsn2.rba)
    return(lsn1);
  return(lsn2);
}

#ifndef NDEBUG

/* LSN validity test. */

static BOOLEAN
lsn_valid (P2_LSN lsn)
{
  /* Make sure that the given lsn is less than or equal to the LSN of
     the next record. That is, (lsn <= log_anchor.prev_lsn) */
  /* Can we have a stronger test? */
  return(P2_lsncmp(lsn, log_anchor.lsn) <= 0);
}

/* Log record validity test. */

BOOLEAN
P2_log_struct_valid (P2_LOG_STRUCT *x)
{
  /* Make sure x looks like a valid pointer. */
  if (x == NULL || ((unsigned) x) < 8)
    return(FALSE);

  /*** All operations. ***/

  /* Make sure the LSNs are valid. */
#if defined(P2_LOG_STRUCT_LSN)
  if (!lsn_valid(x->lsn))
    return(FALSE);
#endif /* P2_LOG_STRUCT_LSN */
#if defined(P2_LOG_STRUCT_PREV_LSN)
  if (!lsn_valid(x->prev_lsn))
    return(FALSE);
#endif /* P2_LOG_STRUCT_PREV_LSN */
  if (!lsn_valid(x->xact_prev_lsn))
    return(FALSE);

#if defined(P2_LOG_STRUCT_XACT_ID)
  /* If the operation is a cursor operation, then make sure xact_id
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     is valid */
  if ((x->op_code & P2_LOG_NON_CURS_OP) == 0)
    if (!P2_xact_id_valid(x->xact_id))
      return(FALSE);
#endif /* P2_LOG_STRUCT_XACT_ID */

  /* Make sure op_id is valid) */
  if (!op_id_valid(x->op_code & P2_LOG_OP))
    return(FALSE);

  /*** Update operation. ***/

  /* If the operation is an update operation, then make sure it’s also
     a cursor operation. */
  if ((x->op_code & P2_LOG_STR_UPD_OP) != 0)
    if ((x->op_code & P2_LOG_NON_CURS_OP) != 0)
      return(FALSE);

  /*** Return TRUE. ***/

  return(TRUE);
}

int
P2_curs_id_valid (P2_CURS_ID curs_id)
{
  return(curs_id > 0 && curs_id < 10000);
}

int
P2_cont_id_valid (P2_CONT_ID cont_id)
{
  return(cont_id > 0 && cont_id < 10000);
}

#endif /* NDEBUG */

/***********************************************************************/
/*                  Initialize Relative Byte Address.                  */
/***********************************************************************/

/* Return the relative byte address of the 1st log record. */
/* Initialize x and call insertv() explicitly, rather than have
   P2_log_insert() do it for us implicitly. */

static P2_LSN_RBA
init_rba (void)
{
  P2_LSN_RBA r;
  P2_XACT_LOG_STRUCT x;
  int total_size = sizeof(x);
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  assert(total_size >= 0);

  /* Initialize x. */
  /* Is there a more efficient way of doing this, for example,
     make x static, and use an initializer??? (JAT) */
  /* Is this necessary???  Doesn’t P2_log_insert() initialize x? (JAT) */
  /* See analogous code in P2_xact_manager_checkpoint_schema() */
#if 1
  assert(((int) sizeof(P2_XACT_LOG_STRUCT)) <= total_size);
  memset(&x, 0, sizeof(P2_XACT_LOG_STRUCT));
#else
#if defined(P2_LOG_STRUCT_LSN)
  x.lsn = P2_NULL_LSN;
#endif /* P2_LOG_STRUCT_LSN */
#if defined(P2_LOG_STRUCT_PREV_LSN)
  x.prev_lsn = P2_NULL_LSN;
#endif /* P2_LOG_STRUCT_PREV_LSN */
#if defined(P2_LOG_STRUCT_XACT_ID)
  x.xact_id = 0;
#endif /* P2_LOG_STRUCT_XACT_ID */
  x.xact_prev_lsn = P2_NULL_LSN;
#endif
  x.op_code = P2_LOG_INIT_RBA_OP | P2_LOG_OTHER_OP;
  /* Insert x. */
  assert(!overflowv(log_cont, total_size));
  insertv(log_curs, x, total_size, total_size);
  /* Compute RBA. */
  /* Force integer, rather than pointer (aka address), arithmetic. */
  r = (P2_LSN_RBA) (((unsigned) log_curs.obj) + total_size);
  return(r);
}

/***********************************************************************/
/*                  Open log file.                                     */
/***********************************************************************/

static void
open_log_cont (P2_LSN_INDEX index)
{
#if defined(P2_TRACE)
  P2_trace(“*** open log file ***”);
#endif /* P2_TRACE */

  /* Open new log file.  Must do this before we initialize log_curs. */
  open_cont_number(log_cont, index);
  /* Set log file index. */
  log_cont.index = index;
  /* Initialize log_curs. */
  init_curs(log_curs);
}
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static void
close_and_open_log_cont (P2_LSN_INDEX index)
{
  /* Close old log file. */
  close_cont(log_cont);
  /* Open new log file. */
  open_log_cont(index);
}

/***********************************************************************/
/*                  Sync Log and Checkpoint.                           */
/***********************************************************************/

/* Checkpoint. */

void
P2_log_manager_checkpoint_schema (void)
{
  P2_LSN base;
  P2_LSN top;

  base.index = log_anchor.prev_lsn.index;
  if (log_anchor.prev_lsn.index != log_anchor.persist_lsn.index)
  {
    /* Special case: previous checkpoint was a different container. */
    /* base is the beginning of the container. */
    base.rba = 0;
  }
  else
    /* Normal case: previous checkpoint was the current container.  */
    /* base is the previous checkpoint. */
    base.rba = log_anchor.persist_lsn.rba;

  /* top is the end of the log. */
  top = log_anchor.prev_lsn;
  /* Make sure top RBA is zero, or top RBA is base RBA or higher. */
  assert(top.rba == 0 || top.rba >= base.rba);

  /* Synchronize log file. */
  sync_cont(log_cont, base.rba, top.rba, P2_log_manager_sync);

  /* Synchronize log anchor file. */
  if (P2_log_manager_anchor_sync)
    sync_cont(log_anchor_cont, 0, 0, 1);

  /* Start with current durable log as best lsn.  Gray & Reuter, p. 608 */
  P2_low_water = max_lsn(P2_low_water, top);

#if defined(P2_LOG_ANCHOR_STRUCT_PERSIST_LSN)
  /* Update LSN of max (most recent) log record in persistent store. */
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  log_anchor.persist_lsn = P2_low_water;
#endif /* P2_LOG_ANCHOR_STRUCT_PERSIST_LSN */
}

/* Synchronize log file. */

/* Note that P2_log_manager_sync_log() is currently equivalent to
   P2_log_manager_checkpint_schema(), but this is not guaranteed to
   be the case in the future. (JAT) */

void
P2_log_manager_sync_log (void)
{
  P2_log_manager_checkpoint_schema();
}

/***********************************************************************/
/*                  Log insert.                                        */
/***********************************************************************/

/* Return the log record with the given LSN. */
/* Gray & Reuter, p. 501 */
/* Called by paces/P2_xact-manager.p2:P2_init_xact_cb_cont() */

P2_LOG_STRUCT *
P2_log_read_lsn (P2_LSN lsn)
{
  assert(log_cont.index == log_anchor.index);
  if (log_anchor.index != lsn.index)
    close_and_open_log_cont(lsn.index);
#ifndef NDEBUG
  assert(P2_log_struct_valid((P2_LOG_STRUCT *) lsn.rba));
#endif /* NDEBUG */
  return((P2_LOG_STRUCT *) lsn.rba);
}

/* Allocate a new log record and copy the given data into it.
   Copy fixed_size bytes from x, and for each of the narg
   (v, variable_size) pairs in the argument list, copy variable_size
   bytes from v. */

/* The narg (v, variable_size) pairs in the argument list are an
   optimization used, for example, by the insert(), delete(), and
   upd() operations.  Without this optimization, we would pass the
   entire log record in x. The problem with doing so, however, is that
   these operations would then have to copy data twice: once from its
   original location into x, and once from x into the log. */
 
/* Gray & Reuter, pp. 506-507 */

P2_LSN
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P2_log_insert (P2_LOG_STRUCT *x, unsigned fixed_size, int narg, ...)
{
  char *v;
  unsigned variable_size;
  unsigned total_size = fixed_size;
  P2_LSN lsn;

  assert(narg >= 0);
  if (narg != 0)
  {
    va_list ap;
    int i;

    va_start(ap, narg);
    for (i = 0; i < narg; i++)
    {
       v = va_arg(ap, char *);
       variable_size = va_arg(ap, int);
       total_size += variable_size;
    }
    va_end(ap);
#if 1
    total_size = P2_ROUND_UP(total_size, 4);
#endif
  }

  /* Assertions. */
  /* Make sure the log record is not too small. */
  assert(total_size >= (int) sizeof(P2_XACT_LOG_STRUCT));
  /* Make sure the log record is not too big to fit into ANY log file. */
  assert(total_size <= LOG_SIZE);

#if defined(P2_LOG_MANAGER_LOCK)
  /* Aquire the log lock. */
  /* Lock the log end in exclusive mode. */
  if (P2_lock_semaphore(&(log_anchor.lock)) != 0)
    P2_runtime_error(
      “P2_log-manager: P2_log_insert:”
      “ Could not lock log manager mutex lock”);
#endif /* P2_LOG_MANAGER_LOCK */

#if defined(P2_PROCESS_UNIPROCESS)
#ifndef NDEBUG

  /*** Uniprocess: log_cont.index should always == log_anchor.index. ***/

  if (log_cont.index != log_anchor.index)
    P2_runtime_error(“log_cont.index = %d != log_anchor.index = %d”,
                     log_cont.index, log_anchor.index);
#endif /* NDEBUG */
#else
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  /*** Multiprocess: Make sure this process has correct log file. ***/

  /* When another process closes an old log file and opens a new log file,
     this process (sometimes?) retains mappings from the old log file. */
  if (log_cont.index != log_anchor.index)
  {
#ifndef NDEBUG
    /* I included this warning only to see if this code is EVER
       executed.  This condition is in no way anomalous or erroneous,
       it is just rare. (JAT) */
    P2_runtime_warning(
      “P2_log-manager: P2_log_insert:”
      “ log_cont.index = %d != log_anchor.index = %d”,
      log_cont.index, log_anchor.index);
#endif /* NDEBUG */
    close_and_open_log_cont(log_anchor.index);
  }
#endif /* P2_PROCESS_UNIPROCESS */

  /* Make sure the log record is not too big to fit into THIS log
     file, otherwise, close the old log file and open a new one.
     Since this might change the record’s LSN, we must do it before we
     copy the LSN. */
  if (overflowv(log_cont, total_size))
  {
    /* Synchronize log file. */
    P2_log_manager_sync_log();

    /* Increment sequence number of new log file. */
    log_anchor.index++;

    /* Close old log file and open new log file. */
    close_and_open_log_cont(log_anchor.index);

#if defined(P2_LOG_ANCHOR_STRUCT_PERSIST_LSN)
    /* Make sure that (log_anchor.persist_lsn <= log_anchor.lsn) */
#ifndef NDEBUG
    assert(P2_lsncmp(log_anchor.persist_lsn, log_anchor.prev_lsn) <= 0);
#endif /* NDEBUG */
    /* Update LSN of max (most recent) log record in persistent store. */
    log_anchor.persist_lsn = log_anchor.prev_lsn;
#endif /* P2_LOG_ANCHOR_STRUCT_PERSIST_LSN */

    /* Update LSN of next record. */
    log_anchor.lsn.index = log_anchor.index;
    log_anchor.lsn.rba = init_rba();
  }

  /* Make a copy of the record’s LSN. */
  lsn = log_anchor.lsn;
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  assert(lsn_valid(lsn));

  /* Fill-in log record header. */
#if defined(P2_LOG_STRUCT_LSN)
  x->lsn = lsn;
#endif /* P2_LOG_STRUCT_LSN */
#if defined(P2_LOG_STRUCT_PREV_LSN)
  x->prev_lsn = log_anchor.prev_lsn;
  assert(lsn_valid(x->prev_lsn));
#endif /* P2_LOG_STRUCT_PREV_LSN */
#if defined(P2_LOG_STRUCT_XACT_ID)
  x->xact_id = P2_get_xact_id();
#endif /* P2_LOG_STRUCT_XACT_ID */
  /* Allow logging of special operations which are executed outside of
     a transaction.  This allows, for example, init_cont() to be
     executed before begin_xact().  */
  /* This if statement is an example of overhead added by generality. */
  /* Q: Is this a good idea?
     A: No, because it adds un-necessary overhead to the common case.
     A: Yes, because it allows more flexibility in user programs.
        And type expressions (log can be used without xact)??? */
  if (P2_get_xact_id() == 0)
    x->xact_prev_lsn = P2_NULL_LSN;
  else
  {
    x->xact_prev_lsn = P2_log_transaction(lsn);
    assert(lsn_valid(x->xact_prev_lsn));
  }

#ifndef NDEBUG
  /* Make sure that the log record passes the validity test. */
  assert(P2_log_struct_valid(x));
#endif /* NDEBUG */

  /* Insert. */
#if defined(P2_TRACE)
  P2_trace(“pre-insert: log_curs.obj = %x”, log_curs.obj);
  P2_trace(“pre-insert: log_anchor.lsn.index = %d”, log_anchor.lsn.index);
  P2_trace(“pre-insert: log_anchor.lsn.rba = %x”, log_anchor.lsn.rba);
#endif /* P2_TRACE */

  insertv(log_curs, *x, total_size, fixed_size);
  if (narg > 0)
  {
    va_list ap;
    int i;
    va_start(ap, narg);
    for (i = 0; i < narg; i++)
    {
      v = va_arg(ap, char *);
      variable_size = va_arg(ap, unsigned);
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      memcpy((char *) log_curs.obj + fixed_size, v, variable_size);
      fixed_size = fixed_size + variable_size;
    }
    va_end(ap);
  }
  
#if defined(P2_TRACE)
  P2_trace(“post-insert: log_curs.obj = %x”, log_curs.obj);
  P2_trace(“post-insert: log_anchor.lsn.index = %d”, 
log_anchor.lsn.index);
  P2_trace(“post-insert: log_anchor.lsn.rba = %x”, log_anchor.lsn.rba);
#endif /* P2_TRACE */

  /* Cursor and log_anchor.lsn should point to the object we just
     inserted. */
  /* Make sure the LSN is correct. */
  assert(log_anchor.lsn.rba == log_curs.obj);
  /* Make sure the non-variable fields match. */
  /* It is necessary to cast offsetof() (an unsigned) to int, because
     if we don’t cast it to int, and we get a warning when we compare
     it to total_size (an int) (JAT) */
  assert(memcmp(log_curs.obj, x,
    P2_MIN(total_size, (int) offsetof(P2_LOG_STRUCT, v))) == 0);
#if 0
  /* Make sure the varchar field matches??? */
#endif

  /* Update anchor. */
  log_anchor.prev_lsn = lsn;
  log_anchor.lsn.rba += total_size;
#if defined(P2_TRACE)
  P2_trace(“total_size = %x”, total_size);
  P2_trace(“post-update: log_anchor.lsn.rba = %x”, log_anchor.lsn.rba);
#endif /* P2_TRACE */

#if defined(P2_LOG_MANAGER_LOCK)
  /* Release the log lock. */
  /* Unlock the log end. */
  if (P2_unlock_semaphore(&(log_anchor.lock)) != 0)
    P2_runtime_error(
      “P2_log-manager: P2_log_insert:”
      “ Could not unlock log manager mutex lock”);
#endif /* P2_LOG_MANAGER_LOCK */

  /* Return LSN of record just inserted. Needed by
       paces/P2_xact-manager.p2:P2_xact_manager_checkpoint_schema() */
  return(lsn);
}

/***********************************************************************/
/*                  Print log.                                         */
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/***********************************************************************/

#if defined(P2_PRINT_LOG)

#include <stdio.h> /* printf() */

void
P2_print_log_anchor (void)
{
  printf(“Log anchor:\n”);
  printf(“  lock                    = %d\n”, log_anchor.lock);
  printf(“  index                   = %d\n”, log_anchor.index);
#if defined(P2_LOG_STRUCT_LSN)
  printf(“  lsn                     = %u, %x\n”,
         log_anchor.lsn.index, log_anchor.lsn.rba);
#endif /* P2_LOG_STRUCT_LSN */
#if defined(P2_LOG_STRUCT_PREV_LSN)
  printf(“  prev_lsn                = %u, %x\n”,
         log_anchor.prev_lsn.index, log_anchor.prev_lsn.rba);
#endif /* P2_LOG_STRUCT_PREV_LSN */
  printf(“  xact_manager_anchor_lsn = %u, %x\n”,
         log_anchor.xact_manager_anchor_lsn.index,
         log_anchor.xact_manager_anchor_lsn.rba);
#if defined(P2_LOG_ANCHOR_STRUCT_PERSIST_LSN)
  printf(“  persist_lsn             = %u, %x\n”,
         log_anchor.persist_lsn.index, log_anchor.persist_lsn.rba);
#endif /* P2_LOG_ANCHOR_STRUCT_PERSIST_LSN */
}

/* Might want to add validity checks, such as a computation of the
   logical size of the log record, which we can compare with the
   actual size. */
/* This function has type P2_LOG_STRUCT_FUNCTION. */

int
P2_print_log_struct (P2_LOG_STRUCT *x, unsigned log_struct_number)
{
  printf(“Record %u:\n”, log_struct_number);

  /*** Fields for all operations (including transactions) ***/

#if defined(P2_LOG_STRUCT_LSN)
  printf(“  lsn                     = %u, %x\n”,
             x->lsn.index, x->lsn.rba);
#endif /* P2_LOG_STRUCT_LSN */
#if defined(P2_LOG_STRUCT_PREV_LSN)
  printf(“  prev_lsn                = %u, %x\n”,
             x->prev_lsn.index, x->prev_lsn.rba);
#endif /* P2_LOG_STRUCT_PREV_LSN */
#if defined(P2_LOG_STRUCT_XACT_ID)
  printf(“  xact_id                 = %u\n”, x->xact_id);
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#endif /* P2_LOG_STRUCT_XACT_ID */
  printf(“  xact_prev_lsn           = %u, %x\n”,
             x->xact_prev_lsn.index, x->xact_prev_lsn.rba);
  printf(“  op_code                 = %x “, x->op_code);

  /*** Operation-specific fields. ***/

  /* Other (e.g., init_rba) operation. */
  if ((x->op_code & P2_LOG_OTHER_OP) != 0)
  {
    P2_OP_ID op_id = (x->op_code & P2_LOG_OP);
    printf(“(other operation)\n”);
    if (op_id == P2_LOG_INIT_RBA_OP)
      printf(“  op_name                 = init_rba\n”);
    else if (op_id == P2_LOG_XACT_MANAGER_ANCHOR_OP)
      printf(“  op_name                 = xact_manager_anchor\n”);
    else
      printf(“  op_name                 = (unknown other operation)”);
  }
  else
  {
    /* Container operation. */
    if ((x->op_code & P2_LOG_CONT_OP) != 0)
    {
      P2_CONT_LOG_STRUCT *k = (P2_CONT_LOG_STRUCT *) x;
      P2_OP_NAME_VEC *op_name_vec = P2_get_op_name_vec(k->cont_id);
      printf(“(container operation)\n”);
      if ((*op_name_vec) == NULL)
        printf(“  op_name_vec             = NULL\n”);
      else
      {
        P2_OP_ID op_id;
        char *op_name;
        op_id = (log_curs.op_code & P2_LOG_OP);
        if (!op_id_valid(op_id))
          P2_runtime_error(
            “P2_log-manager: P2_print_log_struct: container”
            “ operation identifier invalid: log corrupted?”);
        op_name = (*op_name_vec)[op_id];
        printf(“  op_name_vec             = %x\n”, (*op_name_vec));
        printf(“  op_name                 = %s\n”, op_name);
        printf(“  cont_id                 = %d\n”, k->cont_id);
        printf(“  cont_obj_id             = %x\n”, k->cont_obj_id);
      }
    }
    /* Schema (aka transaction) operation. */
    else if ((x->op_code & P2_LOG_SCHEMA_OP) != 0)
    {
      /* The id of schema is currently always zero. */
      P2_OP_NAME_VEC *op_name_vec = P2_get_op_name_vec(0);
      printf(“(schema operation)\n”);
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      if ((*op_name_vec) == NULL)
        printf(“  op_name_vec             = NULL\n”);
      else
      {
        P2_OP_ID op_id;
        char *op_name;
        op_id = (log_curs.op_code & P2_LOG_OP);
        if (!op_id_valid(op_id))
          P2_runtime_error(“P2_log-manager: P2_print_log_struct: schema”
                           “ operation identifier invalid: log corrupted?”);
        op_name = (*op_name_vec)[op_id];
        printf(“  op_name_vec             = %x\n”, (*op_name_vec));
        printf(“  op_name                 = %s\n”, op_name);
      }
    }
    /* Cursor operation. */
    else
    {
      P2_CURS_LOG_STRUCT *c = (P2_CURS_LOG_STRUCT *) x;
      P2_OP_NAME_VEC *op_name_vec = P2_get_op_name_vec(c->curs_id);
      printf(“(cursor operation)\n”);
      if ((*op_name_vec) == NULL)
        printf(“  op_name_vec             = NULL\n”);
      else
      {
        P2_OP_ID op_id;
        char *op_name;
        op_id = log_curs.op_code;
        if (!op_id_valid(op_id))
          P2_runtime_error(
            “P2_log-manager: P2_print_log_struct: cursor”
            “ operation identifier invalid: log corrupted?”);
        op_name = (*op_name_vec)[op_id];
        printf(“  op_name_vec             = %x\n”, (*op_name_vec));
        if (op_name[0] != ‘\0’)
          printf(“  op_name                 = %s\n”, op_name);
        else
          printf(“  op_name                 = upd %s\n”,
                 ((log_curs.op_code & P2_LOG_STR_UPD_OP) != 0)?
                 “str” : “int”);
      }
      printf(“  curs_id                 = %d\n”, c->curs_id);
      printf(“  obj_id                  = %x\n”, c->obj_id);
    }
  }

  /*** Always return 0. ****/

  return(0);
}



156

void
P2_print_log (void)
{
  P2_foreach_log_struct(P2_NULL_LSN,
    (P2_LOG_STRUCT_FUNCTION *) &P2_print_log_struct);
}

#endif /* P2_PRINT_LOG */

/***********************************************************************/
/*                  Foreach log struct.                                */
/***********************************************************************/

/* For each log record starting with the given lsn, call the given
   function.  That is, map the function f over the records of the log
   starting at the given lsn. */

/* This function exists, because this functionality (1) is needed in
   several places, (2) it is sufficiently complex that proceduralizing
   it improves understandability and maintainability, and (3) the
   places where it is used are the uncommon case, so performance is
   not important enough to justify inlining it. (JAT) */

/* This function is analogous to P2_undo_xact() */

int
P2_foreach_log_struct (P2_LSN lsn, P2_LOG_STRUCT_FUNCTION *f)
{
  P2_LSN_INDEX index = lsn.index;
  P2_LOG_STRUCT *x;
  unsigned log_struct_number = 0;

  close_and_open_log_cont(index);
  if (lsn.rba == 0)
  {
    reset_start(log_curs);
  }
  else
  {
    pos(log_curs, lsn.rba);
  }

  while (index <= log_anchor.lsn.index)
  {
    if (end_adv(log_curs))
    {
      index++;
      close_and_open_log_cont(index);
      reset_start(log_curs);
    }
    else
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    {
      /* Return value. */
      int r;
      /* Get the log record. */
      P2_LOG_STRUCT *x = (P2_LOG_STRUCT *) log_curs.obj;
#ifndef NDEBUG
      /* Check to log record for validity. */
      if (!P2_log_struct_valid(x))
        P2_runtime_error(“P2_log-manager: P2_foreach_log_struct:”
                         “ log struct invalid: log corrupted?”);
#endif /* NDEBUG */
      /* Increment the log record number. */
      log_struct_number++;
#if 0
      /* Print log record before we undo it. */
#if defined(P2_PRINT_LOG)
      if (P2_get_xact_status() == P2_XACT_REDO)
      {
        printf(“REDO: “);
        P2_print_log_struct(x, log_struct_number);
      }
#endif /* P2_PRINT_LOG */
#endif
      assert(f != NULL);
      /* Call the given function. */
      r = (*f)(x, log_struct_number);
      /* If the return value of f is non-0, return the value f returned. */
      if (r != 0)
        return(r);
      /* Advance to next log record. */
      adv(log_curs);
    }
  }
  /* Return 0. */
  return(0);
}

/***********************************************************************/
/*                  Transaction operations.                            */
/***********************************************************************/

/* Convert LSN to pointer to log record. */

static P2_LOG_STRUCT *
lsn_to_log_struct (P2_LSN lsn)
{
  P2_LOG_STRUCT *x;

  /* Make sure that lsn is valid. */
  assert(lsn_valid(lsn));
  /* Cast LSN as a pointer to P2_LOG_STRUCT. */
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  x = (P2_LOG_STRUCT *) lsn.rba;
#ifndef NDEBUG
  /* Make sure that log record is valid. */
  assert(P2_log_struct_valid(x));
#endif /* NDEBUG */
  /* Return log record. */
  return(x);
}

/* Undo or redo the most recent transaction. */
/* This function is analogous to P2_foreach_log_struct() */
/* It is called by x/log.xp:abort_xact() */

void
P2_undo_xact (P2_LOG_STRUCT_FUNCTION *f)
{
  P2_LSN lsn;
  P2_LOG_STRUCT *x;
  P2_LSN_INDEX index = log_anchor.index;

  assert(log_cont.index == log_anchor.index);
  assert(P2_get_xact_status() == P2_XACT_UNDO
         || P2_get_xact_status() == P2_XACT_REDO);

  /* Undo transaction. */
  lsn = P2_get_max_lsn();
  while (!P2_null_lsn(lsn))
  {
    assert(lsn.rba != 0);
    assert(lsn_valid(lsn));
    assert(lsn.index <= index);

    /* If this log record is not in the log file currently in memory,
       then bring in the (old) log file containing the record. */
    if (lsn.index != index)
    {
      index = lsn.index;
      close_and_open_log_cont(index);
    }

    x = lsn_to_log_struct(lsn);

    assert(f != NULL);
#ifndef NDEBUG
    /* Call the undo or redo function. */
    assert((*f)(x) == 0);
#else
    /* Call the undo or redo function. */
    (*f)(x);
#endif /* NDEBUG */
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#ifndef NDEBUG
    /* assert(x->xact_prev_lsn < lsn) */
    assert(P2_lsncmp(x->xact_prev_lsn, lsn) < 0);
#endif /* NDEBUG */

    lsn = x->xact_prev_lsn;
  }

  /* Close the old log file and bring in the current log file. */
  if (index != log_anchor.index)
  {
    close_and_open_log_cont(log_anchor.index);
  }

#if 0
  P2_init_xact_cb(P2_XACT_NONE);
#endif
}

/***********************************************************************/
/*                  Read and write transaction manager anchor.         */
/***********************************************************************/

/* “Each resource manager can write a checkpoint in the log,
   consisting of an ordinary log record containing the resource
   manager’s restart information.  The resource manager then registers
   its anchor LSN and low-water LSN with the transaction manager.  The
   transaction manager, in turn, records this information in the
   transaction manager checkpoint record.  Hence, the system only
   needs to remember the location of the transaction manager’s
   checkpoint record.  As shown in Figure 9.6, it is recorded as a
   field of the log manager’s anchor record.” Gray & Reuter, p. 512 */

/* Read LSN of transaction manager anchor from log anchor.
   Gray and Reuter, call this log_read_anchor(), p. 512 */

P2_LSN
P2_log_read_anchor (void)
{
  assert(lsn_valid(log_anchor.xact_manager_anchor_lsn));
  return(log_anchor.xact_manager_anchor_lsn);
}

/* Save LSN of transaction manager anchor in log anchor.
   Gray & Reuter, call this log_write_anchor(), p. 512 */

void
P2_log_write_anchor (P2_LSN lsn)
{
  assert(lsn_valid(lsn));
  log_anchor.xact_manager_anchor_lsn = lsn;
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}

/***********************************************************************/
/*                  Restart.                                           */
/***********************************************************************/

/* This routine is called from x/log.xp:verbatim_s():P2_warm_restart(). */

/* The warm restart functionality is really part of the transaction
   manager, and thus should be defined in the file
   paces/P2_xact-manager.p2.  Unfortunately, we need to make reference
   to the log record structure, which is defined in the log manager,
   which must be layered on TOP of the transaction manager. (JAT) */

void
P2_log_manager_warm_restart (P2_LOG_STRUCT_FUNCTION *f)
{
  /* P2 warm restart. */
  P2_LSN lsn;
  P2_XACT_MANAGER_ANCHOR_LOG_STRUCT *x;

#ifndef NDEBUG
  P2_runtime_warning(
    “P2_log-manager: P2_log_manager_warm_restart:”
    “ restarting from log”);
#endif /* NDEBUG */

  /* Set status to REDO, so that operations are not logged. */
  P2_set_xact_status(P2_XACT_REDO);

#if 1
  /* Start from low water mark. */
  /* Get low water mark from the transaction manager anchor. */
  lsn = P2_log_read_anchor();
  /* Check for amnesia. Can’t do a warm restart if there is no log file. */
  /* If there is no log file, we know that x will be zero (and not
     some random, un-initialized value), because when
     P2_init_log_manager() open the log_anchor container, it will call
     P2_init_log_anchor() if the container is un-initialized. */
  if (lsn.rba == 0)
    P2_runtime_error(
      “P2_log-manager: P2_log_manager_warm_restart:”
      “ no log file found”);
  x = (P2_XACT_MANAGER_ANCHOR_LOG_STRUCT *) P2_log_read_lsn(lsn);
  P2_foreach_log_struct(x->low_water, f);
#else
  /* Start from P2_NULL_LSN */
  P2_foreach_log_struct(P2_NULL_LSN, f);
#endif

  if (log_cont.index != log_anchor.index)
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  {
#ifndef NDEBUG
    /* I included this warning only to see if this code is EVER
       executed.  This condition is in no way anomalous or erroneous,
       it is just rare. (JAT) */
    P2_runtime_warning(
      “P2_log-manager: P2_log_manager_warm_restart:”
      “ log_cont.index = %d != log_anchor.index = %d”,
      log_cont.index, log_anchor.index);
#endif /* NDEBUG */
    close_and_open_log_cont(log_anchor.index);
  }
}

/***********************************************************************/
/*                  Init and delete log manager.                       */
/***********************************************************************/

void
P2_init_log_anchor (void)
{
  /* Amnesia. */

#if defined(P2_LOG_MANAGER_LOCK)
  /* Initialize log lock. */
  if (P2_init_semaphore(&log_anchor.lock, 1) != 0)
    P2_runtime_error(
      “P2_log-manager: P2_init_log_anchor:”
      “ Could not initialize log manager mutex lock”);
#endif /* P2_LOG_MANAGER_LOCK */

  /* See analogous code in P2_log_insert(). */

  /* Initialize log_anchor.index.
     Must do this before we open log_cont??? */
  log_anchor.index                   = 0;
  log_anchor.lsn                     = P2_NULL_LSN;
  log_anchor.prev_lsn                = P2_NULL_LSN;
  log_anchor.xact_manager_anchor_lsn = P2_NULL_LSN;
#if defined(P2_LOG_ANCHOR_STRUCT_PERSIST_LSN)
  log_anchor.persist_lsn             = P2_NULL_LSN;
#endif /* P2_LOG_ANCHOR_STRUCT_PERSIST_LSN */
}

void
P2_init_log_manager (void)
{
  /* Make sure SIZEOF_ELEMENT_LOG_ANCHOR_CONT is correct. */
  assert(SIZEOF_ELEMENT_LOG_ANCHOR_CONT
         == sizeof(element<log_anchor_cont>));
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  /* Make sure P2_CURS_LOG_STRUCT is correct. */
  /* That is, make sure that curs_id--the first field of
     P2_CURS_LOG_STRUCT after the dummy field (the beginning of the
     variable part of P2_CURS_LOG_STRUCT)--has the same offset as
     v--the varchar field of the transformed element (the beginning of
     the variable part of the transformed element). */
  assert(offsetof(P2_CURS_LOG_STRUCT, curs_id)
         == offsetof(element<log_cont>, v));

  /* Make sure P2_LOG_STRUCT_DUMMY_SIZE is correct. */
  /* That is, make sure that P2_LOG_STRUCT_SIZE--the size of the dummy
     field--accurately represents the size of the fields added by
     xform--the difference between the size of the transformed element
     (element <log_cont>) and the original element (P2_LOG_STRUCT) */
  assert(P2_LOG_STRUCT_DUMMY_SIZE
         == (sizeof(element <log_cont>) - sizeof(P2_LOG_STRUCT)));

  /* Make sure P2_SIZEOF_ELEMENT_LOG_CONT is correct. */
  assert(P2_SIZEOF_ELEMENT_LOG_CONT == sizeof(element<log_cont>));

#if defined(LOG_ANCHOR_CONTAINER_STRUCTURE)
  open_cont(log_anchor);
#else
  P2_LOG_ANCHOR a;
  open_cont(log_anchor_cont);
  init_curs(log_anchor);
  /* If we are not using a container structure, then might be better
     (stylistically) to initialize the struct a before inserting it,
     but it isn’t necessary, and it would require different
     initialization code when we are using a container structure. */
  insert(log_anchor, a);
#endif /* LOG_ANCHOR_CONTAINER_STRUCTURE */

#if 0
  /* BUG!!! Do NOT want to always initialize the log anchor. */
  /* Want to initiailize it only if it is un-initialized. */
  /* When do we initiate recovery??? */
  P2_init_log_anchor();
#else
  /* Open new log file. */
  open_log_cont(log_anchor.index);
  /* If log_anchor.lsn is uninitialized, initialize it.
     We assume it is uninitialized if its rba is zero. */
  /* A more exact test for log_anchor.lsn uninitialized would be
     P2_lsncmp(log_anchor.lsn, P2_NULL_LSN), but this test would be
     more expensive. (JAT) */
  /* See analogous code in
     P2_log-manager.p2:P2_log_manager_warm_restart() */
#ifndef NDEBUG
  /* Assert that the two tests are equivalent. */
  assert((log_anchor.lsn.rba == 0)
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         == (P2_lsncmp(log_anchor.lsn, P2_NULL_LSN) == 0));
#endif /* NDEBUG */
  if (log_anchor.lsn.rba == 0)
  {
    /* Amnesia!!! */
#ifndef NDEBUG
    P2_runtime_warning(
      “P2_log-manager: P2_init_log_anchor:”
      “ Amnesia: no log file found”);
#endif /* NDEBUG */
    /* Index should be 0 */
    assert(log_anchor.index == 0);
    log_anchor.lsn.index = log_anchor.index;
    /* Relative byte address is address of 1st log record. */
    log_anchor.lsn.rba = init_rba();
  }
#endif

#if 0
  /* Initialize transaction control block. */
  P2_init_xact_cb(P2_XACT_NONE);
#endif
}

void
P2_delete_log_manager (void)
{
#if 0
  /* Delete xact and lock managers. */
  P2_delete_xact_manager();
#endif

#if 0
  /* Never delete the log lock--it will be stored persistently in the
     log anchor. */
#if defined(P2_LOG_MANAGER_LOCK)
  /* Delete log lock. */
  if (P2_delete_semaphore(&(log_anchor.lock)) != 0)
    P2_runtime_error(
      “P2_log-manager: P2_delete_log_manager:”
      “ Could not delete log manager mutex lock”);
#endif /* P2_LOG_MANAGER_LOCK */
#endif

#if 1
  /* Synchronize log file. */
  P2_log_manager_sync_log();
#endif
  /* Close log file. */
  close_cont(log_cont);
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  /* Close log anchor. */
  close_cont(log_anchor_cont);
}
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