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Abstract Cytokines serve important functions in control-
ling host immunity. Cells involved in the synthesis of these
polypeptide mediators have evolved highly regulated
processes to ensure that production is carefully balanced.
In inflammatory and immune disorders, however, mis-
regulation of the production and/or activity of cytokines is
recognized as a major contributor to the disease process,
and therapeutics that target individual cytokines are
providing very effective treatment options in the clinic.
Leukocytes are the principle producers of a number of key
cytokines, and these cells also express numerous members
of the purinergic P2 receptor family. Studies in several
cellular systems have provided evidence that P2 receptor
modulation can affect cytokine production, and mechanistic
features of this regulation have emerged. This review
highlights three separate examples corresponding to (1)
P2Y6 receptor mediated impact on interleukin (IL)-8 pro-
duction, (2) P2Y11 receptor-mediated affects on IL-12/23
output, and (3) P2X7 receptor mediated IL-1β posttransla-
tional processing. These examples demonstrate important
roles of purinergic receptors in the modulation of cytokine
production. Extension of these cellular observations to in
vivo situations may lead to new therapeutic strategies for
treating cytokine-mediated diseases.
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Abbreviations
LPS lipopolysaccharide
RA rheumatoid arthritis
IL interleukin
TNF tumor necrosis factor
IFN interferon
ERK extracellular signal regulated kinase
LDH lactate dehydrogenase
PGE2 prostaglandin E2

GPCR G protein coupled receptor
BZATP benzoylbenzoyl-ATP

Introduction

Cytokines comprise a heterogeneous group of polypeptides
that mediate a variety of biological responses following
their binding to specific receptors on target cells and
tissues. Historically, cytokines (including lymphokines)
were identified as leukocyte-derived soluble mediators that,
when added to other leukocytes and/or to non-leukocyte
targets, altered cellular behavior. Today, however, we
realize that individual cytokines can be generated by cells
of immune as well as non-immune origin, and that these
polypeptides orchestrate a complex system of checks and
balances controlling host immune and inflammatory pro-
cesses. Our understanding of the importance that cytokines
and cytokine signaling mechanisms serve in host defense
mechanisms has been bolstered by the identification of
genetic mutations within cytokine and/or cytokine receptor
signaling complex genes that profoundly affect pathogen
susceptibility [1, 2]. Likewise, genetically engineered mice
that lack individual cytokines and/or cytokine receptors
have provided a greater understanding of the capabilities
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possessed by these signaling molecules for promoting
inflammatory and autoimmune states [3]. Moreover, the
critical importance served by cytokines in mediating
inflammation and autoimmunity has been underscored by
the recent success of anti-cytokine biologics in the
treatment of inflammatory diseases such as rheumatoid
arthritis (RA) and Crohn’s disease. For example, agents that
neutralize tumor necrosis factor (TNF) α (Enbrel, Remicade
and Humira) have dramatically improved the treatment of
RA [4–6]. In addition, the natural interleukin (IL)-1
receptor antagonist (Kineret) provides therapeutic benefit
to RA patients and is reported to yield remarkable clinical
outcomes when administered to patients suffering from a
group of rare hereditary autoinflammatory disorders such as
Muckle-Wells syndrome [7–9]. Ongoing clinical trials with
agents that target IL-12 likewise are showing encouraging
efficacy in the treatment of psoriasis and Crohn’s disease
[10, 11], and the list of anti-cytokine therapies entering
clinical trials grows regularly [6]. Thus, cytokines and the
signaling pathways engaged after they bind to receptors on
cells represent attractive therapeutic targets for intervention
of human autoimmune and inflammatory diseases. Studies
over the past decade have suggested that purinergic
receptor function, involving both P2Y and P2X family
members, can modulate cytokine production and/or activity.
This review focuses on several cellular systems where
purinergic modulation of cytokine production has been
demonstrated and mechanistic explanations have been
sought. The cited studies signify that nucleotide receptor-
mediated signaling can affect output of several important
cytokines. In this context, pharmacological modulation of
P2 receptors may represent a new therapeutic modality for
treatment of cytokine-mediated disease processes in the
future.

Leukocyte expression of nucleotide receptors

Essentially all leukocyte populations express members of
the P2 purinergic receptor superfamily; several recent
reviews have detailed receptor expression patterns and the
reader is directed to these for a more complete description
[12, 13]. Human monocytes, for example, express mRNA
encoding P2Y1, P2Y2, P2Y4, P2Y6, P2X1 and P2X7

receptors [14–16]. Human lymphocytes similarly express
mRNAs encoding P2Y1, P2Y2, P2Y4, P2Y6 receptors and
members of the P2X family, including P2X7, are detected in
both B and T-lymphocyte populations [15, 17–21]. Circu-
lating human neutrophils express P2Y4 and P2Y6 mRNAs,
and the P2X7 receptor is reported to be present in these
cells [22]. Human eosinophils and murine mast cells also
are reported to contain the P2X7 receptor [23, 24] as are
rodent peritoneal macrophages [25, 26]; historically, many

ATP-dependent responses observed using murine macro-
phages were associated with activation of the P2Z receptor
[27, 28]. Cloning and characterization of the P2X7 receptor
revealed that this polypeptide possessed functional attrib-
utes previously ascribed to the P2Z receptor [29, 30]. Thus,
reference to the P2Z receptor was discontinued in favor of
the P2X7 receptor designation. Murine spleen macrophages,
as well as the macrophage-like cell line J774, express
multiple P2X and P2Y subtypes [31]. Murine and rat
microglial cells, the brain’s macrophage, also abundantly
express P2X7 receptors [32, 33].

A functional consequence often attendant to activation of
the P2X7 receptor is the opening of a nonselective pore that
is permeable to large fluorescent molecules such as YoPro
Yellow. Interestingly, the ability of monocytes and mono-
cyte-like cells to demonstrate this pore activity is influenced
by conditions under which these cells are cultured,
suggesting that functional output of the P2X7 receptor can
be regulated [34–36]. Human monocytes demonstrate a
change in receptor functionality without a corresponding
change in the level of receptor mRNA expression, suggest-
ing that receptor function can be regulated via posttransla-
tional mechanisms [16].

Dendritic cells, which specialize in antigen presentation
and are key producers of cytokines involved in maintenance
of acquired immunity, also express members of the P2
receptor superfamily. Human monocyte-derived dendritic
cells are reported to express mRNA for P2Y1, P2Y2, P2Y4,
P2Y5, P2Y6, P2Y10, P2Y11, and P2Y13 from the P2Y
receptor side of the family and P2X1, P2X4, P2X5, and
P2X7 from the P2X receptor lineage [37–39]. Murine
dendritic cell lines also express the P2X7 receptor [40].

P2Y receptor-dependent regulation of cytokine
production

P2Y6 receptor-mediated effects The P2Y6 receptor is
selectively activated via UDP [41], and effects observed
with this nucleotide often are attributed to activation of this
receptor. Several studies have linked P2Y6 function to IL-
8 expression, a cytokine originally isolated as a neutrophil
chemotactic factor and now designated as a member of the
CXC family of chemokines [42]. IL-8 functions to promote
influx of neutrophils to sites of injury and/or infection, and
overproduction of IL-8 may contribute to several patho-
physiological conditions including chronic lung inflamma-
tion and cancer [43]. When human monocytic THP-1 cells
are treated with UDP, IL-8 output is enhanced and prior
treatment of the cells with a P2Y6 antisense oligonucleotide
attenuates the magnitude of the cytokine response [44].
Likewise, P2Y6 receptor transfected 1321N cells secrete
greater levels of IL-8 in response to UDP challenge than do
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their non-transfected counterparts [44]. Similarly, human
promonocytic U937 cells stably transfected with human
P2Y6 receptor secrete IL-8 when stimulated with UDP [45].
P2Y6 receptor-transfected U937 cells also generate TNFα
and the chemokines MCP-1 and IP-10 in response to UDP
activation. In contrast, UDP-challenged P2Y6 receptor
1321N cell transfectants produce IL-8 but not other
cytokine products [45]. The distinct response patterns
displayed by the two transfected cell lines suggest that the
cellular context in which the P2Y6 receptor is placed
impacts the pattern of cytokines/chemokines expressed.
Interestingly, output of IL-8 from LPS stimulated THP-1
cells is decreased when apyrase is included in the cell
culture medium [44], suggesting that nucleotides are
released in response to LPS activation and these, in turn,
activate purinergic receptors in an autocrine type of
mechanism.

The mechanism by which the P2Y6 receptor activates
cytokine output has received limited investigation. The
P2Y6 receptor is a Gq-coupled receptor [13, 46, 47] and
thus is expected to promote activation of phospholipase C
leading to the generation of inositol-1,4,5-triphosphate and
elevation of intracellular Ca2+ levels. In P2Y6 receptor
expressing THP-1 cells, the extracellular signal-regulated
kinase (ERK) antagonist PD98059 impairs UDP-induced
IL-8 output whereas the p38 stress kinase antagonist
SB203580 is without effect. Thus, in this system the
P2Y6 receptor-induced rise in intracellular Ca2+ appears to
be coupled to an ERK-activated signaling cascade leading
to IL-8 expression [44]. In osteoclasts, activation of the
P2Y6 receptor via UDP or the selective receptor agonist
INS48823 induces a transient rise in intracellular Ca2+ and
activation of the transcription factor NF-κB [48]. Although
cytokine output was not examined in the osteoclast system,
activation of NF-κB often is associated with expression of
cytokine genes [49] and oscillations in intracellular Ca2+

concentrations have been linked to activation of this
transcription factor [50].

With respect to inflammatory disease processes, no
specific role for P2Y6 receptors has been reported.
However, tissue sections obtained from patients with
inflammatory bowel disease are reported to contain T-cells
within inflammatory lesions possessing enhanced expres-
sion of the P2Y6 receptor [51]. As such, P2Y6 receptor
expression on T-cells may be upregulated at sites of
inflammation and/or T-cells expressing this receptor may
be preferentially recruited to these sites.

P2Y11 receptor-mediated effects impact dendritic cell
function The P2Y11 receptor prefers ATP as it’s ligand,
and the non-hydrolyzable ATP analog ATPγS often is
employed in vitro as a surrogate ligand; the latter is not,
however, a selective agonist of the P2Y11 receptor [41, 47].

P2Y11 receptor modulation of cytokine generation has been
studied in some detail with human dendritic cells, with
production of IL-12 being a major focus of these studies.
IL-12 is composed of two distinct subunits, p40 and p35,
which are covalently linked via an intermolecular disulfide
bond to form the biologically active p70 species [52–54]. A
related cytokine, IL-23, is composed of the same p40
subunit covalently bound to a unique p19 subunit [53, 54].
IL-12 and IL-23 are produced in abundance by activated
antigen presenting cells such as monocytes and dendritic
cells. When bound to target receptors on T-lymphocytes
and natural killer (NK) cells, IL-12 activates interferon
(IFN)γ output, alters T-cell development, and affects NK
cell killer activity [55]. IL-23 also activates T-cells and
promotes IFNγ output, but in this case the responding
lymphocytes appear to represent a unique subpopulation of
memory T-cells specializing in the production of the
proinflammatory cytokine IL-17 [56, 57]. Together, IL-12
and IL-23 cooperate to shift the immune system toward a T
helper (Th)1 state that is characteristic of inflammatory
diseases such as RA and inflammatory bowel disease [58].

Application of ATP to human monocyte-derived den-
dritic cells (i.e., monocytes cultured for 6 days in the
presence of granulocyte macrophage colony stimulating
factor and IL-4) originally was reported to enhance
expression of several cell surface molecules and to increase
output of IL-12; this ATP effect was augmented by co-
stimulation with TNFα [59]. Likewise, ATP but not UTP
was reported to enhance expression of CXC chemokine
receptor 4 by dendritic cells [60]. In these studies, the
nature of the specific P2 receptor subtype(s) responsible for
the dendritic cell cytokine response was not addressed.

While the above studies suggested that nucleotides may
directly regulate cytokine output, more recent studies
conducted with dendritic cells have focused on the role of
extracellular nucleotides as modulators of cytokine output
induced by other stimuli. For example, treatment of human
monocyte-derived dendritic cells with either LPS or CD40
ligand promotes secretion of IL-1α, IL-1β, TNFα, IL-6,
and IL-12 (p70), and co-addition of ATP (250 μM) along
with the activation stimulus inhibits cytokine output [61].
In this same dendritic cell system, ATP does not inhibit
output of IL-10 or IL-1 receptor antagonist, two cytokines
possessing anti-inflammatory properties. The dendritic cell
purinergic receptor responsible for the cytokine modulatory
effects was not identified in this system, but the effect of
ATP was mimicked by ADP but not by UTP.

In contrast to the simple pattern of cytokine inhibition
noted above, other studies conducted with monocyte-
derived dendritic cells suggest that the response elicited
by extracellular nucleotides is complex in nature and
dependent on the quantity of cytokine produced. For
example, monocyte-derived dendritic cells treated with
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TNFα or LPS generate greater quantities of IL-12 when
simultaneously challenged with ATP (the ELISA kit
employed in this study measured both IL-12p40 and IL-
12p70). Comparison of the effectiveness of several ATP
analogs suggests that the P2Y11 receptor is responsible for
enhancing cytokine expression [62]. In an extension of
these findings, monocyte-derived macrophages were acti-
vated with a panel of different agonists (TNFα, LPS, or
soluble CD40 ligand) in the absence or presence of ATPγS
[63]. At agonist concentrations yielding low levels of IL-
12p40 and TNFα output, ATPγS (200 μM) increases
secreted levels of these two polypeptides. However, at
agonist concentrations yielding higher levels of IL-12p40
and TNFα output, ATPγS inhibits their output. Notably,
LPS (but not TNFα or CD40) stimulates secretion of the
bioactive, heterodimeric form of IL-12 (i.e., IL-12p70) and
ATPγS antagonizes IL-12p70 output at all tested LPS
concentrations. It is known from other studies that the p40
and p35 subunits of IL-12 can be regulated independently
[64]; lack of coordinated synthesis may help to explain why
ATPγS can enhance IL-12p40 but inhibit IL-12p70 output
in response to LPS challenge.

The ATP response observed in the dendritic cell system
assumes an even greater complexity when the output of IL-
12 and IL-23 are compared. Human monocyte-derived
dendritic cells activated with intact E. coli produce both IL-
12 and IL-23. In response to this challenge, IL-12p40, IL-
12p35, and IL-23p19 message levels increase and levels of
IL-12 and IL-23 released extracellularly increase accord-
ingly [65]. Addition of ATP (250 μM) to the medium
during bacterial challenge decreases IL-12p40 and IL-
12p35 message levels but increases IL-23 message levels.
Likewise, whereas E. coli-induced secretion of IL-12p70
and IL-12p40 from dendritic cells is inhibited by ATP,
secretion of bioactive IL-23 is enhanced. Since both IL-12
and IL-23 share the IL-12p40 subunit, the opposite effects
achieved by ATP with respect to output of these two
cytokines is somewhat surprising. However, this may
reflect that synthesis of the p40 subunit can exceed that of
the p19 subunit and secretion of the bioactive IL-23
heterodimer requires simultaneous expression of both
subunits [66]. ATPγS and AR-C67085 (a synthetic nucle-
otide analog) are more potent than ATP at inhibiting E. coli-
induced output of IL-12p70 and IL-12p40. In contrast,
these two nucleotides are ineffective as enhancers of IL-23;
ADP, however, is as effective as ATP at enhancing E. coli-
induced IL-23 output. On this basis, it was concluded that
the P2Y11 receptor is responsible for the nucleotide-
mediated antagonism of IL-12 production whereas a
separate, ADP-sensitive P2 receptor subtype is responsible
for promoting IL-23 production [65].

Sorting out the identity of P2 receptors that mediate the
aforementioned effects of nucleotides on dendritic cell

cytokine output is complicated by the existence of cell
surface nucleotidases such as CD39 [37]. These enzymes
can act on exogenously added nucleotides to generate
metabolites that may possess altered selectivity for P2
receptors relative to the parent nucleotide originally added
to the culture medium. In this light, it is interesting to note
that ADP and several related nucleotides also are reported
to inhibit IL-12p70, IL-12p40, and TNFα output from LPS-
activated dendritic cells [67]. Based on the inability of ADP
to act as an agonist of the P2Y11 receptor and the nature of
the signaling response induced by this nucleotide, the
cytokine modulatory effects induced by ADP in this system
may reflect activation of a novel dendritic cell P2 receptor
subtype [67].

Mechanistic features attendant to P2Y11 receptor activa-
tion have been investigated and changes to intracellular
cAMP concentrations appear important to the cytokine
modulatory response. The P2Y11 receptor employs both
Gq- and Gs-type G-proteins in mediating signaling [47]; the
P2Y11 receptor is unique amongst P2 receptors in its ability
to employ Gs and, in turn, to activate adenylate cyclase.
Activation of adenylate cyclase and the associated rise in
cAMP levels appear to be responsible for both the ATP-
induced rise in IL-23 and decline in IL-12 from E. coli-
induced human dendritic cells. This conclusion is based on
several observations. First, substitution of prostaglandin E2

(PGE2) for ATP in the dendritic cell system produces a
similar outcome with respect to inhibition of IL-12 and
augmention of IL-23 output [63, 65]. PGE2 signals via G-
protein-coupled prostaglandin receptors, and two of these
receptors, EP2 and EP4, transmit signals via Gs [68].
Studies conducted in genetically altered mice support the
involvement of the EP4 receptor in mediating the inhibitory
effect on IL-12 production; LPS-activated bone marrow-
derived macrophages derived from wild-type mice but not
from EP4 receptor-deficient animals produce less IL-12 in
the presence of PGE2 [69]. Second, activation of other G
protein coupled receptors (GPCRs) that engage adenylate
cyclase, such as histamine (H2) and adenosine A2a
receptors, inhibit IL-12 output [70]. Third, the ability of
ATP analogs to alter IL-12 output correlates with their
impact on intracellular cAMP levels [62]. Finally, treatment
of E. coli-activated dendritic cells with forskolin, an agent
that activates adenylate cyclase independently of GPCR
activation, also inhibits IL-12 (protein) output while
enhancing IL-23p19 (message) expression [65]. In view of
the ability of the aforementioned agents to elevate cAMP
and to produce reciprocal effects on IL-12 and IL-23 output
from dendritic cells, it is surprising that ATPγS and AR-
C67085, two effective agonists of the P2Y11 receptor, cause
inhibition of IL-12 output without enhancing IL-23 expres-
sion [65]. Notably, ADP is able to enhance IL-23p19
message expression by E. coli-activated dendritic cells [65].
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The reciprocal effects observed with respect to production
of IL-12 and IL-23 in the presence of ATP, therefore, may
reflect activation of the P2Y11 receptor by ATP and, as a
result of hydrolysis of the added ATP via ecto-nucleotid-
ases, simultaneous activation of a novel type of P2 receptor
that is activated via ADP and coupled to Gs.

Although dendritic cell cytokine output is well docu-
mented to be subject to regulation via nucleotides in vitro,
there is little information to suggest that this type of
regulation takes place in vivo. A recent report noted,
however, that intradermal injection of ATPγS into mice
results in an enhanced contact hypersensitivity response,
and this effect may be achieved as a result of activation of
Langerhans cells, a subclass of dendritic cells [71]. Murine
Langerhans cells, like other dendritic cells, express the
ecto-nucleotidase CD39, and CD39-deficient mice display
an exacerbated skin inflammatory response when irritant
chemicals such as croton oil are applied topically [72].

P2X receptor-dependent regulation of cytokine
production

With the exception of the P2X7 receptor, functional
responses attendant to activation of P2X receptor family
members are not generally associated with cytokine
modulation. Members of this family certainly can impact
inflammatory processes as evidenced by the attenuated pain
responses observed following administration of selective
P2X3 receptor antagonists to rodents [73]. These effects,
however, are not directly linked to cytokine output but,
rather, to effects associated with modulation of sensory
afferent neurons. Therefore, a discussion of how P2X
receptors affect cytokine output is limited in scope to the
role of the P2X7 receptor. Although selective agonists and/
or antagonists of the P2X7 receptor have to this point not
been available, the P2X7 receptor possesses atypical
features that often allow its function to be implicated
during in vitro studies. Most notable amongst these features
is the requirement that high ATP concentrations, often in
excess of 500 μM, be employed to achieve receptor
activation when cells are maintained in physiological
media. Benzoylbenzoyl-ATP (BZATP) often is employed
as an agonist of the P2X7 receptor. Although this agent is
reported to be a more effective agonist than ATP [74], it is
not specific for the P2X7 receptor [75]. Likewise, oxidized
ATP often is employed as an antagonist of the P2X7

receptor [76], but this agent also acts in a P2 receptor-
independent manner [77].

P2X7 receptor-mediated effects As noted earlier, the P2X7

receptor is present on a number of leukocyte populations

including monocytes and tissue macrophages. When chal-
lenged appropriately, cells of monocyte/macrophage line-
age are abundant producers of proinflammatory cytokines
including IL-1 and TNFα. With respect to TNFα output,
both enhancing and inhibitory responses have been associ-
ated with P2X7 receptor activation. Cultured rat microglia
treated with 1 mM ATP, for example, increase expression of
TNFα mRNA and secrete this proinflammatory cytokine
[78]. In this cellular system, the TNFα-enhancing effect of
ATP is dependent on an influx of extracellular calcium, and
is suppressed by inhibitors of ERK (PD098059) and p38
(SB203580) mitogen activated kinases. Likewise, ATP is
reported to enhance TNFα output from murine RAW 264.7
macrophages both in the absence and presence of LPS [79];
the purinergic receptor responsible for this effect in RAW
cells is unknown. On the other hand, ATP is reported to
inhibit TNFα release from LPS-activated murine peritoneal
macrophages [80]; this antagonism does not appear to result
from activation of the P2X7 receptor as UTP and UDP
mimic the action of ATP but are not P2X7 receptor agonists.
Similarly, ATP inhibits LPS-induced release of TNFα from
rat cortical astrocytes [81]. In this cellular system mM
concentrations of ATP are required for the biological
response, and the effect of ATP is mimicked by BZATP,
properties consistent with involvement of the P2X7 recep-
tor. Thus, the net effect observed with respect to ATP’s
ability to modulate TNFα output is dependent on the
cellular context.

The most extensively studied cytokine modulatory role
involving the P2X7 receptor relates to its ability to promote
IL-1β posttranslational processing. IL-1β is a multifaceted
proinflammatory cytokine produced predominantly by cells
of the monocyte/macrophage lineage [82]. Resting mono-
cytes and macrophages do not constitutively produce IL-
1β, but following challenge with an activating stimulus
such as LPS, these cells rapidly engage in the production of
large quantities of proIL-1β. This precursor polypeptide (31
to 35 kDa in mass) must be proteolytically processed by
caspase-1 to generate the mature biologically active 17 kDa
cytokine species [83–85]. Importantly, proIL-1β lacks a
leader sequence and, as a result, the newly synthesized
polypeptides accumulate intracellularly within the cytosol
of LPS-activated cells. In contrast to IL-1β, caspase-1 is
constitutively expressed by monocytes and macrophages;
this cysteine protease also resides in the cytoplasm as an
inactive zymogen [86]. In the absence of additional
stimulation, only a very low percentage of the newly
synthesized proIL-1β polypeptides produced by LPS-
treated cells is processed by caspase-1 and released
extracellularly [87]. However, in the presence of an
appropriate activation stimulus, procaspase-1 is converted
to its catalytically active form, proIL-1β subsequently is
cleaved to its mature 17 kDa species, and the mature
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cytokine is released extracellularly where it can engage
receptors on target cells; a number of agents have been
reported to facilitate this posttranslational processing in
vitro including various toxins [88–92], defensin-like pep-
tides [93, 94], and K+ ionophores [95–97].

David Chaplin and his group first demonstrated that ATP
can act as a trigger to promote IL-1β posttranslational
processing from LPS-activated murine peritoneal macro-
phages [98]. When incubated in the absence of ATP, LPS-
activated macrophages labeled with [35S]methionine were
shown to possess abundant quantities of the 35 kDa proIL-
1β polypeptide, but radiolabeled cytokine products were
not released extracellularly. Following addition of ATP to
the medium, however, the LPS-activated/[35S]methionine-
labeled cells released IL-1β to the medium and the majority
of the externalized cytokine was efficiently converted to the
mature 17 kDa species. The ATP-treated macrophages also
released the cytoplasmic enzyme lactate dehydrogenase
(LDH) and possessed a DNA fragmentation profile that was
characteristic of an apoptotic cellular response. Although
the identity of the receptor responsible for mediating these
effects was not addressed, the high concentration of ATP
employed (5 mM) suggested P2X7 receptor involvement.
The ability of ATP to promote IL-1β posttranslational
processing by murine peritoneal macrophages is not limited
to in vitro cultures. Mice primed with LPS in vivo contain
peritoneal macrophages that are laden with proIL-1β, but
lavage of the peritoneal cavities of these mice yields
minimal quantities of the mature cytokine species. Follow-
ing a subsequent intraperitoneal injection of ATP into the
LPS-primed animals, however, large quantities of mature
IL-1β are recovered in the lavage fluids [99]. Thus, ATP
acts as an effective agonist of IL-1β posttranslational
processing both in vitro and in vivo.

Subsequent studies demonstrated that ATP is an effective
stimulus for promoting IL-1β posttranslational processing
by a number of different cell types including human
monocytes/macrophages [100–102] and human and mouse
microglial cells [103–105]. In all cases, the cytokine
response requires concentrations of ATP >1 mM, a
requirement consistent with activation of the P2X7 receptor.
Involvement of the P2X7 receptor is further supported by
the observation that KN62 inhibits ATP-induced IL-1β
posttranslational processing by LPS-activated human
monoctyes [102]; this agent is a potent inhibitor of P2X7

receptor-mediated functions [106, 107]. Furthermore, an
antibody generated against the P2X7 receptor blocks ATP-
induced IL-1β release from LPS-activated human mono-
cytes [108]. Analysis of peritoneal macrophages obtained
from mice genetically engineered to lack the P2X7 receptor
provided the final piece of evidence that P2X7 receptor
function is necessary for ATP-induced IL-1β posttransla-
tional processing [26]. Macrophages obtained from both

wild type and P2X7-deficient mice generate equivalent
quantities of newly synthesized proIL-1β in response to
LPS challenge. However, in the absence of a secondary
stimulus neither macrophage population releases mature IL-
1β to the medium. Following treatment with 5 mM ATP,
wild type but not P2X7 receptor-deficient macrophages
externalize large quantities of mature IL-1β. In contrast, both
macrophage populations release mature IL-1β when treated
with the potassium ionophore nigericin, indicating that the
P2X7 receptor-deficient macrophages are competent to
process proIL-1β but absence of the P2X7 receptor prevents
them from doing so when challenged with ATP [26].

Signaling pathways associated with P2X7 receptor activa-
tion Mechanistic elements engaged as a result of P2X7

receptor activation that are responsible for initiating IL-1β
posttranslational processing are not completely understood,
but studies to date have provided insight into this atypical
secretory process. ATP acting via the P2X7 receptor
activates a number of intracellular kinases including
members of the MAP kinase family ERK and JNK [23,
109–112], Rho effector kinases [113, 114], and the protein
tyrosine kinase p56lck [115]. Correspondingly, increased
phosphorylation of various intracellular polypeptides in-
cluding the receptor itself are observed post-ATP activation
[116–118]. P2X7 receptor operation also is associated with
activation of various transcription factors [119, 120],
enhanced production of reactive oxygen species [121],
mitochondrial membrane depolarization [122], and activa-
tion of phospholipase D [123]. It remains to be established
whether any of these changes are required for IL-1β
posttranslational processing, although a Ca2+-independent
phospholipase inhibitor (bromoenol lactone) and a tyrosine
kinase inhibitor (AG-126) are reported to inhibit ATP-
induced IL-1β output [124, 125]. As a ligand-gated ion
channel, the P2X7 receptor also promotes rapid changes in
ionic homeostasis following its activation [126]. Prolonged
ligation of the receptor can result in complete membrane
depolarization, a process that is likely to involve opening of
the P2X7 receptor operated pore [126]. In several cellular
systems, a rise in intracellular Ca2+ promoted by the P2X7

receptor is necessary for IL-1β posttranslational processing
[127, 128]. Similarly, K+ efflux mediated via P2X7 receptor
activation in LPS-stimulated monocytes and macrophages
is necessary for efficient IL-1β posttranslational processing
[96, 97, 100, 101, 125, 127]. Simply increasing the medium
K+ ion concentration can completely inhibit ATP-induced
IL-1β output [96, 100, 101, 129]; as such, K+ efflux
appears to serve a key role in the cellular process.

How these changes to intracellular K+ and Ca2+ ion
levels regulate IL-1β posttranslational processing remains
to be established. In the case of K+, the P2X7 receptor-
induced changes may facilitate activation of caspase-1. As
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noted earlier, procaspase-1 is expressed constitutively by
monocytes and macrophages and resides in the cytoplasmic
compartment as a latent zymogen. Ligation of the P2X7

receptor leads to rapid activation of caspase-1 and, like
mature IL-1β, the activated protease is released to the
medium [130]. Recent studies have indicated that activation
of procaspase-1 requires assembly of a large protein
scaffold termed the inflammasome [131, 132]. Components
of the inflammasome may include a NALP (NALP1, 2 or
3), the speck like protein ASC, and procaspase-5 [132–
135]. The importance of ASC in ATP-induced IL-1β
posttranslational processing is highlighted by the demon-
stration that LPS-activated peritoneal macrophages isolated
from ASC-deficient mice fail to generate mature IL-1β in
response to ATP challenge [136]. In a resting cell, the
NALP polypeptide appears to exist in an inactive mono-
meric conformation, but this polypeptide may undergo a
conformational change in response to an appropriate
effector leading to its association with ASC and procas-
pases [135]. This association involves several protein-
protein interaction domains including PYRIN and caspase
recruitment domains (CARDs). The resulting protein
ensemble positions the procaspases in close proximity
leading to their proteolytic activation [135]. Studies of
inflammasome assembly using broken cell preparations
have demonstrated that extracts prepared from cells briefly
treated with mM concentrations of ATP are more effective
at generating mature caspase-1 and mature IL-1β than are
comparable extracts prepared from non-ATP treated cells.
Moreover, when the ATP treatment is performed in the
presence of high extracellular K+ (thus limiting K+ efflux
from the ATP-treated cells), the resultant inflammasome
activity in the cell-free extract is reduced [125]. These
findings, therefore, suggest that K+ efflux may facilitate
inflammasome assembly and/or its activation.

As noted above, changes in intracellular Ca2+ levels also
contribute to IL-1β posttranslational processing. ATP-
induced changes in intracellular Ca+2 may result from Ca2+

entry via P2X receptors as well as from Ca2+ release from
intracellular stores mediated via P2Y receptors. In LPS-
activated mouse peritoneal macrophages, Ca2+ release from
intracellular stores is required for ATP-induced IL-1β
maturation and release, but in this system the cytokine
response does not require Ca2+ influx from the medium
[127]. Likewise, ATP-induced IL-1β output from LPS-
activated human monocytes is unaffected by removal of
extracellular Ca2+ [129]. However, LPS-activated human
THP-1 cells [137] and HEK293 engineered to express both
the P2X7 receptor and mature IL-1β [128] require influx of
extracellular Ca2+ for optimal cytokine output. Therefore, the
nature of the Ca2+ requirement is dependent on the type of
cell being analyzed. Interestingly, a recent study concluded
that opening of the P2X7 receptor-activated pore is depen-

dent on Ca2+ [138]. Although a role for the pore in IL-1β
posttranslational processing has not been established, per-
haps the Ca2+ requirement for IL-1 maturation and release
relates to this activity. Moreover, Ca2+ influx via the P2X7

receptor recently was linked to a pseudoapoptotic state
characterized by phosphatidylserine movements within the
plasma membrane and to cytoskeletal disruption and zeiotic
membrane distortions [139].

Externalization of mature IL-1β following P2X7 receptor
activation A number of different mechanisms have been
proposed to explain how mature IL-1β is released to the
extracellular environment following ATP stimulation. LPS-
activated murine peritoneal macrophages and human
monocytes exposed to mM concentrations of ATP in vitro
release mature IL-1β via a process that is accompanied by
release of the cytoplasmic marker enzyme LDH [98, 140].
Although the kinetics of appearance of LDH within the
medium of ATP-treated mouse peritoneal macrophages lags
behind the appearance of mature IL-1β [140], release of the
former to the medium suggests that plasma membrane
latency is lost during the ATP-induced process. Thus, one
mechanism proposed for the release of mature IL-1β is that
the producing cell dies, possibly via an apoptotic-like
process, and intracellular components are released passively
from the cell following disruption of the plasma membrane
[98]. On the other hand, evidence exists to suggest that
release of mature IL-1β is a facilitated process. For
example, release of mature IL-1β from LPS-activated
murine macrophages in response to ATP challenge is
blocked by non-selective agents that are known to
antagonize transport function of ABC1, a membrane-bound
protein that functions in cholesterol transport [141]. On this
basis, ABC1 was proposed to facilitate transport of mature
IL-1β [141]. Moreover, when LPS-activated THP-1 cells
are treated with 300 μM BZATP, microvesicles which
contain bioactive IL-1β are rapidly shed from the cell
surface [137]. A similar process has been reported to occur
in mixed cultures of rat primary astrocytes and microglia
[142]. In this case, ATP released from astrocytes appears to
promote shedding of microvesicles from neighboring
microglia containing IL-1β. Details of how the shed
microvesicles subsequently release their content of cytokine
have yet to be defined. An even more elaborate system for
externalization of mature IL-1β has been proposed based
on immunohistochemical observations that co-localized
proIL-1β and lysosomal enzymes within cytoplasmic
vesicles [143, 144]. In response to ATP, these vesicles
appear to fuse with the plasma membrane via a process that
is triggered by K+ depletion and dependent on phospholi-
pase activation [144]. To what extent each of these different
mechanisms contributes to the release of IL-1β in vivo
remains to be established.
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ATP’s ability to promote IL-1β posttranslational pro-
cessing in vitro via the P2X7 receptor is well documented,
but evidence demonstrating that the P2X7 receptor func-
tions in this capacity in vivo is limited. Moreover, no
evidence has thus far been presented to suggest that P2X7

receptor levels and/or activity are altered in human
inflammatory diseases. A number of single nucleotide
polymorphisms have been identified in the human P2X7

receptor gene [145–151] and these can lead to impaired
ATP-induced IL-1β (and IL-18) posttranslational process-
ing in vitro [152, 153]. Thus, it will be of great interest to
determine whether individuals possessing these functionally
impaired P2X7 receptor phenotypes are less susceptible to
inflammatory disorders. Two independent P2X7 receptor-
deficient mouse lines have been generated [26, 154].
Although these receptor-deficient mice are overtly normal,
when subjected to various challenges they display attenu-
ated inflammatory responses. For example, after treatment
with a panel of anticollagen antibodies to induce an RA-
like disease state, joints recovered from wild type mice
display a more pronounced inflammatory cell infiltrate and
greater cartilage destruction than do joints recovered from
P2X7 receptor-deficient mice [26]. In similar murine
models of arthritis, administration of neutralizing anti-IL-1
antibodies are known to suppress the inflammatory
response [155–157]. Therefore, the protection afforded by
deletion of the P2X7 receptor is consistent with the
knockout mice possessing a diminished capacity to gener-
ate mature IL-1β. Indeed, following intraplantar injection
of Freund’s complete adjuvant, extracts of the injected
paws obtained from wild type mice contain greater levels of
IL-1β than do comparable extracts obtained from P2X7

receptor-deficient mice [154]. Moreover, P2X7 receptor-
deficient mice display less hypersensitivity to the adjuvant
challenge than do their wild type counterparts. These in
vivo disease model studies, therefore, suggest that antago-
nism of the P2X7 receptor may offer a novel therapeutic
approach for the treatment of inflammatory disorders. As
several pharmaceutical companies appear to be engaged in
a search for antagonists of the P2X7 receptor [158–160],
the ability to selectively modulate this receptor pharmaco-
logically in animal models and man may soon be possible.
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