
P2P Network for Very Large Virtual Environment

Romain Cavagna
PHD Student

France Telecom RD, IRISA
Rennes, France

romain.cavagna@orange-ft.com

Christian Bouville
Research Expert

France Telecom RD
Rennes, France

christian.bouville@orange-ft.com

Jerome Royan
Research Engineer
France Telecom RD

Rennes, France

jerome.royan@orange-ft.com

ABSTRACT

The ever increasing speed of Internet connections has led
to a point where it is actually possible for every end user
to seamlessly share data on Internet. Peer-To-Peer (P2P)
networks are typical of this evolution. The goal of our paper
is to show that server-less P2P networks with self-adaptive
assignment techniques can efficiently deal with very large
environments such as met in the geovisualization domain.
Our method allows adaptative view-dependent visualization
thanks to a hierarchical and progressive data structure that
describes the environment. In order to assess the global ef-
ficiency of this P2P technique, we have implemented a ded-
icated real time simulator. Experimentation results are pre-
sented using a hierarchical LOD model of a very large urban
environment.

Categories and Subject Descriptors: C.4, C.2.4, C.2.1
: Computer Systems Organization

General Terms: Algorithms, Measurement, Performance,
Experimentation

Keywords: Virtual Environment, Simulation, Peer-To-Peer,
Self-Organization, Self-Scalability, Self-Adaptation

1. INTRODUCTION
A centralized architecture is obviously not a good frame-

work to build a truly scalable Virtual Environment (VE).
Indeed, basic client server-architecture leads to prohibitive
deployment and maintenance costs when it comes to very
large scale applications with thousands of connected clients.
We first demonstrate that, thanks to its dynamic distrib-
ution capability, P2P network overlays have clearly a po-
tential to solve this problem. In the following, after a brief
overview of the background work, we describe the peer con-
nectivity method that we propose for visualizing very vast
and complex environments such as 3D cities as well as shar-
ing these environments among many users. Then, after
briefly describing the specific progressive and hierarchical
object structure that we use in our simulation environment,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VRST’06, November 1–3, 2006, Limassol, Cyprus.
Copyright 2006 ACM 1-59593-321-2/06/0011 ...$5.00.

we propose a new and efficient self-adaptive method to ex-
change data in a spatially-organized P2P network. Before
concluding, we present our simulation results showing then
the efficiency of our data exchange method. Finally, we
present our plan for future research.

2. BACKGROUND AND RELATED WORK
Much research effort have been directed to shared VEs

and many of them focus on the crucial problem of efficiently
and quickly updating clients visualization data. A straight-
forward method to reduce client-server data exchange is to
replicate as much as possible the scene data in the local
storage resource of clients. To avoid full replication, the
scene can be partitioned and the resulting subsets can be
distributed among clients. Funkhouser [6] uses Potential
Visible Set (PVS) information to selectively send updates
of avatars location to a relaying backbone of servers. In
this architecture, servers are connected to one another in a
P2P manner and clients are connected to servers according
to their current location in the VE. Similarly, BrickNet [7,
8] overcomes some of limitations of a central server by in-
corporating multiple communicating servers. In DIVE [2,
3, 5, 9] that was pioneered by SIMNet [12, 15], the Virtual
World is divided into a tree the nodes of which are 3D scene
partitions. A multicast group is associated to every node so
as to reduce the network usage. DIVE uses a distributed
architecture to update objects in real time. In NPSNET-IV
[14], the Virtual World is divided into static hexagonal cells
associated to a specific multicast group. The server which
is assigned to the cell or its administrator has the respon-
sibility to send the update data to connected users. Spline
[1] has evolved from pure multicast to mixed client-server
and multicast approach so as to cope with low-bandwidth
networks. The Virtual World is divided into chunks (the
locales) and each one communicates only to the users that
are interested in it.

A major impediment to the use the above VE architec-
tures lies in the insufficient deployment of multicast routers
in the Internet. In any case, such architectures cannot be
considered self-scalable since the overall bandwidth capac-
ity of the system remains constrained by the number of
servers. Moreover, they are not designed to deal with many
connected clients roaming in very vast and complex scenes.
Therefore, we have chosen to concentrate our efforts on the
creation of a really scalable and adaptive VE. In a self-
scalable architecture, each new peer requests and provides
services to other peers. The network can thus spontaneously
adapt to the demand by leveraging the resources provided by

269

each connected peer, which increases the global bandwidth
capacity. A key feature of P2P overlays lies their ability to
self-organize by allowing each peer to dynamically select the
peers it will cooperate with.

3. CONCEPT OVERVIEW
Our peer assignment method is based on the spatial lo-

cation of peers in the VE. This notion is very important
because neighbor peers in a VE are likely to have a lot of
data in common. For example, if two peers have nearly the
same viewpoint in a city model, data stored in both peers
will be almost the same. Figure 1 present three screenshots
of two cities. As we can see, User 2 and the User 3 have
nearly the same viewpoint and their visualization data are
almost identical. These peers can exchange their data with-
out the help a potentially overburdened central server.

Figure 1: Peers proximity relationship.

However, finding and maintaining the appropriate peer
connectivity is a very difficult problem in a changing envi-
ronment where peers viewpoint are allowed to move freely
and peers can disconnect or appear at any time. Solipsis
[13] and VON [11] are the first network organization meth-
ods that gives a solution for connectivity in 2D environ-
ments. In these P2P architectures, peers are connected to
each other according to their current 2D location in the VE.
Dedicated algorithms are used to achieve the global stabil-
ity of the P2P network while fulfilling a global connectivity
constraint (i.e. there must exist at least one path between
each pair of peers). In a 3D VE, 2D connectivity between
peers could be a solution if navigation is restricted to walk-
through. However, it clearly does not suit to flyover navi-
gation as visualization data stored in connected peers could
be very different. Only 3D connectivity can provide fully-
unconstrained peer navigation.

Figure 2 illustrates such a peer connectivity assignment.
We can see that there is no relation between locations in the
physical network and connections in the P2P overlay. Con-
nections between peers in a spatially-organized P2P overlay
can evolve very quickly. Therefore, the network character-
istics (i.e. latency and bandwidth) of the neighboring peers
could be very different after each connectivity update. Con-
sequently, if we want an optimal exchange of data between

Figure 2: Location of a cluster of peers in the VE

and in the physical network. Peers are connected to

each other according to their current location in the

VE.

peers, the network connection characteristics of peers must
be taken into account.

In a recent paper, Shun-Yun Hu [10, 11] presents an intu-
itive solution for exchanging data between peers in a spatially-
organized 2D P2P network. In his P2P network design, the
virtual world is described into a specific scene description
data structure containing 3D objects location and IDs. The
VE is partioned into regular cells and a list of objects is
attached to every cell. After receiving an overall scene de-
scription (i.e. VE dimension and cells size) from the gateway
server, every peer initiates a procedure in order to obtain
the required parts of the scene description according to its
current Area Of Interest (AOI). After having received the
required parts of the scene description, peers can exchange
3D objects.

The exchange procedure described in [10] is quite sim-
ple. For every data request, the requesting node prepares a
list of potential supplying nodes composed of currently con-
nected neighbors (mostly its AOI neighbors) and the gate-
way server. The list is sorted according to specific priority
criteria (e.g. latency, bandwidth or data availability). The
requesting node sends requests to each node of the list in
a roundrobin (i.e. sequential) manner. The nodes that re-
ceive the requests can respond by either sending back the
requested data, or denying service because of data unavail-
ability or lack of bandwidth. If a request is denied, it will be
sent again to other supplying nodes. As the gateway server
is part of the pool, a data request can always be served.

Our proposal is quite different. First, instead of working
at the scene level, we work at the object one as we think
that a scene description is too restrictive. When using a
scene description, the VE is assumed to be static and it will
be obviously difficult to manage real time updates of the
VE. We are now working on a specific protocol that enables
a dynamic update of the VE. This will be described in a
future contribution and this paper focus on the fundamental
problems of peers connectivity and data exchange procedure
between peers so as to achieve efficient scene data supplying
to peers.

270

By using a P2P spatially-organized network, we address
the crucial problem of self-scalability and self-organization.
The data exchange method presented below addresses an-
other central problem: the one of self-adaptation. Self-
adaptation is the ability for a requesting peer to dynamically
take into account the serving capacity of neighbor peers. We
detail our data exchange method in section 4 and 6.

4. SYSTEM STRUCTURE

4.1 Peer connectivity
In our P2P architecture, there are currently three types

of peers. Memory Peers (MP) can be likened to cen-
tral server. They keep in memory all data concerning one
or more objects. Visualization Peers (VP) are end-user
peers. In their local cache, they only store data concerning
their current point of view as well as left-over data result-
ing from previous viewpoint changes. Connectivity Peers

(CP) are assigned the task of achieving the connectivity be-
tween peers. In the future, we think it could be interesting
to replace these peers by Solipsis nodes [13] in order to ob-
tain a full P2P network. But so far, they only provide 2D
connectivity, which is not sufficient for a 3D VE.

Figure 3: Example of 3D connectivity between peers

in a spatially-organized P2P overlay.

Figure 3 represents an example of 3D connectivity be-
tween peers in our spatially-organized P2P overlay. At the
present stage of development, the connectivity procedure
implemented in CPs does not fulfill the Solipsis constraint
mentioned in section 3. Each CP manages all VPs connected
to it and, upon a request of a connected VP, it provides a
list of the N VP neighbors, N being a parameter of the re-
quest. The list of VP neighbors is the allocated serving

pool (ASP).
Figure 4 represents a VP (VP1) connected to six other

neighbor VPs . At time t, VP1 is missing scene data. The
goal of our data exchange method is to distribute the VP1
data requests among neighbor VPs. The selection of the
serving VPs is made according to the following data that
characterizes the serving peer capacity:

• the application Time To Serve (TTS),

• the estimated available data in the serving peer given
its current viewpoint (see section 6),

• the upload limit in bandwidth (BPUPL) assigned
to this peer for P2P serving tasks,

Figure 4: Requests distribution among serving

peers.

• the number of peers currently served by the serv-
ing peer (NBPCS). Used by a requesting peer in con-
junction with the upload limit parameter to determine
the amount of bandwidth it can expect for its own ser-
vice (see section 6),

• the realization ratio (RR) is the percentage of re-
quests that have been successfully served,

• the loading ratio (LR) which is the percentage of
data already stored to render the scene under the cur-
rent viewpoint of the serving peer.

We have not yet implemented the use of the two last fea-
tures but we think they can improve the self-adaptation
behavior. Other interesting characteristics that could be
taken into account are the download and processing capaci-
ties of the requesting peer. To leverage the upload capacity
of the neighbor peers and its own download capacity, each
requesting peer must distribute its requests among the se-
lected neighbors. In figure 4, VP1 sends data requests con-
currently to three other VPs (i.e. VP2,VP4 and VP7).

4.2 The simulation environment
In order to show the self-adaptation capability of our data

exchange method, we have built a dedicated simulator which
is able to make real time measurements of the global average
accuracy of a cluster of peers. Accuracy (ACC) represents
the discrepancy at time t between the required data for the
current VP viewpoint and the received data that can be used
to render this viewpoint. In our case, as we use a hierarchical
model for the objects geometry [4], peer accuracy at time t
is measured as the proportion of missing nodes (NMISS) in
the level-of-detail (LOD) trees with respect to the number
of required nodes (NREQ) to render the current viewpoint:

ACC =
NMISS

NREQ
(1)

Figure 5 shows a screenshot of the simulator monitor win-
dow. Peers movements and connectivity updates can be vi-
sualized in real time during the simulation. For this, the net-
work is modelled by a graph called Simulation Scene-Graph

271

Figure 5: Screenshot of the simulator monitor win-

dow during an experimentation.

(SSG) in which nodes and branches correspond to peers and
connections respectively. Colors are used on peers graphi-
cal representation to visualize the accuracy and the status
of each peer. In the same way, the color of peers connec-
tion changes according to connection activity. The global
average accuracy of the peers cluster can be plotted in real
time, thanks to a dedicated SSG node that collects accuracy
data from all the VPs. The global accuracy is the average
of all nodes accuracies. The min and max accuracy among
all peers at time t is also plotted so as to assess dispersion.

5. THE HIERARCHICAL LOD OBJECT

STRUCTURE
Our experimental platform uses the progressive and hi-

erarchical representation for densely built urban areas
described in [16]. It is based on a tree data structure (the
PBTree or Progressive Building Tree) that holds the recur-
sive applications of geometric merging and simplifications so
as to create a hierarchical geometric model of the whole ur-
ban environment. Each node of this tree, called a Building
Node, describes a 2D1/2 model of a building (i.e. footprint
and heights) at a certain level of detail.

Figure 6 shows an example of such a hierarchical con-
struction for a separate building. A complete hierarchical
model of a whole city can be built in the same way by al-
lowing close buildings to be merged according to a set of
simplification operators. A specific metric error is used to
prioritize least error simplifications when building the tree.
In order to efficiently manage LOD updates transmission, a
LOD description tree (LODDT) is sent at connection start-
up. Actually, it is a skeleton of the PBTtree as shown in
figure 6. It basically replicates the LOD tree structure but
each node only holds LOD selection information i.e. parent
index, node index, aura and centroid. The spherical au-
rae geometry is implicitly determined by a scalar giving the
metric error introduced by the LOD simplifications.

Figure 7 shows the buildings associated to this tree. The
LOD selection information and the dependency relations be-
tween nodes are extracted and added into the description
tree nodes by traversing the PBTree in breadth-first man-
ner. The LODDT is split into sub-trees to allow progressive

Figure 6: Example of a progressive hierarchical tree

construction of a building.

Figure 7: Example of a LOD description tree con-

struction of a building.

transmission. This functionality is important to deal with
very large city models in which the size of the LODDT can
be significant. The LODDT splitting is carried out accord-
ing to size parameters such as the targeted maximum num-
ber of building nodes in a packet or the maximum size of a
packet. Moreover, all children of a given node must be in the
same packet so as to allow immediate use of the node data.
The size parameter may be exceeded in the case of large
number of children nodes. This is quite rare however with
the size parameter we commonly use (roughly 100 nodes per
packet).

Figure 8 shows an example of LODDT splitting. The de-
scription nodes are ordered in each message so as to allow
progressive rebuilding of the LODDT without additional in-
formation. Simple aura inclusion tests are used to select
the required PBTree nodes. Whenever a new viewpoint is
to be rendered, aurae are tested by traversing the LODDT
in breadth-first manner in order to build the appropriate
visualisation subtree.

272

Figure 8: Example of LODDT splitting in which the

maximum number of nodes per subtree is 4.

Figure 9: Using LODDT to render different view-

points.

Figure 9 shows the use of the LODDT to render the scene
under different viewpoints. This selection method is a sig-
nificant improvement compared to the iterative selection
method of [16], which forces children nodes to be requested
only one level at a time. The LODDT allows direct selec-
tion of all necessary geometry nodes in one step as well as
additional LODDT subtrees if required. This allows much
less network usage and server requests, which is important
in the context of P2P overlays.

6. THE DATA EXCHANGE METHOD
In section 4, we have described the criteria that we use

for the selection of the serving peers among the neighboring
peers. A first important point to take into account is the
data availability in the caches of neighbor peers. Request-
ing peers must have a knowledge of the nodes potentially
stored in the cache of neighbor peers so as to avoid sending
unnecessary request messages. The LODDT presented in
section 5 can be used to meet this requirement since know-
ing the viewpoint of a peer is sufficient to determine its list of
visualized objects as well as their current objects visualisa-
tion subtrees through LODDT traversal and aurae testing.
Therefore, every peer must be informed of the location of
their selected neighbor peers in real time. Moreover, the
LOD selection parameters of these peers must be known as

well. Indeed the data stored in cache may be very different
depending on whether we visualize an object at a high or
low level of details.

Figure 10: Using LODDT to assess the content of

neighbor peers cache.

Figure 10 illustrates the use of the LODDT to assess the
content of neighbor peers cache. In this case, VP0 is con-
nected to four other neighbor peers in the VE. Given its
current location, VP0 needs all data corresponding to the
object. For every required nodes, VP0 tests the correspond-
ing aurae with the position of neighbor peers. The aura
inclusion test is made with the current LOD selection para-
meters of the considered peer. This way, requesting peers
can easily select potential serving peers with high proba-
bility of obtaining the requested data. Another important
challenge for every peer is to efficiently leverage its download
capability given the upload capacity of its selected serving
peers.

If a peer has a knowledge of the network traffic brought
about by its requests, it can limit itself. Moreover, if a
peer has some information about the network activity and
capability of its neighbor peers, it will be able to prevent
them from being over-burdened. In our network architec-
ture, every VP adopts a strategy of self-regulation aiming
at a clever usage of the serving capacity of its neighbor peers,
i.e. VPs should not request more data than can be expected
given the serving peers resources. In the same way, a VP
should not request more data than it can receive. In our
P2P overlay, the user has to decide on his own the amount of
bandwidth that he is ready to grant to P2P overlay serving
activity. This bandwidth is the BPUPL parameter men-
tioned in section 4. Using the current NBPCS value of a
serving peer, a requesting peer can assess the usable band-
width (UPB) that he can expect from this serving peer. As-
suming equidistribution of bandwidth among VPs, we have:

UBP =
BPUPL

NBPCS
(2)

If all peers follow the same rule, they can control their
generated traffic in order to distribute it adaptively among
serving peers according to their upload capacity.

Figure 11 shows an example of an ideal distribution of

273

Figure 11: Example of adaptive distribution of data

requests from a VP.

the download traffic generated by a VP. In this very simple
example, all potential serving peers of VP0 (VP1-4) are as-
sumed to have in cache a copy of the complete object model.
We also assume that VP0 is the only peer that is request-
ing data. Therefore, it can use the full upload capability of
its ASP. All peers in the VE have an upload capacity of 56
Kb/s and a download capacity of 256 Kb/s. If all serving
peers have the same TTS value, the full download capacity
of VP0 is exploited and the system response can be consid-
ered as optimal. In general, the values of TTS, NBPCS

and BPUPL of each serving peers are different and time-
dependent, and the simple equidistribution solution does not
lead to optimal usage of the download capacity of VPs. Be-
sides, the serving capacity of the ASP may not be fully used
since some VPs may have a download bandwidth lower than
the sum of all UBP values of the ASP. Finding a solution
closer to optimality is still a research issue. In practical,
it is reasonable to think that fixing a download bandwidth
equal to the upload bandwidth for all VPs leads to a fair
distribution of the P2P overlay resources among the VPs.

Figure 12 illustrates the protocol that we use to obtain
a self-adaptation behavior in our P2P overlay. Every VP
samples the TTS of its ASP peers at regular time interval.
This information is used by VPs to organize their data re-
quests so as obtain PBTree nodes in the right order, i.e. a
parent node must be received before its children (see sec-
tion 5). Consequently, upper level nodes are requested to
the serving peer that has the least TTS.

In this example, VP1 applies the above-mentioned equidis-
tribution strategy, i.e. the upload capacity of a serving
peer is equally distributed among its client VPs. Note how-
ever that VP1 sends its first data request without knowing
NBPCS, a default value is taken in this case.

The variability of the data stored in the serving peers
caches is not yet taken into account in our implementation.
The RR and LR parameters described in section 4 can be
used to achieve this. For example, a peer can be considered
as an interesting source, but the fact that it may be recently
connected to the P2P overlay cannot be taken into account
if the requesting peer does not analyze the realization ratio

Figure 12: Example of P2P messages exchange.

(RR) first. The realization ratio can be taken into account
after receiving the first data packet from the serving peer.
Then, the LR value of serving peer that is transmitted in
every data packet can be taken into account too. With this
two parameters, every VP can improve its chance of getting
successfully-served requests.

7. EXPERIMENTATION
The experimentation has been carried out with a cluster

of twenty peers that cooperate in a given area of the VE.
Each VP loops on the path that has been assigned to it.
VPs are also assigned a start-up time and a lifetime, i.e. the
time at which the peer is connected to P2P overlay and the
time during which it stays connected. During its lifetime, a
VP is connected to three serving peers and to the MP which
is located in the middle of the VE. In order to bring out the
behavior of our P2P network overlay, we put stress on it by
limiting the bandwidth of every peer (MP included) to 56
Kb/s for both upload and download bandwidth.

7.1 The backlash against flash-crowds
We implement a very simple test scenario with intent to

assess the self-scalability and self-organization behavior of
our P2P overlay. The test scenario begins with 5 VPs that
start to navigate in the VE. During this first stage, these
VPs request data from the MP only. It is maintained during
100s so as too give enough time for the VPs to collect data
and reach a global accuracy of one. Then, at t=100s, 15
new peers connect to the overlay and start to navigate. Four
different methods of serving peers selection have been tested:

• from the MP only (amount to basic client/server),

• from the peer having the least TTS,

• from the closest peer,

• using our self-adaptive distribution method.

The above four methods have been experimented and in each
case, we assess the performance of the network by measuring
the global accuracy.

274

Figure 13: Measured global accuracy with different

selection method.

Figure 13 shows the result of our experimentation. Due
to the strong connection bandwidth limitations, the MP is
clearly overburdened if the fifteen new peers request data
only from the MP. This experiment clearly shows that the
closest peer and self-adaptive methods give the best results.
The least TTS method provides inferior results than the
closest peer method because the selected serving peer may
be too far from the requesting peer to have the requested
data. With our self-adaptive distribution method, the over-
lay reacts faster to the flash-crowd and provides the best
accuracy during the start phase. At the end of the start
phase, we see that our method performs slightly worse than
the closest peer one. This is due to excessive requests re-
sending because we have not yet implemented the use of the
loading ratio and the realization ratio. Some requests may
have been transmitted many times to the same serving peer
whereas it has not yet loaded the requested data. Indeed we
are sure it is possible to correct this flaw.

7.2 The bandwidth amplification effect
In a case of flash-crowds, it is possible to assess the band-

width gain that we obtain through the use of our self-adaptive
distribution method. For this, we increase the bandwidth
of the MP in the basic client-server architecture in order
to approximately reach the same average accuracy curve as
the one obtained with the self-adaptive distribution method.
Figure 14 shows the result of our experimentation. The
experimental conditions are the same as described in sub-
section 7.1.

We can see that the gain in bandwidth due to the P2P
overlay is 34 Kb/s, i.e. 65% of the central server connection
bandwidth in a basic client server architecture. Of course,
the overall bandwidth gain in a real system is much higher
since there are many such clusters that cooperate concur-
rently in different areas of the VE.

7.3 The self-adaptation capability
In this part, we focus on the self-adaptation and self-

organization behaviors brought about by our serving peers
selection method and data exchange procedure. At t=0, 5
peers start to navigate requesting data only from the MP.

Figure 14: Bandwidth amplification effect.

At t=100s, fifteen new peers connect to the VE at different
times. The experiment consists into testing the P2P over-
lay behavior by increasingly varying the arrival rate of the
fifteen new peers. For each tested arrival rate, we measure
the global average accuracy of all the VPs over a time inter-
val of 300s. Figure 15 summarizes the results that we have
obtained.

Figure 15: Global average accuracy of a cluster of

fifteen peers with various arrival rates.

In figure 15, we see that with low arrival rates, both meth-
ods roughly provide the same result. The self-adaptive dis-
tribution method begins to provide better results at arrival
rates exceeding 6 peers/min. Beyond this rate, the MP alone
becomes over-burdened and cannot cope with the demand.
Figure 15 shows that the global average accuracy of the MP
method is continuously decreasing whereas it stabilizes at a
level of 0.7 with the P2P overlay. This clearly demonstrates
the self-adaptation capability of our P2P overlay.

8. FUTURE WORKS
As mentioned above, our results have been obtained with

275

a first simulator version that does not implement all the self-
adaptation mechanisms that have been described in this pa-
per. In particular, the serving peers selection method does
not take into account the realization and loading ratio dis-
cussed in section 4. We hope to further improve the perfor-
mances of our P2P overlay by using these variables. We are
also working on other type of experiments with much larger
number of peers so as to more completely assess the perfor-
mances and deeply understand the behavior of the system.
So far, we have assumed that only one peer (the MP) holds
the complete scene data. Our idea for future works is to
introduce special-purpose serving peers that will store some
parts of the scene depending on VPs localization in the VE.
These special peers would help the system to react faster to
local overcrowding of VPs. Dealing with dynamic worlds is
also in our plans at longer term.

9. CONCLUSION
Many research works have been focussed on network shar-

ing of large and complex VEs, but little work address the
problem of self-scalability when many clients are connected
to the VE. Most of the proposed solutions cannot cope with
the problem of efficiently supplying scene data to many fast
moving clients. With self-scalabity, peers cooperate together
to relieve the central server(s) of this burden. Each peer
grants some ot is upload bandwidth to serving tasks. In this
paper, we propose a new spatially-organized P2P network
overlay with intent to obtain a good self-scability behavior
even in the case of fast changing environments. Our solution
is based firstly on a serving peers selection method that not
only take into account the peers proximity in the VE but also
some parameters and state variables that allow to assess the
current serving capacity of the neighbor peers. Using these
data, a requesting peer is able to dynamically select its serv-
ing peers with the best chance of being successfully served.
Secondly, requesting peers follows a self-limitation strategy
aiming at a fair distribution of the serving resources among
peers.

Using hierarchical geometric models is vital to cope with
very large and complex scenes visualisation. To allow the
use of the appropriate adaptive visualisation mechanisms,
we have introduced a dedicated data structure that describes
the hierarchical LOD model of objects. It allows determin-
ing whether a required LOD node is contained in the cache of
a neighbor node as well as the required bandwidth to down-
load the node data. Our implementation is based on the
PBTree structure which provides a hierarchical LOD model
for very large urban environments. Note however that this
solution can be extended to any hierarchical object model
such as multi-resolution pictures or videos.

A simulator has been implemented in order to assess the
behavior of our P2P overlay. Using this simulator, we have
shown that a simple serving peer selection method based
on proximity already provides good results. Not all self-
adaptation mechanisms are yet implemented in our current
platform but our first results already show up a graceful self-
scalable behavior especially when dealing with high peers
arrival rates.

10. ACKNOWLEDGMENTS
I would like to thank M. Sabattier for his reading of this

paper.

11. REFERENCES
[1] J. Barrus, R. Waters, and D. Anderson. Supporting

large multiuser virtual environments. IEEE Computer
Graphics and Applications, pages 50–57, 1996.

[2] C. Carlsson and O. Hagsand. Dive: A multi-user
virtual reality system. Proceedings of the IEEE
VIrtual Reality Annual International Symposium,
17(3):194–400, 1993.

[3] C. Carlsson and O. Hagsand. Dive: A platform for
multi-user virtual environments. Computers and
Graphics, 17(6), 1993.

[4] J. H. Clark. Hierarchical geometric models for visible
surface algorithms. Commun. ACM, 19(10):547–554,
1976.

[5] E. Frecon and M. Stenius. Dive: A scaleable network
architecture for distributed virtual environments.
Distributed Systems Engineering Journal (DSEJ),
5:91–100, 1998.

[6] T. A. Funkhouser. Ring: A client-server system for
multi-user virtual environments. Symposium on
Interactive 3D Graphics, 1995.

[7] S. G., S. L., P. W., and N. H. Bricknet: Sharing
object behaviors on the net. Proceedings of the IEEE
Virtual Reality Annual International Symposium.

[8] S. G., S. L., P. W., and N. H. Bricknet: A software
toolkit for network-based virtual worlds. Teleoperators
and Virtual Environments, 3(1):19–34, 1994.

[9] O. Hagsand. Dive: Interactive multiuser ves in the
dive system. Proceedings of the IEEE Multimedia
Magazine, 3(1), 1996.

[10] S.-Y. Hu. A case for 3d streaming on peer-to-peer
networks. Web3D 2006 Symposium proceedings, 2006.

[11] S.-Y. Hu, J.-F. Chen, and T.-H. Che. Von: A scalable
peer-to-peer network for virtual environments. to
appear in IEEE Network, 2006.

[12] C. J., D. A., G. B., M. P., M. D., and O. D. The
simnet virtual world architecture. Proceedings of the
IEEE VIrtual Reality Annual Symposium, pages
450–455, 1993.

[13] J. Keller and G. Simon. Toward a peer-to-peer shared
virtual reality. IEEE Workshop on Ressource Sharing
In Massively Distributed System, 2002.

[14] M. R. Macedonia, D. P. Brutzman, M. J. Zyda, D. R.
Pratt, P. T. Barham, J. Falby, and J. Locke. Npsnet:
A multiplayer 3d virtual environment over the
internet. Proceedings of the 1995 Symposium on
Interactive 3D Graphics, 1994.

[15] D. Miller and J. A. Thorpe. Simnet: The advent of
simulator networking. Proceedings of the IEEE, Aug.
1995.

[16] J. Royan, C. Bouville, and P. Gioia. Pbtree: A new
progressive and hierarchical representation for
network-based navigation in urban environments.
VMV, 2003.

276

