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Abstract 

Background: Ligand binding site prediction from protein structure has many applications related to elucidation of 

protein function and structure based drug discovery. It often represents only one step of many in complex compu-

tational drug design efforts. Although many methods have been published to date, only few of them are suitable 

for use in automated pipelines or for processing large datasets. These use cases require stability and speed, which 

disqualifies many of the recently introduced tools that are either template based or available only as web servers.

Results: We present P2Rank, a stand-alone template-free tool for prediction of ligand binding sites based on 

machine learning. It is based on prediction of ligandability of local chemical neighbourhoods that are centered on 

points placed on the solvent accessible surface of a protein. We show that P2Rank outperforms several existing tools, 

which include two widely used stand-alone tools (Fpocket, SiteHound), a comprehensive consensus based tool 

(MetaPocket 2.0), and a recent deep learning based method (DeepSite). P2Rank belongs to the fastest available tools 

(requires under 1 s for prediction on one protein), with additional advantage of multi-threaded implementation.

Conclusions: P2Rank is a new open source software package for ligand binding site prediction from protein struc-

ture. It is available as a user-friendly stand-alone command line program and a Java library. P2Rank has a lightweight 

installation and does not depend on other bioinformatics tools or large structural or sequence databases. Thanks to its 

speed and ability to make fully automated predictions, it is particularly well suited for processing large datasets or as a 

component of scalable structural bioinformatics pipelines.

Keywords: Ligand binding sites, Protein pockets, Binding site prediction, Protein surface descriptors, Machine 

learning, Random forests
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Background
Motivation

Prediction of ligand binding sites (LBS, or simply pock-
ets1) from protein structure has many applications in 
elucidation of protein function [1] and rational drug 
design [2–4]. It has been employed in drug side-effects 
prediction [5], fragment-based drug discovery [6], dock-
ing prioritization [7, 8], structure based virtual screen-
ing [9] and structure-based target prediction (or so 
called inverse virtual screening) [10]. Increasingly, LBS 

prediction is being used in large-scale structural studies 
that try to analyze and compare all known and putative 
binding sites on a genome-wide level [11–15]. In prac-
tice, it is often the case that predicting ligand binding 
sites is not an end in itself but it represents only a step in 
larger automated solution or pipeline. For example, drug-
gability prediction server PockDrug-Server [16] relies on 
LBS prediction internally. Similarly, allosteric site predic-
tion tools Allosite [17] and AlloPred [17] both employ 
pocket prediction tool Fpocket [18] as the first step of 
their algorithms.
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1 We use the term ‘pocket’ liberally as a convenient one word synonym for 
‘ligand binding site’, although not all ligand binding sites are necessarily 
located in concave pockets.
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In the rest of this section we will summarize existing 
methods and available tools. We will introduce categori-
zation along several lines:

(1) web servers/stand-alone tools,
(2) template based/template-free methods,
(3) residue-centric/pocket-centric prediction,

and we will discuss strengths and weaknesses of tools 
in these categories. We will also discuss an overlooked 
aspect of the speed of available tools. We will try to con-
vey that there is a strong case for new fast stand-alone 
user-friendly tool that is not based on search in a large 
template library of known protein-ligand complexes.

Existing approaches

Existing methods for LBS prediction are based on vari-
ety of algorithmic approaches. Traditionally, methods 
have been categorized based on their main algorithmic 
strategy into geometric, energetic, conservation based, 
template based (the last two also sometimes referred to 
as evolutionary) and machine learning/knowledge based. 
In reality, many of the state-of-the-art tools are based 
on some combination of the mentioned approaches. 

Methods based on consensus of results of other algo-
rithms have also emerged. Table  1 lists available tools 
for LBS prediction from protein structure introduced 
since 2009 (to cover most recent and still widely used 
methods). In the following paragraphs we will introduce 
the tools that we have used to comparatively evaluate 
the performance of P2Rank. More details on existing 
approaches, including older ones, can be found in numer-
ous reviews and surveys [3, 7, 19–25].

Fpocket is a fast geometric stand-alone tool based 
on filtering and clustering of alpha spheres found by 
way of Voronoi tessellation [18]. It has been one of the 
most widely used methods in recent years, especially in 
large scale applications. Fpocket typically produces rela-
tively high number of predicted pockets for one protein. 
Among them, Fpocket finds most of the known binding 
sites, but they are not always ranked at the top. To address 
this problem, we have previously developed a method 
called PRANK [26] that is able to re-score binding site 
predicted by Fpocket and thus improve relevance of its 
results (i.e. improve identification success rate among 
Top-n pockets). Usage simplicity of Fpocket together 
with its computational efficiency contribute to the fact 
that it remains a popular choice for LBS prediction, as 

Table 1 Availability of existing tools for ligand binding site prediction from protein structure introduced since 2009

† Applies to stand-alone versions
†† Consensus of template based methods: TM-SITE, S-SITE and COFACTOR (also FINDSITE and ConCavity in web version)

*Algorithm introduced in conference proceedings [49]

**In development

Name Year Type Web server Stand-alone Fully  automated† Source Code

SiteMap [35] 2009 Geometric – Yes Yes –

Fpocket [18] 2009 Geometric Yes Yes Yes Yes

SiteHound [28] 2009 Energetic Yes Yes Yes Yes

ConCavity [36] 2009 Conservation Yes Yes – Yes

3DLigandSite [37] 2010 Template Yes – – –

POCASA [38] 2010 Geometric Yes – – –

DoGSite [39] 2010 Geometric Yes – – –

MetaPocket 2.0 [27] 2011 consensus Yes – – –

MSPocket [81] 2011 Geometric – Yes Yes Yes

FTSite [40] 2012 Energetic Yes – – –

LISE [41] 2012 Knowledge/conservation Yes Yes – –

COFACTOR [42] 2012 Template Yes Yes Yes –

COACH [43] 2013 Template† † Yes Yes Yes –

G-LoSA [44] 2013 Template – Yes – Yes

eFindSite [45] 2013 Template Yes Yes – Yes

GalaxySite [46] 2014 Template/docking Yes – – –

LIBRA [47] 2015 Template Yes Yes – –

P2Rank (this work) 2015* Machine learning –** Yes Yes Yes

bSiteFinder [48] 2016 Template Yes – – –

ISMBLab-LIG [32] 2016 Machine learning Yes – – –

DeepSite [33] 2017 Machine learning Yes – – –
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can be illustrated by its employment in recent large-scale 
structural studies [11–15]. Overall good user experience 
with Fpocket in contrast with other available methods 
has been an inspiration for designing our tool.

MetaPocket 2.0 is a prominent example of a consensus 
based method [27]. It aggregates results produced by 8 
different previously published algorithms by taking top 3 
sites predicted by each method. It was shown to perform 
better that any single one of those individual methods. 
MetaPocket 2.0 is only available as a web server.

SiteHound is one of the latest energetic methods, and 
the latest one with stand-alone version [28]. It works by 
placing a probe on a grid points around a protein sur-
face and calculating interaction energies with the help 
of underlying force field software. It is available as a web 
server and as a fully automated stand-alone tool.

Fpocket, SiteHound and MetaPocket 2.0 belong to the 
most cited and widely used template-free methods intro-
duced in the last decade.

�e tool presented in this article is based on machine 
learning from examples. As a main approach, machine 
learning has been under-utilized among published meth-
ods. Although some studies that applied machine learn-
ing to the problem have been published, their focus was 
mainly on classification of binding residues rather than 
on predicting binding sites as such [29–31]. Machine 
learning has been also employed to solve partial tasks in 
complex eFindSite and COACH methods. Tools based 
primarily on machine learning have been introduced 
only very recently [32, 33] (with notable earlier excep-
tion [34]). �e latest one of them is DeepSite, a method 
based on multi-layer (for different atom types) voxelized 
representation of 3D space and deep convolutional neu-
ral networks. It is available only as a web server, but it is 
reasonably fast and has usable, although undocumented 
web API.

Studies that introduced existing methods reported 
relatively high identification success rates, usually on tra-
ditional small datasets. However, the results of the only 
independent benchmark [21] suggest that existing meth-
ods may not be as accurate as previously believed when 
applied to new datasets. It showed that there is still a 
need for more accurate methods, and that nominally high 
results reported by the authors of respective methods 
may not be always indicative of their true performance 
on unseen proteins.

Stand-alone tools versus web servers

Relatively many methods for LBS prediction have been 
published to date, and it may seem that the field is 
crowded with tools available for researchers. However, 
after closer survey (see Table 1) we found that only few 

of the published methods are available as a stand-alone 
software that can be used locally (in contrast to web-
only methods), and most of those that are are unnec-
essarily complicated to use (i.e. users are required to 
perform preprocessing tasks that could have been auto-
mated by the authors of the software). Even fewer of 
them are available as open source software.

�e recent trend has been to make methods available 
only as a web server. Contrary to that, we believe that 
there is still a strong case for stand-alone tools. Online 
methods with a web interface have many advantages 
including usage simplicity, visual presentation and the 
fact that they are ready to be used without installa-
tion. �ey are best suited for use cases when research-
ers want to manually examine one or a small number 
of proteins. However, for many other use cases, such 
as those that involve processing of large datasets, tools 
need to be used in automated mode. Web-only tools 
are intended for interactive use and unfortunately, as 
a rule, do not provide stable and documented APIs. 
�us, the only way how to use those tools in auto-
mated mode is to write patchy web scraping scripts that 
upload proteins and parse the result pages, which for-
mat is not well defined and can change without notice. 
�is approach is far from ideal since it leads to fragile 
implementations and potentially irreproducible results. 
Another consideration when using web-only tools is a 
lack of control over employed computational resources 
and consequently over speed, stability and availability. 
Locally executable tools are therefore more suitable in 
many use cases such as batch processing of large data-
sets, or in cases where LBS prediction is needed as a 
stable part of a larger software solution or pipeline.

We believe that from the user perspective, predict-
ing LBS with a stand-alone tool should be as simple as 
running a single command. With notable exception of 
Fpocket (fpocket -f protein.pdb), SiteHound 
and COACH, this is rarely the case. All other methods 
we examined were not able to produce predictions in 
fully automated manner, and required a manual multi-
step procedure for either generating secondary data or 
data preprocessing of some sort. For example, meth-
ods based on sequence conservation like ConCavity 
or LigsiteCSC [50] ask user to calculate or download 
sequence conservation scores for a given protein first. 
Similarly, some template based methods like eFindSite 
(and also LISE) require pre-calculated sequence align-
ments as an input (in addition to other preprocessing 
steps).

Such requirements pose additional work to users and 
sometimes put them in front of decisions that they may 
not be ready to make (e.g. what is the best way to cal-
culate conservation scores or which algorithm/database 
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should be used to generate alignments). Tools that are 
not fully automated thus pose unnecessary usability 
barriers that can hinder their widespread adoption.

Template based versus template-free methods

A substantial effort in the recent decade has been 
devoted to the development of template based methods, 
which exploit the general tendency of certain protein 
families to bind ligands at similar locations [45]. From 
earlier methods like ProFunc [51] and FINDSITE [52, 
53] to the recent, more complex methods, their defining 
feature is that they all rely on a large databases of know 
protein-ligand complexes. �is template database typi-
cally consists of a substantial portion of all protein-ligand 
complexes in the PDB. �e difference between methods 
is in the sophistication by which they search in their tem-
plate library and then align and aggregate results to form 
predictions. �is search is usually done in a sequential 
manner, which accounts for the fact that they are typi-
cally much slower than template-free methods.

Template based methods belong to the most success-
ful and practically useful of currently available methods. 
�is is because for any unannotated protein, regardless of 
the use case, we would probably like to know the answer 
to the question: Are there any known examples of con-
firmed binding sites on related proteins? Template based 
methods can give (to some extent) definitive answer to 
this question, which can be very informative either way. 
�ey are able to produce high confidence predictions 
(especially when closely related proteins are found) sup-
ported by examples from the template library.

However, apart from slow speed, template based meth-
ods have a fundamental theoretical limitation. Since they 
are all based on search in a template library, by defini-
tion, they are unable to predict truly novel sites that have 
no analogues in their template library (more precisely: 
in the template database there is no related protein that 
has a known binding site at a similar location). Tem-
plate-free methods, on the other hand, rely on intrinsic 
local properties of protein surface patches or 3D chemi-
cal neighourhoods. As such, they can at least potentially 
predict truly novel binding sites. Whether this limitation 
will become more or less relevant in the future is an open 
question. On the one hand, the number of experimentally 
solved structures grows steadily. Consequently, template 
databases will improve their coverage of the space of 
all possible binding sites with time. On the other hand, 
advances in ab initio protein modeling [54], de novo pro-
tein design [55, 56], directed in silico protein evolution 
[57] and the fact that LBS prediction is being applied to 
MD trajectories [58] will offer ever more opportunities 
for novel binding sites to occur.

Another concern related to template based meth-
ods is how to meaningfully compare their performance 
to template-free methods. It is obvious that the query 
protein structure (for which we want to predict LBS) 
should be excluded from the template library during 
evaluation, otherwise the problem is reduced to a sim-
ple search. What, then, about very close homologs? To 
achieve realistic results, authors of eFindSite suggest [45] 
using sequence identity threshold t = 40% (35% in earlier 
work [52]) and excluding templates with higher sequence 
identity to the query protein when doing benchmark-
ing predictions. �is seems reasonable, albeit any par-
ticular choice of threshold t is inevitably arbitrary. For 
any method other than eFindSite we can find a particu-
lar value T for which it will perform roughly the same as 
eFindSite at t = T .

For those reasons we see the two categories of meth-
ods as complementary and ideally used in combination 
where possible; template based methods for their ability 
to give potentially very high confidence predictions, and 
template-free methods for the ability to potentially pre-
dict truly novel binding sites.

Prediction speed

Discussion about running times of existing methods has 
been largely missing in published studies and reviews. 
See Table  2 for our survey of running times of several 
web based and stand-alone tools. As it turns out, the 

Table 2 Prediction speed

† Average time required for LBS prediction on a single protein. Displayed is 
self reported estimate or a result of our test on a small dataset of 5 proteins á ∼
2500 atoms. Stand-alone tools were tested on a single 3.7 GHz CPU core. For 
web servers the wall time from submitting a job to receiving the result was 
measured.

*Di�erence is due to JVM initialization and model loading cost

Method Time†

COACH (web server) 15 h (self reported estimate)

eFindSite (web server) 6.9 ± 0 h

COACH (stand-alone) 6.4 ± 2 h

GalaxySite (web server) 2 h (self reported estimate)

3DLigandSite (web server) 1–3 h (self reported estimate)

ISMBLab-LIG (web server) 71 ± 2 min

FTSite (web server) 39 ± 3 min

LISE (web server) 39 ± 0.1 min

MetaPocket 2.0 (web server) 2.8 ± 0.4 min

DeepSite (web server) 38 ± 0.03 s

SiteHound (stand-alone) 12 ± 0.5 s

P2Rank (stand-alone) 6.8 ± 0.2 s (cold start*)

0.9 s (in larger dataset*)

Fpocket (stand-alone) 0.2 ± 0.01 s
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differences between times required for prediction by 
individual methods can be in orders of magnitude.

But is the speed of prediction even relevant? For use 
cases involving only a few proteins probably not; after 
all, it is worth to wait for potentially better predictions. 
�ere are use cases, however, for which high computa-
tional requirements might be prohibitive. �ose include 
genome-wide structural studies and prediction on trajec-
tories from MD simulations. For illustration, predictions 
for 40,000 proteins by a stand-alone version of COACH 
method would take roughly 30 years on a single CPU 
core (whereas here introduced P2Rank would need only 
under 12 h).

Residue-centric versus pocket-centric perspective

Available tools differ also in the way they represent pre-
diction results. Most of the methods produce a ranked 
list of pockets, which are usually represented as a pocket 
center and/or as a set of points in the empty space around 
the protein surface that characterize the shape of the 
pocket. �ese could be regularly spaced grid points (most 
of the methods), alpha sphere centers (Fpocket) or points 
on a solvent accessible surface (P2Rank). �ese pocket-

centric methods are typically evaluated and compared in 
terms of the identification success rate considering Top-
k pockets from the ranked list of predicted binding sites 
(where k is usually 1, 3 or 5).

A subset of published methods is focused primarily on 
predicting ligand binding residues. Many of those meth-
ods do not produce a ranked list of binding sites as such, 
nor do they pinpoint their locations and shapes. �ose 
residue-centric methods look at the problem of LBS pre-
diction as to the problem of binary classification of sol-
vent exposed residues to binding and non-binding. �is 
is also the way how they are evaluated and compared, 
usually in terms of standard binary classification met-
rics: MCC, AUC or F-measure. �is point of view origi-
nated with earlier methods for LBS prediction directly 
from sequence. It is also prevalent as a main evaluation 
methodology among methods that compete in CASP 
[59] and CAMEO [60] competitions, where prediction of 
ligand binding residues on homology models is one of the 
disciplines.

�is residue-centric view represents not only a dif-
ferent way of looking at the problem, but also a differ-
ent and in some cases conflicting objective. Methods 
that are optimized to achieve the best results in binding 
residue prediction will not necessarily be best at ranked 
pocket prediction and vice versa. To illustrate where are 
those objectives misaligned, consider the following case: 
a method predicts a large binding site centered around a 
small known ligand, such that predicted pocket defines 
three times larger protein surface than is the contact 

surface defined by this known ligand (similar situation 
can be seen in Fig. 1). How should be this prediction eval-
uated? From the pocket-centric point of view, it is consid-
ered a successful prediction and therefore a net positive. 
From the residue classification point of view, this adds 
around twice as much false positives than true positives 
(2/3 of predicted residues are not contact residues with 
known ligand) to the confusion matrix, and that will have 
mostly negative impact toward chosen performance met-
ric. Ligand binding site is a fuzzy concept, even more so 
is the notion of its exact borders. It is not unreasonable to 
assume that considered binding site could harbor a larger 
ligand [61] (perhaps a superstructure of the known small 
one). It may be objected that this just means that residue-
centric view favours more precise predictions. However, 
by the same token, a residue-centric evaluation method-
ology will favour spatially precise prediction of one larger 
binding site over few correct smaller ones.

We believe that pocket-centric point of view better rep-
resents a common sense associated with LBS prediction, 
and as an evaluation methodology awards those methods 
that fail to predict the least amount of potentially inter-
esting binding sites. In this context, P2Rank is a pocket-
centric method.

Other limitations and advantages of available tools

Available tools have other practical and theoretical limi-
tations. For instance COACH web server limits 3 jobs per 
user (IP address) and ISMBLab-LIG and eFindSite web 
servers asks for entering captcha-like code with every 
prediction request. Some methods are able to predict 
LBS only on single-chain proteins or they work with sin-
gle-chain structures internally (this is true for most of the 
template based methods). �is could be a usability incon-
venience as preprocessing step of splitting structures by 
chains is needed first. More importantly, it means that 
those tools will not be able to predict potential binding 
sites that emerge around places, where chains connect in 
multimers and biological assemblies.

It should be acknowledged that some tools offer func-
tionality that goes beyond simple LBS prediction from 
structure. Some tools are able to perform prediction 
just from sequence by automatically building a homol-
ogy model first (GalaxySite, 3DLigandSite, FunFold [23]). 
Another useful function of some methods is the ability 
to suggest possible binding ligands (GalaxySite and tem-
plate based methods). Other tools are able to directly 
predict druggability of predicted pockets (Fpocket, Dog-
Site) or predict transient pockets in molecular simulation 
trajectories [62, 63]. �at being said, in the present work 
we assess other tools only by their ability to predict LBS 
from structure.
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Implementation and usage
P2Rank is a command line program written in Groovy 
and Java distributed as a binary package that requires 
no dependencies except Java Runtime Environment. 
It is lightweight in the sense that (unlike many alterna-
tive stand-alone tools) it specifically does not depend on 
other bioinformatics tools or large structural or sequence 
databases that would need to be installed on a local 
machine. It is platform independent (to the extent Java is) 
and has been tested on Linux and Windows.

Input is a PDB file or a dataset file that contains a list 
of PDB files. P2Rank is able to automatically produce 
predictions for any PDB file (single or multi chained) 
by running a single command (prank predict -f 

protein.pdb). No preprocessing steps on part of the 
user are needed. For each input protein, P2Rank pro-
duces an output CSV file which contains an ordered list 
of predicted pockets and their scores. Pockets are char-
acterized by coordinates of their centers, by a list of sol-
vent exposed protein atoms and by a list of amino acid 
residues that constitute the binding site. PDB file with 
labeled SAS points (which form a primary internal repre-
sentation of predicted pockets) can be also produced. �e 
program can optionally generate a PyMOL [64] script 
that produces 3D visualizations such as the one shown in 
Fig.  1. In addition to that, P2Rank allows to easily train 

and evaluate new models on custom datasets and then 
use them for predictions. �is approach can be used to 
create models that are specialized for specific types of 
proteins or ligands.

P2Rank has an efficient well optimized implementa-
tion: required running time averages to less than 1 s for 
a protein of ∼2500 atoms on a single 3.7 GHz CPU core. 
On multi-core machines datasets can be processed in 
parallel with a configurable number of working threads. 
Memory footprint is around 1GB but grows only slowly 
with additional working threads. Additionally, P2Rank 
has a clean internal Java API and apart from being used 
as a command line tool it can be easily employed as a 
library for LBS prediction by programs running on JVM.

Results and discussion
Results

We have extensively evaluated prediction performance 
of P2Rank and compared it against several widely used 
and state-of-the art methods. �ose include geomet-
ric Fpocket, energetic SiteHound, consensus based 
MetaPocket 2.0 and deep learning based DeepSite. In 
the comparison we focused mainly on tools that P2Rank 
directly competes with: that is template-free stand-alone 
fully automated tools that are freely available.

Fig. 1 Visualization of ligand binding sites predicted by P2Rank for structure 1FBL. Protein is covered in a layer of points lying on the Solvent 

Accessible Surface of the protein. Each point represents its local chemical neighborhood and is colored according to its predicted ligandability 

score (from 0 = green to 1 = red). Points with high ligandablity score are clustered to form predicted binding sites (marked by coloring adjacent 

protein surface). In this case, the largest predicted pocket (shown in the close-up) is indeed a correctly predicted true binding site that binds a 

known ligand (magenta). Visualization is based on a PyMOL script produced by P2Rank
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It should be noted that our prediction model was 
trained on CHEN11 dataset and some arbitrary param-
eters of the algorithm were tweaked with respect to the 
performance on JOINED dataset (see “Datasets” section). 
We want to emphasize that only results on CHEN420 
and HOLO4K datasets represent an unbiased estimate of 
P2Rank’s performance.

Results in Table  3 show that P2Rank clearly outper-
forms other tools in Top-n and Top-(n+2) categories on 
both datasets. P2Rank also achieves higher success rates 
that were possible to achieve just by re-scoring predic-
tions of Fpocket by PRANK algorithm (PRANK is part 
of P2Rank software package and works on similar princi-
ples). Still, Fpocket+PRANK performed better than any 
of the other tools with the exception of P2Rank.

We have also evaluated performance of a reduced ver-
sion of P2Rank that uses only single geometric feature 
(descriptor): protrusion. Surprisingly, even this simpli-
fied, purely geometric version of P2Rank slightly outper-
forms other tools in most cases (with the exception of 
MetaPocket 2.0 in Top-(n+2) category).

Some of the evaluated tools failed to produce predic-
tions on some portion of inputs. Since we wanted to 
compare the viability of the methods, not just robustness 
of their implementations, we considered success rates 
only on subsets of original datasets on which given tools 
finished successfully and produced predictions. Detailed, 
pairwise breakdown of the results is included in Addi-
tional file 1.

Furthermore, we have compared prediction speed with 
aforementioned and several additional tools. Results in 
Table 2 show that P2Rank is faster than other tools with 
the exception of Fpocket.

Differences in average total number of predicted sites 
are shown in Table 4. �e table also shows that HOLO4K 
dataset contains larger proteins with more binding sites 
than COACH420. �is is due to the fact that HOLO4K 
contains mainly multimers and COACH420 only single-
chain proteins. Interestingly, Fpocket and P2Rank seem 
to scale the number of predicted sites with protein size, 
while MetaPocket 2.0 and DeepSite do not. SiteHound 
produced significantly more small pockets that other 
tools.

Discussion

DeepSite is the only other machine learning based 
method in our benchmark and we shall discuss how it 
relates to our method and offer possible explanation for 
its lower performance. Predictive model of DeepSite is 
deep convolutional neural network trained on a large 
dataset of 7622 structures derived from sc-PDB [65] data-
base. DeepSite is based on learning from relatively large 
instance representations (i.e. model input; 8 × 16

3 slid-
ing box) and a large dataset, whereas P2Rank is based on 
smaller representations (1D feature vector) and smaller 
training dataset. Voxelized representation used by Deep-
Site, in related works also referred to as atomic grid [66, 
67], is closer to the raw structural data (atomic coordi-
nates and types) and as such it holds more information. 
It potentially allows trained model to capture more inter-
actions than our feature based representation. In the 
light of our results, however, we suspect that even larger 
training datasets may be needed for such voxelized rep-
resentations to perform well. Another possible reason for 
relatively poor performance of DeepSite in our bench-
mark may be that our respective training sets come form 
different distributions, more specifically the fact that the 
relevant ligands (and therefore binding sites) are defined 

Table 3 Comparison of  predictive performance 

on COACH420 and HOLO4K datasets

The numbers represent identi�cation success rate [%] measured by DCCcriterion 
(distance from pocket center to closest ligand atom) with 4 Å threshold 
considering only pockets ranked at the top of the list (n is the number of ligands 
in considered structure)
† These methods failed to produce predictions for some portion of input 
proteins. Here we display success rates calculated only based on subsets of 
proteins, on which they �nished successfully. Detailed, pairwise comparison 
with P2Rank on the exact subsets can be found in the Additional �le 1.
a Predictions of Fpocket re-scored by PRANK algorithm (which is included in 
P2Rank software package)
b Reduced version of P2Rank that uses only single geometric feature: protrusion

COACH420 HOLO4K

Top-n Top-(n+2) Top-n Top-(n+2)

Fpocket 56.4 68.9 52.4 63.1

Fpocket+PRANKa 63.6 76.5 62.0 71.0

SiteHound† 53.0 69.3 50.1 62.1

MetaPocket 2.0† 63.4 74.6 57.9 68.6

DeepSite† 56.4 63.4 45.6 48.2

P2Rank[protrusion]b 64.2 73.0 59.3 67.7

P2Rank 72.0 78.3 68.6 74.0

Table 4 Average number of predicted binding sites

Displayed is the average total number of binding sites predicted per protein by 
each method on a given dataset

COACH420 HOLO4K

avg. protein atoms 2179 3908

avg. true sites 1.2 2.4

Fpocket 14.6 27

SiteHound 66.2 99.5

MetaPocket 2.0 6.3 6.4

DeepSite 3.2 2.8

P2Rank 6.3 12.6
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differently. More work is needed to compare respective 
approaches, ideally using the same training and test data-
sets and evaluation methodology. �is discussion only 
highlights prevalent and recognized [21, 26, 68] prob-
lem of the field: the lack of standardized protocols and 
benchmarks.

Another general problem in the field is the over-reli-
ance on the ground truth as defined by known protein-
ligand complexes from PDB. It is naive to assume that in 
our datasets all possible binding sites are demarked by 
bound ligands. �at is to say that many locations labeled 
as negatives (non-binding sites) in the datasets may be 
binding sites yet to be discovered, or they are already 
known, but the particular ligand binding is captured in a 
different PDB entry. Due to protein flexibility and allos-
teric effects, in some cases it may not even be possible 
for a protein to bind two ligands at two known binging 
sites at the same time. We conjecture that between 1/3 
and 1/2 of true ligand binding sites are not demarked by 
ligands in structures directly taken from the PDB. �is is 
particularly problematic for machine learning and knowl-
edge based methods which use such datasets for train-
ing their models or constructing their knowledge bases. 
From their perspective it means that training datasets are 
extremely noisy.

�ere is no perfect solution, but the best effort to miti-
gate this issue we have encountered is expressed in the 
way CHEN11 dataset was constructed. For all proteins 
in this dataset, close homologs were found in the PDB, 
aligned with them and ligands from homologs were 
superimposed to those structures. Consequently, it is 
less likely that CHEN11 dataset contains unmarked true 
binding sites (although some risk that some of those 
additional binding sites are false is introduced). We 
believe that this dataset serves as a better source for the 
ground truth than raw structures taken directly from 
PDB (therefore we use it as a training set despite its rela-
tively small size). �e way this dataset was constructed 
is akin to the working of template based methods, and 
we believe that, in a similar way, template based meth-
ods can help to construct better training datasets in the 
future (by adding very high confidence predictions based 
on close homologs as binding sites).

Furthermore, when such noisy datasets are used for 
evaluation (of all, not just machine learning based meth-
ods), there is a theoretical performance limit that can 
be achieved even by an optimal predictor (i.e. predictor 
that achieves Bayes optimal rate). Even optimal predic-
tor would sometimes predict (on top of the ranked list) 
fundamentally true binding site that is not correctly 
labeled in the evaluation dataset, with the effect that a 
100% success rate would not be achieved on this protein 
and consequently on the dataset. For this reason we are 

suspicious when we see reported success rates that are 
unrealistically high, say close to or above 95% in Top-1/
Top-n category (which seem to be above optimal achiev-
able rate on noisy datasets). �is can be indicative of a 
data leakage (in machine learning and knowledge based 
methods) or overfitting on a given dataset (i.e. data-
set was used to optimize parameters during develop-
ment) or, in case of template based methods, of the fact 
that the query protein was not removed from the tem-
plate library during evaluation (as we have seen in some 
recent papers). We believe that if some method seem to 
achieve such high success rates, especially on small data-
sets, it may not be indicative of its true performance and 
researchers should check for mentioned pitfalls and try 
to evaluate it on larger datasets. More research is, how-
ever, needed to support our conjecture and to provide 
better estimates.

In the introduction, we have argued that template 
based methods are not able to predict truly novel sites 
(with respect to their template library), implying that our 
method should be better in this regard. A question that 
can be raised here is, that since our method is based on 
machine learning from examples, whether that means 
that it is also only as good as is the training set, and 
therefore subject to similar limitations as template based 
methods. �e answer is yes, to some extent this is true 
for any machine learning based method. However, the 
premise of our method is that the model is not learning 
to remember particular binding sites, but rather learns 
what makes local neighbourhoods around the protein 
surface intrinsically ligandable. Algorithm should then be 
able to apply this learned generalized knowledge to pre-
dict novel sites. But this is exactly what can be illustrated 
by the performance of our method on a large dataset like 
HOLO4K.

�e unique feature of our method is that we predict 
ligandability of points on a solvent accessible surface. 
Other related machine learning approaches were focused 
on predicting ligandability of residues, solvent exposed 
atoms or points on a regular grid. In our preliminary 
experiments, focusing on grid points or atoms led to 
significantly worse results. We mention it as this insight 
might be helpful for authors of related methods in the 
future.

Future work

One limitation of our tool is that it does not produce 
exact shapes and volumes of predicted binding sites. For 
each predicted pocket, P2Rank can produce a set of its 
SAS points that somewhat define its shape, but they are 
not regularly spaced in 3D. �is is something we would 
like to address in the future versions of the software, and 
improve it to produce volumetrically exactly defined, 
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geometrically feasible binding sites. As a consequence, in 
our evaluation we did not use volumetric overlap identi-
fication criteria sometimes employed in other studies [18, 
33]. It is possible that other methods produce predictions 
with more accurate shapes (where those binding sites are 
found in the first place). However, given the large margin 
with which P2Rank outperformed other compared meth-
ods, it is very unlikely that the conclusions of the bench-
mark would be different using volumetric criteria.

Currently, P2Rank still does not use all available infor-
mation that is possible to derive from protein structure. 
Sequence conservation and energetic calculations (using 
different probes) could be used to further enrich the 
feature vector. Our present research is also focused on 
applying rotation invariant geometric 3D descriptors as 
well as more powerful machine learning methods to the 
problem.

Materials and methods
P2Rank algorithm

�e P2Rank algorithm (which principles we introduced 
previously in [49]) is based on classification of points 
evenly spread on protein’s Solvent Accessible Surface 
(referred to as SAS points). �ese points represent local 
spherical 3D neighbourhoods that are centered on them. 
At the same time, they can be seen as potential locations 
of contact atoms of potential ligands. Initially, SAS points 
are described by a vector of physico-chemical, geometric 
and statistical features calculated from its local geometric 
neighbourhood. Consecutively, a predicted ligandability 
score is assigned to each SAS point by a machine learn-
ing based model. Finally, the points with high predicted 
ligandability score are clustered to form predicted ligand 
binding sites (see Fig. 1).

To generate predictions for a given protein using a 
pre-trained classification model P2Rank follows these 
instructions:

1. Generate a set of regularly spaced points lying on a 
protein’s Solvent Accessible Surface (SAS points). 
Positions of the points are calculated by a fast numer-
ical algorithm [69] implemented in CDK library [70].

2. Calculate feature descriptors of SAS points based on 
their local chemical neighborhood:

(a) compute property vectors for protein’s solvent 
exposed atoms,

(b) project distance weighted properties of nearby 
protein atoms onto SAS points (6Å neighbour-
hood is considered, w(d) = 1 − d/6),

(c) compute additional features describing SAS 
points’ neighborhoods and assign them directly 
to SAS points.

3. Predict ligandability score of SAS points by Random 
Forest classifier.

4. Cluster points with high ligandability score and thus 
form pocket predictions (single-linkage clustering 
with 3Å cut-off).

5. Rank predicted pockets by cumulative ligandability 
score of their points (sum of squared ligandability 
scores of all points in the cluster).

Initial step of our approach relates our method to the 
energetic method by Morita et al. [71], where points on 
a solvent accessible surface were used to discretize space 
around the protein (in contrast with a typical approach of 
using points on a regular grid).

Feature vector that represents SAS points and their 
neighbourhoods contains 35 numerical features, some 
of which were inspired by other studies [72–76]. For the 
complete list of features and analysis of their importance, 
see Additional file  1. �e single most important feature 
turned out to be a geometric feature termed protrusion. 
It is defined simply as a number of protein atoms within 
a sphere of 10 Å around a SAS point, and as such can be 
seen as a proxy for point’s “buriedness”. In the “Results” 
section we show that even a simplified version of the 
algorithm, based only on this feature alone, seem to out-
perform many of the other methods.

P2Rank is distributed with a pre-trained model based 
on Random Forests algorithm that was trained on a rela-
tively small but diverse CHEN11 dataset (see “Datasets” 
section). Various arbitrary parameters of the algorithm 
(cut-offs, thresholds, protrusion radius, etc.) and hyper-
parameters of Random Forest were optimized with 
respect to the performance on JOINED dataset. �e final 
default model has 200 trees, each grown with no depth 
limit using 6 features.

Datasets

To train and evaluate P2Rank we were working with fol-
lowing datasets of protein-ligand complexes:

  • CHEN11—a dataset of 251 proteins harboring 476 
ligands introduced in LBS prediction benchmarking 
study [21]. A non-redundant dataset designed in a 
way so that every SCOP family [77] has at most one 
typical representative and to minimize the number of 
unannotated binding sites (by superimposing ligands 
from very close homologs). As such it serves as a 
good source for the ground truth and we employ it 
as a training set. See [21] for the details on how it was 
constructed.

  • JOINED—consists of structures from several smaller 
datasets used in previous studies (B48/U48, B210, 
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DT198, ASTEX) joined into one larger dataset. We 
use it as a development set (i.e. validation set).

 • B48/U48—Datasets that contain a set of 48 pro-
teins in a bound and unbound state [50].

  • B210—a benchmarking dataset of 210 proteins in 
bound state [50].

  • DT198—a dataset of 198 drug-target complexes 
[27].

  • ASTEX—Astex Diverse set [78] is a collection of 
85 proteins that was introduced as a benchmark-
ing dataset for molecular docking methods.

  • COACH420—consists of 420 single chain structures 
that contain a mix of drug targets and naturally 
occurring ligands (we have taken COACH test set 
[42, 43] and removed proteins contained in CHEN11 
and JOINED).

  • HOLO4K—large dataset of protein-ligand complexes 
based on the list published in [79]. Contains larger 
multi-chain structures downloaded directly from 
PDB. Disjunct with CHEN11 and JOINED.

Evaluation methodology

To evaluate predictive performance of P2Rank and com-
pare it with other methods we have used methodology 
based on ligand-centric counting and DCC(distance 
between the center of the pocket and any ligand atom) 
pocket identification criterion with 4 Å threshold. Bind-
ing sites are defined by ligands present in evaluation 
datasets. Every structure in a dataset can have more than 
one relevant ligand (see below) and for every relevant 
ligand, its binding site must be correctly predicted for a 
method to achieve 100% identification success rate on 
the given dataset. Every relevant ligand contributes with 
equal weight toward the final success rate. �e output of 
prediction methods is a ranked list of several putative 
binding sites, but during evaluation only those ranked 
at the top are considered. We use Top-n and Top-(n+2) 
rank cutoffs where n is the number of relevant ligands in 
the evaluated target protein structure (for proteins with 
only one ligand this corresponds to the usual Top-1 and 
Top-3 cutoffs). �is evaluation methodology is the same 
as the one that was used in independent benchmarking 
study [21]. P2Rank is focused on predicting binding sites 
for biologically relevant ligands and PDB files in consid-
ered datasets often contain ligands (or HET groups) that 
are not relevant. To determine which ligands are rele-
vant we use a custom filter and alternatively the binding 
MOAD [80] database. For more details on how we deter-
mine which ligands are relevant, see Additional file 1.

Conclusion
We have presented P2Rank, a novel machine learning 
based tool for prediction of ligand binding sites from 
protein structure. We have shown that P2Rank outper-
forms several alternative tools on two large datasets 
and that it belongs to the fastest available tools. P2Rank 
is able to work directly with multi-chain structures and 
thus find potential binding sites that consist of residues 
from multiple chains. Among other advantages is the fact 
that P2Rank works out of the box, as it does not depend 
on other bioinformatics tools or databases. Unlike many 
alternative stand-alone tools, P2Rank is able to make 
fully automated predictions from the command line (no 
manual preprocessing steps are needed).

P2Rank is, therefore, well suited to be used as a stable 
component in structural bioinformatics pipelines, where 
fast and accurate prediction is required. We believe that 
P2Rank should be particularly beneficial for predicting 
novel allosteric sites, for which template based methods 
would generally be less effective. P2Rank is available as 
an open source command line tool and a Java library.

Availability and requirements
  • Project name: P2Rank
  • Project home page: http://siret .ms.mff.cuni.cz/p2ran 

k
  • Operating system(s): Platform independent
  • Programming language: Groovy, Java
  • Other requirements: JRE 8 or higher (Java 1.8)
  • Source code: http://githu b.com/rdk/p2ran k
  • License: MIT

Additional �le

Additional �le 1.
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LBS: ligand binding site(s); MD: molecular dynamics; PDB: the Protein Data 

Bank; SAS: solvent accessible surface; MCC: Matthews correlation coefficient; 
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