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Abstract

Target marketing has evolved from targeting large customer segments to one-to-one

marketing. Retailers personalize promotions based on customer-level transaction

data, search engines optimize results based on usersŠ past queries, and online

advertisers take into account usersŠ online behavior. Personalizing their marketing

mix to individual customers increases Ąrm sales and proĄts, and improves customer

satisfaction. Customers beneĄt from better services, more relevant offers, and

tailored communication.

The increasing volume, variety, and velocity of data that Ąrms collect open up

promising opportunities for better target marketing. Nonetheless, research on one-

to-one marketing with a focus on retailing is scarce in academic literature. The two

main reasons are that the target marketing approaches proposed by researchers do

not scale to the size of typical retail applications and that data regarding one-to-one

marketing remain locked within retailers and marketing solution providers.

This dissertation (1) develops new descriptive, predictive, and prescriptive mar-

keting models for automated target marketing that are based on representation

learning and deep learning and (2) studies the modelsŠ impact in real-life applica-

tions.

First, this thesis shows that representation learning is capable of analyzing

market structures at scale without requiring any human interaction. The proposed

approach to visualizing market structures is fully automated and superior to existing

mapping methods that are based on the same input data, such as multidimensional

scaling and principal component analysis. Understanding product relationships

and competition is the basis for any target marketing application, so this study is a

necessary Ąrst step toward new deep learning models for predictive and prescriptive

marketing analytics.

Based on these results, the thesis then proposes a scalable, nonparametric model

that predicts product choice for the entire assortment of a large retailer. The model

is based on a custom deep neural network architecture, that is speciĄcally designed

for the application to time series purchase data from retailer loyalty programs.

The end-to-end neural network outperforms benchmark methods for predicting

customer purchases and generalizes out-of-sample. Coupon policies based on the
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proposed model lead to substantially higher revenue lifts than policies based on

the benchmark models.

The remainder of the thesis then studies a real-time offer engine that is based

on the proposed models. A close collaboration with a leading German grocery

retailer and its target marketing solution provider makes it possible to evaluate the

business impact of one-to-one marketing in a real-life application. The comparison

of personalized promotions to non-targeted promotions shows that sophisticated

machine learning systems for automated one-to-one marketing increase redemption

rates, revenues, and proĄts. A study of customer responses to personalized price

promotions within the retailerŠs loyalty program reveals that personalized marketing

also increases loyalty program usage. This illustrates how targeted price promotions

can be integrated smoothly into loyalty programs.

In summary, this thesis is highly relevant for both researchers and practitioners.

The new deep learning models outperform existing approaches to market structure

analysis and predicting customer decisions. This facilitates more scalable and

efficient one-to-one marketing. The modelsŠ Ćexibility makes them well suited to

deal with large-scale data sets from heterogeneous data sources. In addition to the

methodological contribution, this research offers several pertinent implications for

promotion management and one-to-one marketing.



Zusammenfassung

Target Marketing hat sich von der Targetierung großer Kundensegmente zum

One-to-One-Marketing weiterentwickelt. Einzelhändler personalisieren Werbeak-

tionen auf der Grundlage ihrer Transaktionsdaten, Suchmaschinen optimieren

Suchergebnisse basierend auf vergangenen Nutzeranfragen und Firmen verwenden

das beobachtete Nutzerverhalten, um Online Werbung zu personalisieren. Durch die

Personalisierung des Marketing-Mixes auf Kundenebene können Unternehmen ihren

Umsatz und Gewinn steigern und gleichzeitig die Kundenzufriedenheit verbessern.

Kunden ihrerseits proĄtieren von nützlicheren Dienstleistungen, relevanteren Ange-

boten und maßgeschneiderter Kommunikation.

Das zunehmende Volumen und die Vielfalt gesammelter Daten sowie die hohe

Beobachtungsfrequenz eröffnen vielversprechende Möglichkeiten für besseres Tar-

get Marketing. Dennoch existieren in der akademischen Fachliteratur kaum

Forschungsergebnisse zu One-to-One-Marketing, die auf Anwendungen im Einzel-

handel ausgerichtet sind. Zu den Hauptgründen zählen, dass die von Forschern

vorgeschlagenen Ansätze für Target Marketing nicht auf die Größe typischer Einzel-

handelsanwendungen skalieren und dass die Verfügbarkeit relevanter Daten auf

Händler und Marketing-Systemanbieter beschränkt ist.

Die vorliegende Dissertation (1) entwickelt neue deskriptive, prädiktive und

präskriptive Marketingmodelle für automatisiertes Target Marketing, die auf Repre-

sentation Learning und Deep Learning basieren und (2) untersucht die Auswirkun-

gen dieser Marketingansätze in Praxisanwendungen.

Im ersten Schritt zeigt die Arbeit, dass Representation Learning in der Lage

ist, skalierbar Marktstrukturen zu analysieren, ohne dass menschliches Eingreifen

erforderlich ist. Der vorgeschlagene Ansatz zur Visualisierung von Marktstrukturen

ist vollständig automatisiert und vorhandenen Methoden wie multidimension-

aler Skalierung und Hauptkomponentenanalysen, die auf denselben Eingabedaten

basieren, überlegen. Produktbeziehungen und Wettbewerb abzubilden, ist die

Grundlage für jede Target Marketing-Anwendung. Diese Studie ist somit ein

notwendiger erster Schritt in Richtung neuer Deep Learning-Ansätze für prädiktive

und präskriptive Marketingmodelle.
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Auf Basis dieser Erkenntnisse entwickelt die Arbeit anschließend ein skalierbares,

nichtparametrisches Modell, das Produktwahl auf Konsumentenebene für alle

Produkte im Sortiment großer Einzelhändler vorhersagt. Das Modell basiert auf

einer neuartigen Deep Learning-Architektur, die im Rahmen dieser Arbeit gezielt für

die Anwendung auf Zeitreihen-Transaktionsdaten aus Kundenbindungsprogrammen

entwickelt wurde. Das vorgeschlagene neuronale Netzwerk generalisiert über die

Stichprobe hinaus und übertrifft die Vorhersagekraft existierender Benchmarks. Die

unter Nutzung des Modells abgeleiteten Coupons führen im Vergleich zu Coupons

aus Benchmark-Modellen zu signiĄkanten Umsatzsteigerungen.

Die Dissertation untersucht anschließend eine Coupon-Engine, die auf den en-

twickelten Modellen basiert. Eine Zusammenarbeit mit einem führenden deutschen

Lebensmitteleinzelhändler und einem Anbieter von Target Marketing-Anwendungen

ermöglicht es, die wirtschaftlichen Konsequenzen von Target Marketing in der Praxis

zu untersuchen. Der Vergleich personalisierter Werbeaktionen mit Massenmar-

keting belegt, dass der Einsatz moderner Machine Learning-Verfahren Coupon-

Einlösungsraten, Umsätze und Gewinne steigern kann. Eine Analyse der Kun-

denreaktionen auf personalisierte Coupons im Rahmen des Kundenbindungspro-

grammes des Einzelhändlers zeigt außerdem, dass personalisiertes Marketing Sys-

temnutzung erhöht. Diese Erkenntnisse illustrieren, wie Händler Target Marketing

und Kundenbindungsprogrammen effizient und nahtlos kombinieren können.

Zusammenfassend ist die vorliegende Dissertation sowohl für Forscher als auch

für Praktiker relevant. Die entwickelten Deep Learning-Modelle übertreffen die

Leistungsfähigkeit existierender Ansätze zur Marktstrukturanalyse und zur Vorher-

sage von Konsumentenverhalten und bilden die Grundlage für skalierbarere und

effizientere Marketingpersonalisierung. Die Universalität der Modelle erlaubt zu-

dem die Nutzung heterogener Datenquellen. Neben methodischer Beiträge bietet

diese Arbeit relevante Implikationen für effizientes Promotion-Management und

One-to-One-Marketing im Einzelhandel.
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1 | Introduction

Target marketing has a long history in marketing research and practice. Marketers

tailor marketing activities to their customersŠ characteristics and preferences with

the goal to improve the ĄrmŠs position in the target segment (Palmatier and Srid-

har, 2017). Technological progress has made it feasible to continuously reduce the

size of target segments. One-to-one marketing, the most granular form of target

marketing, tailors the ĄrmŠs marketing mix to each customer (Peppers and Rogers,

1997; Peppers et al., 1999; Shaffer and Zhang, 2002). Firms track the purchases of

individual shoppers, observe service usage in real time, collect rich behavioral and

attitudinal data to learn about customer preferences, and use digital channels to

personalize marketing communications (Wedel and Kannan, 2016; Kannan et al.,

2017). These developments open up new, exciting opportunities for one-to-one

marketing. Customer-centric Ąrms understand that customer heterogeneity ne-

cessitates tailoring marketing efforts to individuals, and that doing so leads to

substantially higher proĄts (Rust and Verhoef, 2005; Fader, 2012). The personal-

ization of marketing activities is based on the statistical analysis of customer data

that yields predictions about customer responses to marketing activities such as

promotions and advertising (Arora et al., 2008). This enables Ąrms to deliver Şthe

right content to the right person at the right time, to maximize immediate and

future business opportunitiesŤ (Tam and Ho, 2006, p. 867).

Pioneers of personalization and one-to-one marketing can be found across different

industries, both offline and online (Aguirre et al., 2015). The search engines Google

and Bing analyze past queries and contextual information to produce faster and

better search results (Arora et al., 2008). Facebook targets online advertisements

based on the usersŠ online behavior (Goldfarb and Tucker, 2011), and publishers

such as nytimes.com recommend articles based on the usersŠ interests (Arora

et al., 2008). Retailers collect vast amounts of customer-level data, which they

use to analyze customer purchasing habits (Blattberg et al., 2008; Bradlow et al.,

2017). Amazon.com and Barnes & Noble, for example, provide personalized

product recommendations (Montgomery and Smith, 2009). In grocery retailing, the

availability of customer data, especially those obtained through loyalty programs

(LP), and the targeting engines offered by solution providers (e.g., dunnhumby or

Catalina Marketing) promise to leverage the potential of promotion personalization

1
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(Rowley, 2005; Guillot, 2016). The brick-and-mortar retailers Target and SafewayŠs,

for example, tailor circulars and coupons to the customersŠ shopping histories

(Bleier et al., 2018).

Academic literature conĄrms that personalization in marketing beneĄts both

customers and Ąrms (for an overview, see Vesanen, 2007). Research has shown

that target marketing increases Ąrm proĄts and revenues by offering more relevant

products to customers and differentiating prices according to customersŠ preferences

and willingness-to-pay (Arora et al., 2008; Rossi et al., 1996; Rust and Verhoef,

2005; Zhang and Wedel, 2009). Differentiation helps Ąrms to gain a competitive

advantage (Murthi and Sarkar, 2003) which, in turn, might make it possible to

charge higher prices (Vesanen, 2007). Personalized offers yield higher recall and are

more effective in inĆuencing customer decisions (Tam and Ho, 2006; Tucker, 2014).

From the customer perspective, marketing personalization can simplify decisions

(Murthi and Sarkar, 2003) and contribute to increased satisfaction and loyalty

(Ansari and Mela, 2003). Practitioners conĄrm these Ąndings. They list higher

response rates, more relevant customer interactions, higher conversion rates, better

differentiation against competitors, and higher loyalty as key beneĄts of adopting

personalized marketing strategies (eMarketer, 2016). Industry studies also report

increased proĄtability, larger shopping baskets, higher purchase frequencies and

improved customer retention (Lindsay, 2014; Hawkins, 2012).

Despite these beneĄts for Ąrms and customers, research on one-to-one marketing

in retailing is scarce in academic literature. The two main reasons are that the target

marketing approaches proposed by researchers do not scale to the size of typical

retail applications and that data regarding one-to-one marketing remain locked

within retailers and marketing solutions providers. The goal of this thesis is to (1)

develop and validate new descriptive, predictive, and prescriptive marketing models

for automated one-to-one marketing that are explicitly designed for the application

in retailing and (2) study the impact of these models in real-life applications.

The close collaboration with a leading German grocery retailer and its target

marketing solution provider sets the context for this research: The proposed models

use large market basket data and loyalty card data sets as input for modeling

market structure, predicting customer choices, and deriving policies for personalized

coupons. Retailers can apply the models directly to raw transaction data. This

eliminates the need for extensive data preparation and assumptions about category

delineation and cross-product effects. The implementation is based on modern deep

learning frameworks for automated inference, so the models can be easily modiĄed

and extended. The loyalty card data also contains the customersŠ responses to

targeted couponsŮthe targeting is based on the models proposed in this thesisŮso

this opens up an exciting opportunity to study the impact of one-to-one marketing

on customer behavior and coupon performance.
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Figure 1.1. Four essays on one-to-one marketing in grocery retailing.
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The thesis is a collection of four essays on one-to-one marketing (see Figure

1.1). The Ąrst two essays have a methodological focus in that they propose

new, scalable approaches to one-to-one marketing that are particularly suitable for

retailing. Models that have been used for target marketing in the past break down

when the number of customers or promoted alternatives increase (Naik et al., 2008).

Consider, for example, that Walmart collects data on billions of shopping baskets

every year and stocks up to 150,000 distinct products in its brick-and-mortar stores,

along with more than one million products on walmart.com (Walmart, 2005, 2016).

As a consequence, most studies on one-to-one marketing adopt the perspective of a

brand by focusing on a small number of products, product categories, and customers.

In their seminal work on target marketing, Rossi et al. (1996) show how to model,

measure, and optimize price discounts in a brand choice setting, highlighting that

household purchase histories are valuable to manufacturers for optimizing coupon

proĄtability, according to their study in a single product category. Zhang and

Wedel (2009) study retailer-customized checkout coupons in online and offline stores

across two product categories. Johnson et al. (2013) propose a model that adds the

dimension of timing to target marketing and apply it to optimize coupons for four

brands in a single product category. Dubé and Misra (2017) propose a machine

learning approach for price personalization and apply it to (business-to-business)

subscription pricing at an online recruiting company. In applying such approaches

to full product assortments, retailers would have to implement hundreds of complex
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models, one for each of their products or product categories. Given the level of

sophistication, each model necessitates careful data preparation and calibration

(e.g., data pruning, choice set deĄnition, master data collection). Also, consider

that the quality of the results can depend directly on the assumptions made during

data preparation, for example, on how retailers delineate product categories. Even

if retailers make the ŞrightŤ assumptions, it remains unclear how they should

combine the category-level results in a global one-to-one marketing policy across all

categories, and whether modeling categories independently might adversely affect

outcomes. Reducing the size of data on the other handŮin terms of customers

and/or products (Zanutto and Bradlow, 2006)Ůis not viable in the context of

one-to-one marketing (Jacobs et al., 2016).

A possible alternative for researchers is to borrow tools from machine learning

(ML) to complement traditional econometric techniques (Einav and Levin, 2014).

Big (retail) data offers the potential of understanding causal effects of marketing

instruments to a greater extent (Sudhir, 2016), and ML methods are a promising

approach to combine a variety of heterogeneous data sources, such as purchase

histories, responses to past promotions, click-stream data, and browsing histories to

inform one-to-one marketing, explicitly accounting for complex interaction effects

(Bradlow et al., 2017). In online retailing, for instance, Ąrms use collaborative

Ąltering algorithms to predict customersŠ next purchases by analyzing their purchase

histories (Mild and Reutterer, 2003; Liu et al., 2009; Jannach et al., 2011). Although

applications of ML have proven useful in practice, it is important to note their

limitations: Simple response models that are frequently used in targeting engines

to predict (binary) outcomes such as clicks or purchases (Chapelle et al., 2015) can

be used to predict the purchase probability conditional on marketing interventions

(e.g., targeted coupons), but they typically fail to account for relationships between

alternatives, for example, competition and complementarity between products. A

challenge for count-based approaches such as collaborative Ąltering algorithms is

incorporating customer characteristics and marketing variables (e.g., coupons).

Research that addresses these shortcomings is only beginning to emerge. Jacobs

et al. (2016) extend latent Dirichlet allocation (Blei et al., 2003) to allow using

customer characteristics in predicting the purchases of 11,783 customers for 394

products. The generative model proposed by Ruiz et al. (2018) jointly predicts

the purchase probabilities for 5,590 products and 11,783 customers accounting

for product prices and the sequential decision process of shoppers. Although this

research is a promising Ąrst step toward more scalable approaches for modeling

customer choices, neither model predicts individual responses to marketing actions.

This is a prerequisite for one-to-one marketing applications. And consider too, that

both applications are still small compared to the vast size of typical retail data sets,

so more work is required that explicates how models from other disciplines such as
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data science, ML, and natural language processing can be applied appropriately

to marketing problems (Montgomery and Smith, 2009; Chintagunta et al., 2016;

Sudhir, 2016).

An especially promising research direction to tackle these challenges is deep

learning (DL). The universality of DL and its applicability to large-scale data

sets is well established and deep learning pioneers, such as Google and Facebook,

have illustrated its usefulness in marketing applications (Covington et al., 2016;

Park et al., 2018). DL is a general-purpose learning procedure that is capable of

processing data in their raw form. It can be applied to a variety of different big data

sources (including images, video, audio, speech, and text), and features very good

predictive performance (LeCun et al., 2015). In contrast to classic ML approaches

that require the manual design of features as model input, DL models utilize

increasing amounts of computational resources and data in automatically learning

representations (or features) from raw input data. These representations capture

intricate structures in large data sets without requiring manual effort or domain-

speciĄc expert knowledge (LeCun et al., 2015). DL has achieved performances close

to the level of humans in image (Krizhevsky et al., 2012), face (Taigman et al., 2014),

and speech recognition (Hinton et al., 2012), while producing promising results for

natural language understanding (Collobert et al., 2011), question answering (Bordes

et al., 2014), language translation (Sutskever et al., 2014), and automatic image

annotation (Vinyals et al., 2015). It is therefore not surprising that researchers

expect DL to play a central role in marketing applications in the future (Kannan

et al., 2017). Yet, little work in academic marketing literature has addressed deep

neural networks (Wedel and Kannan, 2016). This thesis proposes new DL models

that can be applied to one-to-one marketing, speciĄcally personalized coupons, so it

is a Ąrst step toward target marketing based on deep learning. The contribution of

this thesis includes novel deep learning architectures that are speciĄcally designed

to model market structures and cross-category product choice based on retail data.

The first essay shows that DL is capable of analyzing market structures at

scale without requiring any human interaction and ex ante assumptions about

product relationships (e.g., product categorization). Understanding product rela-

tionships and competition is the basis for any target marketing application, so this

study is a necessary foundation toward new predictive and prescriptive marketing

models based on DL. The study shows that the proposed approach for visualizing

market structures is superior to existing mapping methods (e.g., multidimensional

scaling, principal component analysis) that are based on the same input data. A

comprehensive simulation study contributes to a better understanding of how DL

models capture product attributes, product relationships and market structures.

The in-depth comparisons with the results of state-of-the-art methods for analyzing

product relationships such as multivariate probit models (Manchanda et al., 1999)
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and mixed logit models (Train, 2009) provide evidence that the learned repre-

sentations approximate the true market structure well. The application of this

approach using data collected at a leading German grocery retailer underlines its

usefulness and generates novel Ąndings that are relevant to promotion management

and assortment-related decisions.

The second essay directly builds on the results of the Ąrst essay in that it

proposes a DL model for cross-category product choice. Accurately predicting

what customers will likely buy on their next shopping trip is at the core of efficient

one-to-one marketing. Prior research has had great success in modeling the choices

of individual customers within a single or across a small number of selected product

categories. This study deals with product choice across the entire assortment of

grocery retailers. Such retailers typically operate hundreds of product categories

and handle millions of transactions per day. The dimensionality and scale of the

problem require new methods for efficient product choice modeling. The essay

proposes a scalable, nonparametric model that predicts product choice for the entire

assortment of a large retailer. The model is based on a custom deep neural network

architecture, that is speciĄcally designed for the application to time series purchase

data from retail LPs. The model inputs customer-level purchase histories and

coupon assignments to predict purchases of individual customers. The proposed

neural network builds on the results of the Ąrst essay in that it Ąrst estimates

latent product representations using market basket data. It then combines purchase

histories, marketing mix variables, and additional meta data to predict product

choice. Retailers can apply the model directly to raw loyalty card data without

making assumptions about product relationships (e.g., category structure) and

extensive data preparation (e.g., product attributes, choice sets). This paper

provides an in-depth evaluation of the modelŠs performance in a simulation study

and veriĄes its prediction performance using empirical data. The simulation study

explicates that the end-to-end neural network generalizes out-of-sample, achieves a

higher prediction accuracy than state-of-the-art benchmark methods, and is more

scalable than classic econometric approaches, both in the number of products and

the volume of historical purchase data. The model captures own- and cross-product

coupon effects, adjusts the predicted probabilities for consumption dynamics, and

automatically learns market structure. The study illustrates the value of improved

product choice prediction in the context of real-time offer (RTO) engines for grocery

coupons. The deep neural network facilitates more effective and efficient coupon

policies for one-to-one marketing. Coupon personalization based on our model

achieves substantially higher revenues compared to the baseline prediction methods.

The application of the deep neural network to loyalty card data from the same

retailer studied in the Ąrst essay conĄrms the superiority of the proposed model

over benchmark solutions. Retailers can easily extend the model input, so the
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proposed product choice model offers practical value for other retail analytics tasks

that require quantifying how marketing decisions impact business performance.

The last two essays are motivated by the practitionersŠ view of target marketing, in

that they evaluate the impact of one-to-one marketing on coupon performance

and LP usage. Research on this aspect of one-to-one marketing and coupon

personalization in retailing is limited. In a quasi-experiment, Venkatesan and

Farris (2012) Ąnd that coupon exposure and redemption have positive effects on

trip incidence and revenues. Sahni et al. (2016) evaluate the revenue effect of

personalized email promotions in a Ąeld experiment at an online ticket resale

platform. Osuna et al. (2016) study the performance of checkout coupons, targeted

such that eligibility to receive the coupons depend on the householdsŠ purchase

histories. When it comes to LPs, researchers have demonstrated that personalization

can act as a loyalty-building mechanism (Bijmolt et al., 2011; Meyer-Waarden,

2007; Verhoef, 2003), but the link between personalized promotions and LPs are

understudied in academia. Research is needed that explicates how LPs can Şbe

combined or even integrated with other marketing-mix instrumentsŤ (Bijmolt and

Verhoef, 2017, p. 161) and what the effects of such combinations are. This thesis

uses the loyalty card data provided by a German grocery retailer and its marketing

solution provider to study how targeted coupons impact coupon performance

and loyalty card usage. The RTO engine that personalizes the coupons uses the

DL models proposed in the Ąrst two essays, so the close collaboration with the

retailer and its target marketing solution provider opens up a unique opportunity

to evaluate the impact of one-to-one marketing in a real-life application.

The third essay studies a rich retail data set that comprises market basket data,

loyalty card data, and customer responses to 12 million personalized coupons across

1,116 brands in 115 product categories. For almost 1 million coupons, the brand

and the discount were randomized, so the exogenous variation pertaining to both

coupon dimensions facilitates an unbiased measurement of the effect of decision

variables on customer responses. This makes it possible to study the impact of

personalization on coupon performance in policy simulations. To this end, the essay

quantiĄes the effect of targeting on redemptions, revenues, and proĄts. Personalized

coupons achieve an average redemption rate of 4.2%. This equals an increase of

64.0% relative to non-targeted coupons. One-to-one marketing increases revenues

by up to 182.2% and proĄts by up to 111.8% compared to non-targeted mass

marketing policies (e.g., circulars). The impact of targeting on coupon effectiveness

varies signiĄcantly across categories and brands, and much of the variance can

be explained by brand and category characteristics, such as brand loyalty, price

position, and purchase frequency. This research helps retailers to use targeting

engines more efficiently. The results underline the beneĄts of sophisticated systems

for automated one-to-one marketing that are based on DL and allow retailers
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to compare the costs associated with implementing personalization engines to

the Ąnancial beneĄts that such systems offer. Beyond the analysis of the impact

of personalization on retail performance metrics, this essay provides an effective

framework for measuring the success of personalized price promotions.

The fourth essay studies the effect of one-to-one marketing on user behavior

within an LP, speciĄcally customer responses to personalized coupons produced

by an RTO engine. Prior research has extensively studied the revenue and proĄt

implications of LPs, yet little is known about how the LP design and LP rewards

affect LP usage. The link between the LP design and LP usage is becoming

increasingly important for practitioners. Retailers send too many communications,

it takes too long to earn points for rewards, and the rewards provided in LPs

are often not relevant, so LP usage is at an all-time low (Fruend, 2017). A rich

longitudinal data set makes it possible to use a latent-class proportional hazard

model (PHM) to analyze how personalized coupons and classic LP rewards affect

LP usage. The results indicate that the effect of personalized coupons is stronger

and that the two reward types complement each other. An Amazon Mechanical

Turk (MTurk) experiment conĄrms the main Ąndings and conclusions derived

from the hazard model and contributes to a better generalizability of the Ąndings.

This essay provides empirical evidence for how RTO engines and targeted price

promotions can be integrated smoothly into LPs, to drive customer retention and

LP usage. At the same time, it contributes to the understanding of the interaction

between two of the most fundamental aspects of retail management: LP design

and price promotions. For practitioners, the essay outlines practical insights that

are useful in increasing LP usage.

In summary, the research presented in this thesis is relevant to both researchers

and practitioners. Table 1.1 provides an overview of the thesisŠ key contributions,

main Ąndings, and research methodology. The proposed DL models outperform

existing approaches to market structure analysis and predicting customer choices.

Their Ćexibility and scalability make them well suited for the application to large-

scale data sets and a variety of heterogeneous input data. This thesis outlines how

to use these models in one-to-one marketing. In addition to the methodological

contribution, this research offers several pertinent implications for promotion

management and one-to-one marketing. The results indicate that retailers can

use RTO engines to increase coupon redemption rates, revenues, and proĄts. The

essays provide generalizable insights that can guide retailers in implementing and

using RTO engines, and illustrate the value of tightly integrating personalized

coupons with LPs.
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Table 1.1. Four essays on one-to-one marketing in grocery retailing.

Chapter 2 Chapter 3 Chapter 4 Chapter 5

Title
P2V-MAP: Mapping Market
Structures for Large Retail
Assortments

Cross-Category Product
Choice: A Scalable
Deep-Learning Model

The Impact of Personalization
on Coupon Performance

The Impact of Personalized
Coupons on Loyalty Program
Usage

Contribution

Fully automated, scalable method
for mapping market structures;
foundation for deep learning
applications in marketing;
application to assortment decisions

Scalable method for predicting
purchases and deriving coupon
policies; fully automated
cross-category choice model

Impact of one-to-one targeting
on coupon performance
(redemption rates, revenues,
and profits); insights for design
and usage of targeting engines

Extend research on LP design,
LP rewards and integration of
personalized promotions/RTO
engines into loyalty programs

Key findings

Improved mapping accuracy (e.g.,
adjusted mutual information
+69.3%); validation of approach in
simulation study and empirical
application

Improved prediction accuracy;
more efficient coupon policies
(e.g., revenue +74.0%);
validation of approach in
simulation study and empirical
application

Personalization increases
redemption rates (+64.0%),
revenues (+182.2%), and
profits (+111.8%); uplift varies
for brands, categories, and
degree of personalization

Positive effect of LP rewards
on LP usage; considerable
customer heterogeneity; effect
of personalized coupons
stronger than effect of classic
LP rewards

Data
Market basket data; simulated
data

Loyalty card data; market
basket data; simulated data

Loyalty card data; data on
coupon redemptions (targeted
and random coupons); MTurk
survey data

Longitudinal data on
purchases, kiosk usage, and
coupon redemptions; MTurk
survey data

Approach

Deep learning/neural networks;
dimensionality reduction;
multivariate probit model;
multinomial probit/logit model

Deep learning/neural networks;
multivariate probit model;
multinomial logit model

Binary logistic regression and
(weighted) linear regression
random effects models; policy
simulations

Latent class PHM; linear
regression random effects
model; ANOVA

Comments

Published in
Journal of Marketing Research

Finalist EMAC 2017 Best Paper
Award Based on a Doctoral Work

Research cooperation with
MIT Sloan School of

Management

Research cooperation with
ETH Zürich





2 | P2V-MAP: Mapping Market
Structures for Large Retail
Assortments

Publication

Gabel, S., Guhl, D., and Klapper, D. (2019). P2V-MAP: Mapping Market Struc-

ture for Large Retail Assortments. Journal of Marketing Research (forthcoming).

Available at https://journals.sagepub.com/doi/10.1177/0022243719833631.

Abstract

The authors propose a new, exploratory approach for analyzing market structures

that leverages two recent methodological advances in natural language processing

and machine learning. They customize a neural network language model to derive

latent product attributes by analyzing the co-occurrences of products in shopping

baskets. Applying dimensionality reduction to the latent attributes yields a two-

dimensional product map. This method is well-suited to retailers because it relies

on data that are readily available from their checkout systems and facilitates their

analyses of cross-category product complementarity, in addition to within-category

substitution. The approach has high usability because it is automated, scalable, and

does not require a priori assumptions. Its results are easy to interpret and update

as new market basket data are collected. The authors validate their approach both

by conducting an extensive simulation study and by comparing their results with

those of state-of-the-art, econometric methods for modeling product relationships.

The application of this approach using data collected at a leading German grocery

retailer underlines its usefulness and provides novel Ąndings that are relevant to

assortment-related decisions.
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3 | Cross-Category Product Choice:
A Scalable Deep-Learning Model

Sebastian Gabel, Artem Timoshenko

Abstract

Automated coupon personalization requires predictions of how coupons affect

customer purchasing behavior. We propose a scalable product choice model that

inputs individual purchase histories and coupon assignments to predict purchase

decisions across the entire assortment of a retailer. The model is based on a custom

deep neural network architecture. We rely on convolutional Ąlters, bottleneck layers,

and weight sharing to efficiently capture cross-product relationships and dynamic

consumption patterns. Retailers can apply the model directly to loyalty card

transaction data, without predeĄned categories or product attributes. We provide

a detailed evaluation of the model in a simulation. Our model achieves a higher

prediction accuracy than the baseline machine learning methods. We demonstrate

that the model infers coupon effects and adjusts the predicted probabilities for

recent purchases. Using the proposed model for coupon personalization leads to

substantially higher revenue lifts. We verify the prediction performance by applying

the model to transaction data with experimental coupon assignment variation

provided by a large retailer.

Keywords

product choice model, neural networks, deep learning, cross-category choice,

retail analytics, coupon optimization
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3.1 Introduction

Retailers provide coupons to promote products and categories, stimulate incre-

mental purchases, and improve customer retention (Blattberg and Neslin, 1990). In

2018, US retailers distributed 256.5 billion coupons for consumer packaged goods

(CPG) alone, and consumers redeemed over 1.7 billion coupons with a combined

face value of $2.7 billion (NCH Marketing Services, 2019).

Providing coupons is costly for retailers. For example, freestanding inserts (FSI)

account for about 90% of the CPG coupons and the estimated cost per redemption

is $.35 (Biafore, 2016). Moreover, customers often redeem coupons for products for

which they would have been willing to pay the regular price (Forrester, 2017).

To increase redemption rates and coupon proĄtability, retailers adopt coupon

personalization solutions (Peppers and Rogers, 1997; Fader, 2012). CVS offers

personalized coupons at the store entrance through kiosk systems, Food Lion

(Ahold Delhaize) provides coupons for the next visit at the checkout, and Whole

Foods distributes coupons via its mobile application.

Automated coupon personalization requires a product choice model that predicts

how marketing actions affect customer purchasing behavior (Arora et al., 2008). In

our conversations with major retailers and solution providers in the US and Europe,

practitioners emphasized that implementing such models can be challenging. Cur-

rent product choice models used for coupon optimization adopt a brand perspective

and focus on a single product category (e.g., Rossi et al., 1996; Johnson et al., 2013).

Models need careful calibration and require the modeler to delineate categories,

prune input data, deĄne choice sets, and collect product attributes. Large retailers

such as Walmart handle millions of transactions per day and stock products in over

500 product categories (Walmart, 2005, 2016). Sophisticated by-category product

choice models achieve substantially higher prediction accuracies than models that

predict responses by-product (e.g., binary response models), but implementing

these models for hundreds of categories and maintaining them is hardly feasible.

Even if retailers were able to implement hundreds of by-category models in parallel,

ignoring cross-category product relationships leads to sub-optimal coupon targeting

policies across the full assortment.

Retailers understand that complex choice models can achieve higher targeting

efficiency, but the limited scalability and high implementation effort of existing

approaches force them to revert to targeting heuristics that allocate coupons based

on manually deĄned scoring rules. The scores aggregate redemption rates and

purchase frequencies scaled by the productsŠ prices. Customers then receive coupons

for the highest-scoring products. Simple heuristics can improve coupon effectiveness

but certainly do not leverage the full potential of data-based personalization.
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In this paper, we develop a scalable product choice model that predicts customer-

speciĄc purchase likelihoods in response to personalized coupon discounts for the

entire assortment. The model is based on a custom deep learning architecture

which inputs purchase histories of individual customers and coupon assignments to

predict purchase decisions.

The proposed model is highly practical. Retailers can apply the model directly to

raw transaction data from loyalty programs. This eliminates the need for extensive

data preparation and assumptions about category delineation and cross-product

effects. Our customized implementation leverages an established deep learning

framework for automated inference, so the model can be easily modiĄed and

extended.

To achieve scalability to large product assortments, we keep most of the neural

network transformations product-speciĄc and use weight sharing between the

neurons (Alain and Bengio, 2014). The parsimonious model architecture has a

regularization effect and simpliĄes model training. We rely on the bottleneck layers

to encode relevant cross-product relationships in the hidden layers of the neural

network, thereby adjusting the predicted probabilities. For example, the model

automatically infers that coupons for Coke and Pepsi have a similar effect on the

purchase likelihoods of other soft drinks.

We evaluate the proposed product choice model using simulated and empirical

data. We Ąrst simulate a retailer with many products across multiple categories.

Purchase decisions follow a two-stage process: customers Ąrst decide whether to

purchase a product from a category (category choice), and then choose products

within the selected categories (product choice). We assume customer heterogeneity

and category-speciĄc consumption dynamics. Customers receive coupons every time

period. Each coupon affects the own-product purchase probability and purchase

probabilities of other products in the category.

The simulation study validates that our model accurately predicts purchase

probabilities for all products in the assortment and generalizes out-of-sample. We

compare the proposed custom neural network to two binary response baselines

and conclude that our model achieves superior prediction accuracy. The model

successfully approximates own- and cross-product coupon effects and dynamically

adjusts the predicted probabilities for customer-speciĄc consumption patterns. It

infers the underlying product category structure and accounts for cross-product

relationships without a manual ex ante deĄnition of categories.

We further use the simulated data to demonstrate the value of the proposed

product choice model for coupon personalization. Coupon personalization requires a

model to predict purchase probabilities as a function of coupon assignments and an

optimization approach to allocate coupons given the predicted effects. We evaluate
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coupon personalization approaches with one or Ąve coupons per customer. In both

cases, we keep the optimization algorithm constant and vary the underlying product

choice models. The higher prediction accuracy of our product choice model leads

to approximately 75% larger revenue lifts through coupon personalization. The

coupon policy based on our model (1) targets more expensive but less frequently

purchased products without sacriĄcing redemption rates and (2) generates more

incremental category purchases.

We Ąnally evaluate the prediction performance of the proposed product choice

model using transaction data provided by a leading German grocery retailer. The

retailer distributed random coupons to a small fraction of customers. Experimental

data allows us to train and evaluate the model without endogeneity concerns. In

line with the results obtained from simulated data, our model achieves higher out-of-

sample prediction accuracy than the baseline models. The outperformance margins

over the reference product choice models are particularly large for observations

shortly after a category purchase and observations in categories characterized by

smaller interpurchase times.

The proposed product choice model also offers high practical value for retailing

problems other than coupon optimization. Potential applications include retail

analytics tasks that require quantifying how marketing decisions impact business

performance based on purchase data (Hanssens, 2014). For example, offline retailers

forecast demand to optimize fulĄllment and predict response lifts to improve

targeted promotions. Online retailers can leverage our model to optimize product

recommendations or personalized landing pages.

Section 3.2 proceeds with a review of related literature. Section 3.3 introduces

the proposed product choice model. In Section 3.4, we describe the simulation setup.

We use simulated data to evaluate the prediction performance of the proposed

model and demonstrate its value for coupon personalization in Section 3.5. Section

3.6 validates the prediction performance using empirical data. We summarize our

Ąndings and suggest directions for future research in Section 3.7.

3.2 Related Literature

Our research relates to three streams of literature: product choice modeling,

methods for targeting and coupon optimization, and deep learning applications

in marketing. We next discuss each of these areas and highlight our respective

contributions.

3.2.1 Product Choice Modeling

Product choice models quantify how marketing actions affect business outcomes

such as market shares and proĄts. Predicting the effects of marketing activities
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is the basis for efficient resource allocation (Hanssens, 2014). Winer and Neslin

(2014) provide a comprehensive overview of the product choice modeling literature.

Traditionally, product choice models estimate purchase decisions for a single

product/brand or a category. For example, Fader and Hardie (1996) propose a latent

class multinomial logit model to predict customer choices for 56 products within

the fabric softener category. The authors represent products as a combination of

attributes (e.g., brand, package size) and demonstrate that their model signiĄcantly

outperforms a model speciĄcation with 55 product-speciĄc intercept terms, even

though it uses less parameters.

Attribute-based choice models achieve better predictive performance, but require

a retailer to maintain comprehensive product attribute data bases and to identify the

relevant attributes for each category-level model. Doing this for all products in the

retailerŠs assortment is a very complex and laborious task. Our proposed product

choice model infers product similarities directly from customer-level transaction

data. The neural network represents products using low-dimensional vectors

(embeddings), and a common product embedding space makes products comparable.

This approach does not require manual deĄnitions of product attributes.

Models that study multi-category product choice include the multivariate probit

model (Manchanda et al., 1999) and the multivariate logit model (Russell and

Petersen, 2000). Multivariate choice models infer product co-occurrence, comple-

mentarity and substitution by estimating the covariance structure of purchase

decisions across categories from market basket data. The number of possible

choice alternatives in the multivariate choice models increases exponentially with

the number of product categories, which limits their scalability. For example,

Manchanda et al. (1999) and Russell and Petersen (2000) each study four product

categories. Our proposed model encodes product relationships within and across

categories implicitly in the hidden layers of the deep neural network. This makes

simultaneously modeling hundreds of product categories and scaling to the size of

typical retail applications possible.

Recently, machine learning approaches for product choice modeling have been

gaining more popularity in marketing. For example, Jacobs et al. (2016) propose

LDA-X, an extension of latent Dirichlet allocation (Blei et al., 2003), to predict

customer-speciĄc purchase probabilities for products in the assortment of an online

retailer. LDA-X Ąrst infers small-dimensional customer embeddings from the data

through Markov chain Monte Carlo (MCMC) and then uses customer embeddings

to inform predictions of future purchases. Ruiz et al. (2018) propose SHOPPER to

sequentially predict the purchase probabilities for products from multiple product

categories given the current content of the shopping cart. SHOPPER describes

products through latent attributes (embeddings) that capture product characteris-
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tics and product relationships. Both LDA-X and SHOPPER account for customer

heterogeneity and are more scalable than classic discrete choice models.

We contribute to machine learning models in marketing in three ways. First, our

model is speciĄcally designed to predict individual responses to marketing actions.

The model incorporates customer-speciĄc marketing mix variables and customer-

level purchase histories. Both effects are important for coupon personalization

and other targeting applications. Second, our model scales both to the entire

assortment and rich transaction data at a large retailer. The neural network

architecture allows parallel implementation and inference via mini-batch gradient

descent. For example, MCMC inference for LDA-X takes several days even for

small product assortments (e.g., 2,500 products). Our model trains in a few hours

with similar hardware speciĄcations. Third, the proposed model has high usability.

We provide an implementation of the custom neural network architecture in an

established deep learning framework. Retailers can easily modify and extend our

model with new data sources. For example, the retailer that provided data for the

empirical application in our paper already uses neural networks in supply chain

management and is likely to adopt our approach for marketing applications.

3.2.2 Coupon Personalization and Targeting

Our product choice model is motivated by the coupon personalization problem

in retail. Coupon personalization and targeting are important topics in marketing

research and practice (Bradlow et al., 2017; Grewal et al., 2017). Rossi et al.

(1996) propose a model to derive proĄt maximizing coupon personalization policies

and highlight the value of household purchase histories for optimizing coupon

proĄtability. Zhang and Wedel (2009) jointly model purchase incidence, product

choice, and quantity decisions in online and offline stores to maximize brand proĄt

through promotion customization. Dubé and Misra (2017) propose a machine

learning approach for price personalization and apply it to (business-to-business)

subscription pricing at an online recruiting company. Simester et al. (2019b)

evaluate the robustness of the machine learning models for targeting direct mail

promotions for customer acquisition in retail.

Coupon personalization solutions require a product choice model and an optimiza-

tion approach. The choice model predicts how different combinations of coupons

affect individual purchasing behavior, and the coupon optimization approach allo-

cates coupons given the predicted effects. Our research develops a product choice

model that predicts the impact of coupons on purchase probabilities for the entire

assortment of a large retailer. We evaluate the performance of the proposed product

choice model for coupon personalization by comparing it to reference models and

estimate the expected proĄts of the simulated retailer with the coupons allocated

by the optimization approach with different underlying product choice models.



3.2. RELATED LITERATURE 19

The basis for training and evaluating our proposed product choice model is

experimental data. Our simulation and the empirical application assign coupons

to customers at random. Random coupon assignment allows training the predic-

tion model without endogeneity concerns. We validate the coupon optimization

approaches in the simulation using a randomization-by-policy experimental design

(Simester et al., 2019a). In particular, we evaluate coupon personalization by im-

plementing different algorithms to assign coupons to different groups of customers

(or equivalently using independent simulation runs).

3.2.3 Deep Learning Applications in Marketing

Our proposed product choice model is based on a neural network. Neural network

models have achieved remarkable performance in computer vision and natural

language processing applications (LeCun et al., 2015). Marketing researchers have

recently started applying deep neural networks to marketing problems.

For example, Liu et al. (2017) develop an approach to automatically extracting

content information from online product reviews and predict conversion. Timo-

shenko and Hauser (2019) propose a deep learning framework that enables Ąrms

to identify customer needs from online reviews more efficiently. Zhang and Luo

(2018) use deep learning to extract sentiments from photos and reviews posted on

Yelp and Ąnd that sentiments predict restaurant survival, even after controlling

for other covariates. Liu et al. (2018) apply deep convolutional neural networks

to social media images with the goal to measure consumersŠ perception of brands.

Gabel et al. (2019) propose a machine learning method based on neural networks

to map market structures in grocery retailing based on market basket data.

The properties of deep neural networks make them well-suited for applications to

loyalty card data. First, deep learning methods can handle large volumes of training

data (Goodfellow et al., 2016). Large retailers process millions of transactions

daily, which creates an enormous amount of data for model calibration. Second,

deep learning models can effectively operate with high-dimensional inputs. Our

proposed model uses purchase histories as one of its inputs. With 2,500 products

in the retail assortment and a 30-week history window, the purchase history of

a single customer contains 75,000 values. This dimensionality is comparable to

256 × 256 images often used in computer vision applications (Krizhevsky et al.,

2012). The sequential nature of the purchase histories also resembles the structure

of words in texts in the natural language processing tasks (Collobert et al., 2011).

Our contribution is a novel deep learning architecture to model cross-category

product choice in the context of large product assortments. We provide an in-

depth evaluation of the modelŠs performance in a simulation study, and verify the

prediction performance using empirical data.
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3.3 The Proposed Cross-Category Product Choice Model

3.3.1 Overview

Consider a retail store operating J products. The products may be related both

in terms of cross-price elasticities and purchase co-incidence (Manchanda et al.,

1999). The relationship between the products is unknown ex ante.

There are I customers who shop at the store. For ease of exposition, we

assume that the customers visit the store at every time period (e.g., week, day),

but may leave the store without making a purchase. We use a binary vector

bit = [bit0, . . . , bitJ ] ∈ ¶0, 1♢J×1 to denote the purchase decisions of customer i at

time t. The binary variable bitj ∈ ¶0, 1♢ indicates whether customer i purchased

product j at time t. We summarize information about past purchasing behavior of

customer i by a purchase history of length T and product purchase frequencies over

the entire available time horizon. We denote the purchase history of length T for

customer i at time t by BT
it = [bi,t, bi,t−1, . . . , bi,t−T +1] ∈ ¶0, 1♢J×T and the vector

of product-speciĄc purchase frequencies for customer i over the entire customer

purchase history available at time t by B∞
it =

[︂
b̄it1, . . . , b̄itJ

]︂
∈ [0, 1]J×1.

Customers receive personalized, product-speciĄc coupons before each shopping

trip (e.g., by email, through a mobile app, at in-store kiosks). A coupon provides a

percent discount on a product at the checkout. We denote personalized coupons by

Dit = [dit1, . . . , ditJ ] ∈ [0, 1]J×1, where ditj ∈ [0, 1] indicates the size of the coupon

(i.e., the discount) received by customer i in time t for product j.

We propose a product choice model that predicts probabilities

Pi,t+1 = [pi,t+1,1, . . . , pi,t+1,J ] (3.1)

that customer i will purchase product j at time t + 1 for every product j ∈

¶1, . . . , J♢, given the coupon assignment Di,t+1, the purchase history BT
it , the

purchase frequencies B∞
it , and the model parameters θ:

Pi,t+1 = f
(︂
Di,t+1, BT

it , B∞

it ; θ
)︂

. (3.2)

The vector Pi,t+1 contains the probabilities for the (binary) purchase events for all

products j:

pi,t+1,j = P (bi,t+1,j = 1) . (3.3)

Including both B∞
it and BT

it as an input to the model serves two purposes. First,

the model uses B∞
it to learn the customerŠs base preferences, whereas it models
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purchasing patterns over time based on BT
it . Separating the information already at

the model input simpliĄes the learning process and speeds up the training. Second,

providing B∞
it in addition to BT

it reduces dimensionality of the input data. Our

model could learn B∞
it directly from BT

it if the window length were set to inĄnity (i.e.,

T = ∞). However, only recent purchases are relevant to model purchase timing, so

we reduce dimensionality by considering a smaller window T and including B∞
it as

a summary of the older purchases.

Figure 3.1 summarizes the proposed model architecture. The model is non-

parametric and based on a neural network. Each observation in our model is a

customer-time pair (i, t). For every training sample, the model transforms the

inputs (i.e., Di,t+1, BT
it , B∞

it ) to create product-speciĄc feature maps zi,t+1,j ∈ R
K×1,

which are then used to predict the purchase probabilities pi,t+1,j for every product

in the assortment:

pi,t+1,j = p (zi,t+1,j; θp) ,

zi,t+1 = [zi,t+1,1, . . . ,zi,t+1,J ] ∈ R
J×K ,

zi,t+1 = Z
(︂
Di,t+1, BT

it , B∞

it ; θz

)︂
.

(3.4)

The feature maps, zi,t+1,j, summarize information about coupons and infor-

mation about the customer purchasing behavior into customer-product-speciĄc

K-dimensional vectors. The feature maps infer cross-product relationships directly

from the transaction data.

3.3.2 Model Architecture

We next describe the details of the model architecture and the calibration of

the model. The inputs to the model are a coupon assignment Di,t+1, a purchase

history BT
it , and product purchase frequencies B∞

it .

The model Ąrst transforms the purchase histories BT
it . In a retail setting, purchase

histories BT
it are sparse. We apply convolutional operations with H different real-

valued Ąlters wh ∈ R
T ×1:

BH
it =

[︂
σ
(︂
BT

it w1

)︂
, . . . , σ

(︂
BT

it wH

)︂]︂
∈ R

J×H , (3.5)

where σ(·) is a leaky ReLU activation function (Xu et al., 2015):

σ(x) =

⎧
⋁︂⨄︂
⋁︂⋃︂

x

0.2x
for

x ≥ 0

x < 0.
(3.6)
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Figure 3.1. Neural network architecture for the proposed product choice model.

Note: Best viewed in color.

The Ąlters apply the same transformations to the purchase histories of every

product and create H product-speciĄc summary statistics. These summary statistics

represent information about recent purchases in a dense form. We calibrate the

weights of the time Ąlters using the training data.

Our nonparametric approach for summarizing timing information is more Ćexible

than manually deĄned transformations of the purchase histories (e.g., weighted

averages). This Ćexibility is important. Retail products have a substantial variation

in the interpurchase times. For example, customers typically purchase milk every

few days, whereas detergent purchases happen once every few months. Observing a

purchase of milk or detergent in period t thus requires different adjustments of the

predicted probabilities in period t + 1. Our model inputs purchase histories for all

products in the assortment, and deĄning product-speciĄc transformations manually

is not feasible. In contrast, the neural networkŠs time Ąlters automatically calibrate

these transformations by observing purchasing patterns in the training data.

Purchase frequencies B∞
it , the aggregated purchase histories BH

it , and coupon

assignments Di,t+1 are product-speciĄc. We use linear bottleneck layers at the

neural network to share information across products. In particular, we apply the

following transformations:

B∞
it = W ⊤

∞E∞
i,t E∞

i,t = W∞B∞
it

BH
it = W ⊤

H EH
i,t with EH

i,t = WHBH
it

D̄i,t+1 = W ⊤
d ED

i,t+1 ED
i,t+1 = WdDH

i,t+1.

(3.7)
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Wd, W∞, and WH are (L × J) weight matrices with L ≪ J , and W ⊤ refers to

the transpose of matrix W . The bottleneck layer encodes the inputs into low-

dimensional representations E∞
i,t , EH

i,t, and ED
i,t+1. For example, in Section 3.4 we

simulate a retailer with J = 250 products, and we estimate the model with L = 30.

The model infers the weight matrices Wd, W∞, and WH during training.

The bottleneck layers are the basis for modeling cross-product relationships.

Consider the following illustrative example. Customer i is indifferent between Coke

and Pepsi, and purchases one of the two products when the combined stock of

soft drinks at home is low. When the customer purchases Coke or Pepsi at time t,

the retailer needs to adjust the estimates of the probabilities that the customer

will purchase these soft drinks at time t + 1. The adjustment in probabilities is

independent of which particular product was purchased in time t. The model

recognizes this by creating similar L-dimensional representations of the purchase

histories BH
it and the purchase frequencies B∞

it for the two different scenarios (Coke

or Pepsi). These L-dimensional representations are then expanded back to J

dimensions to keep further operations at the by-product level.

Applying the bottleneck layer to the discounts Di,t+1 captures a different type of

relationship between products. Under the assumption of negative price elasticities,

a coupon for Coke increases a purchase probability for Coke. Other soft drinks in

the soft drinks category exhibit a combination of two effects. A substitution effect

decreases their purchase probabilities. On the other hand, the coupon for Coke

increases overall consideration of the soft drink category (own-category price effect)

increasing the purchase probabilities of all soft drinks, even brands besides Coke.

The bottleneck layer allows to capture these cross-product effects of discounts.

We combine the inputs and outputs of the bottleneck layers to create feature

maps zi,t+1:

zi,t+1 =
[︂
1

J×1, Di,t+1, D̄i,t+1, B∞

it , B̄
∞

it , BH
it , B̄

H

it

]︂
∈ R

J×K (3.8)

where K = 2H + 5. Combining the inputs and outputs of the layer is a standard

method to improve the predictive performance of the neural networks (Orhan

and Pitkow, 2017). We input the feature maps zi,t+1,j to a softmax layer to

predict purchase probabilities Pi,t+1 = [pi,t+1,1, . . . , pi,t+1,J ] for every product in the

assortment:

pi,t+1,j =
exp ¶θpzi,t+1,j♢

1 + exp ¶θpzi,t+1,j♢
. (3.9)

The feature maps zi,t+1,j summarize relevant information about the customer

purchasing behavior and the coupon assignment from the inputs, and the softmax
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layer uses zi,t+1,j as input to predict the purchase probability for customer i and

product j at time t. The parameters θp are shared between the products.

The functional form of the softmax layer is similar to a binary logit model, but

they are conceptually different. Traditional binary logit models assume category-

speciĄc weights and variation in the product attributes. The product attributes

are deĄned by the researchers. Our model encodes product differences and cross-

product effects in the feature maps z and keeps the weights shared between all the

products across categories. The feature maps z are inferred by the model from the

transaction and coupon assignment data.

3.3.3 Model Calibration

The parameters of the model are the time Ąlters wh, bottleneck layer parameters

Wd, W∞, and WH , and the parameters of the softmax layer θP :

θ = (θz; θp) , θz = (wh=1..H ; Wd; W∞; WH) . (3.10)

We calibrate the parameters by minimizing the binary cross-entropy loss

θ∗ = argmin
θ

I∑︂

i=1

J∑︂

j=1

T∑︂

t=1

L
(︂
bi,t+1,j, p̂i,t+1,j

)︂
, (3.11)

with

L
(︂
bi,t+1,j, p̂i,t+1,j

)︂
= −bi,t+1,j log

(︂
p̂i,t+1,j

)︂
− (1 − bi,t+1,j) log

(︂
1 − p̂i,t+1,j

)︂
. (3.12)

We use the adaptive moment estimation (Adam; Kingma and Ba, 2014) algorithm

with mini-batches to optimize the parameters. Adam is a gradient descent method

that computes automatic, adaptive learning rates for each parameter of the model

to improve learning stability and speed. We provide a complete speciĄcation of the

optimization algorithm in Appendix 3.8.

The proposed neural network model architecture incorporates two constraints on

the parameters to facilitate faster model convergence and prevent overĄtting. We

Ąrst assume the weights at the bottleneck layer decoder to be the transpose of the

encoder parameters. For example, we estimate D̄i,t+1 = W ⊤
d ED

i,t+1 = W ⊤
d WdDi,t+1,

where W ⊤
d is a transpose of the weight matrix Wd. The tied weights constraint

helps to reduce the number of model parameters and serves as a regularization

technique (Alain and Bengio, 2014).

Similarly, we assume tied weights θP . The softmax layer applies to product-

speciĄc feature maps zi,t+1,j, but the parameters θP are shared between the products.

This weight sharing is possible because the feature maps z encode purchase infor-

mation, including cross-product effects.
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3.3.4 Discussion

Our proposed neural network architecture provides a Ćexible functional form

to closely approximate customersŠ purchasing behavior. The model incorporates

information about the purchase histories and current discounts to make customer-

and time-speciĄc predictions for every product in the assortment. The standalone

parameters of the model have no behavioral or economic interpretation, but the

model effectively predicts purchasing behavior required for efficient coupon targeting.

For example, in Section 3.5 we demonstrate that the model is capable of adjusting

predicted probabilities to account for consumption dynamics and cross-product

relationships.

The neural network architecture also makes the model computationally tractable

and scalable. We optimize the parameters of the model using a gradient descent

algorithm with mini-batches. Training the model in mini-batches allows parallel

computing and not having all training data in memory. The proposed neural

network architecture allows to efficiently compute gradients via back-propagation.

Training deep neural networks is therefore feasible even with a large number of

customers I and alternatives J (Covington et al., 2016).

One important characteristic of the deep neural network is that it can be easily

extended to incorporate additional information relevant for targeting. For example,

retailers can leverage information about the timing of the shopping trip, information

about the location of the store, or customer demographic variables. Additional

information can also include unstructured data such as product reviews (Archak

et al., 2011) or images (Zhang and Luo, 2018). These data can be preprocessed

by additional (or even pretrained) neural network layers and added to the feature

maps zi,t+1,j by concatenation:

z∗

i,t+1,j = [zi,t+1,jIitj] . (3.13)

This extension increases the number of parameters θP but the optimization of the

model stays tractable.

The neural network can also be trained in stages. Retailers often have rich market

basket data with no customer identiĄers. Lack of customer purchase histories limits

the ability to target. However, our model can leverage these data to better identify

cross-product relationships. In particular, the unlabeled market basket data can be

used to train product embeddings (Gabel et al., 2019), and the model can initialize

the bottleneck layer parameters with the embeddings. Initialization with pretrained

parameters improves the prediction performance of the neural network models and

helps to achieve faster convergence (Bengio et al., 2007).
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3.4 Simulation Setup

The proposed deep neural network aims to approximate customer purchasing

behavior and predict future purchases. We use a simulation study to evaluate

the performance of the model in a controlled environment. We draw on previous

research in marketing to design the simulation study (Manchanda et al., 1999;

McFadden, 1974; Fader and Hardie, 1996). A key beneĄt of using a simulation

is that the true purchase probabilities and the parameter of the data generating

process are known. We can thus better evaluate the modelŠs performance and

decompose performance gains.

We simulate a retailer with I customers and an assortment of J products. The

products are grouped into C product categories of equal size. Customers visit the

store every period, and make purchase decisions in two stages. The customers Ąrst

decide whether to buy a product in a category and then choose one product in

each of the selected categories (Neslin et al., 2009).

The purchase probability for customer i and product j (in category c) at time t

is given by

pitjc = p
(1)
itc · p

(2)
ijt , (3.14)

where p
(1)
itc is the category purchase incidence probability (Section 3.4.1) and p

(2)
itj

is the product choice probability conditional on the category incidence (Section

3.4.2).

3.4.1 Stage 1: Category Purchase Incidence

We model the category incidence as a multivariate probit model (Manchanda

et al., 1999). Customer iŠs utility of a category c purchase incidence depends on

the customer-speciĄc base preference, the coupon assignment in the category, and

the current inventory:

uitc = γc + γic + γp
icd̄itc + γInv

c Invt
ic + εitc. (3.15)

Here, γc + γic is the (customer-speciĄc) base utility, d̄itc is the average coupon

discount in the category, and Invt
ic is customer iŠs inventory for category c at time t.

Assuming that the random noise has a standard normal distribution, εitc ∼ N(0, 1),

the purchase incidence probability becomes

p
(1)
itc = P (yitc = 1) = Φ (uitc) , (3.16)

where Φ is the cumulative density function of the standard normal distribution and

yitc indicates the category purchase incidence, that is the purchase of any product

j in C:
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yitc = 1

(︂√︂
j∈C bitj > 0

)︂
. (3.17)

Customers are characterized by the latent taste preferences Θi, and we model

γic = ΓcΘi. Parameters Γc deĄne purchase coincidence between product categories

(Manchanda et al., 1999). Customers tend to purchase categories c and c′ together

if Γc and Γc′ are similar.

Products within the categories have different purchase frequencies (see Section

3.4.2). In some product categories a small number of products account for most of

the sales. We thus weight the coupon discounts by the customerŠs purchase share

of each product, that is

d̄itc =
1

♣C♣

∑︂

j∈c

p
(2)
ijt ditj. (3.18)

Inventory dynamics are determined by the customer-speciĄc consumption rates,

Consic. The inventory is aggregated to the category level and consumption rates

are different between the categories:

Invt
ic = Invt−1

ic +
∑︂

j∈C

bitj − Consic. (3.19)

3.4.2 Stage 2: Product Choice

Product choice within a category follows a multinomial logit model (McFadden,

1974; Guadagni and Little, 1983). We assume the following form of customer iŠs

utility for product j at time t:

uitj = β0
ij − βp

i (1 − ditj) pricej + εitj, (3.20)

where β0
ij indicates customer iŠs base utility for product j, βp

i is a customer-speciĄc

price sensitivity, pricej is a (regular) price of the product j, and ditj is the size of

the coupon provided to customer i for product j at time t. Assuming that the

error term εitj follows a Gumbel extreme value distribution, the probability that

the customer chooses product j in category c becomes

p
(2)
itj = P (bitj = 1 ♣ yitc = 1) =

exp ¶uitj♢√︂
k∈C exp ¶uitk♢

. (3.21)

The base utility, β0
ij, is customer- and product-speciĄc. We deĄne β0

ij = BjΘi,

where Θi is the customer taste characteristic vector used in Stage 1. Customer iŠs

price sensitivity, βp
i , is constant across categories. We assume that product prices,

pricej, are constant over time, and coupons are the only source of price variation.
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Figure 3.2. Simulated product market shares.

3.4.3 Simulation Calibration

We simulate a retailer with J = 250 products grouped into C = 25 categories and

I = 75, 000 customers. We also tested the proposed model with a larger number of

products (J > 1, 000) and categories (C > 100). The substantive Ąndings reported

in Sections 3.5 and 3.6 are robust, so for ease of exposition we opt for a smaller

assortment size.

For every customer, we draw the taste characteristics from the multivariate

normal distribution Θi ∼ MV N
(︂
0h×1, h−1Ih×h

)︂
, where h is the dimensionality of

the latent tastes. We simulate 50 burn-in periods to allow the inventory to converge,

and we simulate an additional 100 periods for model training and evaluation.

Customers receive coupons every time period. For model training and evaluation,

we assume that the coupons are assigned randomly and that discounts range from

10% to 40%. We benchmark the predictive performance of the proposed product

choice model in a simulation with Ąve coupons per customer, and we evaluate

coupon personalization based on product choice models in scenarios with one

and Ąve coupons per customer. Random coupon assignment in our simulation is

consistent with the empirical application.

We deĄne the parameters of the category purchase incidence model (γc, Γc,

γp
ic, γInv

c , Consic) and the product choice model (Bj, βp
i ) to balance customer

heterogeneity, inventory dynamics, and coupon and inventory effects on the product

purchase rates. We calibrate the data generating process, such that the charac-

teristics of the simulated data are similar to the empirical transaction in Section

3.6. For example, market concentration systematically varies between categories.

Figure 3.2 shows product market shares in three different product categories. The

products have similar market shares in Category 1, while a few products (or even

one product) account for a large fraction of the revenue in Categories 2 and 3.
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Figure 3.3. Category incidence probability histograms for different inventory
levels.

We also demonstrate the sensitivity of the product purchase probabilities to the

inventory in Figure 3.3. For a single category, we plot a histogram of the category

incidence probabilities p
(1)
itc across customers at three different levels of inventory,

Invt
ic ∈ ¶0, 1, 3♢. The distribution of the category incidence rates shrinks toward

zero as we increase the inventory.

We provide all sampling distributions and parameter values in Appendix 3.8,

and we include additional examples for the effect of the customersŠ inventory on

category purchase incidence probabilities in Appendix 3.8.

3.5 Model Evaluation Based on Simulated Data

We compare the performance of the proposed product choice model to two

baselines. The Ąrst baseline is a binary logit model (hereafter Binary Logit). We

apply the Binary Logit model by-product. For each product, the independent

variables are the customer-speciĄc purchase frequency b̄itj, the purchase histories

[bitj, . . . , bi,t−T +1,j], and the current discount di,t+1,j. We use these independent

variables to predict the purchase decision bi,t+1,j.

The second baseline is a binary classiĄer based on LightGBM (Ke et al., 2017).

LightGBM is an efficient implementation of the gradient boosting decision tree

algorithm. We estimate LightGBM with an extended set of independent variables:

the independent variables used in the Binary Logit model, the customer-product

purchase histories, the current discounts of all J products, and customer embeddings

based on the Product2Vec model (Gabel et al., 2019). We provide a complete

description of the LightGBM independent variables in Appendix 3.8.

The proposed model comparison is nested in terms of the information used for

prediction. For every customer, the Binary Logit model uses only the product-
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Table 3.1. Aggregate prediction performance (simulation).

Model Cross-Entropy Loss
Scaled

Cross-Entropy Loss

True Probabilities .0537 100.0%

Our Model .0563 92.6%

LightGBM .0589 85.2%

Binary Logit .0662 64.5%

Note: All differences are significant at p < .01, based on standard errors (SE) computed using a
nonparametric bootstrap with 100 replications.

speciĄc information, that is the purchase history and the current discounts. The

LightGBM model extends the Binary Logit model by incorporating cross-product

effects (i.e., cross-product discounts and predeĄned summary statistics of the full

customer purchase history across all products). Using the purchase histories for all

products is not feasible in the LightGBM model due to high dimensionality and

data sparseness. For completeness, we also evaluate the LightGBM model with the

same independent variables as used by the Binary Logit. The performance of this

model is similar to the Binary Logit across all comparisons.

Our proposed neural network model extends LightGBM by using all information

about all products as an input to predict purchase incidence for a focal product.

Leveraging rich high-dimensional information for all products is possible due to

the proposed model architecture, including the bottleneck layers to encode cross-

product relationships and the weight sharing to reduce the number of parameters

and regularize the model.

3.5.1 Aggregate Prediction Performance

We evaluate the modelŠs prediction performance on holdout test data. We

simulate 100 time periods. The Ąrst 90 time periods are the input for the model

training. We use the trained models to make predictions for the last ten periods and

compare the predicted purchase probabilities to the true simulated probabilities.

The models never access the data from the last ten time periods during training

and validation, so we can evaluate whether the models overĄt the data. We

provide details on the holdout test set construction in Appendix 3.8 and report the

cross-entropy loss curves (as a function of training epochs) in Appendix 3.8.

Table 3.1 evaluates the prediction performance of the proposed neural network

in a simulation with Ąve random coupons per customer. We report the binary

cross-entropy loss calculated using the holdout data. The binary cross-entropy

measures how well the predicted probabilities approximate the binary purchase
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decisions. We also present a scaled cross-entropy loss for interpretability. The

scaled cross-entropy is based on a linear scale between the loss achieved by the

true probabilities from the simulation and the loss achieved by the best uniform

prediction.

Our model achieves signiĄcantly higher prediction performance than the reference

models. The result is robust to the choice of the evaluation metric. In Appendix

3.8, we report the aggregate prediction performance of the models based on the

area-under-curve metric (AUC) and Kullback-Leibler (KL) divergence. The cross-

entropy loss and the AUC compare predicted and true purchase probabilities to

the realized purchase decisions, while the KL divergence compares the predicted

probabilities to the true simulated probabilities directly.

3.5.2 Prediction Performance Decomposition

For effective coupon personalization two features are key: models need to (1)

capture time dynamics in product choice (e.g., individual consumption patterns)

and (2) predict the effects of coupons. We therefore provide a more detailed

evaluation of the modelŠs predictive performance in the next subsections.

3.5.2.1 Product Choice Dynamics

Time dynamics of purchase probabilities in our simulation are determined by

category inventory dynamics and coupon assignments. Figure 3.4 demonstrates the

purchase probabilities of three products for one customer over ten holdout periods.

The products belong to the same product category.

Note two interesting observations. First, the customer receives a coupon for

Product 1 at time t = 93. The coupon affects purchase probabilities for all

considered products. We observe a substantial positive effect on the purchase

probability of Product 1, a negative effect on Product 2, and a small negative

effect on Product 3. Our proposed model captures the Ąrst two changes, and

underestimates the last effect. The Binary Logit model and LightGBM do not

adjust the estimated probabilities for Products 2 and 3. The Binary Logit model only

incorporates the coupon discount information of the focal product, so this behavior

is expected. Although the LightGBM model has access to all product discounts, the

model cannot capture the cross-product coupon effects either. High dimensionality

and sparseness of Di,t+1 are a reasonable explanation for this observation.

The second important observation in Figure 3.4 is that the customer purchases

Product 2 at time t = 95. When the purchase happens, our simulation increases

the category inventory for the customer and the increased inventory decreases

purchase probabilities for all products in the category in the following time periods.

We observe that the proposed neural network model captures this and adjusts
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Figure 3.4. Time-series prediction (hold-out set).

Note: Best viewed in color.

the probabilities for all products accordingly. The LightGBM model adjusts

probabilities only for Product 2. The Binary Logit model even increases the

predicted purchase probability for Product 2 as a result of the increased purchase

frequency for this product. The Binary Logit model fails to adjust estimated

probabilities for Products 1 and 3.

The next two sections unfold this illustrative result by a deeper analysis of

discount effects (Section 3.5.2.2) and time dynamics (Section 3.5.2.3).

3.5.2.2 Coupon Effects

The simulation setup implies that coupons affect the purchase probabilities of

the promoted products and all other products in the productsŠ categories. We can

evaluate whether the model is able to recover coupon effects at the holdout data

by comparing the true coupon discount elasticities in the simulation to the modelsŠ

elasticity predictions.

To calculate the true discount elasticities, we save the simulation after period 90

(the last training period) and calculate purchase probabilities for each customer-

product combination (i, j) in period 91 (the Ąrst test period) for two scenarios:

1. The retailer does not provide coupons to the customers.

2. All customers receive a 30% discount for product jc.

We repeat this process for all products jc ∈ ¶1, . . . , J♢, average probabilities across

the customers, and calculate product-speciĄc discount elasticities
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Table 3.2. True and estimated discount elasticities (average across products).

Model Own-Elasticity
Cross-Elasticity

Within Category
Cross-Elasticity

Between Categories

True Probabilities 2.204 −.047 .000

Our Model 2.189 −.008 .001

LightGBM 1.472 .000 .000

Binary Logit 2.133 .000 .000

εj,jc
=

p30%
j − p0%

j

.3 · p0%
j

, (3.22)

where p30%
j is the average purchase probability for product j given a 30% discount

on product jc, and p0%
j is the average purchase probability for product j assuming

no coupons. This evaluation process yields a matrix of J ×J own- and cross-product

elasticities. We compute elasticities for the three models (our model, LightGBM,

and Binary Logit) by replacing the true with the predicted purchase probabilities.

Table 3.2 reports the true and predicted discount elasticities. All models capture

the positive impact of price discounts on purchase probabilities (Şown-effectŤ). The

average predicted elasticities for our model and the Binary Logit model are close

to the true elasticity, whereas the LightGBM model underestimates the impact of

discounts. Regarding cross effects, recall that our simulation assumes substitution

and category incidence effects within categories, but no cross-price effects between

categories (see the Ąrst row in Table 3.2). The Binary Logit model does not

incorporate cross-price effects, so all cross-elasticities are zero. The LightGBM

inputs the discounts of all products, but does not estimate signiĄcant cross effects

either. The only model that Ąnds signiĄcant cross-price effects is the deep neural

network (although it underestimates the within-category cross-price elasticity).

The estimated price effects across categories for our model are close to zero.

Figure 3.5 compares the (product-level) true own-price elasticities and the

predicted elasticities for all three models. For our model, the mean error is .016,

and 95% of the product-level errors fall into the interval [−.60, .58]. The Binary

Logit achieves similar mean error with a much larger variance. In line with the

results presented in Table 3.2, we observe that the LightGBM model systematically

underestimates price elasticities. The root mean square error (RMSE) between

the true and model-based elasticities is lowest for our model (RMSE = .396),

followed by the Binary Logit model (RMSE = .958), and the LightGBM model

(RMSE = 1.164).
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Figure 3.5. Difference between true simulated elasticities and predicted elastici-
ties.

Notes: The vertical lines on the ridges indicate the 95% CIs for each model. Best viewed in color.

We conclude that the proposed model predicts discount effects more accurately

than the benchmark models. It is the only model that captures all types of discount

effects (i.e., positive own-effects, negative cross effects within categories, no effects

across categories). However, the neural network underestimates within-category

cross effects of discounts.

3.5.2.3 Time Dynamics and Inventory Effects

We quantify how well the models capture the time dynamics of purchase prob-

abilities by estimating the correlation of the predicted probabilities and the true

probabilities over time (i.e., for the ten hold-out weeks) for every customer-product

pair:

ρtime =
1

IJ

∑︂

ij

corrij
t (3.23)

with

corrij
t =

covt

(︂
p̂itj, ptrue

itj

)︂

σp̂ σp

, (3.24)

where σp̂ and σp are the standard deviations of the predicted and true probabilities

over time. To ensure numerical stability in the computation, we set corrij
t to zero
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Table 3.3. Time series correlation scores for model predictions.

Data With
Coupons

Data Without
Coupons

Absolute Scaled Absolute Scaled

True Probabilities .8076 100.0% .6455 100.0%

Our Model .5791 71.7% .5399 83.6%

LightGBM .1033 12.8% .0121 1.9%

Binary Logit .1503 18.6% .0572 8.9%

Note: All differences are significant at p < .01, based on SEs computed using a nonparametric
bootstrap with 100 replications.

for time series with σp̂ · σp < 10−12. We compute the correlation metric for a

simulated data set with coupons and a simulated data set without coupons. The

Ąrst data set includes both sources of probability variation over time: the effect

of the consumersŠ inventories (compare Figure 3.3) and the coupon effects. The

second data set isolates the inventory effect.

Table 3.3 reports the average time correlation score ρtime for our proposed model

and the two baselines. The scaled correlation is based on a linear scale between zero

and the time correlation achieved by the true simulation probabilities. The results

conĄrm our analysis in Figure 3.4. The proposed neural network architecture

achieves an average time correlation of ρtime = .58. This value is considerably

higher than the correlation scores for the baseline models and very close to the

optimal score that we derive from the true simulation probabilities.

The correlation scores for the data without coupons are lower for all models.

This is a result of the true probabilities exhibiting less variation over time (i.e.,

σp is smaller). The scaled correlation scores are lower for baseline models, but

the scaled performance of our model is even higher for the data without coupons,

suggesting that our model efficiently recovers the consumption patterns from the

transaction data.

3.5.2.4 Identifying Product Category Structure

Our analysis of the cross-product coupon effects and the inventory time dy-

namics indicates that the proposed neural network model identiĄes cross-product

relationships within categories. However, the model does not require specifying the

product categories ex ante. The model learns cross-product relationships from the

customer purchasing behavior at the training data.
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Figure 3.6. Heat-map of the product embedding WH .

Note: Best viewed in color.

The cross-product relationships are encoded in the parameters of the bottleneck

layers. In Figure 3.6, we plot the heat-map of the bottleneck layer weight matrix

WH . The weight matrix WH has 250 columns corresponding to J = 250 products

in the simulated data. We order products by product categories, such that the

Ąrst ten products correspond to the Ąrst product category, the next ten products

correspond to the second category, etc. The heat-map reveals C = 25 groups of ten

similar columns in the matrix WH . The groups correspond to product categories.

We refer to the columns of matrix WH as product embeddings, as they incorporate

information about product similarities. Products from the same categories have

similar product embeddings.

Figure 3.7 depicts the two-dimensional t-SNE projections (Maaten and Hinton,

2008) of the product embeddings. Each dot represents one product, and we identify

the true (simulated) categories by different colors. We observe that the products

form clusters corresponding to different categories, and the clusters are perfectly

separated, which conĄrms that the trained product embeddings encode information

about products and product category structure.

Appendix 3.8 contains a deeper analysis of how the different components of the

neural network architecture impact the predictive performance of our proposed

model. We sequentially remove components of the full architecture and demonstrate

that both the time Ąlter and the bottleneck layers are critical to the modelŠs

predictive performance.
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Figure 3.7. t-SNE projection of the product embedding WH .

Notes: Colors indicate true product categories. Best viewed in color.

3.5.3 Performance Gains for Coupon Optimization

We conclude the evaluation of the proposed product choice model in the context

of the simulation by evaluating how the improved prediction performance translates

into the efficiency gains for the coupon personalization problem.

The performance of coupon personalization depends not only on the product

choice model, but also on the coupon optimization algorithm. The coupon opti-

mization algorithm allocates coupons to customers based on the estimated effects of

the coupons on purchase probabilities. We evaluate the overall revenue gains with

one coupon per customer or Ąve coupons per customer. In both cases, we focus

our analysis on the product choice model by keeping the optimization algorithm

constant and changing the underlying choice models.

We Ąrst evaluate the performance of the coupon assignment for the case that

every customer receives one coupon. We assume that customers act independently,

so with a single coupon per customer we can enumerate and evaluate all possible
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coupon allocations. For a customer with a purchase history BT
it and purchase

frequencies B∞
it , we select the coupon that maximizes the expected revenue

D∗

it = argmax
D=[d1,...,dJ ]

∑︂

j

p̂itj

(︂
D, BT

it , B∞

it

)︂
(1 − dj) pricej (3.25)

s.t. D ∈ ¶.1, .2, .3, .4♢J×1

and
√︂

j 1 (dj > 0) = 1.

We also evaluate coupon policies that generate Ąve coupons per customer. Allo-

cation by a complete enumeration is no longer feasible in this case. The evaluation

time for one combination of Ąve coupons for all customers takes approximately .5s.

There are over 8 × 1012 possible coupon combinations which results in over 100,000

years of computing time to solve the problem through a complete enumeration.

Instead, we consider a greedy heuristic for coupon allocation. The greedy heuristic

begins by selecting a single coupon that maximizes revenues. It then sequentially

adds coupons, one coupon at a time, to maximize revenues given the previously

chosen coupons. The method stops when the Ąve coupons are selected. The greedy

heuristic has previously been successfully applied in product line optimization

(Green and Krieger, 1985; Belloni et al., 2008).

We demonstrate the coupon optimization results for different product choice

models in Table 3.4. We report the expected revenue lift per customer and

the percent improvement of revenue over the no-coupon baseline. The expected

revenue lift measures the difference between the revenue with coupon (based on the

respective coupon policies) and the revenue without coupons. We integrate over

the error terms of the product and category choice models in the simulation by

evaluating the responses to coupons 100 times with different seeds for the random

number generator. The results in Table 3.4 are the average uplift over the 100

replications and we report the SEs of the sample means over the replications in

parentheses.

A random coupon allocation deĄnes the lower bound for coupon performance. If

the products are too expensive, providing random coupons can improve the revenue

without optimization. However, revenue uplifts are very small. Coupon policies

that optimize revenues should outperform this lower bound. We thus compare

the coupon optimization methods based on the product choice models with the

random coupon assignment and Ąnd that all optimized methods outperform the

lower bound for both one and Ąve coupons per customer.

A second reference point is a mass marketing coupon policy that provides the

same revenue-maximizing price promotion to all customers (Best Uniform). As
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Table 3.4. Coupon optimization results.

One Coupon per Customer Five Coupons per Customer

$ Revenue Lift % Revenue Lift $ Revenue Lift % Revenue Lift

Our Model $.72 ($.01) 2.26% $2.61 ($.02) 7.68%

LightGBM $.45 ($.01) 1.41% $1.50 ($.02) 4.55%

Binary Logit $.50 ($.01) 1.57% $1.40 ($.02) 4.26%

Best Uniform $.21 ($.01) .65% $.91 ($.01) 2.83%

Random $.01 ($.00) .03% $.05 ($.00) .17%

Note: All differences are significant at p < .01, based on SEs computed using a nonparametric
bootstrap with 100 replications.

expected, this policy leads to a larger revenue increase than random coupons, but

is outperformed by all three models that personalize coupons.

The proposed neural network model signiĄcantly improves coupon optimization

over the LightGBM and Binary Logit baselines. For a single coupon, our policy

yields a 3.4× higher revenue lift than the Best Uniform policy and a 1.6× higher

revenue increase than the LightGBM model. The advantage over the LightGBM

model increases even further in the case of Ąve coupons. Note that the revenue

lift per coupon decreases with a larger number of coupons for all policies. We

expect diminishing returns as the policies by construction select the most proĄtable

coupons Ąrst, so this result offers face validity.

A deeper analysis of the simulated purchase probabilities with and without

coupons allows us to evaluate why our model outperforms the baselines in the

coupon optimization problem. Recall that the neural network is more successful in

identifying purchase timing. We observe two patterns in the coupon policies that

can explain the increased revenue lift. First, the policy based on our proposed deep

neural network creates additional category purchases by providing coupons to the

customer-category combinations with lower inventory at the time of the coupon

distribution. This leads to higher coupon redemption rates. At the same time,

we Ąnd that the neural network policy provides coupons to the customer-category

combinations with a large discount sensitivity and a low base probability for a

category purchase more often. A coupon yields the highest own-product revenue

lift in these cases and our model Ąnds such opportunities more reliably than the

other baselines.

Second, the neural network policy provides coupons for more expensive products.

In line with the empirical data, more expensive products in our simulation have

lower interpurchase times. The baseline policies do not model purchase timing
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as well as the neural network. They consequently focus on cheaper products that

have higher purchase frequencies and fail to capitalize on the revenue potential

that more expensive products offer (if coupons are timed well). We provide more

details on the comparison of targeting policies in Appendix 3.8.

We conclude that the coupon optimization generates a signiĄcant revenue increase

in our simulation. Our proposed product choice model improves prediction accuracy

of customersŠ purchase rates and this translates into larger revenue gains at the

coupon optimization.

3.6 Model Evaluation Based on Empirical Data

3.6.1 Data

We validate the prediction performance of our model using transaction data

provided by a leading German grocery retailer. The data set comprises three

data sources: loyalty card data, market basket data, and coupon data. Loyalty

card data follows a panel structure and contains transactions by the loyalty card

holders. Market basket data includes information about purchases without customer

identiĄers. Coupon data contains information about the coupons provided to the

customers (including unredeemed coupons). Overall, the data set spans over

83 weeks (2015-2016) and includes 22,740,377 purchases by 489,438 loyalty card

customers and 73,048,605 shopping baskets by customers without a loyalty card.

We provide summary statistics in Table 3.5.

We focus our analysis on 50 product categories for which the retailer distributed

coupons during the period of the analysis. The categories include food products such

as milk, bread, chocolate bars, and coffee, and nonfood products such as shampoo,

fabric softener, and toothbrushes. The categories vary in the interpurchase times

and a competitive intensity. We provide a complete list of the product categories

in Appendix 3.8.

Most customers visit the store no more than once a week, so we aggregate

data to a weekly level. The median time between two shopping trips across all

customers is two weeks (SD = 4.02). This value is typical for a supermarket in a

German metropolitan area. The retailer used coupons to promote category-brand

combinations that group stock keeping units of the same package size and price

range. We follow the retailerŠs product grouping and use this level of aggregation

for our analysis. For a small subset of customers, the retailer provided coupons

randomly. Our empirical analysis only considers customers with randomly assigned

coupons, which allows us to avoid endogeneity concerns in model training and

validations.
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Table 3.5. Summary statistics: data sets for empirical application.

Data Set Variable Value

Loyalty Card Data

# of users 489,438

# of weeks (date range) 83 (2015/05 - 2016/12)

# of brands (# of retailer categories) 758 (50)

# of stores 155

Coupon Data

# of coupons 650,973

Avg. # of coupons per customer (SD) 4.76 (6.33)

Discount range [5%, 50%]

Avg. redemption rate (SE) 1.529% (.014%)

Avg. discount (SD) 23.7% (10.0%)

Market Basket Data

# of baskets 73,048,605

# of months 12 a)

Avg. # of products per basket 4.91

Note: a) First year of loyalty card data.

3.6.2 Evaluation Results

For the model evaluation, we follow the approach used in the simulation study

and create a hold-out test set by splitting the data in the time dimension. The Ąrst

73 weeks are used for model training, whereas the last ten weeks comprise the test

data. We predict the purchase probabilities for all products and 1,000 customers.

We train the deep neural network in two stages. In the Ąrst stage we apply P2V-

MAP (Gabel et al., 2019) to the market basket data to derive product embeddings.

We then use the pretrained embeddings to initialize WH , Wd, and W∞. Pretraining

embeddings is a common approach to training deep neural network architectures

in computer vision and natural language processing. Pretraining helps to avoid

local minima in supervised learning and facilitates a better generalizability of

results by having a regularizing effect on the neural network (Erhan et al., 2010).

Initializing the product embeddings in our neural network with the output of P2V-

MAP reduces the number of training iterations that is required to achieve model

convergence by approximately 25%. The training time for mini-batch gradient

descent scales linearly with the number of training iterations, so pretraining the

product embedding reduces training time signiĄcantly.

In the second step of the model training, we initialize the parameters of the

bottleneck layers with the product embedding and train the full neural network by

minimizing the binary cross-entropy loss (see Section 3.3.3). This step Ąne-tunes

the pretrained bottleneck layer weights.
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We calibrate the hyperparameters of the model on a validation set by comparing

the binary cross-entropy loss over a small number of randomly sampled hyperpa-

rameter sets. Random search is a common approach to conĄguring neural networks

and typically Ąnds solutions that are as good as grid searched results within a

small fraction of the computation time of grid search (Bergstra and Bengio, 2012).

We initialize the hyperparameter search with the values used in the simulation.

We Ąnd that a larger embedding size (L = 50) improves the test loss and that the

model converges in less epochs (nepoch = 10). For the other hyperparameters, the

random search did not yield a signiĄcant loss improvement, so we use the same

values as in the simulation. We calibrate the simulation to mimic the behavior

of the empirical data, so the similarities between the simulation study and the

empirical application are not surprising. In line with the results of the simulation

study we Ąnd that the parsimonious architecture makes our neural network robust

to overĄtting (see Appendix 3.8). We present a two-dimensional t-SNE projection

of the product embedding WH trained on empirical data in Appendix 3.8.

An important difference to the simulation study is that true purchase probabilities

are unknown in the context of the empirical application. We therefore focus on the

comparison of binary cross-entropy loss that evaluates the predictions based on the

observed (binary) purchase indicator and the predicted purchase probabilities. We

evaluate the prediction performance of our proposed model and compare it to the

baselines used in Section 3.5.

Table 3.6 reports the evaluation results. We Ąnd that the ranking of the models

based on the predictive performance is in line with the results obtained from the

simulated data, and our proposed model achieves a lower cross-entropy loss than

the reference methods.

We conduct an additional regression analysis to understand the performance

differences between our deep neural network (DNN) and each of the two baseline

models. First, we compute the binary cross-entropy loss for each observation

(customer, product, time) in the test set for the DNN and the reference model. We

then compare the loss values using a linear regression:

M1 : Lijtm = α0 + αc + δDNN ,

M2 : Lijtm = α0 + αc + δDNN + δC + δP + IPTic

+ δDNN × δC + δDNN × δP + δDNN × IPTic,

where m indexes the model (either DNN or the reference model), α0 is the regression

intercept and αc are category-level Ąxed effects, and IPTic is the average customer-

level category interpurchase time computed on the training data. The regression

includes three indicator variables:
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Table 3.6. Aggregate prediction performance (empirical application).

Model Cross-Entropy Loss
Improvement vs.

Best Uniform

Our Model .0095 48.9%

LightGBM .0116 37.6%

Binary Logit .0126 32.3%

Best Uniform .0186 -

Note: All differences are significant at p < .01, based on SEs computed using a nonparametric
bootstrap with 100 replications.

δDNN = 1ijtm (m = DNN) ,

δC = 1ijtm (ditj > 0) ,

δP = 1ijtm

∏︁
∐︂
⋃︁
⨄︁∑︂

k∈C

bi,t−1,k

⋂︁
⋀︁ > 0

∫︁
ˆ︁ ,

i.e., δDNN identiĄes loss values corresponding to our model, δC marks observations

(i, t, j) with a coupon, and δP is an indicator for observations with a category

purchase in a previous period. We use the retailerŠs category deĄnition to compute

IPTic and δP .

The three interaction terms with the indicator variable for the neural network

observations, δDNN , allow us to evaluate whether our model loss is particularly low

for the given data partitions (low is good). For readability, we multiply all loss

values by a factor of 100. We repeat the analysis for the LightGBM model and the

Binary Logit. In total, this analysis produces four sets of regression coefficients

(two nested model speciĄcations: M1 and M2; two model comparisons: DNN vs.

LightGBM and DNN vs. Binary Logit).

Table 3.7 depicts the regression results. The results for the four models are

very similar. The neural network achieves a signiĄcantly lower binary cross-

entropy loss than the LightGBM model and the Binary Logit model (δDNN). On

average, predicting probabilities is more challenging for observations with coupons

(δC), observations with a category purchase in the last week (δP ), and smaller

interpurchase times (IPTic).

The interaction terms reveal that the DNN model particularly improves the

predictions for observations with a recent category purchase and observations

characterized by smaller interpurchase times, beyond the average improvement
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Table 3.7. Binary cross-entropy loss regression analysis.

DNN vs. LightGBM DNN vs. Binary Logit

(M1) (M2) (M1) (M2)

Intercept α0
2.121 ***

(.019)
2.039 ***

(.170)
2.279 ***

(.021)
2.259 ***

(.186)

DNN δDNN
−.376 ***

(.027)
−.465 ***

(.041)
−.534 ***

(.030)
−.752 ***

(.045)

Coupon δC
.626 ***
(.087)

.682 ***
(.095)

Category Purchase δP
2.269 ***

(.053)
1.986 ***

(.058)

Interpurchase Time IPTic
−.027 ***

(.001)
−.032 ***

(.001)

DNN × Coupon −.135
(.123)

−.193
(.134)

DNN × Category Purchase −.899 ***
(.074)

−.612 ***
(.081)

DNN × Interpurchase Time .009 ***
(.001)

.013 ***
(.001)

Category Fixed Effects Yes Yes

Notes: To simplify exposition, we scaled the binary cross-entropy loss values by a factor of 100.
Sig. label: *** p < .01.

measured by δDNN . The DNN binary cross-entropy loss also tends to be smaller

than the loss in the reference models for coupon observations, but the effect is not

statistically signiĄcant. These Ąndings are based on the empirical data and conĄrm

the simulation-based analysis presented in Sections 3.5 and 3.6.

3.7 Conclusion

Retailers collect high-quality data about the customer choice and the effectiveness

of marketing channels. However, leveraging these data for target marketing is chal-

lenging. Large assortments and customer bases require prediction and optimization

methods to scale to high-dimensional inputs and large data sets.

In this paper, we have developed a nonparametric model to predict product choice

for the entire assortment of a large retailer. The model is motivated by the coupon

optimization problem. Given coupon assignments and customer purchase histories,

our model predicts individual product choice probabilities for every product in

the assortment. It is based on a custom deep neural network architecture and

can be directly applied to transaction data from their loyalty card program. Our
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model eliminates the need for data preparation and assumptions about category

delineation and cross-product effects.

We have evaluated the prediction performance of the proposed model in simula-

tions. The model signiĄcantly outperforms the machine learning benchmarks. We

demonstrate that the model is able to approximate own- and cross-product coupon

and inventory effects out-of-sample. The model recovers cross-product effects by

identifying product similarities from the training data.

The modelŠs higher prediction accuracy leads to a better performance for coupon

personalization. We have veriĄed this for the cases of one coupon and Ąve coupons

per customer. In the simulation, coupon optimization methods achieve substantially

higher revenue gains when using purchase probabilities predicted by our model

compared to the baseline prediction methods (e.g., up to 74% revenue increase vs.

LightGBM).

The empirical application based on data from a leading German grocery retailer

veriĄes the prediction accuracy results from the simulation study. The prediction

performance improvements are particularly large for three types of observations

(i.e., customer, time, product combinations): observations with a recent category

purchase, observations characterized by smaller interpurchase times, and observa-

tions with coupon assignments (although the latter is not statistically signiĄcant).

We conclude that the proposed model is a suitable solution to large-scale coupon

optimization.

Target marketing and product choice modeling in retail provide a rich context for

future research. Machine learning and deep learning are active areas in computer

science and marketing literature. Our architecture applies convolutional Ąlters and

bottleneck layers to model choice based on loyalty card data. Promising alternative

architectures include the WaveNet and recurrent neural networks. Moreover, deep

neural networks are capable of processing unstructured data, so image data and

customer reviews are promising sources for extending the model input. Addi-

tional, qualitatively different inputs can further improve the modelŠs prediction

accuracy. Finally, Ąeld experiments can provide additional empirical validation

and new insights regarding the performance of the proposed product choice model

in target marketing, including pricing, product recommendations, and promotion

personalization.
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3.8 Appendix

3.8.1 Parameters for Adam Optimizer

Table 3.8. Adam optimizer parameters (PyTorch).

Parameter Description Value

lr Learning rate .001

betas
Coefficients used in the computations of the running
averages and squared average of the gradient

[.9, .999]

eps
Constant added to the denominator to improve
numerical stability

1e−8

weight_decay Weight decay 0

3.8.2 Parameter Sampling for Simulation

Table 3.9. Simulation parameters.

Parameter Description Value

C
at

eg
or

y

γc Category base utility γc ∼ U(−1.6, .2)

γInv
c

Inventory sensitivity γInv
c ∼ U(−1.2, −.6)

Inv0
ic

Inventory initialization Inv0
ic ∼ Exp(.4)

Consic Consumption rate
Consic = Consc(1 + W Cons

i )
W Cons

i ∼ U(−.2, .2)
Consc ∼ U(.1, 1.4)

γ
p
ic

Category discount sensitivity
γ

p
ic ∼ γp

c LN(0, .05)
γp

c ∼ U(.5, 2.5)

Γc Category similarity Γc ∼ MV N(0h×1, Ih×h), h = 20

P
ro

d
u
ct

Bjc Product similarity Bjc ∼ MV N(0h×1, Ih×h

β
p
i

Discount sensitivity β
p
i ∼ LN(.6, .4)

pricej Product price
pricej ∼ (.5 + U(0, 1))pricec

pricec ∼ LN(.7, .3)
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3.8.3 Effect of Inventory on Category Purchase Incidence

Figure 3.8. Category incidence probability histograms for different inventory
levels for three product categories.
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3.8.4 Independent Variables in the LightGBM Model

We provide a complete list of LightGBM features below. The features are

unique for customer i, product j, and time t. We include two types of features:

own-product and cross-product features.

1. Own-product discounts ditj.

2. Own-product purchase frequencies b̄itj.

3. Own-product purchase histories BT
itj.

4. Own-product moving window purchase frequencies

Bh
itj =

1

h

h∑︂

k=1

bi,t−k+1,j (3.26)

with various window sizes

h ∈ ¶2, 4, 8, 10, 15, 20, 25, 30♢ . (3.27)

This feature is motivated by the time Ąlters in our deep neural network. It is

designed to allow the LightGBM model to identify purchasing patterns along

the time dimension of our panel data.

5. Cross-product discounts ditk∀k ̸= j.

6. Cross-product purchase histories: Including the full purchase histories of all

products would result in (J × T )-dimensional input. This is not feasible

due to high dimensionality and data sparseness. We instead propose to use

the cosine similarity between a customerŠs embedding ui and a product j

embeddings vj to measure a product jŠs attractiveness for customer i. This

feature allows LightGBM to model preference correlations between products

across the full assortment. We use the Product2Vec model to compute

product embeddings, vj, using market basket data (Gabel et al., 2019). We

obtain customer embeddings, ui, as an average of product embeddings for all

products purchased by the customer in the past

ui =

90∑︂

t=1

bitjvj

90∑︂

t=1

bitj

. (3.28)

7. Cross-product customer embeddings ui.



3.8. APPENDIX 49

3.8.5 Test Set DeĄnition

We use the models to predict future purchases (e.g., purchases at the next

shopping trip), so we create the test data set by splitting the data along the time

dimension. For a data set with 100 time periods we use the last ten periods as a

test set and use the Ąrst 90 for model training and validation. For each customer,

this approach yields J × 10 predicted purchase probabilities.

Our data splitting approach avoids information transmission between the training

data and the test data. Using more than one week in the test set increases the

validity of the model evaluation and allows us to evaluate how well our model

captures changes in purchase probabilities for a given customer and product over

time.

Figure 3.9 illustrates how we predict purchase probabilities for a customer-

product pair (i, j). In predicting the purchase probability for test period t = 1

(green cell in row 1), we use the T = 30 time periods before t = 1 as model input

(blue cells in row 1). The predicted purchase probabilities in week 2 are based on

T time periods before t = 2 (including time period 1), etc. The cascading data

structure ensures that the model always uses up-to-date information for prediction.

Figure 3.9. Data split for hold-out evaluation.

Note: Best viewed in color.
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3.8.6 Loss Curves

We present the loss curves on the training, validation, and test data in Figure

3.10. The construction of the test data follows the description in Appendix 3.8.

The validation data includes a fraction of the observations from time period t = 89.

We Ąnd that the test and validation losses converge after approximately 25 epochs.

We compute 95% conĄdence intervals through nonparametric bootstrapping and

do not observe signiĄcant differences in the loss between the three data sets. The

same is true in the empirical application, so we conclude that the deep neural

network is not overĄtting.

We observe a large decrease in losses between epochs 10 and 15. This loss

decrease occurs when the neural network learns the product embeddings Wd, W∞,

and WH . We elaborate more on this point in Appendix 3.8.

Figure 3.10. Loss curves for training, validation, and test data.

Note: Best viewed in color.
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3.8.7 Comparison of True and Predicted Probabilities

For the coupon optimization problem, it is important that probabilities are scaled

correctly. We visually verify this by plotting the predicted probabilities p̂itj against

the true simulation probabilities pitj for a subset of all categories (Figure 3.11)

and products (Figure 3.12). Each point in the scatter plots is the probability for

a single customer, week, and product. We do not Ąnd any systematic prediction

errors. This further validates our modelŠs predictions.

Figure 3.11. Probability scatter plots for six product categories.
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Figure 3.12. Probability scatter plots for six products in category 1.
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3.8.8 Additional Benchmarking Metrics for Simulated Data

We provide additional benchmarking metrics in Table 3.10

Area under receive operator characteristic curve (AUC):

AUC(b, p̂) =
∫︂

∞

−∞

TPR(t) FPR(t) dt, (3.29)

based on the predicted probability p̂ and the true purchase indicator b. TPR is

the true positive rate and FPR denotes the false positive rate.

The KL divergence compares predicted probabilities p̂ and true probabilities p:

KL(p, p̂) =
∑︂

i,j,t

⎟
p log

(︄
p̂

p

⎜
+ (1 − p) log

(︄
1 − p̂

1 − p

⎜⟨︂
. (3.30)

Table 3.10. Additional metrics for aggregate prediction performance (simulation).

AUC KL Divergence
Cross-Entropy

Loss

True Probabilities .9490 .0000 .0537

Our Model .9393 .0032 .0563

LightGBM .9242 .0128 .0589

Binary Logit .9170 .0281 .0662

Note: All differences are significant at p < .01, based on SEs computed using a nonparametric
bootstrap with 100 replications.

3.8.9 Nested DNN Model SpeciĄcation

To better understand how the different components of the neural network archi-

tecture impact the modelŠs predictive performance, we compare four nested model

speciĄcations:

Full DNN Full model described in Section 3.3 and evaluated in Sections 3.5 and

3.6.

DNN without time filter To remove the time Ąlters we set H to 1 and Ąx the

time Ąlter weights wh=1 = 1/T . The time Ąlter therefore simply averages the

purchase histories for each product. We freeze the time Ąlter weights and

train the remaining weights of the network as usual.
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DNN without bottleneck layers To remove the bottleneck layers, we replace the

products of the weight matrices in the bottleneck layer (e.g., W ⊤
d Wd) with

(J × J)-dimensional identity matrices. We freeze the bottleneck layers and

train the remaining weights of the network as usual.

Minimal DNN We remove both the time Ąlter and the bottleneck layers.

Table 3.11 depicts the benchmarking scores (on the test set) for the four model

speciĄcations described above. The differences in cross-entropy loss are small but

managerially relevant. The bottleneck layer improves the cross-entropy loss more

than the time Ąlter. We observe a signiĄcantly lower time correlation for the model

without time Ąlters. Only adding the time Ąlter (but not using the bottleneck layers)

produces correlation scores similar to the LightGBM baseline. In this speciĄcation,

the DNN disregards that products from the same category are exchangeable (recall

the Coke/Pepsi example). The predictions therefore fail to model consumption

patterns adequately. The combination of the time Ąlter and the product embedding

increases the correlation by more than 3 times. Learning category structure is

necessary to approximate purchase incidence. The results indicate that both

components, the time Ąlter and the bottleneck layers, signiĄcantly improve the

modelŠs predictive performance and that the largest increase can be accomplished

by using both components simultaneously.

To illustrate how the (hold-out) cross-entropy loss, the time correlation metric,

and the product embeddings are related, we show the three outputs as a function

of the training epochs in Figure 3.13. We observe that the neural network learns

product embeddings between epochs 10 and 15. This coincides with an increase in

the correlation scores and a decrease in the cross-entropy loss.

Table 3.11. Benchmarking results (test set) for four nested DNN models.

Model
Cross-Entropy

Loss
Time

Correlation

Full DNN .0563 .5791

DNN w/o Time Filter .0573 .0535

DNN w/o Bottleneck Layers .0576 .1341

Minimal DNN .0579 .0482

LightGBM .0589 .1033

Note: Best scores per column in bold.
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Figure 3.13. Test loss, correlation metric and product embedding WH (products 1 to 40).

Note: Best viewed in color.
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3.8.10 Analysis of Coupon Policies

We compute additional descriptive statistics to better understand (1) which

customer-category-product combinations the policies target and (2) why the policy

based on our proposed neural network leads to the highest revenue lifts. The

starting point of the analysis are the coupons that the DNN, LightGBM, and

Binary Logit coupon policies select for the 2,000 test customers (we focus on the

case of one single coupon per customer). Each coupon is a unique combination of a

customer and a product. We report the descriptive statistics about the coupons in

Table 3.12. The statistics have different levels of variation. For example, the time

since the last category purchase is category-speciĄc, whereas the average inventory

is category- and customer-speciĄc. We report the average values for each coupon

policy and the relative values for the LightGBM and Binary Logit policies relative

to the DNN policy to simplify the comparison.

We Ąnd that the DNN policy targets more expensive products, categories that

are purchased less frequently (lower γic) and customer-category combinations with

a lower inventory. The DNN policy therefore achieves a good balance in targeting

categories. The policy identiĄes customer-category combinations for which base

probabilities are small enough to increase revenue through coupons (i.e., potential

for category purchase rate lift) but sufficient to maintain redemption rates.

This is supported by the observed category purchase incidence probability (p
(2)
itj ),

that is smaller than the average probability for the Binary Logit policy (lack of

incrementality) but larger than the average probability for the LightGBM policy

(lack of effectiveness). The higher price and the higher rate of incremental category

purchases are two of the potential drivers for a higher revenue lift.
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Table 3.12. Coupon policy analysis.

DNN LightGBM Binary Logit

(abs.) (abs.) (rel.) (abs.) (rel.)

Average price of targeted product $14.5 $13.6 94.0% $13.5 93.0%

Time since last category purchase 5.0 5.0 98.9% 3.9 77.8%

Category base utility (γc) −.644 −0.658 102.2% −.642 99.8%

Category base utility (γic) .518 .524 101.3% .703 135.7%

Category discount sensitivity (γp
ic) 2.105 1.737 82.5% 1.815 86.2%

Inventory .784 1.014 129.3% .877 111.9%

Category purchase incidence probability (p
(2)
itj ) 23.7% 19.3% 81.5% 26.6% 112.1%

Product base utility (β0
ij) 3.637 3.627 99.7% 4.037 111.0%

Incremental category purchase rate a) 19.5% 10.1% 51.9% 16.3% 83.3%

Revenue Uplift 2.26% 1.41% 62.4% 1.57% 69.5%

Note: a) The incremental category purchase rate is defined as the fraction of coupon observations
with a category purchase in the simulation with a coupon treatment minus the fraction of coupon
observations with a category purchase in the simulation without a coupon treatment (using the
same simulation “state”).
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3.8.11 Empirical DataŰCategory Statistics

Table 3.13. Category characteristics for loyalty card data set.

Category
Concen-
tration

IPT (SD) Category
Concen-
tration

IPT (SD)

Beer .17 2 (9.78) Juices .27 3 (11.86)

Butter .22 2 (7.77) Ketchup .35 8 (13.84)

Cereal bars .41 4 (12.50) Milk .17 1 (5.96)

Chewing gum .24 4 (11.74)
Muesli / corn
flakes

.13 3 (10.17)

Chips .14 3 (9.83) Paper towels .56 4 (10.83)

Chocolate
bars

.14 3 (10.52) Pasta .21 5 (11.47)

Chocolate
spread

.56 6 (13.12) Pasta (fresh) .53 6 (13.42)

Coffee .16 5 (10.47) Pizza .39 3 (9.86)

Coffee beans .30 5 (10.82) French fries .36 6 (13.04)

Coffee
capsules

.25 3 (9.06) Salt sticks .27 4 (12.19)

Coffee pads .15 3 (9.03) Shampoo .12 9 (14.49)

Condensed
milk

.31 2 (7.62) Sliced cheese .08 2 (7.99)

Cough drops .48 3 (12.23) Soft drinks .16 1 (7.05)

Crisp bread .21 3 (11.01) Tea .32 5 (11.64)

Detergent .20 8 (13.04) Toast .32 2 (8.38)

Dishwashing
liquid

.21 8 (13.59)
Toilet paper
(wet)

.45 4 (10.02)

Dishwashing
tabs

.33 12 (15.03) Toilet paper .33 5 (11.42)

Energy drinks .16 2 (8.26) Toothbrushes .20 10 (15.94)

Fabric
softener

.23 7 (12.94) Toothpastes .09 8 (13.16)

Milk .34 2 (7.84) Tuna .35 4 (12.46)

Ice cream .15 3 (12.19) Water .07 1 (6.94)

Iced tea .15 2 (8.52) Yogurt .05 1 (6.61)

Jam .17 3 (10.37)

Note: Concentration measured by Herfindahl-Index (Adelman, 1969), based on product market
shares.
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3.8.12 Analysis of the Neural Network Product Embedding

Figure 3.14 depicts a two-dimensional t-SNE projection of the product embedding

WH trained on empirical data. Each dot represents a product, and the colors

indicate retailer categories.

The product map is structured and contains several clusters. A closer inspection

of the product clusters reveals three patterns:

1. Clusters can be perfectly aligned with a retailer category (e.g., cluster A:

chocolate bars).

2. Clusters can contain products from several retailer categories (e.g., cluster B:

soft drinks, juices, and (Ćavored) water).

3. A retailer category can be split into several product clusters (e.g., cluster C:

coffee is split into regular ground coffee, coffee beans, and coffee capsules).

In contrast to the simulation (Figure 3.7, main text), we Ąnd that product

clusters overlap. Possible explanations are that product categories in the real world

are not as well-deĄned as in the simulation or that the manual category deĄnitions

are imperfect. Nonetheless, we see that the neural network learns a meaningful

representation of products that should allow the model to efficiently incorporate

cross-product effects.

Figure 3.14. t-SNE Projection of the DNN Product Embedding WH .

Note: Best viewed in color.
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3.8.13 Descriptive Analysis of DNN Probabilities

For the empirical application the true purchase probabilities are not known. A

plot based on the dichotomous outcomes would be difficult to interpret, so we use an

alternative approach to comparing the vector of true outcomes with the predicted

probabilities. The Ąrst step is to create 20 equally large probability windows

w ∈ ¶[0, 5%], (5%, 10%], . . . , (95%, 100%]♢. For each window we then compute the

average predicted purchase probability p̄w
itj and the observed purchase rates b̄

w

itj,

deĄned as the average of the purchase indicators within the window. The averaging

allows us to plot the purchase rates as a function of the average predicted purchase

probability in a scatter plot. The Beta distribution is the conjugate distribution to

the binomial distribution, so we compute 95% conĄdence interval for the purchase

rate by sampling from the Beta(a, b), with the shape parameters a =
√︂

itj bw
itj and

b =
√︂

itj(1 − bw
itj). For the predicted probability we use a nonparametric bootstrap

with 100 replications. The scatter plot in Figure 3.15 shows that all points of the

scatter plot are close to the bisecting line of the Ąrst quadrant. Most of the error

bars include the line with slope 1 and intercept 0. We conclude that probabilities

are scaled properly and that the learned probabilities reĆect true purchase rates

well.

Figure 3.15. Observed purchase rates as a function of predicted probabilities.
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Abstract

Coupons are an integral tool in the sales promotion mix of grocery retailers. It is

therefore not surprising that the number of coupons has steadily increased over the

last decade. In the face of decreasing redemption rates and coupon proĄtability,

personalization through real-time offer engines is a viable approach to increase

coupon effectiveness. To this end, the authors study a rich data set from a leading

German grocery retailer that comprises market basket data, loyalty card data, and

customer responses to 12 million personalized coupons across 1,116 brands in 115

product categories. For almost 1 million coupons, the brand and the discount

were randomized, so the exogenous variation pertaining to both dimensions of the

coupons facilitates an unbiased measurement of the effect of decision variables on

customer responses. This study quantiĄes the effect of targeting on redemptions,

revenues, and proĄts. Targeting increases redemption rates by 64.0%, revenues by

up to 182.2% and proĄts by up to 111.8%, compared to non-targeted coupons. The

impact of targeting on coupon effectiveness varies signiĄcantly across categories

and brands, and much of the variance can be explained by brand and category

characteristics, such as brand loyalty, price position, and purchase frequency. This

research helps retailers to use targeting engines more efficiently. The results

underline the beneĄts of sophisticated systems for automated one-to-one marketing

and allow retailers to carefully compare the costs associated with implementing

personalization engines to the Ąnancial beneĄts that such systems offer.

Keywords

targeted coupons, sales promotions, real-time offer engines, recommender systems
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4.1 Introduction

In 2015, $550 billion in coupons were distributed, an increase of 3.2% compared

with the previous year (Valassis, 2016). In grocery retailing, only .6% of all

distributed coupons are redeemed, and redemption rates decreased compared to

2017 (NCH Marketing Services, 2019). At the same time, coupon distribution

is costly. Freestanding inserts (FSI) represent over 90% of the grocery coupons

distributed in 2018, and the estimated distribution cost per coupon redemption

is $.35 (Biafore, 2016). Furthermore, increasing face values decrease coupon

proĄtability (Valassis, 2016) and customers often redeem coupons for products for

which they would have been willing to pay the regular price (Forrester, 2017).

These challenges motivate Ąrms to seek new ways to address low coupon redemp-

tion rates and improve the impact coupons have on revenues and proĄts. Many

retailers collect vast amounts of customer-level data, which they use to analyze

customer purchasing habits (Blattberg et al., 2008; Bradlow et al., 2017). These

data allow retailers to tailor coupons to customer segments or individuals, thereby

enhancing coupon effectiveness (Rossi et al., 1996; Zhang and Wedel, 2009; Ailawadi

and Gupta, 2014). Still, few retailers personalize product recommendations and

discounts on a substantial scale. In grocery retailing, for example, segment and

mass marketing (e.g., coupons and circulars) are still the dominant promotional

strategies. Combining available customer data, especially those obtained through

loyalty programs, with the advanced techniques offered by solution providers such

as dunnhumby or Catalina Marketing, offers great potential for promotion person-

alization efforts (Rowley, 2005; Guillot, 2016). Real-time offer (RTO) engines allow

retailers to leverage advanced analytics to derive personalized offers on the basis

of real-time customer interactions and purchase histories. According to industry

experts, Şretailers will increasingly transfer promotional activity from traditional

media [...] to more targeted and real-time offersŤ (Gartner, 2016, p. 20), espe-

cially considering that such RTO engines are used extensively in targeted online

advertising (Chapelle et al., 2015).

The main challenges for retailers include the implementation of complex targeting

algorithms, scaling these algorithms to the full assortment, and communicating

personalized offers to individual customers in real-time (Naik et al., 2008; Gartner,

2016). At the same time, it is difficult to predict how RTO engines impact revenues

and proĄts and whether these justify the implementation costs.

In this study, we seek to assess whether coupon personalization through RTO

engines, similar to personalization in online advertising recommender systems, can

increase coupon performance in grocery retailing. We base our study on a rich data

set collected at a leading German grocery retailer. The data contains loyalty card

transactions, market basket data, and 12 million coupons for 1,116 brands in 115
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categories from the retailerŠs RTO engine. For approximately one million coupons,

the promoted brand and the discount were selected randomly, so the comparison

of targeted and non-targeted coupons allows us to isolate the effect of targeting on

coupon performance. The exogenous variation in the random coupon data makes

it possible to measure the drivers of customer responses to coupons in regression

models without bias. The models allow us to run policy simulations that lead to

a deeper understanding of coupon performance. SpeciĄcally, we (1) quantify the

impact of personalization on coupon redemption rates, revenues, and proĄts, (2)

evaluate how brand and category characteristics affect the redemption probability

uplift through personalization, and (3) compare the Ąnancial performance of

personalized coupons to those of traditional promotional strategies.

With this article we contribute to prior research on promotion personalization

and coupon effectiveness in three ways. First, we add to prior research that

studies the effect of promotion personalization on coupon performance (Rossi

et al., 1996; Zhang and Wedel, 2009; Venkatesan and Farris, 2012). In our data

set, customers received targeted coupons (personalized in terms of both product

selection and discount) or random coupons. A comparison across these conditions

isolates the effect of personalization on coupon redemption rates without bias from

confounders. In contrast with previous studies that analyze the effects of either

brand personalization (Venkatesan and Farris, 2012; Osuna et al., 2016) or discount

differentiation (Rossi et al., 1996; Zhang and Wedel, 2009), we simultaneously assess

how brand and discount personalization inĆuence coupon redemptions. And while

previous studies conclude that the beneĄts of personalization in offline retailing are

limited (e.g., Zhang and Wedel, 2009), we Ąnd clear evidence that personalization

yields substantial increases in all performance metrics.

Second, the RTO engine studied here promotes products from many categories

and brands. This allows us to analyze the impact of coupon personalization across

the retailerŠs whole assortment. While most studies focus on a small number

of categories, the wider scope of our analysis supports a better generalizability

of our Ąndings. Additionally, we extend prior research that details how brand

and category characteristics affect price elasticities, coupon redemption rates, and

(incremental) sales (e.g., Narasimhan et al., 1996; Osuna et al., 2016) in that we

uncover how brand and category characteristics explain variation in the impact of

personalization.

Third, we provide novel insights on coupons distributed through in-store kiosks,

which have not been studied in marketing literature. In contrast to coupons that

are distributed in FSIs, at the checkout counter or through a mobile app, kiosk

coupons are more similar to in-store Şsurprise couponsŤ (Heilman et al., 2002),

which are intended to be used immediately.
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With these measures, our research provides relevant insights for practitioners. We

show that one-to-one marketing increases redemption rates, revenues, and proĄts, so

personalization can be a valid answer to the challenges retailers face in the context

of coupon optimization. The collaborating retailer and solution provider also

noted the substantial costs associated with establishing loyalty programs, customer

databases, and RTO engines, highlighting the need for a better understanding of

coupon effectiveness to justify these investments. The insights gleaned from our

study contribute to a better understanding of the value of one-to-one marketing

and guide retailers in assessing the beneĄts of RTO engines. Accordingly, retailers

can make more educated investment decisions when launching RTO engines and

building effective personalized coupon programs. Understanding which brands and

categories are most suitable for targeted coupons will help category and promotion

managers select the right products to include in RTO engines, according to their

speciĄc goals. Insights pertaining to the link between the degree of personalization

and the efficiency of RTO engines help retailers to assess the Ąnancial beneĄts

of RTO engines. The close co-operation with the retailer allows us to analyze

modern promotion technology in the Ąeld and enhances the external validity of our

Ąndings. The scale of the data set supports a precise measurement of the effects of

personalization of redemption rates, revenues, and proĄts and contributes to the

generalizability of our Ąndings.

The remainder of the paper is structured as follows. After a literature review

that highlights our research contribution, we present the data set and the model

used to study customer responses to coupons. We then investigate the impact of

personalized coupons on redemption rates, revenue, and proĄt. We conclude by

summarizing our main Ąndings, discussing managerial implications, and providing

directions for further research.

4.2 Related Work and Contribution

Our study pertains to two literature streams in marketing: (1) studies that

develop methods for targeted coupons and conceptualize/measure their effects on

coupon performance and (2) studies of promotional effects and their drivers.

4.2.1 Targeted CouponingŰMethods and Effects

In describing one-to-one target marketing, Rossi et al. (1996) show how to model,

measure, and optimize price discounts in a brand choice setting, highlighting that

household purchase histories are valuable to manufacturers for optimizing coupon

proĄtability, according to their study in a single product category. Zhang and Wedel

(2009) build on their work to study two kinds of customized checkout coupons

(loyalty and competitive) at three levels of granularity (market, segment, and

individual) in online and offline stores across two product categories. They Ąnd
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that promotion optimization leads to substantial proĄt improvements and that

loyalty (competitive) coupons are more effective in online (offline) stores. Yet,

compared with segment-level promotions, the incremental proĄt of individual-level

promotions appears small, in particular in offline stores. Instead of taking a brand

perspective, we adopt the view of a retailer that sells many product categories, so

personalization includes brand selection choices. We build on Rossi et al.Šs (1996)

results and add the dimension of product recommendations to the assessment of

targeted coupons. Unlike Zhang and Wedel (2009), we provide reliable evidence of

the value of individual-level personalization in offline retail settings. Combining

kiosk coupons and full personalization (including brand selection) can overcome

low redemption rates, which have been a Şmajor impediment to the success of

customized promotionsŤ in offline stores (Zhang and Wedel, 2009, p. 204).

Heilman et al. (2002) examine the impact of in-store ŞsurpriseŤ coupons on total

basket value. Because redemption rates are higher for surprise than for FSI coupons,

they represent a promising promotion tool for retailers. According to Heilman

et al. (2002), unexpected coupons have an income effect that increases basket

size and unplanned (impulse) purchases in non-promoted but related categories.

Kiosk coupons are similar in that they are distributed at the point of sale, and

customers do not know in advance which coupons they will receive. Our setting

provides further evidence of the value of in-store coupons. We add to the research

by Heilman et al. (2002) in that we analyze a larger set of brands and categories,

include the analyses of both planned and unplanned purchases, and assess the

impact of brand selection and price differentiation on coupon performance.

Venkatesan and Farris (2012) present a conceptual framework for retailer-

customized (email) coupon campaigns; in a quasi-experiment, they Ąnd that coupon

exposure and redemption have positive effects on trip incidence and revenues. The

positive exposure effect implies that sales increases might result even from non-

redeemers. Sahni et al. (2016) evaluate the revenue effect of personalized email

promotions in a Ąeld experiment on an online ticket resale platform. They Ąnd a

37.2% revenue increase that is especially strong for individuals who did not transact

on the platform in the year before the experiment. The redemption itself does not

explain the majority of the effect and the authors conclude that emailed offers also

serve as ŞadvertisingŤ in addition to being a promotional tool. Although Venkatesan

and Farris (2012) and Sahni et al. (2016) present clear empirical evidence of the

economic consequences of customized coupon campaigns, they do not address the

impact of discount personalization and the impact of targeting on redemption rates.

We measure the increase in redemption rates, revenues, and proĄts for targeted

versus non-targeted coupons and determine the drivers of difference across brands

and categories.
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In a related stream of literature, researchers studied the effects of personaliza-

tion in the context of online advertising. Lambrecht and Tucker (2013) analyze

dynamic retargeting of online advertisement, Tucker (2014) studies the impact of

advertising personalization on Facebook, and Bleier and Eisenbeiss (2015) focus on

the personalization of banner advertising. The RTO engine studied in our research

is very similar to targeting approaches used in online advertising. Our research

therefore creates a link between research on targeted coupons and research on

recommender systems in online advertising. We show that RTO engines allow

retailers to implement product recommendations and personalized discounts at

scale, and we provide a Ąrst holistic assessment (across multiple categories and

brands) of the effectiveness of such systems by disentangling the effects of the

promotion channel (in-store coupons) and targeting. In the assessment of system

effectiveness we go beyond the simple evaluation of redemptions (cf. clicks in online

advertising) but study revenue and proĄt implications as well.

4.2.2 Promotional Effects and Their Drivers

A number of empirical marketing studies document promotional effects; the

heterogeneity in these Ąndings has motivated researchers to assess how promotional

effectiveness depends on market, category, or brand characteristics. For example,

in BoltonŠs (1989) study of the promotional price elasticities of twelve brands in

four categories, brands with higher price elasticities exhibit less category and brand

display activity, a lower market share, and more category couponing and feature

activity. Raju (1992) analyzes the temporal variability of category sales for more

than 200 brands from 25 categories and Ąnds that greater discount magnitude

(frequency) increases (decreases) sales variability. On the other hand, product

categories that are bulky (which make stockpiling and transportation more difficult)

and more competitive show less sales variability. Narasimhan et al. (1996) study

the effects of product category characteristics on promotional price elasticities

(price, feature, and display promotions) and Ąnd, beyond the effects of typical

category characteristics (e.g., penetration), that promotional elasticities are higher

in categories in which products are easier to stockpile and in ŞimpulseŤ categories

(though not to a signiĄcant extent). Bell et al. (1999) also investigate the effects of

category, brand, and customer factors on price promotion effects (decomposed by

primary and secondary demand). We extend this line of research by analyzing how

category and brand characteristics inĆuence the increase in redemption rates due

to personalization. We leverage a data set that contains both targeted and non-

targeted coupons. The exogenous variation in the random coupon data pertaining

to both dimensions of coupons (i.e., brand and discount personalization) facilitate

the unbiased measurement of the effect of decision variables on customer responses,

contributing to the external validity of our Ąndings.
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Osuna et al. (2016) study the effects of brand and category characteristics on

the performance of two types of checkout coupons (loyalty and cross-category),

targeted such that eligibility to receive the coupons depend on the householdŠs

purchase history. For 893 coupons, they Ąxed the discounts within each coupon

type (10% for loyalty, 20% for cross-category). We study coupons that are targeted

in both dimensions (discount and brand), and evaluate the effects of targeting on

revenues and proĄts. Osuna et al. (2016) also highlight the need to study coupon

effects for alternative distribution channels such as in-store kiosks, as we address

herein.

4.3 Setup

4.3.1 Data Set

We obtain data from a leading German brick-and-mortar grocery retailer. The

sole purpose of the retailerŠs loyalty program is to collect customer-level data and

distribute personalized coupons. A coupon is uniquely identiĄed by the promoted

brand and its discount value. To personalize coupons, the retailer and its target

marketing solution provider implemented an RTO engine for 147 stores in one of

GermanyŠs largest cities. Similar to CVSŠs ExtraCare Coupon Center, customers

scan their loyalty card at in-store kiosks and receive a printout that contains up

to seven brand coupons. By collating the available coupons, customer-speciĄc

discounts, and corresponding (predicted) redemption probabilities, the RTO engine

scores all brand-discount combinations for each user and selects coupons, with

the goal of triggering additional purchases and increasing customer loyalty. In the

context of this study, targeting therefore refers to selecting the brand and discount

for each customer, based on past transaction data. In other words, the RTO engine

determines which subset of the customer population should receive a given brand

coupon and at what discount. Coupons are valid on the same shopping trip and

are redeemed automatically if a customer purchases any of the promoted products

and scans his or her loyalty card during checkout.

Before using the data to study customer responses to personalized coupons, we

pruned the raw data in three steps. First, we removed observations for which the

coupon printout occurred after the shopping basket was recorded. Coupons are only

valid on the day of the printout so coupons printed just before customers leave the

store have a redemption rate of zero by design. Second, we discarded observations for

new loyalty card users, that is, customers without purchase histories. Without past

transactions coupons cannot be personalized, so these observations are meaningless

to our study. Third, we only keep the Ąrst observation for each customer/coupon

combination. Table 4.1 summarizes the most important characteristics of the Ąnal

data set. The data set spans over 72 weeks (11/2015 to 03/2017) and contains
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Table 4.1. Summary of data set statistics.

Variable Value

Time window (# of weeks) 11/2015 to 03/2017 (72)

# of stores 147

# of customers 217,299

# of distributed coupons (random) 11,697,018 (750,525)

Total coupon face value (redeemed coupon face value) e7,105,989 (e257,581)

# of distinct brands 1,116

# of distinct categories 115

Average # of promoted brands per week (SD) 232.1 (32.4)

Discount range [10%, 50%]

a total of twelve million coupons across a large number of brands and product

categories. The minimum discount was 10% for all brands; the maximum discount

varied between 30% and 50%, depending on the brandsŠ average circular discount in

the previous calendar year. These discount values are typical for coupons in grocery

retailing. Based on the regular prices for the promoted brands (90% are between

e.75 and e3.99), the coupons had a total face value of e7.1 million. Eleven million

coupons were targeted so only a small subset of the total customer population

received the speciĄc brand-discount combination.

The retailer promoted different brands at different points in time. On average,

the RTO engine personalized 232.3 brands each week, and brands were promoted

for 10.6 weeks. If a brand was featured in the retailerŠs weekly promotion circular or

on in-store displays, coupons were deactivated for the time of the circular/display

promotion. For our analysis, this means that we can measure customer reactions to

coupons without the direct confounding effects of traditional promotion instruments.

Spillover effects were avoided because coupons are only valid during the immediate

shopping trip and with our focus on targeted coupons within the loyalty program,

self-selection by customers is not an issue. Overall, the summary statistics underline

the breadth and depth of the data set and support the generalizability of our results.

4.3.2 Targeting Policy

To better understand how the RTO engine targets coupons, we Ąrst analyze

the retailerŠs coupon targeting policy. As a part of the coupon data, the retailer

provided a brand-level score that aggregates the engineŠs understanding of the

customersŠ (time-dependent) individual purchase and redemption likelihoods for

brand coupons. This variable is built in the solution providerŠs recommender system

from past coupon transactions, market basket data, and loyalty card data and is

fundamental to the targeting algorithm. We use binary logistic regression to model
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Table 4.2. Results for binary logit models to explain targeting policy.

DV:
coupon is targeted

DV:
discount for targeted

coupon is smaller than
avg. discount for random coupon

Brand score 1.476 *** 2.008 ***

Brand fixed effect yes yes

N 718,068 685,647

Log-likelihood LL (LL0) −82,958 (−100,257) −165,785 (−262,353)

Note: Sig. label: *** p < .01.

(1) whether a customer receives a targeted coupon or a random (i.e., non-targeted)

coupon and (2) whether the targeted discount is smaller than the average discount

for random coupons of the same brand. The customers who receive a random

coupon are a representative (random) subset of the customer population that does

not receive a targeted coupon for the given brand. These customers are a good

reference point for the analysis of the targeting mechanism. In addition to the

brand score we include brand Ąxed effects. For the estimation, we randomly sample

data from 50 brands and standardize the brand score variable within each brand.

Table 4.2 depicts the results for the targeting models. As expected, the effect of

the brand score variable is positive in both models, such that a larger brand score

(i.e., the proxy for brand preference) leads to a higher likelihood of receiving a

targeted coupon for this brand and a higher likelihood of receiving a lower discount.

This result is intuitive: The RTO engine targets customers with brands that Ąt

the customersŠ preferences. Additionally, the engine takes into account that these

customers should already have a higher willingness-to-pay and smaller discounts

should be sufficient. This general mechanism is prototypical for targeting and price

differentiation algorithms presented in marketing literature (e.g., Rossi et al., 1996).

Therefore, there is good reason to believe that the results of our analysis generalize

this application to other RTO engines that follow the same general mechanism for

promotion personalization.

4.3.3 Descriptive Analysis of Redemption Rates

To begin the analysis of targeted coupons, we provide a descriptive analysis of

redemption rates (Table 4.3). Across all random coupons, the average redemption

rate is 1.528% (SE = .014%). Compared to this, the average redemption rate is

2.728 percent points (+178.4%) higher for targeted coupons (4.257%, SE = .006%).

The difference is signiĄcant at p < .01. In this context, it is important to recall

that targeting is endogenous. For random coupons, the distribution of printing
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Table 4.3. Descriptive analysis of redemption rates.

Variable
All

Coupons
Targeted
Coupons

Random
Coupons

Avg. redemption rate (SE) 4.082% (.006%) 4.257% (.006%) 1.529% (.014%)

# of coupons 11,697,017 10,946,493 750,525

Avg. discount (SD) 30.4% (11.1%) 30.9% (11.0%) 23.7% (10.0%)

Avg. # coupons per brand (SD) 10,481 (13,819) 9,809 (13,352) 673 (1,414)

Avg. discount per brand (SD) 29.1% (8.1%) 30.1% (8.3%) 23.0% (5.4%)

frequency across brands is uniform and independent of customer preferences and

the discount distribution is approximately uniform (across the possible discount

levels). Targeted coupons are directly tailored to customer preferences, in that

brands preferred by customers are printed more often. For targeted coupons, the

discounts depend directly on customersŠ preferences. Typically, only a small fraction

of customers notes a strong preference for a given brand, so the distribution of

discounts is skewed toward higher values. Average discounts of targeted coupons are

thus 7.2 percent points higher than those of random coupons (+30.4%). In Section

4.4 we introduce a modeling approach that allows us to deepen this Ąrst descriptive

analysis. Section 4.5 analyzes redemption rates for both types of coupons in more

detail, also by directly accounting for differences in discounts through a modeling

approach. Section 4.6 focuses on the Ąnancial impact of targeting coupons by

evaluating implications for revenues and proĄts and a comparison to non-targeted

(mass market) promotions.

As a side note, the observed redemption rates are much higher than the industry

average for redemption rates of checkout coupons and coupons in freestanding

inserts at the same retailer before the introduction of the loyalty program and

the RTO engineŮredemption rates were approximately .5%, similar to the values

reported in NCH Marketing Services (2019). A likely reason for this is the coupon

distribution channel. In-store coupons, in this case distributed through in-store

kiosk systems, are known to have higher redemption rates than coupons distributed

before the shopping trip (Heilman et al., 2002).

4.4 Approach

4.4.1 Model

To measure the impact of the RTO engineŠs coupon personalization on coupon

redemptions, revenues, and proĄts, we make use of the fact that two different types

of coupons were distributed to customers. Recall that for targeted coupons brands
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and discounts are personalized according to the customersŠ purchase histories. For

random coupons, the retailer randomized brands and discounts at the coupon level.

The analyses in the following sections rely on results from two models, one for each

type of coupon. In both data sets, we estimate a model that predicts redemption

probabilities as a function of discounts and the brand score. We use binary logistic

regression with random effects. The probability prR/T that customer i redeems a

random (R) or a targeted (T ) coupon for brand b in store s at time t is

prR/T
(︂
y

R/T
ibst = 1

)︂
=

1

1 + exp¶−u
R/T
ibst ♢

, (4.1)

where the utility function (for simplicity, we omit the data set labels here)

uibst = α0 + αs + αt + αb + γbsibt + (β0 + βb)dibst (4.2)

depends on the model intercept α0, the average discount effect β0, store random

effects αs ∼ N(0, σs), year-week random effects αt ∼ N(0, σt), correlated brand

random effects and random discount coefficients [αb, βb]
′ ∼ MV N(0, Σb), the

discount dibst, and the effect of the customer-, brand-, and time-speciĄc brand score

γbsibt. We estimate a separate model for each type of coupon (see Appendix 4.8

for a discussion of Ąve nested model speciĄcations).

Given that we only have two continuous covariates, binary logistic regression with

random effects is a good model choice because it is the most parsimonious model

that fully leverages the strength of our data set. It also offers Şborrowing strengthŤ

across brands, which is essential for brands with few observations. Because we only

use one observation for each customer/brand combination, we cannot estimate a

model that accounts for unobserved heterogeneity. However, given that the brand

score for each customer and brand (and time) is available in the data and we know

from the analysis of the targeting mechanism, that this variable plays a key role

in the RTO engine, it is well-suited for modeling observed customer heterogeneity.

The brand score should be positively related to the coupon redemption probability.

The discount variation for random coupons is exogenous, so price endogeneity is

not an issue when we model redemptions. For targeted coupons, the discounts are

endogenous and related to the customerŠs brand preferences. Including the brand

score in the model for targeted coupons mitigates the endogeneity issue to some

extent. More importantly, we only use the model for targeted coupons to predict

redemption probabilities of observed coupons and discounts in-sample and we do

not claim to estimate a causal effect. Differences across brands are accounted for

by the brand-level random intercepts αb, so we standardize brand scores within a

brand to ensure that we only explain differences within brands. In the estimation,
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Table 4.4. Estimation results for redemption models.

Random Data Targeted Data

Variable Est. Sig. Est. Sig.

Intercept α0 −5.579 *** −4.116 ***

Discount β0 3.928 *** 1.430 ***

Brand-score γ .523 *** .492 ***

SD(Brand) αj .896 *** .865 ***

SD(Discount) βj 1.183 *** 1.612 ***

Cor(αj , βj) ρ −.784 *** −.782 ***

SD(Year-Week) αt .222 *** .301 ***

SD(Store) αs .133 *** .096 ***

N 750,876 750,876

LL −55,370 −123,264

Note: Sig. label: *** p<0.01.

we randomly subsample the full data for targeted coupons to the same size as

the random coupon data set to speed up the estimation and simplify the model

comparison.

Table 4.4 summarizes the estimated coefficients for the redemption models. All

model coefficients are signiĄcant at p < .01. For the model estimated on the random

coupon data, the average discount effect is positive, as expected for price-offs. The

average of the brand-speciĄc price elasticities is −2.96 (SD = .51), with 90% of

the values in [−3.74, −2.12]. This result is in line with the promotional price

elasticities for grocery products (accounting for price endogeneity) reported in the

meta-analysis by Bijmolt et al. (2005). As expected, the effect of the brand score

is positive, such that higher brand scores result in higher redemption probabilities

for the corresponding brands. The standard deviations (SD) of three random

effects are all relevant in magnitude. We observe the largest heterogeneity in

the brand dimension, followed by the dimensions store and week. It makes sense

that redemption probabilities vary over stores and weeks, but the variation over

brands should be larger, given that we analyze 1,116 brands from 115 categories.

Customers are known to be less price sensitive when it comes to attractive brands

(Bolton, 1989), so the negative correlation between the brand random effect and

the random price coefficient is intuitive.

The results for the targeted coupons are quite similar. The signs for the estimates

are the same compared to the model for random coupons. It is noteworthy that

the discount parameter is considerably lower in magnitude, which translates into
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average brand-speciĄc price elasticities of about −.94 (SD = .60). This is in line

with the results in Section 4.3.2: the RTO engine sets prices according to the

brand preferences and the price sensitivities of the customers, such that customers

with higher brand scores receive lower discounts. Hence, even after controlling for

brand preferences via the brand score variable, the observed reaction to discounts

is lower for targeted coupons, compared to random coupons. As mentioned above,

we use the model based on targeted coupons only for in-sample predictions, so this

downward ŞbiasŤ is irrelevant. The other estimates have a similar magnitude as

the estimates in the model that is based on random data.

4.4.2 Analysis Overview

Combining the predictions of the two models is the basis for studying the effect of

personalization by comparing the outcomes for different targeting mechanisms (e.g.,

targeted and random). The clean and exogenous variation in the random coupon

data is the foundation for evaluating outcomes for unobserved coupon policies.

Using a parametric model (instead of a nonparametric approach) enables us to

control for confounding factors and to run simulations of promotion policies which

were not observed in the data. We leverage this in deepening our understanding of

coupon personalization.

Figure 4.1 systematically summarizes the main steps of our approach. In part

1 (Section 4.5) we use the estimated models to compare the coupon redemption

probabilities for targeted coupons with the redemption probabilities of the random

baseline. In the coupon data set, two factors lead to higher redemption rates in

the case of targeted coupons: the targeting itself and the higher average discount

(see Table 4.3). The exogenous variation of discounts in the random coupon data

set enables us to control for the latter by stratifying the discount distribution for

random coupons, so it equals the discount distribution for targeted coupons. This

isolates the redemption rate uplift through targeting. We extend the redemption

probability analysis by investigating the systematic differences in redemption

probabilities across brands and categories. In part 2 (Section 4.6), we focus on

revenues and proĄts, thereby measuring the Ąnancial impact of targeting. Both

metrics directly penalize for larger discounts so we can analyze both dimensions of

targeting (brand and discount) simultaneously. In doing so, we compare the RTO

engine targeting (i.e., one-to-one marketing) to mass marketing policies for which

all customers receive the same coupons and discounts. We then explicate how

the selectiveness of brand targeting affects Ąnancial outcomes by systematically

decreasing the size of the sub-population that is targeted with brand coupons. As

in the Ąrst part of our analysis, we rely on the exogenous variation in the random

coupon set to evaluate outcomes under unobserved pricing and brand targeting

policies.



74 CHAPTER 4. COUPON PERFORMANCE

Figure 4.1. Analysis overview.

Note: Best viewed in color.

The two parts differ in their outcome variables (redemption probabilities in part

1, revenues and proĄts in part 2) but they share one important similarity: The

Ąrst step in each part focuses on the performance of the specific RTO engine that

produced the targeted coupons studied here. The second step then generalizes the

insights by studying how mediator variables explain the variation in redemption

rates and how the degree of personalization affects Ąnancial outcomes. This widens

the applicability of our Ąndings.

4.5 Part 1: Redemption Rate Analysis

4.5.1 Redemption Rate Uplift Through Brand Personalization

When comparing redemption rates between random coupons and targeted

coupons it is important to keep in mind that random coupons and targeted coupons

can have very different discount distributions. Discounts for random coupons

are sampled from all allowed discount values for each brand b, using uniformly

distributed weights. Each discount level db
l ∈ ¶db

1, . . . , db
nb

♢ is therefore observed

with a frequency of approximately 1/nb, where nb is the number of distinct discount

levels for b. The face values of targeted coupons are selected from the same set of

discounts, but the RTO engine picks discount levels with different frequencies. As

discussed in Section 4.3.3, the observed average discounts are 23.0% for random

coupons and 30.1% for targeted coupons. Higher discounts lead to higher redemp-

tion probabilities, so it is necessary to stratify the discount distributions to ensure

a fair comparison between the two coupon types.

To accomplish this, we use the models presented in Section 4.4 to predict

redemption probabilities for both types of coupons according to Equation 4.1. The

key idea of this approach is that random and targeted coupons are distributed

to different customer sub-populations. The part of the overall population that is
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Figure 4.2. Approach for redemption rate comparison with stratiĄed discount
distributions.

Note: Best viewed in color.

exposed to random coupons produces the random data set and vice versa. By

training two separate models we infer two sets of model parameters for the two

sub-populations. The price variation in the random data set is exogenous, so

the measured discount sensitivity captures the effect of discounts on redemption

probabilities. This makes it possible to predict redemption probabilities for the

random coupons population, assuming that prices are distributed as they are

in the population that receives targeted coupons. The difference in redemption

probabilities isolates the effects of brand targeting (identiĄed by the different

responses to coupons with the same discounts in the two sub-populations).

To simplify the notation, we group all variables except the utility contribution

of discounts dT
ibst and the customer-speciĄc brand score Γ

T/R
ibst (see Figure 4.2). We

denote the utility offset that does not depend on customer variables or discounts

α
T/R
0bst . For both models, we derive the predictions using the discounts selected by

the RTO engine, dT
ibst. The brand scores Γ

T/R
ibst and discount sensitivities β

T/R
0 +β

T/R
b

are either based on the random data (R) or on the targeted data (T). The size of

the random data set is smaller than the size of the targeted data set, so we sample

a value for each discount dT
ibst from ΓR

ibst, using uniform sampling weights. The

prediction then yields 10,946,493 predicted redemption probabilities pr
T/R
ibst for both

random and targeted coupons.

The scatter plot in Figure 4.3 depicts the predicted redemption probabilities

for both coupon types. The bubbles represent the brandsŠ average redemption

probabilities and the horizontal/vertical lines indicate the average redemption

probabilities across all observations. The average redemption probabilities for

random coupons and targeted coupons are 2.59% and 4.25%, respectively (all SE

< .0001). Targeting (in the brand dimension) leads to a redemption probability
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Figure 4.3. Redemption probability comparison.

Note: Best viewed in color.

increase of 64.0%. The model-based analysis allows us to explicitly control for

differences caused by the respective discount distributions, so the redemption

probability increase is smaller than the direct comparison of redemption rates on

the raw data (178.5%, Table 4.3). It is not very surprising that the RTO engine

makes coupon redemptions more likely because coupons are personalized based

on the customersŠ past purchases. Nonetheless, the results underline that coupon

personalization is feasible at scale, even for a large number of categories and brands.

Figure 4.3 also shows that targeted coupons have higher average redemption

probabilities than random coupons at the brand level, and we note only a few

exceptions. For most brands, redemption rates are a factor 1.5 higher than for

targeted coupons, and for a signiĄcant number of brands we even observe more than

three times larger redemption rates. The setup of the system studied here requires

that each customer receives eight coupons on a coupon printout. That almost all

brands have higher redemption probabilities for targeted coupons underlines that

the pool of available brands in the RTO engine (i.e., on average 232.1 brands per

week) is large enough to Ąnd eight brands for each customer that align with his
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or her preferences. The increase in redemption probabilities through targeting is

particularly strong for brands that appeal to a narrower target audience and are

therefore distributed to fewer customers (smaller N in Figure 4.3). Regressing the

brand-level ratio of average probabilities between targeted coupons and random

coupons on the number of distributed coupons (divided by 1,000) yields a slope of

−.018 (p < .01).

4.5.2 Drivers of Redemption Rate Uplift

The comparison of random and targeted coupons reveals that the redemption

probability increase resulting from brand personalization (i.e., the vertical distances

of bubbles to the 45◦ line in Figure 4.3) varies signiĄcantly across brands. To

explicate which category and brand characteristics affect this uplift (and to what

extent), we study the differences in redemption probabilities across brands and

categories using linear regression.

The dependent variable in the linear model, ybc, is the difference between the

redemption log odds for targeted and random coupons (i.e., the log odds ratio),

averaged by brand. The number of observations differs across brands, so we use

the inverse squared standard errors (SE) as weights in the regression analysis to

account for the varying precision of the log odds ratios (Schwarzer et al., 2015).

We calculate SEs using a nonparametric bootstrap with 1,000 iterations.

The explanatory variables used in prior studies of price elasticities and coupon

redemption rates (e.g., Bell et al., 1999; Osuna et al., 2016; Narasimhan et al.,

1996) are similar and highly correlated, so we use the 13 category- and brand-level

variables that are relevant in our context and that do not create empirical issues

in the model estimation (see Table 4.5). We derive the brand variables (Xbc)

and category variables (Zc) from the retailerŠs sales and loyalty card data and

measure the stockpile and impulse scores on the scales from Narasimhan et al.

(1996) in an Amazon Mechanical Turk survey. Further details regarding the variable

operationalization are available in Appendix 4.8.

For most categories, we observe multiple measurements. Rather than treating

measurements as independent, we follow (Bijmolt and Pieters, 2001) and use a

random effects model that can account for the nested structure of the data. The

full regression model is given by

ybc = α0 + βXbc + γZc +
5∑︂

t=1

δt + αc + ebc. (4.3)

The two error components αc and ebc are normally distributed with zero mean

and SDs of σc and ebc. Note that σc and ebc vary on different levels. The Ąrst
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Table 4.5. Meta-regression estimation results.

Variable Operationalization Est. SE Sig.

Intercept 1.238 .198 ***

B
ra

n
d

Loyalty 1) Avg. number of purchases of the brand by
users of brand

.066 .022 ***

Penetration
Fraction of customers who have bought
brand product

−.075 .024 ***

Brand score range RTO engine score range (p5% − p95%) .422 .058 ***

Price position
Avg. brand price divided by weighted avg.
across brands

.141 .045 ***

Deal depth 1) Avg. percentage promotion discount of
products in brand

−.621 .061 ***

Promotion frequency
Promotion sales of brand products divided
by total sales

.015 .014

C
at

eg
or

y

Purchase frequency
Fraction of all trips in which category is
purchased

−.069 .063

Private label share
Market share of private labels/generic
brands in category

.497 .149 ***

Competition
Herfindahl index (brand market shares) in
category

−.155 .051 ***

Price dispersion
Ratio of maximum and minimum regular
price in category

−.001 .047

Price
Avg. dollars spent in category per
shopping trip

.141 .059 **

Stockpile score Ability-to-stockpile scale score for category −.005 .049

Impulse score Impulse buying scale score for category −.182 .051 ***

SD(category random effect) .142 ***

SD(residuals) 5.869 ***

Quarter fixed effect yes

LL −852.999

N 969

R2 .328

Notes: 1) Normalized in category. Sig. labels: ** p < .05,*** p < .01.

error term, αc, accounts for (random) variation between categories, whereas ebc

serves as an error term pertaining to the level of brands within categories. On each

level of the model, we relate the log odds ratios ybc to our explanatory variables.

Five effect-coded year-quarter dummies δt (2015-4 to 2016-4, with 2017-1 as the

reference) that indicate the (main) time window in which coupons for a brand were

printed control for changing market conditions. We estimate the model coefficients

by likelihood maximization (Hox et al., 2010).
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Table 4.5 summarizes the estimation results. The R2 value of 32.8% suggests that

the model explains the variance in the log odds ratio well. The value is comparable

to those reported by Osuna et al. (2016), who Ąt their models without category

random effects. The SDs of the random components of the models show that

(unexplained) variation between categories is lower than that within categories.

Likelihood-ratio-tests for (nested) model versions that include no mediators or only

brand- or category-speciĄc variables reveal that both groups of variables are jointly

signiĄcant (p < .01), and the proposed model is the best one.

In the discussion of the drivers, we focus on the variables that have a statistically

signiĄcant effect on the redemption probability uplift. The effect of brand loyalty on

the log odds ratio is positive and highly signiĄcant. Brands with higher (customer)

loyalty typically have lower price elasticities in brand choice (Krishnamurthi and

Raj, 1991), and promotions have greater potential to evoke purchases (Bell et al.,

1999). For brands with high loyalty it is more important to reach appropriate

customers, so a positive effect of brand loyalty on the uplift through personalization

is plausible.

We observe a lower redemption probability uplift in the case of coupons for

brands with a higher customer penetration. A larger customer penetration increases

the pool of targetable customers, so redemption probability for both coupon types

should be larger, all else being equal. At the same time, a larger target audience

reduces the beneĄt of targeting, supporting the negative effect.

The opposite effect is true for the RTO engine brand score range. This variable can

be interpreted as a proxy variable for the heterogeneity in a brandŠs attractiveness.

More diverse customer preferences provide a better potential for personalization

and increase the risk of reaching the wrong user in the case of random coupons, so

the variableŠs impact on the redemption probability uplift should be positive. This

is clearly the case.

The impact of a brandŠs price position (in a given category) is positive, such

that the uplift in redemption probabilities through personalization is higher for

expensive brands. Brands that have established a higher price position than other

brands in the category should draw more customers when they promote, leading

to higher primary and secondary demand effects (Bell et al., 1999). However,

due to the surprise character of the in-store coupons, coupons for more expensive

brands might have lower redemption probabilities ceteris paribus, and non-brand

buyers might feel that the risk of buying the wrong brand is higher (Narasimhan

et al., 1996). Given that the RTO engine targets customers according to their prior

purchases, the negative impact of higher prices will be lower for targeted coupons,

resulting in the observed positive effect of targeting.
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The negative effect of the variable deal depth on the redemption probability uplift

is not surprising. A higher percentage discount improves the quality-per-dollar

equivalent of a brand and should induce primary and secondary demand effects

(Raju, 1992; Bell et al., 1999). High discounts make offers more attractive and

customers should be willing to redeem coupons even if the brand is not targeted

well. On the other hand, the quality of targeting becomes (even) more important

if the discount is low.

The market share of private labels within a category increases the measured

redemption probability uplift. Marketing literature provides mixed results regarding

the effect of the private label share on promotion effectiveness (Narasimhan et al.,

1996). Nonetheless, we expect that categories with a high private label share

should have higher redemption probabilities because coupons are more attractive

for value-conscious customers. However, to switch such customers away from

attractive private label products, good targeting is a prerequisite. In line with this,

Osuna et al. (2016) Ąnd a signiĄcant positive effect for reward coupons but not

cross-category coupons.

A similar argument holds for the degree of competition. In categories with

low competitive intensity (i.e., highly concentrated categories, reĆected by a high

HerĄndahl index), customers have well-established preferences, and it is harder

to stimulate brand switching (Raju, 1992). This is particularly true for targeted

coupons, because the potential pool of good brands is smaller, resulting in a

negative relationship between the redemption probability uplift and the degree of

competition.

The positive effect of price is in line with the brand-level variable price dispersion.

Higher prices increase the perceived risk of buying the wrong product (Narasimhan

et al., 1996). Yet, targeted coupons Ąt customer preferences so the RTO engine

can counter the negative effect risk associated with higher prices.

The nature of the coupon channel can explain the negative relationship between

impulse score and the redemption probability uplift. In-store coupons lead to

category expansion effects due to the surprise character of the coupons (Narasimhan

et al., 1996; Heilman et al., 2002). The surprise effect for targeted coupons should be

smaller. In other words, the gains in redemption probabilities due to personalization

are lower in impulse-buying categories, not because personalization is ineffective,

but because even random surprise coupons work reasonably well.

In summary, the structured analysis of the redemption probability differences

between random and targeted coupons reveals that redemption probabilities differ

signiĄcantly across brands and that a number of brand and category characteristics

impact the redemption probability uplift induced by targeting. Findings offer
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face validity and can be explained in the context of prior research on the effect of

promotions on consumer decisions.

4.6 Part 2: Revenue and Profit Analysis

4.6.1 Revenue and ProĄt Uplift Through Personalization

In addition to the analysis of redemption rates, it is important to evaluate

revenues and proĄts as outcomes. This sheds more light on the monetary beneĄts

that one-to-one marketing and RTO engines bring to retailers when replacing mass

marketing promotion strategies. To make the results comparable between targeted

and mass marketing promotions (e.g., circulars), we compare revenues and proĄts at

the customer level and we assume that both promotions use the same distribution

channel, that is kiosk systems.

For the targeted coupon, we use the redemption model from Section 4.4 and

predict the redemption probabilities in-sample. We then use the predicted prob-

abilities to compute the expected revenues and proĄts for each offer in our data

set. The (expected) revenue ribst for customer i and brand b at time t is calculated by

ribst = ˆ︂pr(dibst)pb[1 − dibst]. (4.4)

Here, pb is the regular price of brand b and ˆ︂pr(dibst) is the predicted redemption

probability as a function of the customer-speciĄc discount dibst. The (expected)

proĄt πibst is given by

πibst = ˆ︂pr(dibst)pb[1 − dibst − cb]. (4.5)

We set the cost factor cb to the maximum allowed discount for each brand. The

results for targeted coupons are benchmarked against the revenue and proĄt values

computed under three mass market reference policies:

Circular with fixed discount All customers receive the same promotions, discounts

are set to 25%, which (approximately) equals the average circular discount at

the retailer.

Circular with revenue-maximizing discount All customers receive the same pro-

motions and discounts are set to the revenue-maximizing value for each brand

(within the possible bounds of the system).

Circular with profit-maximizing discount All customers receive the same promo-

tions and discounts are set to the proĄt-maximizing value for each brand

(within the possible bounds of the system).
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Table 4.6. Comparison of RTO engine revenue with mass market promotions.

Policy Brand Discount
Revenue

SD
Uplift

in Euro cents through RTO Engine

RTO Engine Individual Individual 6.863 2.577 -

Circulars with
revenue maximizing
discount

Mass market Mass market 3.112 1.639 +120.5%

Circulars with fixed
discount

Mass market Mass market 2.432 1.376 +182.2%

Table 4.7. Comparison of RTO engine proĄt with mass market promotions.

Policy Brand Discount
Profit

SD
Uplift

in Euro cents through RTO Engine

RTO Engine Individual Individual .771 .643 -

Circulars with
profit maximizing
discount

Mass market Mass market .504 .321 +53.0%

Circulars with fixed
discount

Mass market Mass market .364 .241 +111.8%

Giving coupons to a random subset of all customers produces the same results

as giving coupons to all customers, so we can use the redemption rate model Ątted

on the random data to calculate revenues and proĄts for the benchmark policies.

To make sure that the measured revenue and proĄt values for each customer are

meaningful, we select customers that have at least Ąve observations for random

coupons, and between 5 and 50 observations for targeted coupons. The Ąnal

sample consists of 3,453 customers. After that, we obtain all measures at the

customer/coupon level by averaging values within each customer and policy.

Tables 4.6 and 4.7 depict the results for the revenues and proĄts comparison,

averaged across customers. Targeted RTO engine coupons achieve the highest

revenues (rT
ibst = 6.558 Euro cents) and proĄts (πT

ibst = .736 Euro cents). On

the other hand, the Ąxed discount policy (policy 1) leads to the worst results

(rP 1
ibst = 2.321 Euro cents and πP 1

ibst = .348 Euro cents). For policies 2 and 3, revenues

and proĄts are higher compared to the Ąxed discount policy, but still lower than

for the targeted policy. Interestingly, the Ąxed discount policy leads to the smallest

SD across customers whereas the targeted policy has the largest SD. This indicates

that targeting exploits the heterogeneity in customer preferences and that the RTO

engine takes into account that customers are not equally proĄtable.



4.6. PART 2: REVENUE AND PROFIT ANALYSIS 83

Figure 4.4. Revenue and proĄt per customer/coupon vs. circular.

Figure 4.4 depicts the revenue uplift through targeting compared to the circular

policy with revenue-maximizing discounts (rT
ibst−rP 2

ibst) and the proĄt uplift compared

to the circular policy with proĄt-maximizing discount (πT
ibst − πP 3

ibst) across the

customers in our data sets. For the revenue differences, most values are centered

around the value of about 3 to 6 cents. The distribution is slightly right-skewed

with a revenue uplift of 8 to 10 cents for a signiĄcant number of customers. We

Ąnd a decrease in revenues for only a small fraction of customers. The result for

proĄts is very similar although the distribution is more skewed and we Ąnd negative

differences for a larger fraction of customers. Nonetheless, the overall proĄt uplift

is positive. This result seems to indicate that the RTO engine studied here focuses

more on increasing revenues than proĄts.

Overall, we observe that targeting leads to signiĄcantly higher revenues and

proĄts, in addition to higher redemption probabilities (see Section 4.5). Revenues

are 120.5% larger than for mass market promotions with a revenue-maximizing

price, and proĄts can be increased by +53.0% in comparison to mass market

promotions that use a proĄt-maximizing price.

4.6.2 Revenue and ProĄt Uplift for Varying Degrees of Personaliza-
tion

To understand how the size of the targeted population (in other words, the degree

or quality of personalization) affects Ąnancial metrics, we extend the analysis of
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personalization to revenues and proĄts. Similar to the analysis of redemption

probability drivers in Section 4.5.2, this analysis contributes to the generalizability

of our Ąndings. Various factors might reduce the degree or quality of personalization

(e.g., the type of retailer, the speciĄc RTO engine implementation, the number of

available brands for targeting), so the results presented here explicate how sensitive

revenues and proĄts are to external factors.

To this end, we use the redemption model trained on random data and pre-

dict redemption probabilities, revenues, and proĄts for each customer and brand.

Discounts are based on policies 2 and 3, that is mass marketing promotions with

brand-speciĄc revenue or proĄt-maximizing discounts. The key difference in this

analysis is that we distribute coupons only to a (varying) subset of the customer

population. The customers are selected based on the brand score variable used in

the RTO engine. SpeciĄcally, we vary the degree of brand personalization in this

analysis by focusing on customers that are within the top 100%, 80%, 60%, 40%,

or 20% quantile for the brand score within each brand. We expect revenues and

proĄts to be higher for customers with relatively high values for the brand score

because this should lead to higher redemption probabilities. Furthermore, the top

100% group refers to no personalization and is therefore a logical benchmark in the

analysis. As a second benchmark, we compare the results to the values resulting

from targeted coupons as derived by the RTO engine.

The analysis provides consistent results across all brands. Revenues and proĄts

increase with the degree of personalization and the average relative uplifts of 13%

(top 80% cohort) to 95% (top 20% cohort). Assuming that the pool of potential

customers and available brands for targeting is large enough, we see that brand

personalization results in signiĄcant uplifts.

The three brands in Figure 4.5 are representative for the larger group of brands

in our data set, such that the revenue and proĄt uplifts are very similar. The

Ągure highlights that a higher degree of personalization (i.e., segments containing a

smaller number of customers with higher values for the brand score) leads to higher

values for revenues (upper panel) and proĄts (lower panel). However, potential

uplifts for revenues and proĄts can differ across brands and are related to the

heterogeneity of the customersŠ brand preferences. Intuitively, more heterogeneity

allows for higher uplifts.

The Ągure also contains the average expected values of revenues and proĄts

for each brand based on the targeted cohort as horizontal lines. In some cases,

revenues and/or proĄts in the targeted group are above the value for the top 20%

cohort (i.e., the segment with the highest degree of personalization). This indicates

that the RTO engine leads to better results. On the other hand, in some cases,

particularly for proĄts, the results for the targeted coupons are somewhere between
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Figure 4.5. Revenue and proĄt for varying degrees of personalization.

Note: Best viewed in color.

the top 20% segment and the Şno personalizationŤ case (i.e., 100%). This suggests

that even though the RTO engine individualizes coupon offers, the personalization

could still be improved and the discounts are most likely not solely set to maximize

revenues or proĄts.

Lower revenues and proĄts for the RTO engine can be explained by external

constraints not in the control of the RTO engine (e.g., product availability) or an

overdistribution of brand coupons. Targeting too many customers with a given

brand leads to lower revenues and proĄts. Nonetheless, it is important to note that

the performance of the RTO engine is comparable to mass marketing policies even

in the worst case.

4.7 Conclusion

Although coupons are essential to the retailersŠ sales promotion mix, research

on promotion personalization through RTO engines in grocery retailing has been

limited. We base our study on data collected at a leading German grocery re-

tailer. The data comprise loyalty card transactions, market basket data, and 12

million (brand) coupons for 1,116 brands in 115 categories. For almost 1 million
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coupons, the brand and the discount were randomized, so the exogenous variation

in both dimensions of targeting (i.e., brand and discount) facilitates an unbiased

measurement of the effect of targeting on redemption rates, revenues, and proĄts.

The results reveal that the targeted brand coupons have (on average) 64.0%

higher redemption rates than non-targeted coupons. We observe signiĄcant variation

across categories and brands, much of which can be explained by brand and category

characteristics, such as brand loyalty, price position, and purchase frequency in

a second-stage regression model. At the same time, the RTO engine increases

the per customer/coupon revenue by up to 182.2% and proĄt by up to 111.8%

compared to mass market price promotions. We further show that the coupon

performance is directly linked to the quality of the targeting algorithm (reaching

the right customer), such that a smaller degree of distribution leads to signiĄcantly

higher revenues and proĄts.

This research offers several pertinent implications for sales promotion manage-

ment. Most importantly, the effectiveness of targeted coupons is signiĄcantly higher

than that of non-targeted coupons (e.g., FSI or mass market checkout coupons).

The increase in redemption rates due to coupon personalization underlines the

value of RTO engines (in addition to efficiency gains that result from using kiosk

systems). The analysis also shows that RTO engines offer tangible economic ben-

eĄts. Targeted coupons increase the expected revenue per coupon and customer

by 3.75 Euro cents and the expected proĄt per coupon and customer by .27 Euro

cents. Assuming that customers use the kiosk 40 times per year (and each print

contains eight coupons), this translates into a revenue increase of e12 million and

an annual proĄt increase of approximately e1 million per 1 million loyalty card

customers.

A better understanding of the mechanics of RTO engines empowers retailers to

use these complex target marketing tools appropriately. For promotion management,

for example, our analysis of redemption rates reveals substantial differences across

brands. Even brands with small redemption rates for non-targeted coupons can

be highly relevant, because coupon personalization can lead to high redemption

rates for a subset of the total customer population. When it comes to coupons,

retailers typically gravitate toward brands with the highest average impact (e.g., in

terms of redemption rates). Our results suggest that retailers might beneĄt from a

more customer-centric approach (Shah et al., 2006). Individual-level promotion

management is not feasible unless it is automated (Kannan et al., 2017), so this

step requires retailers to give up some control by relying on RTO engines.

The structured analysis of redemption rate heterogeneity is important for retailers

deciding which brands to promote. In all our analyses, brand heterogeneity explains

more variation in coupon effectiveness than does category heterogeneity. This
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Ąnding highlights the gains that are possible from managing RTO engines using a

brand-based view. It is unrealistic to expect that all products can be promoted

in RTO engines, but retailers should exploit the full potential of RTO engines by

ensuring that a broad range of brands is available to cater to the diverse preferences

of individual users. The value of targeting is particularly evident for highly

specialized, unique brands. Moreover, all else being equal, coupons for brands with

higher (customer) loyalty achieve higher redemption rates. Because the positive

effect of a brandŠs penetration is stronger for non-targeted coupons, brands with

above-average penetration should be included if the potential for personalization

is low (e.g., when cold-starting the system). Brands with a broader range in

preferences also facilitate personalization, as is intuitive. But if personalization is

not feasible, managers should rely on popular brands with less diverse preferences.

The RTO engines should primarily include brands promoted less frequently. Yet

categories with higher purchase frequencies invoke higher redemption rates, due to

the lower perceived risk associated with redeeming a (customized) surprise coupon

in those cases. Categories characterized by more competition and strong private

labels are also favorable for targeting. Finally, the uplift-effect is lower in impulse

categories, presumably because redemption rates are higher in these categories

even without targeting. A lack of personalization could be offset by promoting

such categories.

It is also important to acknowledge the strategic implications of the relationship

between the degree of personalization of the promotion channel (for a particular

brand) and the efficiency of RTO engines. Instead of distributing a smaller set

of brands to many customers, brand coupons should be strongly differentiated,

such that a larger set of brands is distributed to more speciĄc target audiences.

The increase in revenues and proĄts comes along with an increased complexity of

executing and analyzing promotions and promotion automation requires retailers

to use and trust RTO engines. A smaller customer reach for certain brands also

might inĆuence the retailerŠs negotiations with manufacturers. But regardless of the

degree of distribution, the use of RTO engines for coupon personalization produces

redemption rates, revenues and proĄts that are equal to or higher than those of

non-targeted coupons.

Our results also emphasize the value of collecting user-speciĄc purchase history

data through loyalty programs. Beyond using customized coupons for marketing

activities, retailers can function as custom data intermediaries, by leveraging their

customer data and RTO engines to offer targeted coupon capabilities to manu-

facturers that sell through their stores (Pancras and Sudhir, 2007). Personalized

coupons are not only a way to increase revenues and proĄts but also have the

potential to be a new revenue stream for retailers in the form of programmatic

target marketing platforms (Pathak, 2017; Chen and Friesz-Martin, 2018).
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Finally, our research points to the value of kiosk systems for in-store couponing.

The measured response to price discounts through kiosk coupons (average price

elasticity = −2.9) is similar to responses to classical price promotions, so the results

presented here validate this promotion channel and emphasize its value for effective

price discrimination.

The breadth of the brand and category dimensions of the data support the exter-

nal validity of our results. At the same time, we note some promising opportunities

for further research. It would be interesting to substantiate the generalizability

of our Ąndings further and analyze similar RTO engines across different retail

settings (e.g., supermarkets vs. discount stores) or different engines at the same

retailer (e.g., using different algorithms). A comparison of kiosk coupons with

mobile coupons might reveal potential differences in the effects (e.g., redemption

rates, sales, search) that arise from the distinct distribution mechanisms. A natural

extension of the study of Ąnancial implications of RTO engines is the analysis

of long-term and cross-category effects of RTO engines. A decomposition of the

effects of (targeted) coupon redemption versus exposure (Venkatesan and Farris,

2012) represents another promising avenue for research. To inform retail strategy,

it would be interesting to investigate the implications of RTO engines for loyalty

programs, analyze the interaction of customized coupons with classical promotion

instruments (e.g., displays and features), or address the effects of RTO engines on

the retailerŠs image.
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4.8 Appendix

4.8.1 Model SpeciĄcation

Table 4.8 contains the estimation results for Ąve nested model speciĄcations

for the random data. M5 is the full model as speciĄed by Equations 4.1 and 4.2;

M1 to M4 are simpler models in which we have systematically omitted speciĄc

terms. All model coefficients are signiĄcant with p < .01. The implied average

price elasticity for M5 is −2.96. The elasticities for the other model speciĄcations

are very similar, with the exception of model M1. Only using a global intercept

does not model redemption rate heterogeneity across brands adequately and price

effects are biased toward 0. The random effects (i.e., brand, year week, and store)

are signiĄcant across all model speciĄcations and improve the log-likelihood and

the Akaike information criterion (AIC).

The biggest improvement is achieved by controlling for brand heterogeneity

which is in line with our argument that brands are the most relevant source of

heterogeneity in the results. Model coefficients are not signiĄcantly different across

model speciĄcations M2 to M4, which underlines the robustness of the estimated

models. The most Ćexible model, model M5, has the best log-likelihood value, so

we use this speciĄcation as the basis for the predictions and policy simulations. On

a side note, for random coupons, the R2 of M5 for log odds on the brand-level is

.870, and the correlation is .967. Therefore, we believe that M5 is also well suited

for our analyses in Sections 4.5 and 4.6.

In Table 4.9 we show the estimation results for the same Ąve nested model

speciĄcations estimated on the targeted data. The results are quite similar to

the results discussed above. In particular, not accounting for heterogeneity leads

to a downward bias in the discount effects. Also for the targeted data, models

with random effects Ąt the data signiĄcantly better, and the full model (M5)

outperforms all other models. R2 and correlations values between Ątted redemption

probabilities and redemption rates are also excellent on the brand-level (.932 and

.967, respectively). Hence, we use model M5 for the (in-sample) predictions in our

analyses.
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Table 4.8. Model results based on random data.

Random Model

Variables GLM GLMM1 GLMM2 GLMM3 GLMM4

Intercept α0 −5.086 −5.465 −5.576 −5.467 −5.579

Discount β0 3.070 3.903 3.925 3.906 3.928

Brand score γ .503 .509 .525 .507 .523

SD(Brand) αj .902 .897 .902 .896

SD(Discount) βj 1.175 1.181 1.176 1.183

Cor (αj , βj) ρ −.786 −.784 −.786 −.784

SD(Year-Week) αt .222 .222

SD(Store) αs .132 .133

LL −56,960 −55,517 −55,410 −55,476 −55,370

AIC 113,927 111,046 110,834 110,967 110,757

N 750,876

Note: All coefficients are significant with p < 0.01.

Table 4.9. Model results based on targeted data.

Targeted Model

Variables GLM GLMM1 GLMM2 GLMM3 GLMM4

Intercept α0 −3.354 −3.962 −4.111 −3.965 −4.116

Discount β0 .478 1.289 1.423 1.297 1.430

Brand score γ .448 .485 .492 .484 .492

SD(Brand) αj .921 .869 .918 .865

SD(Discount) βj 1.740 1.618 1.735 1.612

Cor (αj , βj) ρ −.718 −.785 −.715 −.782

SD(Year-Week) αt .301 .301

SD(Store) αs .095 .096

LL −128,402 −123,718 −123,334 −123,648 −123,265

AIC 256,810 247,449 246,683 247,311 246,546

N 750,876

Note: All coefficients are significant with p < 0.01.
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4.8.2 Variables for Redemption Rate Analysis

Table 4.10 lists the variables for our second stage analysis on the brand-level.

Many of the variables from prior studies (e.g., Bell et al., 1999) are similar and

highly correlated, so we use the 13 variables that are relevant in our context but

that do not create empirical issues for the model estimation (see also the discussion

regarding the correlations between the variables below).

Table 4.10. References and descriptive statistics for explanatory variables.

Variable Reference Mean SD

Loyalty 1) Bell et al. (1999) 2.423 3.233

Penetration - .115 .140

RTO engine brand score range - .220 .075

Price position Bell et al. (1999) 1.268 .606

Deal depth 1) Bell et al. (1999) .993 .216

Promotion frequency Osuna et al. (2016) .099 .096

Purchase frequency Bell et al. (1999) .141 .126

Private label share Narasimhan et al. (1996) .387 .175

Competition Osuna et al. (2016) .218 .110

Price dispersion Osuna et al. (2016) 7.755 9.703

Price Narasimhan et al. (1996) 2.080 1.049

Stockpile score Bell et al. (1999) −.143 .802

Impulse score Narasimhan et al. (1996) .295 1.060

Note: 1) Normalized in category.

For loyalty, price position, purchase frequency, private label share, competition,

price dispersion, and price, we rely on the household panel data available from

a German panel data provider. By using household panel data, we can measure

these variables with great precision and enhance the generalizability of our results.

We limit these data to panelists who were observed at least once every two weeks.

For the variables penetration, RTO engine brand score range, deal depth, and

promotion frequency, we turn to the retailerŠs sales and loyalty card data. Both

stockpile score and impulse scores are measured on scales from Narasimhan et al.

(1996). We tested several operationalizations including discretized versions, and the

results remained consistent. Dummy coding based on median splits of the raw scores

yielded the best results. We log-transform right-skewed variables (competition,

loyalty, penetration, RTO engine brand score range, price position, promotion

frequency, purchase frequency, price dispersion, and price) to reduce the effect of

extreme values.
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Table 4.11. Correlation between brand and category characteristics.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Loyalty (1)

Penetration (2) .26

Brand score range (3) .17 .00

Price position (4) −.27 −.16 −.09

Deal depth (5) −.13 −.20 −.16 .02

Promotion frequency (6) .06 .08 −.20 .07 −.05

Purchase frequency (7) .34 .47 .24 −.09 −.08 −.26

Private label share (8) −.24 −.06 −.04 .13 .08 −.20 −.07

Competition (9) .07 .04 .00 .18 −.03 −.06 .12 .38

Price dispersion (10) .03 −.47 .18 .05 .07 .01 −.34 −.06 −.04

Price (11) −.07 −.32 −.10 −.13 −.02 .18 −.31 −.19 −.24 .14

Stockpiling score (12) −.20 −.18 −.23 −.05 .04 .17 −.38 .28 −.04 .00 .23

Impulse score (13) −.11 .24 −.09 −.09 −.01 .15 .13 −.11 −.25 −.47 .02 .15

Table 4.11 shows the lower-triangle of the correlation matrix of the transformed

variables (i.e., how the data is used in the regression analysis). All correlations

are in [−.5, .5], and most correlations are < .1 (in absolute terms). Therefore

we conclude that multicollinearity is not an issue in our data set. Adding more

variables from prior studies to the model is not reasonable because these would

lead to higher correlations (> .7 in absolute terms). Because several variables are

quite similar and measure closely related constructs (e.g., purchase frequency and

interpurchase time), our selection is complete in that we cover critical dimensions

for explaining redemption rate heterogeneity over campaigns.

Lastly, the data for the impulse score and the stockpiling score for the product

categories used in Section 4.5.2 were collected in July 2017 on MTurk. We followed

recent guidelines and recommendations for designing MTurk surveys (Goodman

and Paolacci, 2017). Each of the 614 respondents rated eight (randomly chosen)

categories. By keeping the effort low, we minimized wearout effects during the

survey. We only used a respondentŠs rating if he or she purchased the category at

least once in the last six months. Therefore, the number of observations differs

across categories (min = 7, median = 41, max = 58).

Table 4.12 summarizes the descriptive statistics for the four items from Narasimhan

et al. (1996). Items 1 and 3 should be related to stockpiling, while items 2 and

4 are hypothesized to be related to impulse. Based on a principal components

analysis, this pattern is also apparent from the structure of the resulting loadings

using varimax rotation (Table 4.12). The two-component solution (component 1 =
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Table 4.12. Items for impulse and ability-to-stockpile scales.

Descriptive Statistics Loadings

Mean SD Comp 1 Comp 2

It is easy to store extra quantities of this
product in my home.

5.149 1.854 −.106 .953

I often buy this product on a whim
when I pass by it in the store.

3.621 2.026 .967 −.140

I like to stock up on this product when I
can.

4.408 2.060 −.340 .886

I typically like to buy this product when
the urge strikes me.

3.986 2.056 .940 −.269

Notes: Statistics measured on a 7-point agree/disagree-scale. Loadings derived through PCA.

Table 4.13. Ten highest and lowest ranked categories for the impulse and stock-
piling scores.

Impulse Stockpiling

High Low High Low

Candy Dog Food Pasta Fish

Salty Snacks Cat Food
Coffee (Single

Pack)
Fresh Bakery Products

Chocolate Dishwashing Coffee Cream

Frozen Pizza Detergent, Oil/Vinegar Canned Fish Milk Drinks

Cookies
Bags/Wraps/Disposable

Containers
Soap Convenience Salads

Cocoa Dish Care Salty Snacks Milk

Tea Shaving Needs Herbs Cake

Ice cream Eggs Body Care Frozen Desserts

Desserts Female Care Coffee Filters Eggs

Cereal bars Fabric Softener Female Care Cream Cheese

impulse, component 2 = stockpiling) explains 93.3% of the variance of the items.

We standardize both variables to simplify their interpretation. The face validity

of the results is supported by taking a closer look at the ten highest and lowest

ranked categories for each variable (Table 4.13). High impulse-buying categories

include candy and ice cream, whereas low impulse-buying categories include pet

food and fabric softener. Categories with a high ability-to-stockpile are pasta and

coffee. Fresh products such as Ąsh and convenience salads are among the categories
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with a low value for the stockpiling score. These results are intuitive and very

similar to the Ąndings of Narasimhan et al. (1996).

To ensure that the MTurk results apply to data collected in Germany, we let ten

German retailing experts rate 20 categories on the four items of Narasimhan et al.

(1996). We calculated simple sum scores for each construct and correlated these

scores with the results from the MTurk sample for the corresponding categories.

We obtained positive and highly signiĄcant correlations for both variables: .860 for

the impulse score (t = 7.15, df = 18, p < .01) and .788 for the stockpiling score

(t = 5.44, df = 18, p < .01). These results establish the usefulness of the MTurk

sample and the validity of the measured scales.

As a Ąnal way to validate the results, we used the same MTurk survey to collect

data for the Şshould-minus-wantŤ score of Milkman et al. (2010). Being able to

replicate existing research Ąndings adds to the validity of surveys (Laurent, 2013).

We found a highly signiĄcant positive correlation of .827 (t = 10.19, df = 48, p <

.01) with their results across the 50 categories that we were able to match.
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Abstract

Many customers are members in loyalty programs (LP) and the number of LP

memberships is increasing steadily. At the same time, LP usage is at an all-time

low. LPs send too many communications, it takes too long to earn points for

rewards, and LPs do not provide relevant rewards. Retailers respond to these

challenges by designing new ways to interact with and reward customers. One

example is the LP of a leading German grocery retailer studied here. At an in-store

kiosk system close to the entrance of each store, customers can check their loyalty

point balance, redeem loyalty points for free grocery products of their choice and

receive personalized coupons. This setup is very suitable for studying the impact

of rewards on LP usage. A rich longitudinal data set that contains data from more

than 7,000 customers over a period of 60 weeks makes it possible to (1) analyze

how personalized coupons affect LP usage, (2) compare the effect of personalized

coupons to that of classic LP rewards, (3) study differences in effectiveness across

customer segments, and (4) derive pertinent implications for reward design and

ways to increase LP usage. We conduct an additional Mechanical Turk experiment

to support our Ąndings and conclusions. Prior research has studied the revenue and

proĄt implications of LPs extensively, yet little is known about how the LP design

and LP rewards inĆuence LP usage. Our study is a Ąrst step in this direction. At

the same time, we provide insights into the interaction between two of the most

fundamental aspects of retail management: LP design and price promotions.

Keywords

loyalty programs, rewards, one-to-one marketing, personalized coupons, duration

analysis
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5.1 Introduction

As of 2016, 3.8 billion individual loyalty program (LP) memberships exist in

the US and this number has nearly tripled within the last ten years (Fruend,

2017). 74% of all customers who belong to an LP use at least one program from

a grocery store (Collins, 2017), so (grocery) retailing remains one of the most

relevant industries for LP research. For customers, LPs are an important way

to save money, both through discounts and coupons (Collins, 2017). Retailers

continue to trust in the strategic importance of LPs. Although the direct effects

of LPs on the customersŠ purchase behavior and the retailerŠs revenue remain

debated (Zhang and Breugelmans, 2012), customer-centric Ąrms understand that

personalized marketing leads to substantially higher proĄts (Rust and Verhoef,

2005; Fader, 2012). Retailers collect vast amounts of customer-level data that they

use to analyze customer purchasing habits, so LPs help Ąrms to improve their

position in target segments (Arora et al., 2008; Blattberg et al., 2008; Bradlow et al.,

2017; Palmatier and Sridhar, 2017). Target and SafewayŠs, for example, personalize

circulars and coupons according to customersŠ individual shopping histories (Bleier

et al., 2018).

Nonetheless, LPs face signiĄcant challenges, especially in the offline world. In

fact, more than half of all LP memberships in the United States are inactive (Fruend,

2017). The 2017 Colloquy loyalty census reveals three main reasons why a growing

number of customers stop using LPs: (1) LPs send too many communications, (2)

it takes too long to earn points for rewards, and (3) the LPs do not provide relevant

rewards and offers (Fruend, 2017). It comes as no surprise that retailers are looking

for new LP designs that mitigate these problems. We study one such example, an LP

that a leading German grocery retailer introduced in 2015. An in-store kiosk system

at the entrance of each store allows the retailer to communicate with customers.

Customers can check their loyalty point balance (points are collected proportionally

to their spending) and redeem loyalty points for free grocery products of their choice.

In addition to these LP rewards, the retailer uses a real-time offer (RTO) engine to

personalize coupons that are distributed through the kiosks. These components of

the LP directly address the challenges mentioned above: Instead of overwhelming

the customer with information by ŞpushingŤ content to the customer, the customer

can control the information Ćow by deciding when to ŞpullŤ information (Marketing

Science Institute, 2016). Loyalty points are redeemed for grocery products so the

reward turn-around is quick. Additionally, offers are highly relevant because the

RTO engine personalizes coupons and customers can choose the LP rewards.

A rich, longitudinal data set that comprises purchase histories and LP trans-

actions is the basis for modeling LP usageŮdeĄned as the time between two

consecutive kiosk usage events (inter-usage time, or IUT)Ůas a function of (past)



5.1. INTRODUCTION 97

personalized promotions and LP rewards in a continuous-time latent class propor-

tional hazard model (PHM). We (1) evaluate how personalized promotions affect

LP usage, (2) compare the effect of personalized promotions to that of classic LP

rewards, (3) study differences in effectiveness across customer segments, and (4)

derive pertinent implications for reward design.

With these goals, our work is relevant to both researchers and practitioners. Prior

research has studied the revenue and proĄt implications of LPs extensively, yet little

is known about how the LP design and LP rewards inĆuence LP usage. ŞBecause

underuse of LPs by consumers has a detrimental effect on Ąrm performance,

practitioners [...] have called for academic insights on measuring membership

participationŤ (Breugelmans et al., 2015, p. 132). The rich cross-sectional and

longitudinal data set collected in the LP mentioned above is well-suited for this

kind of analysis. While it might seem that the LP studied here has uncommon if

not unique features compared to LPs previously studied in the literature, in-store

kiosks are increasingly popular among practitioners. In fact, a growing number of

retailers (e.g., CVS, Ahold) use kiosk systems and two of the four largest retailers

in Germany have introduced kiosk systems in the last two years. Yet, research

on such systems is scarce (Grewal et al., 2011; Osuna et al., 2016; Inman and

Nikolova, 2017) and knowledge about usage behavior remains locked within retailers

and solution providers. New retail technologies provide exciting opportunities for

LP research (Breugelmans et al., 2015). The results from this study support the

general positive perception of kiosk systems and can guide retailers in the design,

development, and roll-out of LPs. With ŞpullŤ marketing gaining more importance

(Marketing Science Institute, 2016), it is essential to understand how customers

respond to kiosk systems and usage becomes a relevant proximal behavioral outcome

that retailers need to actively manage. At the same time, our research directly

combines two topics that are fundamental to retail management: LP design and

price promotions. We study how LPs can be integrated with price promotions and

what the effect of such combinations is (see LP research agenda in Bijmolt and

Verhoef, 2017).

For practitioners, our research provides pertinent insights in that we show to

increase LP usage. In doing so, we point to a new use case for price promotions.

Promotions typically function as an instrument to increase store traffic, sales,

and proĄts (Venkatesan and Farris, 2012). We Ąnd that personalized coupons

boost LP usage, even more so than classic LP rewards. This insight is relevant

because personalized coupons are cheaper than free products in most settings.

Leveraging LPs as a platform for personalized, programmatic promotions also

opens up additional revenue streams for retailers (Pathak, 2017; Chen and Friesz-

Martin, 2018).
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The remainder of this paper is structured as follows: We Ąrst review related

literature on LPs and highlight our research contribution. Next, we introduce the

data used in this study. After discussing our empirical analysis and main results, we

conclude by detailing the key Ąndings, managerial implications, and opportunities

for further research.

5.2 Related Work and Contribution

In the discussion of related work and our relative contribution, we focus on three

main streams of literature: customer responses to LPs, LP rewards, and the effects

of personalized coupons.

5.2.1 Customer Responses to LPs

LPs aim to strengthen the long-term relationship between customers and Ąrms

by providing program rewards or access to exclusive services in return for repeat

purchases (Berry, 1995; Liu, 2007; Bijmolt et al., 2011). In frequency reward

programs three mechanisms increase customer value (Blattberg et al., 2008; Taylor

and Neslin, 2005): (1) The feeling of being close to obtaining a reward (points-

pressure mechanism) increases the likelihood of additional purchases. (2) The

act of rewarding (rewarded-behavior mechanism) reinforces customer attachment

to the Ąrm. (3) The exploitation of personalized data obtained by means of the

LP for marketing (personalized marketing mechanism) triggers desired customer

responses.

Bijmolt et al. (2011) further differentiate between two types of customer re-

sponses to LPs, namely attitudinal and behavioral loyalty. The authors argue

that commitment and satisfaction are fundamental to behavioral loyalty and point

out that a Ąrm can increase attitudinal loyalty by enhancing LP and reward at-

tractiveness (Demoulin and Zidda, 2009; Keh and Lee, 2006). Despite divergent

Ąndings, the majority of studies demonstrate a positive effect of LPs on behavioral

responses such as purchase frequency, sales, share of wallet, and customer retention

(Liu and Yang, 2009; Leenheer et al., 2007; Minnema et al., 2017; Verhoef, 2003;

Meyer-Waarden, 2007).

Most studies focus on the effects of LPs on the ĄrmŠs Ąnancial performance,

that is sales and proĄts. While it remains the ultimate goal of LPs to impact

Ąnancial metrics, retailers face the problem that many customers use LPs irregularly

and Ąnally churn. As pointed out in the introduction, more than half of all LP

memberships in the United States are inactive (Fruend, 2017). Given the importance

of LP usage for Ąrm performance and many industry reports on decreasing LP

usage, research is needed to address usage and participation (Breugelmans et al.,

2015). In this study, the LP setup and the available data set make the analysis



5.2. RELATED WORK AND CONTRIBUTION 99

of LP usage possible: To receive LP rewards, customers have to engage with the

LP by interacting with the kiosk. Customers need to decide whether to inform

themselves about rewards, so the time delta between two prints directly measure

LP usage. This differentiates our study setup from other settings in which system

usage is passive and in fact unobserved, for example, when customers receive emails

or snail mail. In such systems researchers directly depend on observing a click or

redemption, so usage depends on the attractiveness of the offer. The advantage of

the data set used in this study is that LP usage, measured as the time between

two consecutive kiosk usage events, is independent of the current interaction with

the customer because only prior interactions with the system inĆuence usage. The

longitudinal nature of our data set facilitates a clean and unbiased measurement

of LP usage and the moderating impact of rewards on LP usage, eliminating

additional confounding effects. Insights, therefore, can inform the design of LPs

and LP rewards.

5.2.2 LP Rewards

Research on LP design has shown that the interplay of multiple design components

such as the overall program setup and the reward structure directly affect LP

effectiveness. A growing body of literature has thus taken a reward-centered focus.

Table 5.1 provides an overview of relevant studies that analyze LP rewards.

Prior studies have focused on different dependent variables, including behavioral

responses analyzed in observational studies such as purchase quantities or frequen-

cies (Lewis, 2004; Taylor and Neslin, 2005; Zhang and Breugelmans, 2012), or

questionnaire measured loyalty constructs and explicit reward preferences (Kivetz

and Simonson, 2002; Keh and Lee, 2006; Meyer-Waarden, 2015). While research

has demonstrated the positive impact of novel loyalty schemes on purchase size

and frequency (Zhang and Breugelmans, 2012; Minnema et al., 2017; Bijmolt and

Verhoef, 2017), empirical studies have examined only a limited number of effects of

reward mechanisms and design components of LPs (Bijmolt and Verhoef, 2017).

Studies suggest that in low engagement industries LP members prefer immediate

rewards (Yi and Jeon, 2003; Meyer-Waarden, 2015) and that in line with this,

necessity rewards are preferred when the effort to achieve rewards is lower (Kivetz

and Simonson, 2002). While immediate direct rewards (rewards that are linked to

the product/service, e.g., preferential price discounts for LP members) in grocery

retail can increase the satisfaction of LP members (Söderlund and Colliander, 2015),

only a handful of studies deal with such rewards, and no study evaluates direct

rewards empirically. This is surprising as the effectiveness of direct rewards in low-

involvement industries (e.g., groceries) is well established and customers typically

prefer direct rewards (Yi and Jeon, 2003; Keh and Lee, 2006; Meyer-Waarden,

2015). And while some studies have highlighted the importance of accounting for
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Table 5.1. Prior studies on LP rewards.

Study Reward

Author (Year) Industry Format
Dependent
Variable

Timing Type
Person-
alized

Kivetz and
Simonson (2002)

car rental,
airline,
hospitality

experiment
reward
preferences

Del. Ind. No

Yi and Jeon
(2003)

beauty,
restaurants

experiment
perceived
value

Imm./
Del.

Dir./
Ind.

No

Lewis (2004)
(online)
grocery

empirical
purchases,
lifetime

Del. Ind. No

Taylor and
Neslin (2005)

retail field study sales Del. Dir. No

Keh and Lee
(2006)

bank,
restaurant

experiment loyalty
Imm./
Del.

Dir./
Ind.

No

Kivetz et al.
(2006)

convenience field study
purchase
observations

Del. Dir. No

Zhang and
Breugelmans
(2012)

(online)
grocery

empirical
incidence,
spending, LP
membership

Del. Ind. No

Dorotic et al.
(2014)

retail empirical
balance of
points

Del. Ind. Yes

Meyer-Waarden
(2015)

grocery,
perfumery

survey
(store)
loyalty

Imm./
Del.

Dir./
Ind.

No

Söderlund and
Colliander
(2015)

retail experiment
satisfaction,
repatronage
intention

Imm. Dir. No

Minnema et al.
(2017)

grocery empirical
incidence
(trip/category),
quantity

Imm. Ind. No

Breugelmans and
Liu-Thompkins
(2017)

convenience
empirical/
experiment

incidence,
spending

Del. Dir. No

This study grocery empirical
Inter-usage
time

Imm./
Del.

Dir. Yes

Notes: Timing: Del. = delayed and Imm. = immediate. Type: Dir. = direct and Ind. = indirect.

customer heterogeneity in the analysis of responses to LPs (Lewis, 2004; Taylor

and Neslin, 2005), little research addresses the effects of reward personalization

(e.g., Dorotic et al., 2014), and no study evaluates delayed and immediate direct

rewards simultaneously.

We contribute to prior research on LP rewards through our empirical analysis

of two reward mechanisms: (1) Direct and delayed rewards in the form of free

products in exchange for loyalty points and (2) direct and immediate rewards in
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the form of personalized coupons. We show how the two reward types impact

LP usage and how their effectiveness varies over customer segments. The studied

LP setup and the available data set facilitate a clean effect measurement. The

direct comparison of the reward mechanisms allows us to compare the costs of

the studied LP rewards, thereby providing relevant insights for researchers and

practitioners when it comes to designing reward mechanisms for LPs. An additional

online experiment on Amazon Mechanical Turk (MTurk) provides context for our

Ąndings. To our knowledge, this is the Ąrst empirical study to assess (and compare)

immediate and delayed direct, personalized rewards and their impact on LP usage.

5.2.3 Effects of Personalized Coupons

Studies on personalized coupons typically focus on the effect of coupons on

revenue and sales. Rossi et al. (1996) show how to personalize price discounts in a

brand choice setting, highlighting that household purchase histories are valuable

to manufacturers for optimizing coupon proĄtability. Zhang and Wedel (2009)

study personalized checkout coupons in online and offline stores across two product

categories. They Ąnd that promotion optimization leads to substantial proĄt

improvements and that loyalty (competitive) coupons are more effective in online

(offline) stores. The authors point to low redemption rates of checkout coupons as

a Şmajor impediment to the success of customized promotionsŤ in offline stores

(Zhang and Wedel, 2009, p. 204). Heilman et al. (2002) examine the impact of

in-store ŞsurpriseŤ coupons on total basket value. In addition to positive effects on

spending, they Ąnd that in-store coupons are well received by customers and prompt

up to ten times higher redemption rates than coupons from freestanding inserts.

Nevertheless, home-sent coupons are still the predominant means of providing

personalized coupons (Bijmolt and Verhoef, 2017). Venkatesan and Farris (2012)

present a conceptual framework for personalized email coupon campaigns. In a

quasi-experiment, they Ąnd that coupon exposure and redemption have positive

effects on trip incidence and revenues.

We add to prior research on personalized coupons by outlining one potential

application of personalized promotions as (exclusive) rewards in the context of

LPs. Although researchers have demonstrated that personalization can act as a

loyalty-building mechanism (Bijmolt et al., 2011; Meyer-Waarden, 2007; Verhoef,

2003), such opportunities remain underutilized in practice and understudied in

academia (Bijmolt and Verhoef, 2017). We show how LPs can Şbe combined or

even integrated with other marketing-mix instrumentsŤ (Bijmolt and Verhoef, 2017,

p. 161). The effectiveness of in-store promotions and the ŞpullŤ-based nature of the

customer interaction through kiosk systems are key to high customer responsiveness

(Grewal et al., 2011; Marketing Science Institute, 2016).
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Figure 5.1. LP usage cycle.

5.3 Loyalty Program Setup and Data

To evaluate how personalized promotions affect LP usage and to compare the

effect of personalized promotions to that of classic LP rewards, we conduct an

empirical study using data from a large German brick-and-mortar grocery retailer.

In the twelve months before the study, the retailerŠs average market share was 5.6%

and 51.8% of all customers who had one of the retailerŠs stores in their neighborhood

visited the retailer at least once. Despite its excellent reach, customers spent most

of their money at competitors. In 2015, the retailer therefore introduced an LP

that combined classic LP rewards with personalized price promotions.

Barcodes on the back of credit cardŰsized loyalty cards function as user IDs.

Privacy concerns are a known issue in LPs (Bijmolt and Verhoef, 2017), so the

retailer decided to avoid a formal registration that requires personal information

of customers. Personalized coupons are based on individual-level data, such as

purchase histories, loyalty points, usage and redemption behavior, and distributed

through in-store kiosks that are similar to CVSŠs ExtraCare Coupon Center.

Customers use the kiosk when entering the store to receive (up to eight) personalized

coupons. The coupons are valid only on that same day (i.e., a customer receives

a new set of personalized coupons every day) and redeemed automatically if a

customer purchases the promoted products and scans the loyalty card during

checkout. When customers scan their cards at checkout, they collect loyalty

points proportional to the value of the goods they have purchased. Customers

can check their loyalty point balance and select rewards (free grocery products)

at the kiosk system. Figure 5.1 summarizes a customerŠs complete usage cycle.

Personalized coupons are selected according to customer preferences, using an

RTO engine that leverages market basket data, LP transaction data, data about

past coupons, and reward redemptions, all linked through the customerŠs loyalty

card. The personalization algorithm is regularized logistic regression with batch
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updates (Chapelle et al., 2015). Hand-made expert features are complemented

by deep learning features that capture product relationships within and across

categories (Gabel et al., 2019). At any given time, 25% to 50% of all category-brand

combinations in the assortment were used for personalized promotions.

The LP design is well suited for studying and comparing the impact of classic

LP rewards and personalized coupons on LP usage for three reasons. First, to

receive rewards, customers must interact with the kiosk, so the time between two

prints is a direct measure of LP usage. This setup differs from research settings

in which the customersŠ passive system usage is actually unobserved, for example,

when customers receive coupons via email. In these settings, researchers depend

on observing a click or redemption and when offers are not redeemed, it remains

unknown whether they have been noticed at all. In our setting, we can observe LP

usage independent of redemptions. Also, a click or redemption directly depends on

the attractiveness of the offer, so this confounding effect makes it challenging to

separate the effects of past and current rewards on LP usage.

Second, we measure the effects of personalized promotions and free product

rewards on LP usage simultaneously and with a high frequency. LP rewards are

grocery products with a relatively low monetary value, so the number and frequency

of reward redemptions is higher than in other LP settings (the frequency of coupon

redemptions is even higher).

Third, the data collected are well suited for assessing the relationships between

the dependent variable (usage) and explanatory variables (rewards). As we illustrate

in Figure 5.2, we obtain longitudinal and cross-sectional data about system usage

and reward redemptions, so we measure system usage and quantify the impact

of rewards on usage while controlling for customer heterogeneity and external

inĆuences. The customer cross-section further makes it possible to analyze how

the effectiveness of rewards varies across customers.

The data that is the basis for our empirical analysis tracks 15,103 customers

who joined the system in the 60 weeks between September 2015 and October 2016.

The retailer did not carry out any marketing campaigns during this time window

to promote the loyalty program and its usage. To calculate the variables that we

use to explain heterogeneity in the latent class model, we specify the Ąrst eight

weeks after a customer joins the LP as an initialization window. The time after

this initialization window is used to model system usage. We consider customers

with at least three purchases and two printouts in the initialization window and six

printouts in the model window. This is necessary for calculating the variables used

in the model and ensures sufficient precision. Further, we only study customers

who remained in the system for at least 200 days, so we ensure that we observe

system and reward usage sufficiently well. The Ąnal sample thus consists of 7,373
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Figure 5.2. Longitudinal and cross-sectional data on print and reward events.

Note: Best viewed in color.

customers, whose average basket size is 9.3 items and average inter-purchase time

is 7.3 days. The small basket size and low inter-purchase time are representative of

a German retailer in a metropolitan area.

5.4 Empirical Analysis

The focus of the empirical analysis is to study the effect of redemptions of

personalized coupons and LP rewards on future system usage, measured as the

time between two subsequent print events. We use duration models to assess how

rewards increase the likelihood of future prints.

5.4.1 Descriptive Analysis

The IUT in days is the dependent variable in our analysis. The data contains

95,285 (uncensored) observations from 7,373 customers (on average, 13 IUTs per
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Figure 5.3. Median customer inter-usage time.

customer). IUTs range from 1 to 244 days with an average value of 14 (median 7).

As Figure 5.2 shows, many customers redeem coupons and free products, but there

is considerable heterogeneity across customers and time. On average, customers

saved e9.2 by redeeming 13.1 personalized coupons and e2.6 by receiving 1.0 free

products per year. Figure 5.3 depicts the median IUT for each customer in the

model time window (i.e., excluding initialization). Most IUTs are smaller than

10 days, but many customers have a median IUT of several weeks, indicating

considerable heterogeneity in print behavior. We expect that rewards increase the

likelihood of a next print event and thus, ceteris paribus, should decrease the IUT.

To test this hypothesis, we Ąrst regress log(IUT ) on dummies that indicate a

reward redemption (coupons or free product) during the previous print occasion

in a linear model (Table 5.2). To control for unobserved heterogeneity in both

dimensions in our panel data we use random effects for customers and dates. The

results show (signiĄcant) negative effects for both lagged reward dummies even after

controlling for unobserved heterogeneity, with meaningful effect sizes: Coupons

reduce the IUT by 7.3%, and free product rewards decrease it by 4.7%. The

preliminary descriptive analysis reveals the expected reward effects, but it does

not account for heterogeneity in reward effects or intertemporal dynamics in print

behavior (beyond rewards effects). Most importantly, the regression approach does

not allow for a changing probability of LP usage over time, given the time elapsed

since the last usage event. To overcome these limitations, we extend this Ąrst

analysis by modeling durations with a continuous-time latent class PHM.
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Table 5.2. Effect of lagged rewards on log(IUT ).

Linear Model Linear Mixed Model

Est. SE Est. SE

Intercept 2.012 *** .005 2.316 *** .011

Lagged coupon −.036 *** .007 −.073 *** .018

Lagged free product −.093 *** .019 −.047 *** .007

SD(customers) .560 ***

SD(dates) .125 ***

SD(residuals) 1.085 .948

Log-Likelihood (LL) −143,005.9 −135,999.3

N 95,285 95,285

Notes: The dependent variable is log(IUT ). The lagged reward dummies indicate whether a
particular reward was redeemed on the last print occasion. Sig. label: *** p < .01.

5.4.2 Duration Analysis

Hazard rate modeling. Hazard models are a popular choice in marketing for dura-

tion analysis (e.g., Allenby et al., 1999; Venkatesan and Kumar, 2004; Manchanda

et al., 2006). Extant studies offer in-depth details regarding the model speciĄcation

and estimation (e.g., Seetharaman and Chintagunta, 2003), so we only summarize

the main steps here. Further details regarding the model implementation, including

estimation details and the derivation of the gradient for the latent class PHM,

can be found in Appendices 5.6 and 5.6. Our dependent variable is the IUT. The

hazard rate is customer iŠs instantaneous probability of printing, conditional on

the time t (in days) since the last print. The hazard rate is modeled using two

main components, a baseline hazard h0(t) and the effect of covariates xi that shift

this hazard proportionally:

h(t, xi) = h0(t) exp(xiβ). (5.1)

In line with the shape of the IUT histogram (Figure 5.3), we opted for a log-

logistic baseline hazard,

h0(t) =
γα(γt)α−1

1 + (γt)α
, (5.2)

with shape parameters α, γ > 0. This functional form allows for decreasing and

inverted U-shaped hazards and has worked well in other applications of hazard

models to purchase timing data (e.g., Seetharaman and Chintagunta, 2003). In our
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application, a log-logistic baseline hazard also provides a better Ąt than alternative

speciĄcations such as Weibull or Erlang-2.

Each customer has Ji duration intervals (spells) for print events j, so the panel

structure of the data set makes it possible to account for unobserved heterogeneity

in all parameters with a latent class approach, thereby avoiding biased parameter

estimates (Wedel and Kamakura, 2012). We estimate the locations and masses

of the multivariate discrete distribution, Ćexibly from the data, without imposing

functional assumptions about the distribution of the parameters. For the prior

probability that customer i belongs to class c, we use a multinomial logit model

λic =
exp(ziθc)√︂C

c′=1 exp(ziθc′)
. (5.3)

The vector zi contains customer-speciĄc covariates (Şconcomitant variablesŤ, see

Gupta and Chintagunta, 1994) to determine customer class membership (for details,

see Appendix 5.6).

We specify the proportional part of the hazard function and the logit model

for the class membership as functions of covariates x and concomitant variables z.

Table 5.3 contains the variable operationalization. Their selection and deĄnition

follows the literature (e.g., Allenby et al., 1999; Venkatesan and Kumar, 2004) and

allows us to control for heterogeneity and structural differences between customers,

but also for dynamic effects across spells. The focal variables, StockCoupon
ij and

StockF P
ij , capture the value of past rewards. We build reward stocks using expo-

nential smoothing, such that

StockCoupon
ij = χ StockCoupon

ij−1 + (1 − χ) log(1 + Couponij−1) (5.4)

and

StockF P
ij = ϕ StockF P

ij−1 + (1 − ϕ) log(1 + FreeProductij−1), (5.5)

where χ and ϕ are smoothing constants, and Couponij−1 and FreeProductij−1 are

lagged monetary reward values. We initialize both stocks at zero as we observe

customers since they enter the system. Our results are based on a value of .85

for both smoothing constants, which is consistent with estimated values in the

literature (Dorotic et al., 2014). The stock formulation of the rewards is based on

the idea that rewards create a goodwill reservoir toward the LP (or memory of

personalized promotional savings). The log-transformation leads to a diminishing

return of rewards. We expect the effects of both stock variables to be positive,

such that past rewards increase the hazard of using LPs. All variables are mean
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Table 5.3. Variable operationalization and descriptive statistics.

Variable Operationalization Mean SD

y IUT Time in days between two usage events 13.534 19.242

x

StockCoupon
Weighted average of past stock and log
of coupon value at last usage event

.191 .156

StockFreeProduct
Weighted average of past stock and log
of free product value at last usage event

.027 .070

LaggedLogIUT
Logarithm of the IUT measured at the
previous usage event

1.983 1.083

FreeProductDummy
Dummy variable that indicates whether
a customer used free products

.365 .481

z

MedianBasketValue Median value of baskets in Euro 11.777 11.400

AvgInterpurchaseTime Average time in days between purchases 7.120 5.133

NProducts Number of unique products purchased 56.182 41.648

BasketPrintRate
Ratio of the number of prints and the
number of purchases

.466 .185

RedeemedCouponStart
Indicator variable that customer has
redeemed a coupon on the first usage
occasion

.075 .263

TimeEnteredSinceStart
Time in years between the date when a
customer enters the LP and its launch

.215 .145

LogTourists
Logarithm of yearly tourists (thousand)
in the area of a customer’s main store

6.465 1.026

Note: To obtain the same order of magnitude for all parameters, we multiply BasketPrintRate by
10 and divide NProducts by 100 in the estimation.

centered, so we can interpret the results of the baseline hazards as sample averages.

Table 5.3 provides descriptive statistics before mean centering. The large standard

deviations (SD) indicate considerable heterogeneity (customer and time). The

coupon stock is higher than the stock of free products; only 36.5% of households

redeem free products.

Estimation results. Table 5.4 contains the parameter estimates for a three-class

log-logistic PHM with concomitant variables. Because log(α) > 0 in all classes, all

baseline hazards have inverted U-shapes. The magnitudes of α and γ are similar to

other applications in marketing (e.g., Seetharaman and Chintagunta, 2003). The

turning points of the baseline hazards for the three classes, tp = (α − 1)1/α/γ, and

the values of the expected IUT, E[IUT ] = π/(αγ sin(π/α)), offer face validity. All

conĄdence intervals and standard errors of transformations are computed using

parametric bootstrapping with 10,000 draws from the estimated joint distribution

of the coefficients (King et al., 2000). The three classes exhibit very different usage

behavior, and our model captures this unobserved heterogeneity well.
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Table 5.4. PHM model estimation results.

Class 1 Class 2 Class 3

h0

log(α) .533 (.009) *** .704 (.007) *** .569 (.006) ***

log(γ) −2.911 (.024) *** −1.529 (.009) *** −2.061 (.013) ***

x

StockCoupon 1.091 (.062) *** .580 (.045) *** .881 (.039) ***

StockFreeProduct .470 (.174) *** −.090 (.096) .291 (.089) ***

LaggedLogIpt .058 (.010) *** −.132 (.008) *** −.089 (.006) ***

FreeProductDummy .111 (.024) *** .130 (.015) *** .169 (.014) ***

z

Intercept −1.130 (.099) *** .329 (.064) ***

MedianBasketValue −.038 (.007) *** −.021 (.004) ***

AvgInterpurchaseTime −.240 (.022) *** −.045 (.009) ***

NProducts .760 (.163) *** .510 (.140) ***

BasketPrintRate .553 (.028) *** .198 (.023) ***

RedeemedCouponStart −.780 (.173) *** −.380 (.138) ***

TimeEnteredSinceLaunch −.250 (.314) .490 (.256) *

LogTourists .082 (.044) * .067 (.036) *

Class Size .389 .156 .455

Turning Points (SE) 14.968 (.458) 4.662 (.040) 6.757 (.093)

Expected IUT (SE) 35.179 (.889) 7.174 (.089) 14.280 (.242)

N Parameters 34

LL -325,251.5

Notes: SE in parentheses. Sig. labels: * p < .10 and *** p < .01.

To glean further insights from the baseline hazards and implied survivor and

density functions for each class, we plot the functions with 95% conĄdence intervals

for IUT values up to 42 days (Figure 5.4). The hazard for class 2 reveals the

highest values and is particularly peaky; the hazard for class 1 is rather Ćat and

indicates the lowest values. The hazard of class 3 falls between the other two classes.

After three weeks, the hazards of all classes become quite similar. The probability

of ŞsurvivingŤ (i.e., not printing) until a speciĄc day decreases fastest for class 2,

followed by classes 3 and 1. After a week, more than two-thirds of class 2 customers

used the system, but in class 3 less than half did, and in class 1 only roughly

15% used the promotional kiosk. The density functions offer similar insights: The

hazards of the three classes have the same order in their values. After some time

has passed since the last usage (e.g., 14 days) fewer customers of class 3 and class 1

print, so the order changes for the densities (i.e., unconditional probabilities of LP

usage on a certain day) over time. Therefore, it is more likely to observe high IUTs
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Figure 5.4. Estimated baseline hazard, survivor and density functions.

Note: Best viewed in color.
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Figure 5.5. Effect of reward stock values on relative hazard.

Note: Best viewed in color.

for customers from these two classes. These Ąndings underline the importance

of accounting for customer heterogeneity when modeling IUTs. Neglecting such

differences can lead to biased estimates of reward effects. Customers who generally

redeem free product rewards (FreeProductDummy) have a higher usage hazard,

with percentage differences or relative hazard values (100(exp(β3c) − 1)) of about

12%, 14%, and 18% in the three classes. The effect of LaggedLogIUT is negative in

classes 2 and 3, such that longer durations since the last two usage events decreases

the hazard of the next usage. This Ąnding is in line with the observation that IUTs

are shorter in classes 2 and 3.

The focal variables of our studyŮthe two types of LP rewardsŮhave positive,

signiĄcant effects, except for the insigniĄcant effect of free products in class 2. To

better understand how the two types of rewards affect IUT, Figure 5.5 depicts the

relative hazards as a function of reward stocks. We use the range observed in the

data sample; the reference points are 0 and represent the sample averages as we

mean center variables before estimation. The plot shows that the effects on the

relative hazards are strong (but still reasonable), with hazards changing by −20%

to +80%. The coupon reward effect is strongest in class 1, followed by classes 3
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and 2. For free product rewards, the order is the same, though the magnitude of

the effects is lower than that for coupon rewards. Again, the effect of free products

in class 2 is insigniĄcant. For classes 1 and 3, we obtain hazard increases of 10% to

20%. The largest effect for both reward types appears in class 1, the class with the

Ćattest baseline hazard. That is, even though the hazard of usage is rather low,

higher usage can be explained by higher reward stocks.

Most of the concomitant variables have signiĄcant effects and explain some

heterogeneity in the prior class probabilities. For example, it is more likely that a

customer who has redeemed a coupon right at the start of entering the LP or with

higher value baskets, higher IUTs, or less unique products, ceteris paribus, belongs

to class 1. On the other hand, a high BasketUsageRate increases the likelihood of

being in classes 2 or 3 and late adopters tend to belong to class 3. Conditioning on

the observed IUTs, we compute the posterior class probability with BayesŠ theorem,

given the estimated parameters (Wedel and Kamakura, 2012), and assign each

customer to the class with the highest value (Gupta and Chintagunta, 1994).

This results in 2,871, 1,149, and 3,353 customers in the three classes. For 41.3%,

33.1%, and 37.5% of all print events, customers in classes 1, 2, and 3 redeem

(at least) one coupon. These values are substantially higher than the industry

average for coupons (Osuna et al., 2016), likely because the RTO engine works

well, the kiosks are located in stores, and the timing of the reward is appropriate

(Heilman et al., 2002). The sum of redeemed coupons per customer ranges from

approximately 7.4 (class 1) over 12.3 (class 3) to 21.3 (class 2). For the sum of

redeemed free products, this pattern remains the same, but the values are much

lower (.5, .9, and 1.7).

Comparing these values with the estimated effects of reward stocks in the model

reveals an interesting pattern. For example, class 1, which exhibits the highest

effects, has the highest value for the percentage of usage events that lead to a

coupon redemption, but the lowest number of coupon and free product redemptions.

As the base hazard in the class is rather Ćat, the rewards are effective means for

stimulating LP usage. For class 2, we observe the opposite. This class has the

highest number of coupon redemptions, but the lowest effect of the rewards on the

IUT, and the effect of free products is not signiĄcant. Class 3 lies between classes

1 and 2.

5.4.3 Discussion of Findings and Cost Evaluation

Overall, our Ąndings illustrate the value that ŞpullŤ-based in-store promotions

have for customers. All classes show a positive relationship between system

usage and personalized coupons, though the effect sizes differ signiĄcantly. When

customers already exhibit low IUTs it is more difficult to use rewards to change usage
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Figure 5.6. Effect of reward values on relative hazards.

Note: Best viewed in color.

behavior. If IUTs are short, the long-term beneĄts of rewards do not materialize

as strongly. For both reward types, the impact of rewards on LP is higher for

customers who have larger baskets and redeem coupons on their Ąrst kiosk usage.

The same is true for late adopters, who already have less prior engagement with

the retailer (Demoulin and Zidda, 2009).

To gain a deeper understanding of the reward effects, Figure 5.6 visualizes the

effect of coupons and free products on hazards. That is, instead of analyzing

the effect of the stock, we plot hazards uplift as a result of rewards with different

magnitudes and compare the effects over classes and reward types. We use products

with prices of e.5, e3, and e8, which is in line with the values of products used

in the LP. Examples for the three price tiers are the product categories yogurt,

toothpaste, and detergent. For coupon rewards, we assume a discount of 30%,

a value close to the average discount observed in the data. Therefore, a coupon

only provides 30% of the productŠs price as a reward, while the reward of a free

product is the full price. As before, we evaluate effects as deviations from the

sample average that is relative to the baseline hazard.
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A coupon for an e8 product leads to relative hazards of 22%, 6%, and 9% in

classes 1, 2, and 3, respectively. Interestingly, the effects are somewhat lower for free

product rewards, even though the full value of the product enters the stock variable

for this type of reward. The relative hazards are 17% (class 1) and 10% (class 3),

while class 2 has no signiĄcant effect. The 95% conĄdence intervals for the relative

hazards of free products are rather large and do overlap the conĄdence intervals

of the corresponding coupon rewards. The results for e3 products (middle panel)

and e.5 products (left panel) as rewards are similar. However, the magnitudes

of relative hazards and the differences between classes are smaller. The relative

hazards for a reward based on a e3 price range from 6% to 11% and for a price of

e.5 from 2% to 3%. Both reward types increase the hazard of (future) LP usage

and, more importantly, even single rewards have meaningful effects.

For analyzing the rewards from the retailerŠs point of view, we next look at the

costs of products that are necessary to shift hazards by a particular amount. Hence,

we Ąx the effect to a desired hazard increase, solve the Equations 5.4 and 5.5 of the

stock variables for the monetary value of a reward, and transform it into costs for

the retailer by assuming a cost rate of .3. Figure 5.7 shows the results for relative

hazards of 1.05, 1.1, and 1.15. For coupons, we vary discount levels between 10%

and 50%. The discounts do not affect free product rewards (dashed lines).

To achieve a relative hazard of 1.1 (middle panel) a free product reward costs

the retailer about e.86 in class 1. The cost of a product for the corresponding

coupon reward depends on the discount and varies between e.47 (50% discount)

and e2.37 (10%). The retailer needs products with considerably higher (lower)

costs in the case of a low (high) discount to realize a speciĄc reward value. In

this example, products for coupon rewards have lower costs than for free product

rewards if the discount exceeds 28%. In class 3, the costs for products are higher

for both reward types compared to class 1, which is driven by the lower estimates

of effects in the model. As soon as discounts are higher than 14%, coupons have

lower costs compared to free products. The plots for relative hazards of 1.05 and

1.15 look similar. Lower (higher) values of the relative hazard are also related to

lower (higher) costs of products for the rewards. Typical cost values for relative

hazards 1.05 range from e.5 to e2.5. These values increase up to over e12 in

the case of a relative hazard of 1.15. The discount level at which the costs of

products for coupon and free product rewards are equal is a function of the relative

hazard. Higher (lower) relative hazards lead to lower (higher) discount limits. An

interesting case can be observed for a hazard increase of 15%. Here, coupons are

always cheaper than free products for class 3, no matter the discount.

The analysis provides interesting insights for retailers regarding designing and

managing their LPs. Although retailers cannot directly affect whether and which

rewards customers redeem, they can inĆuence which rewards are offered to the
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Figure 5.7. Costs of products to achieve a certain relative hazard value.

Note: Best viewed in color.

customers. Given that a retailer has a particular goal in terms of relative hazards in

mind (which in turn translate into shifts in IUT), the retailer can assess the value

and costs of the rewards. A better targeting algorithm, for example, might lead to

lower discounts, but this might reduce the usage of the system because of lower

rewards. Also, even though the estimation results highlight that the effects of free

products are lower (see Table 5.4 as well as Figures 5.5 and 5.6), the differences are

less pronounced when it comes to costs. Coupons have a higher effect, but only a

fraction of the value (determined by the discount) contribute to the stock variable.

Which type of reward is more cost-effective from a cost perspective depends on

the class-speciĄc reward effects and the discount levels. In most cases, coupons are

cheaper than free product rewards because their effect on LP usage is signiĄcantly

stronger than the effect of free products.

5.4.4 Supporting Insights from an Online Experiment

To put our results into perspective, test their robustness, and increase the

generalizability of our Ąndings, we conducted an additional online experiment on

Amazon MTurk in July 2017. Following the experimental design of Yi and Jeon

(2003), 410 respondents rated their value perceptions of different LP rewards. Each

respondent was randomly assigned to one reward type that we described in a

vignette (see Appendix 5.6).
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The Ąve-item value perception scale was based on OŠBrien and Jones (1995),

measured on a seven-point scale. All rewards were framed in a Ąctive setting, such

that customers imagined spending $100 per shopping trip on grocery purchases

at a store where members of the LP saved an average of 3%. The rewards were

manipulated in a 3 × 2 design (three reward types and two reward timings),

featuring cashback, personalized coupons/free grocery product rewards, or non-

grocery products such as kitchen utensils, tools, and toys, as well as immediate

rewards at the end of each shopping trip, or delayed rewards after every tenth

shopping trip.

The rewards in the empirical study thus span direct and immediate personalized

coupons, as well as direct and delayed rewards in the form of free grocery products.

The other four conditions serve two purposes. First, we seek to replicate Yi and

Jeon (2003) and Keh and Lee (2006) results in a grocery retailing context. The

replication of prior research in the context of grocery retailing also supports the

validity of the MTurk sample (Laurent, 2013). Second, the (conceptual) replication

improves understanding of how LPs work in general and provides a valuable context

for the Ąndings in this study. Given that the focal retailer only uses the two reward

types, the online study enables us to compare our results with results for other

popular reward types in a grocery setting.

Figure 5.8 shows the average of scores of the perceived value scale across rewards.

In general, immediate, direct rewards evoke higher perceived values, consistent with

previous Ąndings (Yi and Jeon, 2003; Keh and Lee, 2006; Meyer-Waarden, 2015).

The between-subjects ANOVA shows that these differences are signiĄcant (type

F(1, 406), 35.556, p < .01; timing F(1, 406), 8.655, p < .01), but their interaction

is not (F(1, 406), .533, p = .466). Immediate cashback have a slightly higher value

than personalized coupons. Interestingly, this effect is the opposite for delayed

rewards. Free products (direct delayed rewards) have higher perceived value than

delayed cashback (although the differences are not statistically signiĄcant) so the

value of free product rewards does not seem to suffer from the delayed timing. An

intuitive explanation for this observation is that receiving a product for free is more

noticeable and memorable than receiving cashback of the same value.

These Ąndings support the results of the duration analysis in Section 5.4.2 in

that they underline the usefulness of personalized coupons and free products as LP

rewards. Personalized coupons and immediate cashback are perceived as almost

equally valuable and free products yield even higher value scores than delayed

cashback. In both studies, the behavioral effect of personalized promotions is

stronger than the effect of free products. Even though the value of a single reward

is not high, personalized coupons are redeemed more frequently (i.e., 40% of usage

events have a coupon redemption). Waiting for rewards of a similar monetary value

reduces their attractiveness.
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Figure 5.8. Perceived value of LP rewards.

Note: Best viewed in color.

5.5 Conclusion

In this paper, we have empirically studied an LP at a major German grocery

retailer. The retailer uses in-store kiosks, an increasingly popular retail technology,

at the entrance of each store to communicate with its customers and to distribute

two types of rewards: vouchers for free products in exchange for loyalty points and

(exclusive) personalized coupons. In this ŞpullŤ-based channel (Marketing Science

Institute, 2016), customers control the information Ćow so we introduce system

usage as a key proximal outcome. Given that research on kiosk systems and LP

usage is scarce, this study provides relevant insights for researchers and practitioners.

A rich longitudinal data set, that contains data for more than 7,000 customers over

a period of 60 weeks, makes it possible to (1) analyze how personalized coupons

affect LP usage, (2) compare the effect of personalized coupons to that of classic

LP rewards, (3) study differences in effectiveness across customer segments, and

(4) derive pertinent implications for reward design.

We Ąnd that both reward types increase usage (i.e., decrease the time between

usage events). For example, even small rewards such as a 30% discount for a

typical grocery product can increase the hazard of using the system by up to

25%. This provides clear empirical support for the value of ŞpullŤ-based in-store
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promotions. Consequently, managers can use both types of rewards, free products

and personalized discounts, to increase LP usage.

Interestingly, personalized coupons have a stronger effect on usage than classic

LP rewards. This might be driven by the fact that coupon rewards are redeemed

more often (i.e., 40% of usage events have a coupon redemption) and waiting for

free product rewards is less attractive. Also, the surprise character of personalized

coupons works in favor of this type of reward (Heilman et al., 2002). Given these

results, coupon rewards appear to be more appealing to retailers. The cost analysis

has shown that personalized coupons are cheaper than free product rewards in

most situations, given that only a fraction of the price is discounted. Additionally,

coupons serve other retail goals as well, as they are designed to increase sales and

proĄts. The reward effect of personalized coupons is therefore an additional beneĄt,

and hence their costs should be treated accordingly. Moreover, costs for coupons

can be subsidized by brands, which is typically not possible for classical LP rewards,

such as free products in exchange for LP points.

In the analysis of LP usage, we have identiĄed three, sizable customer segments

with very different usage patterns. The effects of rewards vary signiĄcantly across

customers, emphasizing the need to account for customer heterogeneity. Customers

with relatively high IUTs are affected more strongly by rewards compared to

customers with short IUTs. As these classes are easy to identify, also based on the

results for the concomitant variables, retailers can use our results to design their

LPs accordingly.

The additional MTurk experiment supports the Ąndings from the duration

analysis. The study establishes that personalized coupons and free products as

LP rewards provide value to customers and that their value is similar to that of

cashback and higher than indirect rewards in the form of non-grocery products.

Direct rewards are attractive to a broader set of customers and can increase

customer satisfaction (Keh and Lee, 2006). While immediate rewards are clearly

preferred by customers, free products are the most valued delayed reward. This

underlines the usefulness of both types as LP rewards. A key beneĄt of direct

rewards in grocery retailing is a reduced supply chain complexity which further

materializes in cost savings.

Finally, personalized coupons are not only a cost-effective way to increase LP

usage but also have the potential to be a new revenue stream for retailers in the

form of programmatic target marketing platforms (Pathak, 2017; Chen and Friesz-

Martin, 2018). Based on our study we recommend retailers to tightly integrate LPs

and personalized coupons. As rewards increase usage, this also indirectly leads to

more customer data and thus increases the quality of the targeting in RTO engines.
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We identify several fruitful avenues for future research. First, we have studied

in-store kiosk systems as technology to provide customers with information and

ŞpullŤ-based personalized promotions. It would be interesting to study other

channels to reach customers in offline retailing. For example, apps are gaining

more popularity so the interplay with kiosk systems as well as the comparison of

reward effects across channels appear to be promising directions for future research.

Second, we have employed observational data and data from an online experiment

to obtain our results. Given that we have documented robust (and heterogeneous)

reward effects, it would be very useful to conduct a comparison of rewards in a

controlled Ąeld experiment. Lastly, we have focused only on the effect of rewards

on time between usage events but have not investigated the impact of rewards

on revenues and proĄts. Further research can also evaluate the interplay between

usage and Ąnancial performance metrics.
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5.6 Appendix

5.6.1 Details Regarding the Estimation of the Log-Logistic Latent
Class PHM

Extant studies offer in-depth details regarding the model speciĄcation and estima-

tion (e.g., Seetharaman and Chintagunta, 2003), so we summarize the main steps

here. The hazard function can also be written as h(t, xi) = f(t, xi)/S(t, xi), where

f(t, xi) and S(t, xi) are the probability density and survivor function, respectively.

The former is the unconditional probability of using the kiosk at t; the latter is the

probability that the customer has not used the kiosk (i.e., ŞsurvivedŤ) until t. As

we opt to account for heterogeneity using a latent class approach, all parameters

and, therefore, hazard functions are class-speciĄc. The corresponding log-likelihood

(LL) function of the model is

LL =
I∑︂

i=1

log

∏︁
∐︂

C∑︂

c=1

λic

⎧
⨄︂
⋃︂

Ji∏︂

j=1

fc(tij − tij−1, xij)Sc(Ti − tiJ , xiJ+1)

⎫
⋀︂
⋂︂

∫︁
ˆ︁ . (5.6)

Each customer has Ji duration intervals (ŞspellsŤ), and c indexes the latent

classes. Let tij denote the calendar time of the j-th print observation of customer i,

such that tij − tij−1 is the IUT; xij is customer iŠs covariate vector for spell j; and Ti

is the calendar time of a right-censored observation of customer i. We compute the

maximum likelihood estimates of the model parameters using the gradient-based

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (see Appendix 5.6 for the

derivation of the LL and its partial derivatives that are used in the BFGS algorithm).

To avoid convergence to local optima, we estimate all models with 100 random

starting values each and retain the solution with the highest LL value (Wedel and

Kamakura, 2012).

To select the number of classes C, we ran multiple models with one to Ąve

classes and compared the results. In particular, we re-estimated the models using

80% of the customers and calculated the LL values in the holdout sample. We

repeated this procedure 10 times to reduce variance in the results and to prevent

edge cases. Information criteria using the full sample point to a Ąve-class solution,

but a closer inspection of the average hold-out LL values reveals that the increase

in Ąt is marginal (< .2%) for solutions for more than three classes. Furthermore,

all models with more than three classes had at least one class with very few

customers (≪ 5%) and such small segments provide little relevant insights and

might be an artifact of the method employed to derive the classes (DeSarbo and

DeSarbo, 2001). Indeed, the additional, extremely small classes were very similar

in terms of shape for the baseline hazard. Therefore, we chose the model with
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C = 3, which provides meaningful results and is a good compromise between Ąt

and complexity. Other applications of PHMs use similar numbers of segments

(Seetharaman and Chintagunta, 2003). Our proposed full model with three classes

(LL = −325,251.5) clearly outperforms the simpler three-class models, namely,

those without concomitant variables (LL = −325,721.6), with only baseline hazards

(LL = −326,826.2), and without unobserved heterogeneity (LL = −330,428.1).

5.6.2 Derivation of the Partial Derivatives

5.6.2.1 Homogeneous Model

Using the hazard function

h0(t) = γα(γt)α−1 · (1 + (γt)α)−1

and the survival function

S(t) = (1 + (γt)α)−1

of the log-logistic PHM, we can specify the probability density function as

f(t, xi) = h0(t) · exp(xiβ) · S(t).

With ai = exp(xiβ), bi = (γt)α, and m =
√︂

i δi, the log-likelihood LL is (ignoring

multiple observation per person for simplicity):

LL = m log(α) + m α log(γ) + (α − 1)
∑︂

i

δi log(ti)

−
∑︂

i

δi log(1 + bi) +
∑︂

i

δi log(ai) −
∑︂

i

ai log(1 + bi).

We deĄne

ci =
log(bi)

1 + bi

and

di =
bi

1 + bi

.

Differentiating LL w.r.t. α, β, and γ leads to:

∂αLL =
m

α
+ m log(γ) +

∑︂

i

δi log(ti) −
∑︂

i

δi
bici

α
−
∑︂

i

ai
bici

α
,

∂βj
LL =

∑︂

i

δixj +
∑︂

i

xjai log(1 + bi)
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and

∂γLL =
m α

γ
−

α

γ

∑︂

i

δidi −
α

γ

∑︂

i

αidi.

5.6.2.2 Latent-Class Model

The log-likelihood with multiple latent classes is:

LL =
∑︂

i

log(
∑︂

c

λic exp(LLic))

with

λic =
exp(ziθc)√︂
c exp(ziθc)

and

LLic = m log(αc) + m αc log(γc) + (αc − 1)
∑︂

δic log(ti)

−
∑︂

δic log(1 + bic) +
∑︂

δic log(aic) −
∑︂

aic log(1 + bic).

DeĄning ϕic = exp(LLic) and differentiating LL w.r.t. αc, βc, γc, and θc results in:

∂αc
LL =

∑︂

i

1
√︂

c λicϕic

∂αc
¶
∑︂

c

λicϕic♢ =
∑︂

i

λicϕic√︂
c λicϕic

∂αc
LLic,

∂βjc
LL =

∑︂

i

1
√︂

c λicϕic

∂βjc
¶
∑︂

c

λicϕic♢ =
∑︂

i

λicϕic√︂
c λicϕic

∂βjc
LLic,

∂γc
LL =

∑︂

i

1
√︂

c λicϕic

∂γc
¶
∑︂

c

λicϕic♢ =
∑︂

i

λicϕic√︂
c λicϕic

∂γcLLic

and

∂θkc
LL = ∂θc′

k
¶
∑︂

i

log(
∑︂

c

λic exp(LLic)♢ =
∑︂

i

1
√︂

c λicϕic

∑︂

c

ϕic∂θkc′
λic.

The partial derivative of λic w.r.t. θkc is:

∂θkc
λc = ∂θkc′

¶exp(ziθc)♢
1

√︂
c exp(ziθc)

+ exp(ziθc) ∂θkc
¶

1
√︂

c exp(ziθc)
♢

=
1

c′

exp(ziθc)zk√︂
c exp(ziθc)

−
exp(ziθc)

(
√︂

c exp(ziθc))2
exp(ziθc)zk

= zkλic(1
c′

− λic)
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with

1
c′

= 1 if c = c′ and 0 otherwise.

Intermediate steps of gradient calculation and an implementation in Python are

available on request.

5.6.3 Vignettes for the Online Experiment

The following instruction was presented to the respondents in the MTurk study

as part of the online experiment. Each respondent was assigned to one of six groups.

The general presentation of the LP description was identical for all six groups, but

we systematically varied the reward mechanism.

Please imagine the following situation. Your average shopping basket at the

retailer is approx. $100 and you never spend less than $50 per shopping trip.

Assume that the retailer introduces a new loyalty program (until now there

was no loyalty program). If you participate, you receive a loyalty card (you can

choose between a key ring and a plastic card) which is scanned at the checkout,

so the retailer knows how much you spend during your shopping trips. The

loyalty program rewards you receive depend on your revenue at the retailer.

As a reward for participating in the program, you receive

Group 1 a 3% discount on every shopping trip (e.g., $3 for a $100 shopping

basket).

Group 2 a $30 discount after spending $1,000 (e.g., after 10 shopping trips

with an average basket size of $100). This equals a 3% discount.

Group 3 exclusive access to coupons at an in-store kiosk system. The coupons

are personalized to your preferences and based on your purchase history.

Consumers save on average 3% on every shopping trip (e.g., $3 for a $100

shopping basket).

Group 4 5 loyalty points for every $100 you spend at the retailer. You can

exchange loyalty points for free products after you have collected 50 points

(e.g., after 10 shopping trips with an average basket size of $100). For

50 points consumers receive free products that have a value of $30. This

equals a 3% discount.

Group 5 a non-grocery product such as a free kitchen utensil (e.g., bowl, plate,

knife), a tool (e.g., screwdriver, hammer, wrench) or a toy (e.g., card

game, stuffed animal) on every shopping trip. The rewards have a value

that equals 3% of your last shopping basket (e.g., $3 for a $100 shopping

basket).
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Group 6 free non-grocery products such as kitchen utensils (e.g., bowls, plates,

knives), tools (e.g., screwdrivers, hammers, wrenches) or toys (e.g., card

games, stuffed animals) with a total value of $30 after spending $1,000

(e.g., after 10 shopping trips with an average basket size of $100). The

total value of the rewards equals 3% of your revenue.

After reading this description, we would like to understand how much you

like the proposed loyalty program. Please state how much you agree with the

following statements. When responding, please think about the value of the

rewards and how much effort on your part (e.g., remembering to bring your

loyalty card and showing it at the checkout) is needed.
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