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Our study aims to contrast the neural temporal features of early stage of decision making in the context of risk and ambiguity. In
monetary gambles under ambiguous or risky conditions, 12 participants were asked tomake a decision to bet or not, with the event-
related potentials (ERPs) recorded meantime. �e proportion of choosing to bet in ambiguous condition was signi�cantly lower
than that in risky condition. An ERP component identi�ed as P300 was found. �e P300 amplitude elicited in risky condition was
signi�cantly larger than that in ambiguous condition. �e lower bet rate in ambiguous condition and the smaller P300 amplitude
elicited by ambiguous stimuli revealed that people showed much more aversion in the ambiguous condition than in the risky
condition. �e ERP results may suggest that decision making under ambiguity occupies higher working memory and recalls more
past experience while decision making under risk mainly mobilizes attentional resources to calculate current information. �ese
�ndings extended the current understanding of underlying mechanism for early assessment stage of decision making and explored
the di
erence between the decision making under risk and ambiguity.

1. Introduction

Risk and ambiguity are two conditions in which the likeli-
hood of outcomes is uncertain [1]. But di
erences are here
to stay; in the condition of risk, the probability distribution
of possible outcomes is well de�ned, which can be used to
calculate the expectancies of outcomes and compare between
choices.�e probability of outcomes determines the riskiness
of risk condition that high probability brings lower risk
and vice versa. However, under the ambiguous condition,
participants are unknown of the probabilities of outcome [2–
4].�e participants tend to subjectively add probability of the
outcome in decisionmaking, and it is di�cult to be described
by the theoretical models accurately.�e distinction between
the two uncertain conditions was �rst illustrated by the
Ellsberg Paradox, which indicates the so-called phenomenon
of ambiguity aversion [5] that means the peoples’ preference
to bet in risky conditions rather than ambiguous conditions.

Researchers have investigated the underlying mechanism
of ambiguity aversion for a long time and put forward some
explanations, such as the competence hypothesis [5] and the
comparative ignorance [6]. Rode and colleagues put these
hypotheses into two categories: cognitive approach and

motivational approach [7]. Cognitive mechanism regarded
ambiguity as a second-order probability distribution of
option [8, 9]. Participants can obtain probability information
from former experience. Motivational approach focused on
e
ective factors that come from the lack of information.
Frisch and Baron put forward that the risky prospect is more
justi�able than the ambiguous one due to missing potentially
available probabilistic information of the latter [10]. Fox and
Weber found people feeling less con�dent for issues that
they did not fully understand [11]. And a bad outcome in
ambiguous conditions may be ascribed to the incompetence
or thoughtless choice [12], while in risky conditions the poor
judgment cannot be blamed for when the outcome is undesir-
able. Since all required information is provided, participants
are more likely to attribute the bad outcome to bad luck [5].

In the latest ten years, numerous empirical studies about
uncertainty decision making using functional magnetic res-
onance imaging (fMRI) tools have attempted to contrast
these two types of uncertainty at neural level, and identi�ed
the neural mechanism related to decision making under
ambiguity and risk [3, 13–15]. Hsu et al. suggested a general
neural circuit responding to degrees of uncertainty [14]. In
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their �rst treatment of Card-Deck that compared the pure
risk (where probabilities were known with certainty) against
pure ambiguity as baseline, the participants were asked to
choose between betting on one of the two options and taking
a �xed monetary reward in each trail. Finally, they compared
the di
erence between ambiguity and certain conditions, and
di
erence between risk and certain conditions, respectively.
However, in our experiment, we asked the participants to
choose to bet or not in ambiguous and risky conditions, in
both of which they would get no �xed payouts if they gave
up betting. �is design made us compare the di
erence of
decision making between risky and ambiguous conditions,
which was not further studied in Hsu et al.’s work [14].

Compared with previous fMRI studies [3, 4], event-
related brain potentials (ERPs) o
er better temporal resolu-
tions for researchers to study how a cognitive process is taking
place in real-time. Decision making is a continuous process,
which can be divided into several stages temporally, including
assessment and formation of preferences among possible
options, selection, and feedback or evaluation of an outcome.
Until now, a lot of work has been conducted for the feedback
stage of decision making while little attention is allocated to
earlier stages, such as assessment of the options. Previous
ERP studies about decisionmaking under uncertaintymainly
focused on the feedback stage and explored components such
as FRN and P300 [16–19]. Zhang’s studies indicated that the
P300 component was sensitive to risky decision making [20].
Zhou et al. used a risky gambling game and found out that the
P300 and FRNwere quite di
erent between the conditions of
win and loss [21]. Xu and her colleagues applied event-related
brain potential (ERP) to explore how an uncertain (risk and
ambiguity) cue was processed.�ey designed a gambling task
called “wheel of fortune” and found out that a larger P300
was elicited by the unexpected cue under uncertain condition
[22]. Gu and his colleagues found that P3 was larger in the
positive outcome condition than the other three conditions
(negative, neutral, and ambiguous) by using a monetary
gambling task [23]. �ese studies revealed that both the risky
and ambiguous conditions would evoke the P300. Previous
studies, including the above two studies, mainly focused on
the feedback stage and viewed P300 as a typical indicator to
re�ect rewarding processing in decision-making [19, 24, 25].
However, until now few ERP studies have focused on the
early stage of decision making before the feedback stage and
explored the corresponding neural mechanism.

P300 is one of themost commonly studied components of
ERPs for decision making [26], and it usually emerges in the
late period a�er stimuli onset (300–600ms). In task relevant
paradigms, the amplitude of P300 is generally considered as
a representation of memory load [27–29]. Task load can be
divided into two dimensions: driving task load and working
memory load [30]. P300 is related to memory processes in
the evaluation of stimuli for the subsequent response [31, 32].
Task-related information is updated through learning and
forgetting inworkingmemory andP300 is elicited at the same
time [33]. �e decrease of P300 amplitude was observed in
several tasks employing high memory load [34–36]. Since
ambiguous tasks provide less de�nite information than risky
ones, individuals need to not only mobilize some attentional

resources to analyze current stimuli, but also recall a large
amount of past practices and memory to get probability
information to form a clear expectance of outcome and
reduce cognitive strain in dealing with ambiguous tasks. So
it is more e
ortful and di�cult for participants to make
decisions under the ambiguous condition, which may induce
a higher working memory load [37, 38].

Compared with the previous studies, the present research
focuses on the temporal electrophysiological changes and
di
erence at the early stimuli assessment stage of decision
making between the ambiguous and risky conditions, which
we believe can help better understand the process of decision
making. For exploring the cognitive process of these two
decision types, we designed a monetary gambling game in
which the probabilities of outcomes were known (risk) or
unknown (ambiguity) while the outcomes were varied across
trials but balanced in pairs. Considering that the P300 is
a typical neural indicator of decision making and can be
interpreted as a re�ection of memory load and is inversely
related to di�culty of decisionmaking [37, 38], we speculated
that it would elicit a smaller P300 amplitude under ambiguity
than that under risk decision making.

2. Materials and Methods

2.1. Participants. Participants were recruited from the stu-
dent population of the Zhejiang University. A total number
of 12 right-handed participants took part in the experiment (5
females; average age: 22.58 years, standard deviation (SD) =
1.55 years, range 20–25 years). All participants had no history
of neurological or psychiatric disorders.

2.2. Materials. Prior to the experiment, participants were
informed that the purpose of the experiment was to inves-
tigate brain waves during gambling. An informed consent,
approved by the Internal ReviewBoard ofNeuromanagement
Lab, Zhejiang University, was obtained from each participant
before formal experiment.

�e game consists of two types of primes: risky stimuli
and ambiguous stimuli. Risky stimuli presented a monetary
value with 50% probability for gain and loss each. Ambiguous
stimuli showed only a monetary value but concealed its
corresponding probability on gain or loss. Risky stimuli and
ambiguous stimuli appeared in the experiment with equal
frequency.�emonetary value was a random integer ranging
from 11 to 190 for each trail in both conditions. Each stimulus
was made into a picture and digitized at 200 × 150 pixels
(Figure 1).

2.3. Procedure. �e EEG participant was seated in a chair 1
meter in front of a Dell 22 in. CRT display (screen resolution:
1024 × 768; refresh rate: 120Hz; color quality: highest 32
bit). Stimuli were presented sequentially in the center of a
computer screen with a visual angle of 2.58∘× 2.4∘. In order
to draw participants’ attention, the screen presents a “+” for a
�xed duration of 300ms at the beginning of each trial. �en,
a stimulus of risk or ambiguity was shown a�er a mean delay
of 700ms. A�er the presentation of the risky or ambiguous
stimuli, if the participants chose to bet, a 500ms blank was
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Figure 1: Stimulus: risk stimuli and ambiguous stimuli.
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Figure 2: Task procedure.

presented followed by the outcome with 50% probability of
lose or win for 1000ms; otherwise it went to the next trial
a�er a 500ms blank (see Figure 2).

All subjects were asked to read the experiment instruc-
tions before the experiment. A practice block was adminis-
tered before the formal test.�e formal test had 6 blocks with
60 trials each. Each condition (risk versus ambiguity) had 180
trials distributed randomly in 6 blocks. Each gambling value
was presented twice: one in risky condition and the other in
ambiguous condition. In half of the trials in each condition,
the feedback was positive (the participants would gain if
they decided to bet); in the other half of trials, the feedback
was negative. �e total gains and total losses were counter-
balanced in each condition and across the two conditions.
However, the participants were blind to this design; they were
only told to choose to bet or not and that they would be
rewarded according to their performance. �e presentation
of stimuli and recording of the participant’s responses were
controlled by STIM 2 so�ware (Stim2, Neuroso� Labs, Inc.,
Sterling, USA).

In summary, all the stimuli probabilities and the mone-
tary magnitude presented in risk and ambiguity conditions
were the same in our experiment design. �e only di
erence
between risk and ambiguity conditions was whether the
participants knew the probability of outcome. Before the
experiment, the participants were told that their �nal pay-
ment was decided by their performance in the experiment.
�at is, 35-Yuan basic payments for their participation and an
additional gain or loss based on the mean of total investment
outcomes, by which means we motivated the participants to
make decisions carefully and e
ectively in all trails in order
to achieve the maximum bene�t.

2.4. Electroencephalography (EEG) Recording. �e EEG and
the EOG (electrooculograms) were recorded and prepro-
cessed by Neuroscan Synamp2 Ampli�er (Scan4.5, Neuroso�
Labs, Inc., Sterling, USA), with the reference to the le�
mastoid. In order to keep the impedances of electrodes below
5 kOhm all electrode sites were cleaned with electrode jelly
and gently abraded prior to electrode �xation. EEG and
EOG were ampli�ed with a 64 channel AC ampli�er (input
impedance: 10MOhm). Vertical Electrooculogram (EOG)
was recorded supra and infra-orbitally at the le� eye.Horizon-
tal electrooculograms were recorded from electrodes placed
1.5 cm lateral to the le� and right external canthi. Band-pass
was set to 0.05–100Hz; the signals were digitized online at
500Hz and stored for later analyses.

Electroencephalogram recordings were segmented for
the epoch from 200ms before appearance of the stimulus
picture for decision type to 800ms a�er the stimulus onset,
with the �rst 200ms pretargets as a baseline. Trails were
contaminated by ampli�er clipping, wherein bursts of elec-
tromyography activity and peak-to-peak de�ection exceed-
ing ±80 �V were excluded. Finally, EEG waveforms were
averaged separately for each participant, each experimental
condition, and each electrode. In addition, SPSS statistical
so�ware (SPSS Inc., SPSS Inc., Chicago, Illinois, USA) was
used for data statistical analyses.

3. Results

3.1. Behavioral Data. Behavior data are shown in Figure 3.
A paired-sample �-test showed that there was no signi�cant
di
erence between the two decision types of ambiguity and
risk about reaction time (RTs), � = −0.800, � = 0.439 > 0.05.
In contrast to the RTs, the mean proportion of choosing to
bet in ambiguous condition (57.24%, SD = 17.09%) was less
than that in risky condition (68.49%, SD = 13.17%). A paired-
sample �-test showed that the di
erence was signi�cant (� =
−2.250, � = 0.044 < 0.05). �e results indicated that
participants would rather bet in risky condition than bet in
ambiguous condition, but it took them the same time to
decide whether or not to bet in di
erent conditions.

3.2. ERPAnalyses. �ecomponent P300was analyzed as well
(Figure 4). �e P300 amplitude, peaking at approximately
500ms a�er stimulus onset, is mainly distributed in the
center scalp areas [32, 39, 40]. Similar to the previous studies,
this study selected 9 electrode sites (FC3, FCZ, FC4, C3,
CZ, C4, CP3, CPZ, and CP4) for statistical analysis. Two-
way repeated measure ANOVA testing across two levels of
decision types and nine levels of electrodes were computed
on P300 amplitude.

We measured the P300 average amplitudes in the shaded
450–550ms time window for both risky and ambiguous con-
ditions (in Figure 4). A 2 (decision type: risk and ambiguity)×
9 (electrode: FC3, FCZ, FC4, C3, CZ, C4, CP3, CPZ, andCP4)
with subjects repeated measure ANOVA showed that there
was a main e
ect for decision type [�(1, 11) = 17.147, � =
0.002 < 0.05].�e grand average amplitude of 9 electrodes of
risky condition (� = 5.595 �V) was signi�cantly larger than
that of ambiguous condition (� = 4.513 �V).



4 Computational Intelligence and Neuroscience

Ambiguity Risk

M
ea

n
 r

ea
ct

io
n

 t
im

e 
(m

s)

0

200

400

600

800

1000

Ambiguity Risk

M
ea

n
 p

ro
p

o
rt

io
n

 o
f 

ch
o

o
si

n
g 

to
 b

et

0.0

0.2

0.4

0.6

0.8

1.0

Decision typeDecision type

Figure 3: Behavioral data: reaction time and proportion of choosing to bet for decision under ambiguity and risk.
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Figure 4: Grand averaged ERP waveforms for two stimulus conditions at electrode sites FZ, FCZ, CZ, and CPZ.

4. Discussion

Our behavioral data indicated ambiguity aversion with the
results that the bet rate in risky condition was signi�cantly
higher than that in ambiguous condition. Besides, the ERP

results showed that P300 amplitude elicited in ambiguous
condition was signi�cantly smaller than that evoked in risky
condition, which revealed that higher working memory load
was needed in the stage of assessment when making decision
in ambiguous condition.
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A large number of previous studies have demonstrated
that people held di
erent attitudes towards risk and ambi-
guity. According to Smith and colleagues [4], individual
behavior may be a
ected by attitudes about payo
s (gains
and losses) and beliefs about outcomes (risk and ambiguity).
No matter the outcome is gain or loss, people are always
ambiguity adverse. �at is to say, people tend to be more
adverse to ambiguity than to risk [5, 41, 42]. �us our
behavioral result showing that the proportion of subjects
choosing to bet in ambiguous condition was signi�cantly
less than that in risky condition was consistent with the
aforementioned studies [8, 9, 43].

P300 were elicited in both risky and ambiguous condi-
tions, which was consistent with prior studies [22, 23]. Many
studies related with decision making found that P300 was
sensitive tomany factors, such as themagnitude of reward [21,
44], the valence of reward [21], and interpersonal relationship
in reward processing [18].However, almost all of those studies
focused on the feedback stage in which the features of reward
matter. Compared with them, our experiment studied the
P300 evoked in the stage of processing stimuli, which was
earlier than feedback stage and did not involve the reward
processing. �us the factors in�uencing the modulation of
P300 in our study were di
erent from that in previous
studies. Besides, we also controlled some other factors; that
is, both the stimuli probabilities and themonetarymagnitude
presented in risky and ambiguous conditions were the same
in our experiment design.�emain di
erence between these
two conditions was whether the probabilities were blind to
the participants or not.

In gamble games in both risky and ambiguous conditions,
people need to calculate the expectances of outcomes based
on the probabilities of outcome and speci�c monetary value
before they make a decision. In our experiment design, both
of the two required pieces of information were provided in
risky condition but only monetary value was given to partic-
ipant in ambiguous condition. �e lack of probabilities may
induce more e
ort to recall a large amount of past practices
and memory to get probability information to form a clear
expectance of outcome and reduce cognitive strain in dealing
with ambiguous tasks. As we know, learning from feedback
plays a role in guiding decision making. Personal experience
of similar situations has an e
ect on current decision. Positive
or negative emotion induced from previous experience facil-
itates present information process [45]. In addition, work-
ing memory holds and manages information which exerts
in�uence on subsequent behaviors in the short term [46].
Besides, such process of working memories appears univer-
sally in reality especially when dealing with decision making
under incomplete information. According to previous stud-
ies, ambiguity can be regarded as a second-order probability
distribution of option [8, 9] and people can obtain probability
information from former experience. �us, participants in
ambiguous condition would learn the experience from for-
mer trails and infer the current probability, which induced a
higher working memory load [38, 39]. But this process may
not be expected in risky condition since the probability was
de�nite and the outcomes weremore likely to be attributed to

the luck at present. �us, we thought this di
erence resulted
in the decrease of P300 amplitude in ambiguous condition.

Prior studies indicated that, in stimulus processing, the
P300 could be considered as a representation of working
memory [27–29] and it was widely demonstrated that the
P300 amplitude is inversely proportional to workingmemory
[34–36]. �us, the lower P300 amplitude elicited in ambigu-
ous condition revealed that participants employed higher
memory load at assessment stage when they made decisions.
Besides, as we know, the ambiguous decision making is
relative to emotional process, and people would experience
more negative emotion (such as being more worried and
anxious) and be less con�dent, since they cannot exactly
know the outcome [11]. As discussed above, people would
need to trace back for evidences which required greater
number of certainty cues in order to neutralize this negative
feeling and make themselves con�dent under ambiguous
conditions [47, 48]. �ey would not only pay attention to
current stimuli (i.e., monetary value) as they did in risky
condition, but also recall the past experience about the
gamble to calculate a more clear expectance of outcome
[49]. All in all, due to the integrality of information, it is
much easier for decision maker to calculate expected value
in risky condition than in ambiguous condition. Participants
focus mainly on calculating explicit information for logical
strategies in risky condition while they are more likely to
mobilize past experience to �gure out the possible probability
[50] to reduce cognitive stress with insu�cient information
in ambiguous condition. �is additional e
ort and di�culty
resulted in a high working memory load with a lower P300
elicited. �erefore, our results of lower P300 amplitude in
ambiguous condition than in risky one indicated the di
erent
cognitive mechanism between ambiguity and risk.

5. Conclusion

In this study, we used ERPs to clarify and extend the
current understanding of decision making under risk and
ambiguity. Particularly, our �ndings suggested that the P300
amplitude can be applied to re�ect information processing at
the early stage (the stage of assessment) of decision making.
In our research, the P300 amplitude elicited by gambling
in ambiguous condition was signi�cantly smaller than that
evoked in risky condition, showing that participants met
with higher working memory under ambiguity to mobilize
past experience to calculate the expected value and reduce
cognitive strain than under risk. Furthermore, our behavioral
result validated ambiguity aversion phenomenon with the
�nding of a lower bet rate in ambiguous condition.
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hauser, “�e neural basis of belief updating and rational
decision making,” Social Cognitive and A�ective Neuroscience,
vol. 9, no. 1, Article ID nss099, pp. 55–62, 2014.



Submit your manuscripts at

http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


