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Abstract

Tauopathies are neurodegenerative disorders characterized by the accumulation of abnormal tau protein leading to
cognitive and/or motor dysfunction. To understand the relationship between tau pathology and behavioral impairments,
we comprehensively assessed behavioral abnormalities in a mouse tauopathy model expressing the human P301S mutant
tau protein in the early stage of disease to detect its initial neurological manifestations. Behavioral abnormalities, shown by
open field test, elevated plus-maze test, hot plate test, Y-maze test, Barnes maze test, Morris water maze test, and/or
contextual fear conditioning test, recapitulated the neurological deficits of human tauopathies with dementia. Furthermore,
we discovered that prepulse inhibition (PPI), a marker of sensorimotor gating, was enhanced in these animals concomitantly
with initial neuropathological changes in associated brain regions. This finding provides evidence that our tauopathy mouse
model displays neurofunctional abnormalities in prodromal stages of disease, since enhancement of PPI is characteristic of
amnestic mild cognitive impairment, a transitional stage between normal aging and dementia such as Alzheimer’s disease
(AD), in contrast with attenuated PPI in AD patients. Therefore, assessment of sensorimotor gating could be used to detect
the earliest manifestations of tauopathies exemplified by prodromal AD, in which abnormal tau protein may play critical
roles in the onset of neuronal dysfunctions.
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Introduction

The microtubule-associated protein tau is mainly expressed in

the central nervous system. Tau protein binds to tubulin in mic-

rotubules, which is a major component of the cytoskeleton and

where it promotes their polymerization and stabilization [1,2].

Mutated and/or hyperphosphorylated tau accumulates in the

disease state, where it is thought to contribute to neuronal cell

death [3,4]. Neurodegenerative disorders with abnormal tau pro-

tein depositions are called tauopathies, because they are cha-

racterized by tau inclusions such neurofibrillary tangle (NFT) in

Alzheimer’s disease (AD), and Pick bodies in Pick’s disease [5–9].

In the brains of patients with hereditary tauopathy, frontotemporal

dementia and parkinsonism linked to chromosome 17 (FTDP-17),

mutant tau proteins are aberrantly hyperphosphorylated and less

soluble than wild type tau [10–13]. Several tauopathy mouse

models have contributed to the novel pathophysiological findings

of tauopathies, including behavioral abnormalities [14]. However,

early behavioral symptoms of tauopathy model mice have not yet

been evaluated in detail. We previously analyzed the brains of a

mouse model of tauopathy expressing mutant human tau gene

(P301S, 1N4R), one of the mutations in human FTDP-17 [15].

These transgenic mice closely model human tau pathology seen in

authentic tauopathies. For example, they develop synaptic patho-

logy at 3 months of age, filamentous tau lesions at 6 months of age,

and progressive tau accumulations similar to NFTs in association

with neuronal loss as well as hippocampal and entorhinal cortical

atrophy by 9–12 months of age [15]. Here, we evaluated the

behavioral phenotypes of the tauopathy mouse model from 3

months of age, before they developed NFT-like tau pathology,
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neuronal cell death and motor weakness, and delineated a novel

behavioral phenotype, increased prepulse inhibition (PPI), that is

observed in the prodromal stage of AD, at the earliest stages of

disease onset in our tauopathy model mice.

Results

Table 1 shows a summary of the tests/tasks used in this study,

anatomical structures related to the tests/tasks, and related

behavioral/cognitive functions.

No significant differences in general conditions and
neurological screening
Upon gross inspection, tauopathy model mice had normal fur,

whiskers and posture, and were indistinguishable from wild type

mice. Casual trials of righting reflex, whisker touch reflex, ear

twitch reflex, reaching, and key jangling test were also normal.

They had similar body weight and body temperature (Figure S2A

and S2B). In grip-strength and wire-hang tests, their performances

were also similar, indicating that general muscular functions of

tauopathy model mice were not significantly impaired at 3 months

of age (Figure S2C and S2D).

No significant differences in light/dark transition test
In the light/dark transition test, no statistically significant diffe-

rences were observed between tauopathy model mice and wild

type mice (Figure S3A–C). However, latency to enter the light

chamber tended to be decreased in the former (Figure S3D).

Increased hyperactivity and decreased anxiety-like
behavior in tauopathy model mice
We then applied the open field test paradigm to explore anxiety-

like behavior (Figure 1A–D). Tauopathy model mice showed

an increasing tendency in total locomotive distance (Figure 1A),

and vertical activity was increased in the latter half of the test

(Figure 1B). Time spent in the center of the field was also inc-

reased (Figure 1C). Stereotypic locomotion tended to be increased

(Figure 1D). In the elevated plus-maze test, total entries and total

distance traveled were not significantly different between the two

groups of mice (Figure 2A, C). However, both entries into and

time spent on the open arms were significantly increased in tauo-

pathy model mice (Figure 2B, D). Therefore, anxiety-like behavior

was reduced in tauopathy model mice compared to wild type

mice, and tauopathy model mice were more hyperactive.

Locomotor activity and motor coordination
In the rotarod test, tauopathy model mice demonstrated no

significant change in latencies to fall compared with wild type mice

(Figure S4A). Since the effect of motor learning reached a plateau

in wild type mice after the 4th trial, we also analyzed the perfor-

mance of each genotype in the 4th-6th trials. In these trials, there

was also no significant difference in latency to fall. Therefore, no

Table 1. Performed individual tasks, their estimated affected brain regions, and related behavioral abnormalities.

Tasks Affected regions Related behavioral abnormalities

Righting reflex Vestibular system, muscle Postural maintenance, Muscle strength

Whisker twitch Sensory system Tactile sensation

Ear twitch Sensory system Tactile sensation

Reaching Visual system Visual acuity

Key jangling Auditory system Hearing acuity

Grip strength test Motor system Muscle strength

Wire hang test Motor system Muscle strength

Light/Dark transition test Cingulate cortex Anxiety

Open field test Cingulate cortex Anxiety, Exploratory locomotion

Elevated plus maze Cingulate cortex Anxiety

Porsolt forced swim test Stria terminalis (basal forebrain) Behavioral despair

Social interaction test Hippocampus Anxiety in novel situation, Sociality

Rotarod treadmill test Hippocampus, Motor tract, Cerebellum Learning, Muscle weakness, Motor activity, Coordination

Hot plate test Supraspinal sensory tract Pain and temperature sensation

Prepulse inhibition test Prefrontal cortex
Hippocampus
Striatum

Sensorimotor gating, Startle response, Hearing acuity

Y-maze Hippocampus Spontaneous alternation behavior, Learning (cognitive function)

Crawley’s social interaction test Hippocampus Reference memory (cognitive function), Sociality

Barnes circular maze Hippocampus Spatial working memory, Reference memory (cognitive function)

Morris water maze Hippocampus Spatial working memory, Reference memory (cognitive function)

Contextual and cued fear conditioning Hippocampus and Amygdala Contextual memory (cognitive function)

Tail suspension test Stria terminalis (basal forebrain) Behavioral despair

Table legend. Performed individual tasks. Tauopathy model mice had normal fur, whiskers and posture, and were indistinguishable from wild type mice. Casual trials of
righting reflex, whisker touch reflex, ear twitch reflex, reaching, and key jangling test were also normal.
doi:10.1371/journal.pone.0021050.t001

Sensorimotor Gating Enhancement of Tauopathy Model

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e21050

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



difference was observed between locomotor activity and motor

coordination.

Increased antinociceptive responses of tauopathy model
mice
We next tested antinociceptive responses by conducting the hot

plate test. Tauopathy model mice exhibited significantly decreased

thresholds in the hot plate test (Figure S4B). As the hot plate

response is considered to involve supraspinal lesions [16], the

supraspinal sensory tract might be affected in brains of tauopathy

model mice.

Behavioral despair of tauopathy model mice
In a portion of the observed period (7th min, Day 1) of the

Porsolt forced swim test, tauopathy model mice showed decreased

immobility time and increased distance traveled (Figure 3A, B).

Figure 1. Open field test in 13-week-old mice. Total distance traveled (A), vertical activity (B), center time (C), stereotypic counts (D). Tauopathy
model mice traveled longer distance (F(1, 33) = 4.467, p=0.0422, between groups, interaction between genotypes and time; F(1,23) = 1.955,
p= 0.0049), showed more vertical activity in the latter half of the task (F(1, 33) = 4.382, p=0.0441, between groups), spent more time in the center of
the field (F(1, 33) = 4.239, p= 0.0475, between groups), significantly. No statistical significance was observed in stereotypic counts (F(1, 33) = 2.226,
p= 0.1452, between groups). Controls: wild type mice (n = 19); Mutants: tauopathy model mice (n = 16). Tested with two-way mixed model ANOVA.
doi:10.1371/journal.pone.0021050.g001

Figure 2. Elevated plus maze test. Number of total entries (A), percentage of entries into open arms (B), total distance traveled during the test (C),
percentage of time on open arms (D). Percentages of entries into open arms and of time in open arms were significantly increased in tauopathy
model mice, respectively. Three wild type mice and 2 tauopathy model mice dropped from the open arms and failed to complete the task. Controls:
wild type mice (n = 16); Mutants: tauopathy model mice (n = 15). Tested with Student’s t-test.
doi:10.1371/journal.pone.0021050.g002

Sensorimotor Gating Enhancement of Tauopathy Model
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However, generally, no statistical significance was observed in

immobility between tauopathy model mice and wild type mice

in this test (F(1, 33)=3.958, p=0.055 on Day 1, F(1, 33)=2.246,

p=0.1434 on Day 2) and in the tail suspension test (F(1, 32)= 0.884,

p=0.3542, Figure S5).

Sensorimotor gating
The prepulse inhibition (PPI) test is widely used to measure

deficits in information-processing abilities or sensorimotor gating

in schizophrenia patients [17], and it can be employed in both

human and animal experiments [18]. PPI is defined as the degree

(%) by which the motor acoustic startle response is reduced when

the startle-eliciting stimulus is preceded by a brief, low-intensity,

non-eliciting stimulus. Tauopathy model mice had lower startle

amplitudes than wild type mice at both 110 dB and 120 dB, and

this was statistically significant at 120 dB (Figure 4A). Espe-

cially, the %PPI, an index of sensorimotor gating, was significantly

greater in tauopathy model mice (Figure 4B). The reduced PPI

values at 120 dB rather than those at 110 dB might be a ceiling

effect caused by the strong intensity of the startle stimulus.

Impaired spontaneous alternation in tauopathy model
mice
We performed the Y-maze test to evaluate spontaneous alterna-

tive behavior. Tauopathy model mice demonstrated increased num-

bers of entries into each arm, total alternations, and total distance

traveled (Figure 5A–C), reflecting hyperactivity. However, the

percentage of alternations was significantly decreased (Figure 5D).

Decreased sociability/object recognition memory in
tauopathy model mice
During the social interaction test in a one-chamber novel en-

vironment, no statistical significance was observed in the time

spent and the number of contacts, duration of active contacts,

mean of duration/contact ratio, and distance traveled between the

two groups of mice (Figure S6A–E).

Crawley’s three-chamber social approach test consists of a

sociability test and a social novelty preference test. These tests

assess social interaction that is relatively independent of loco-

motor activity compared to other social interaction tests, because

the preference of the mice can be quantified based on the time

spent around a wire cage containing a stranger mouse vs. an

empty cage in the sociability test, and a stranger mouse vs. a

familiar mouse in the social novelty preference test [19]. No

remarkable significance was observed during the habituation

with the stranger mouse (Figure 6A–D), or in time spent in the

stranger or familiar chamber (Figure 6E, F). Wild type mice spent

significantly longer time with stranger mice (Figure 6G), whereas

tauopathy model mice spent a shorter time with stranger mice

than with familiar mice (Figure 6H). No statistical significance

was observed in total distance traveled (Figure 6I, K) and in

average speed (Figure 6J, L). We also assessed statistical

significances between groups (Controls vs Mutants). No signifi-

cance was observed in the 1st trial and the time spent in each

chamber in the 2nd trial. Time spent around each cage showed

significances between control mice and tauopathy model mice.

Therefore, tauopathy model mice had some impaired sociability/

object recognition memory.

Spatial learning abilities
Spatial memory, which depends on the function of the hippocam-

pus, was assessed by the Barnes circular maze test. The task is similar

to the Morris water maze test, as both require an escape response.

All mice learned to locate the escape hole during the trai-

ning period, as indicated by a progressive reduction in distances,

latencies and numbers of escape errors. Through the training

Figure 3. Porsolt forced swim test. Percentage of each minute immobilized (A), distance traveled during the test (B). In the 6th block of Day 1,
immobility was decreased (two-waymixed model ANOVA, F(1, 33)=6.607, p=0.0149) and distance traveled was increased in tauopathy model mice (two-
way mixed model ANOVA, F(1, 33)=7.308, p=0.0108). In general, no statistical significance was observed, tested with two-way mixed model ANOVA
(immobility: Day 1, F(1, 33)=3.958, p=0.055, between groups. Day 2, F(1, 33)=2.246, p=0.1434, between groups; distance traveled: Day 1, F(1, 33)=0.324,
p=0.5733, between groups. Day 2, F(1, 33)=0.915, p=0.3458, between groups). Controls: wild type mice (n=19); Mutants: tauopathy model mice (n=16).
doi:10.1371/journal.pone.0021050.g003
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trials, there were no statistical differences between tauopathy

model mice and wild type mice in distances, latencies, and errors

(Figure S7A–C).

The probe trial was conducted 24 h after the last training

session. Both tauopathy model mice and wild type mice selectively

located the correct target hole where the escape box had been.

However, tauopathy model mice tended to spend less time around

the target hole (Figure S7D).

Spatial memory was also assessed by the Morris water maze test

to find reproducibility with another task. All mice learned to locate

the platform during the training period, as indicated by a progre-

ssive reduction in distances, latencies and numbers of errors to

escape. Through the training trials, there were no statistical diffe-

rences between tauopathy model mice and wild type mice in

latencies to find the visible platform (Figure 7A). However, tauo-

pathy model mice spent significantly more time to find the invi-

sible platform (Figure 7B), suggesting impairment of their spatial

learning ability. During the probe trial, tauopathy model mice

showed less time and path length in the pool quadrant where the

platform had previously been placed (Figure 7C, D), and a smaller

number of target platform crossings (Figure 7E). These results

of the probe trial suggest that spatial memory was impaired in

tauopathy model mice. No statistical significance was observed in

total path length and swimming speed of the two groups of mice,

Figure 4. Prepulse inhibition test. Startle amplitude (A), percentage of prepulse inhibition (B). Tauopathy model mice had lower startle
amplitudes than wild type mice at both 110 dB and 120 dB, statistically significant at 120 dB. Percent PPI was significantly greater in tauopathy
model mice. Controls: wild type mice (n = 19); Mutants: tauopathy model mice (n = 16). Tested with Mann-Whitney’s U-test in startle amplitude
110 dB, the others with Student’s t-test.
doi:10.1371/journal.pone.0021050.g004

Figure 5. Y-maze test. Number of total entries (A), number of total alternations (B), total distance traveled (C), percentage of alternations (D). In
tauopathy model mice, significantly increased numbers of total entries and total alternations, and prolonged distance traveled were observed.
Percentage of alternations was significantly decreased, suggesting that short-term memory was impaired in tauopathy model mice. Controls: wild
type mice (n = 19); Mutants: tauopathy model mice (n = 16). Tested with Mann-Whitney’s U-test in % alternation, the others with Student’s t-test.
doi:10.1371/journal.pone.0021050.g005
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implying that swimming ability did not bias the results of training

tasks or the probe trial (Figure 7F, G).

Contextual memory
We also performed contextual and cued fear conditioning tests,

which are largely dependent on the hippocampus and amygdala

[20,21]. These tests did not show any differences in response

between the two groups (Figure 8A–C) except for the fourth time

point in the context testing (p=0.0254, Figure 8B), which showed

decreased immobility in tauopathy model mice. These results

indicate that the effect of mutant tau protein on learning in the

contextual fear conditioning test was minimal around the age of

5–6 months.

Hyperphosphorylated Tau expression in the brains of
tauopathy model mice
At 4 months of age, we assessed the histological findings of the

lateral globus pallidus, amygdala, auditory cortex, and ventral

hippocampus of male tauopathy model mice. These regions are

thought to be affected by sensorimotor gating. Phosphorylated tau

was observed in these regions of tauopathy model mice (Figure 9A–

D), but not in wild type mice (Figure 9E–H). After behavioral

analysis, we also assessed the histological findings of the cingulate

cortex, anterior cortical amygdaloid nucleus and dorsal hippo-

campus. The cingulate cortex and amygdala are considered to be

affected by anxiety disorder [22]. Dorsal hippocampal lesions are

closely related to memory disturbance [23]. Remarkable phos-

phorylated tau was observed in these three regions of tauopathy

model mice, but not in wild type mice, corresponding to the

previous report [15], suggesting that tau pathology is related to the

observed behavioral abnormalities (data not shown). Immunoblot-

ting analysis revealed the expression of phosphorylated tau in the

hippocampus and cortex of tauopathy model mice at 6 months of

age (Figure 10), also compatible with the previous reports

[15,24,25].

Discussion

We previously reported that our tauopathy model mice closely

recapitulated human tau pathology including presynaptic loss,

filamentous tau lesions, and progressive tau accumulations similar

to NFTs seen in human tauopathy [15]. Behavioral analysis of this

mouse model, therefore, would demonstrate prodromal tauopathy.

We demonstrated that PPI was enhanced in early-stage tauo-

pathy model mice. Previous studies showed abnormal phenotypes

in multiple behavioral batteries [23], but PPI enhancement in the

early stage had not been observed in previous studies.

Synaptic loss was one of the pathological findings in the brains

of these tauopathy model mice [15]. A previous study reported

decreased PPI in human N279K tauopathy model mice older than

12 months, with neuronal cell death [26–28]. They speculated that

decreased PPI was related to neuronal cell death. In contrast, PPI

enhancement in our tauopathy model mice would be due to

presynaptic loss [15] caused by profound neurotoxicities prior to

the emergence of high-order tau assemblies [29], or by aggre-

gation of abnormal protein itself [30].

PPI is related to the circuit composed of the colliculus, peduncu-

lopontine tegmental nucleus, substantia nigra, and caudal pontine

reticular nucleus. This circuit is modulated by some structures of the

forebrain — auditory cortex, amygdala, lateral globus pallidus, and

ventral hippocampus [31–40]. The abnormal tau protein accu-

mulation we observed in the early stage of tauopathy (Figure 9, 10)

might stimulate neurons in the amygdala and ventral hippocampus,

leading to the enhancement of PPI.

Patients with mild cognitive impairment (MCI), the boundary or

transitional stage between normal aging and dementia including

AD, revealed greater %PPI than age-matched normal subjects,

although patients with moderate-stage and advanced AD showed

lower %PPI [41,42]. Therefore, it would seem reasonable for PPI

to show no difference between AD patients and normal subjects

during the progression of cognitive dysfunction [43]. We observed

enhancement of PPI, and decreased PPI with old (older than 12

months) tauopathy model mice has been previously reported [26–

28]. PPI with our tauopathy model mice at an older age might also

be decreased, although we were prevented from performing PPI

assay with our tauopathy model mice, being older than 6 months,

because of motor weakness. Therefore, the behavioral abnormal-

ities we observed with our mice might be helpful for assessing

prodromal human AD, and especially the relationship between its

tau pathology and cognitive dysfunction. These findings suggest

that enhancement of PPI could be one of the early manifestations

in tauopathies including AD, and tau protein abnormalities may

be relevant to MCI.

Locomotor hyperactivity was observed in the open field test, as

previously reported [26,44], Y-maze test, and Morris water maze

test. Motor weakness was observed after 6 months of age [15], but

we failed to find lower grip strength (Figure S1C). Therefore, the

motor tract of these tauopathy model mice was functionally intact

at 3 months of age. Our tauopathy model mice showed phos-

phorylated tau in the prefrontal cortex and amygdala [15], which

are involved in hyperactive behavior [45]. Hyperactive behavior

was also observed among human AD patients [46]. Thus, our

tauopathy model mice appeared to reproduce the hyperactive

phenotype of tauopathy with dementia. Our mice also showed less

latency in the hot plate test, an antinociceptive reaction assess-

ment, suggesting that these mice were more sensitive to pain and

their supraspinal sensory tracts were impaired. However, patients

with dementia showed more impaired response against pain [47].

Hyperactivity might modify the results of the hot plate test.

Despair or depressive states are often observed in patients with

dementia [48]. However, such patients also frequently present

with agitation and aggression [49]. Our study showed partially

reduced immobility in tauopathy model mice in the Porsolt forced

swim test, suggesting that despair-like behavior might be decreased

and some part of agitation in patients with cognitive dysfunction

reproduced. Prolonged time spent in the center of the open field or

open arms in the elevated plus test was observed, suggesting a

Figure 6. Crawley’s social interaction test. The 1st trial with one-stranger mouse (A–D, I, J), the 2nd trial with one-familiar mouse and one-
stranger mouse (E–H, K, L). Time spent in each chamber was tested with one-way ANOVA, followed by Fisher’s least significant difference method as
post hoc analysis within groups, with Student’s t-test between groups. Time spent in each cage (mouse with no prior contact with a subject mouse)
was analyzed by Student’s t-test and Welch’s t-test. In the 1st trial, both groups spent more time in the chamber (A, B) and the cage (C, D) of the
stranger side. In the 2nd trial, no statistical significance was observed between the time spent in the stranger and familiar chambers of the two groups
(Controls: p=0.7166; Mutants: p=0.2116, Controls vs Mutants: Stranger side: p= 0.5308, Empty side: p= 0.4412). Control wild type mice showed
significantly more time spent with stranger mice (G, Controls vs Mutants: p= 0.03761 (Welch’s t-test), Familiar side: p=0.04053 (Student’s t-test)).
However, tauopathy model mice tended to spend more time with familiar mice (H). Controls: wild type mice (n = 19); Mutants: tauopathy model mice
(n = 16).
doi:10.1371/journal.pone.0021050.g006
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Figure 8. Fear conditioning test. Percentage of freezing time of each minute of conditioning (A), context testing (B), cued testing with altered
context (C). Freezing tended to be reduced in tauopathy model mice in context testing. In the 4th block, freezing was significantly decreased (two-
way mixed model ANOVA, F(1, 33) = 5.479, p= 0.0254). In general, no statistical significance was observed as tested with two-way mixed model
ANOVA (Conditioning: F(1, 33) = 0.006, p= 0.9378, between groups; Context testing: F(1, 33) = 3.000, p= 0.0926, between groups; Cued testing:
F(1, 33) = 0.771, p=0.3863, between groups). Controls: wild type mice (n = 19); Mutants: tauopathy model mice (n = 16).
doi:10.1371/journal.pone.0021050.g008

Figure 7. Morris water maze test. Training session (A, B), probe test 24 h after the last (6th) training (C–G). No statistical significances were
observed in the training session with the visible platform (A, F(1,46) = 0.0395, p=0.8434, between groups), but tauopathy model mice spent
significantly more time to find the invisible platform (B, F(1,46) = 11.2326, p= 0.0016, between groups). Tested by two-way mixed model ANOVA. In
the probe trial, tauopathy model mice showed less time (C, p,0.0001) and path length (D, p,0.0001) in the pool quadrant where the platform had
previously been placed, and smaller numbers of target platform crossings (E, p,0.0001). No statistical significance was observed in total path length
(F, p.0.05) and swimming speed (G, p.0.05) between the two groups of mice. Controls: wild type mice (n = 11); Mutants: tauopathy model mice
(n = 29). Tested with Student’s t-test.
doi:10.1371/journal.pone.0021050.g007
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reduction in anxiety-like behavior. The cingulate cortex and/or

amygdala might be involved in impaired anxiety, which would

correspond to patients with AD [50] and/or frontotemporal

dementia [51].

Our battery, including the Y-maze test, Crawley’s social inter-

action test, Barnes maze test, Morris water maze test, and context

testing in the fear conditioning test disclosed memory disturbance

in our tauopathy model mice. This is compatible with human

cognitive disorders, including AD, that dorsal hippocampal lesion

affects memory disturbance [52–54]. The Barnes maze test

was chosen for this study, as it does not involve swimming like

the Morris water maze. Given the possible motor deficits with

tauopathy model mice, swimming ability might have given an

advantage to wild type mice in the Morris water maze. However,

only the Morris water maze test showed statistical significance in

tasks concerning spatial memory, suggesting that this test might in

fact be more effective than the Barnes maze test to motivate mice

to find the target as they try to avoid drowning. Female mice might

show more remarkable behavioral abnormalities. Further studies

will be required to confirm the effect on memory disturbance by

gender and/or background.

In conclusion, human P301S tau protein transgenic mice could

successfully recapitulate symptoms of human tauopathies with

dementia, including AD at the early stage. Behavioral analysis in

the earlier stage of tauopathy model mice might provide new

avenues toward early diagnosis and early therapeutic intervention

for tauopathies including AD.

Materials and Methods

Animals
We have previously established transgenic mice expressing the

mutant (P301S) human T34 tau isoform (1N4R) on a B6C3H/F1

background [15]. Six-month-old animals with this original hybrid

Figure 10. Representative immunoblotting of the whole cortex
(A) and the whole hippocampus (B) of mice at the age of 6
months, after the comprehensive behavioral analysis. Phos-
phorylated tau was observed in the brains of tauopathy model mice,
both in the cortex and in the hippocampus, but not in those of control
mice. Each 5 samples were randomly selected.
doi:10.1371/journal.pone.0021050.g010

Figure 9. Representative immunofluorescence histological findings of tauopathy model mice and wild type mice. Male mice 4 months
of age: Tauopathy model mice (A–D), and wild type mice (E–H). Lateral globus pallidus (A, E), anterior cortical amygdaloid nucleus (B, F), auditory
cortex (C, G), and ventral hippocampus (CA3; D, H). Scale Bar: 100 mm.
doi:10.1371/journal.pone.0021050.g009

Sensorimotor Gating Enhancement of Tauopathy Model

PLoS ONE | www.plosone.org 9 June 2011 | Volume 6 | Issue 6 | e21050

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



background were used for the Morris water maze test. All the

other animals were backcrossed 10 times to C57BL/6J back-

ground to create a congenic strain. Transgenic and non-transgenic

offspring were identified by PCR of tail DNA.

Experimental design
Six-month-old female animals with a B6C3H/F1 background

(tauopathy model mice: n = 29; littermate wild type mice: n= 11)

were used to perform the Morris water maze test. All other studied

animals were male with a C57BL/6J background, and in each

individual test, tauopathy model mice (n = 16) were compared with

littermate wild type mice (n = 19). Behavioral tests were evaluated

in the same animals. Three or four mice were housed in each cage

in a room with a 12-hour light/dark cycle (lights on at 7:00 a.m.)

with access to food and water ad libitum. Behavioral testing was

performed between 9:00 a.m. and 6:00 p.m. After the tests, the

apparatuses were cleaned with super hypochlorous water to

prevent any bias due to olfactory cues. All behavioral testing

procedures were carried out as previously described [55], in

accordance with the National Institutes of Health (NIH) Guide for

the Care and Use of Laboratory Animals, and were approved by the

Animal Care and Use Committee of Kyoto University Graduate

School of Medicine (Permit number: Med Kyo 09567) and the

Institutional Animal Care and Use Committee of University of

Pennsylvania School of Medicine (Permit number: 507800). Each

task was performed in series as described in Figure S1.

General health and neurological screening
Neurological screening was performed with 13-week-old male

mice. The righting, whisker twitch, and ear twitch reflexes were

evaluated. A number of physical features, including the presence

of whiskers and bald hair patches, were also recorded.

Neuromuscular strength
Examinations of neuromuscular strength were performed with

13-week-old male mice, and tested with the grip strength test and

wire hang test. A grip strength meter (O’Hara & Co., Tokyo,

Japan) was used to assess forelimb grip strength. Mice were lifted

and held by their tail so that their forepaws could grasp a wire

grid. The mice were then gently pulled backward by the tail with

their posture parallel to the surface of the table until they released

the grid. The peak force applied by the forelimbs of the mouse

was recorded in Newtons (N). Each mouse was tested three times,

and the greatest value measured was used for statistical analysis.

In the wire hang test, the mouse was placed on a wire mesh that

was then inverted and waved gently, so that the mouse gripped

the wire. Latency to fall (in sec) was recorded, with a 60-sec cut-

off time.

Open field test
Locomotor activity was measured using the open field test,

which was performed with 14-week-old male mice. Each mouse

was placed in the center of the open field apparatus (40640630

cm; Accuscan Instruments, Columbus, OH, USA). Total distance

traveled (in cm), vertical activity (rearing measured by counting the

number of photobeam interruptions), time spent in the center,

beam-break counts for stereotyped behaviors, and number of fecal

boli were recorded. Data were collected for 120 min.

Light/dark transition test
Light/dark transition test was performed as previously descri-

bed [56]. The apparatus used consisted of a cage (21642625 cm)

divided into two chambers of equal size by a partition containing a

door (O’Hara & Co.). One chamber was brightly illuminated

(390 lux), whereas the other was dark (2 lux). Mice were placed into

the dark side and allowed to move freely between the two chambers

with the door open for 10 min. The total number of transitions

between chambers, time spent in each side, first latency to enter the

light side, and distance traveled were recorded automatically using

Image LD software (see ‘Image and data analysis’).

Elevated plus-maze test
Elevated plus-maze test was performed as previously described

[57]. The elevated plus-maze (O’Hara & Co.) consisted of two

open arms (2565 cm) and two enclosed arms of the same size,

with 15-cm high transparent walls. The arms and central square

were made of white plastic plates and were elevated to a height of

55 cm above the floor. To minimize the likelihood of animals

falling from the apparatus, 3-mm high plastic ledges were provided

for the open arms. Arms of the same type were arranged at

opposite sides to each other. Each mouse was placed in the central

square of the maze (565 cm), facing one of the closed arms.

Mouse behavior was recorded during a 10-min test period. The

numbers of entries into, and the time spent in open and enclosed

arms, were recorded. The illumination level was 100 lux at the

center of the maze. For data analysis, we used the following four

measures: the percentage of entries into the open arms, time spent

in the open arms (sec), number of total entries, and total distance

traveled (cm). Data acquisition and analysis were performed

automatically using Image EP software (see ‘Image and data

analysis’). Three wild type mice and a tauopathy model mouse

dropped from the open arms and failed to finish the task.

Porsolt forced swim test
The Porsolt forced swim test apparatus consisted of four

Plexiglas cylinders (20 cm high610 cm diameter). A nontranspar-

ent panel separated the cylinders to prevent the mice from seeing

each other (O’Hara & Co.). The cylinders were filled with water

(23uC) up to a height of 7.5 cm. Mice were placed into the

cylinders, and their behavior was recorded over a 10-min test

period (Day 1). Retention tests were administered 24 hours after

training (Day 2). Data acquisition and analysis were performed

automatically using Image PS software (see ‘Image and data

analysis’).

Hot plate test
The hot plate test for nociception was used to evaluate sen-

sitivity to a thermal stimulus. Mice were placed on a 55.0 (60.3)

uC hot plate (Columbus Instruments, Columbus, OH, USA), and

latency to the first hind-paw response (a foot shake or a paw lick)

was recorded.

Social interaction test in a novel environment (one-chamber
social interaction test)
In the social interaction test, two mice of identical genotypes

that were previously housed in different cages were placed in a

box together (40640630 cm) and allowed to explore freely for

10 min. Social behavior was monitored with a CCD camera

connected to a computer. Analysis was performed automatically

using Image SI software (see ‘Image and data analysis’). The total

number of contacts, total duration of active contacts, total contact

duration, mean duration per contact, and total distance traveled

were measured. Active contact was defined as follows. Images

were captured at 1 frame per second, and distance traveled

between two successive frames was calculated for each mouse. If

the two mice contacted each other and the distance traveled by
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either mouse was longer than 2 cm, the behavior was considered

as ‘active contact’. Genotypic mismatch was found in one pair (one

tauopathy model pair), and they could not be analyzed.

Rotarod test
Motor coordination and balance were tested by rotarod test.

This test, using an accelerating rotarod (UGO Basile Accelerating

Rotarod, Varese, Italy) with 5 lanes, was performed by placing 15-

week-old mice on rotating drums (3-cm diameter) and measuring

how long each animal was able to maintain its balance on the rod.

The speed of the rotarod was accelerated from 4 to 40 rpm over a

5-min period. We performed 3 trials on the first day, and another

3 trials on the second day.

Startle response/Prepulse inhibition (PPI) test
An acoustic startle reflex measurement system was used

(O’Hara & Co.). A test session was begun by placing a 16-week-

old mouse in a Plexiglas cylinder, where it was left undisturbed for

10 min. The duration of white noise, used as the startle stimulus,

was 40 ms for all trial types. The startle response was recorded for

140 ms (measuring response every 1 ms) starting with the onset

of the prepulse stimulus. The background noise level in each

chamber was 70 dB. The peak startle amplitude recorded during

the 140-ms sampling window was used as dependent variable. A

test session consisted of 6 trial types (i.e., two types for startle

stimulus-only trials, and four types for PPI trials). Intensity of the

acoustic startle stimulus was 110 or 120 dB. The prepulse sound

was presented 100 ms before the startle stimulus, and its intensity

was 74 or 78 dB. Four combinations of prepulse and startle stimuli

were employed (74–110 dB, 78–110 dB, 74–120 dB, and 78–

120 dB). Six blocks of the 6 trial types were presented in a pseudo-

random order such that each trial type was presented once within

a block. The average inter-trial interval was 15 sec (range, 10–

20 sec). Prepulse inhibition was defined as the percentage of the

decline of startle response (prepulse inhibition (%)=1002[(startle

amplitude after prepulse and pulse)/(startle amplitude after pulse

only)6100]).

Y-maze test
We recorded spontaneous alternation behavior in a Y-maze to

assess short-term memory performance [58]. The maze was made

of gray painted wood. Each arm was 40 cm long, 13 cm high,

3 cm wide at the bottom, 10 cm wide at the top, and converged at

an equal angle. The mouse was placed at the end of one arm and

allowed to move freely through the maze during a 10-min session.

The series of arm entries, including possible returns into the same

arm, was recorded with a CCD camera connected to a computer.

An alternation was defined as entries into all three arms on

consecutive occasions. The number of maximum alternations was

therefore the total number of arm entries minus two, and the

percentage of alternations was calculated as (actual alternations/

maximum alternations)6100. For example, if the arms were called

A, B, C and the mouse performed ABCABCABBAB, the number

of arm entries would be 11, and the successive alternations: ABC,

BCA, CAB, ABC, BCA, CAB. Therefore, the percentage of alter-

nations would be [6/(1122)]6100= 66.7. Analysis was performed

automatically using Image YM software (see ‘Image and data

analysis’).

Crawley’s sociability and preference for social novelty
test
The test for sociability and preference for social novelty was

conducted as previously described [19,59,60]. The apparatus

comprised a rectangular, three-chambered box and a lid con-

taining an infrared video camera (O’Hara & Co.). Each chamber

measured 20640622 cm, and the dividing walls were made of

clear Plexiglas, with small square openings (563 cm) allowing

access into each chamber. An unfamiliar C57BL/6J male (stranger

1) with no prior contact with the subject mouse was placed in one

of the side chambers. The placement of stranger 1 in the left or

right side chamber was systematically alternated between trials.

The stranger mouse was enclosed in a small, circular wire cage

that allowed nose contact between the bars, but prevented

fighting. The cage was 11 cm high, with a bottom diameter of

9 cm and bars spaced 0.5 cm apart. The subject mouse was first

placed in the middle chamber and allowed to explore the entire

social test box for 10 min. The amount of time spent within a 5-cm

distance of the wire cage and in each chamber was recorded. At

the end of the first 10 min, each mouse was tested in a second 10-

min session to quantify social preference for a new stranger. A

second, unfamiliar mouse was placed in the chamber that had

been empty during the first 10-min session. This second stranger

was enclosed in an identical small wire cage. The test mouse had a

choice between the first, already-investigated unfamiliar mouse

(stranger 1), and the novel unfamiliar mouse (stranger 2). As

described above, the amount of time spent within a 5-cm distance

of each wire cage and in each chamber during the second 10-min

session was recorded. The stranger mice used in this experiment

were 8- to 12-week-old C57BL/6J male mice, not littermates.

Analysis was performed automatically using Image CSI software

(see ‘Image and data analysis’).

Barnes circular maze test
The Barnes task was conducted on ‘‘dry land,’’ a white circular

surface, 1.0 m in diameter, with 12 holes equally spaced around

the perimeter (O’Hara & Co.). The circular open field was

elevated 75 cm from the floor. A black Plexiglas escape box

(1761367 cm), which had paper cage bedding on its bottom, was

located under one of the holes. The hole above the escape box

represented the target, analogous to the hidden platform in the

Morris task. The location of the target was consistent for any given

mouse, but was randomized across mice. The maze was rotated

daily, with the spatial location of the target unchanged with respect

to the visual room cues, to prevent a bias based on olfactory or

proximal cues within the maze. The first training was started when

mice were 20 weeks old. Three trials per day were conducted for

10 successive days in the beginning (on days 5 and 6, no trial was

undertaken). One day after the last training, a probe trial was

conducted without the escape box, to confirm that this spatial task

was acquired based on navigation using distal-environment room

cues. Time of latency to reach the target hole, number of errors,

distance to reach the target hole, and time spent around each hole

were recorded by video tracking software (Image BM, see ‘Image

and data analysis’).

Morris water maze test
A circular pool (120 cm in diameter and 75 cm in height) was

filled to a height of 30 cm with water (2161uC), in which white

tempera nontoxic paint was mixed to make the surface opaque.

Mice were handled for two min, two times per day, for 2 days

prior to pre-training. During the visible platform test, a black

colored platform with a flag (10610 cm in area) was placed in the

quadrant 1 cm above the surface of the water, and its location was

always varied randomly in each trial. All mice were subjected to 2

blocks divided by 4–5 hours per day with 3 trials per block for 3

consecutive days. For the invisible platform test, a white colored

platform (10610 cm in area) was placed at the center in one of
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four quadrants of the pool (southwest area) and submerged 1 cm

below the water surface so that it was invisible at water level. The

location of the platform was fixed at the same quadrant while the

start position of swimming was varied. Mice were given 4 trials per

day for 5 consecutive days, during which they were allowed to find

the platform within 60 seconds. Each trial was separated by an

inter-trial interval of 1–2 min, which was adopted through all the

tests. Once the mouse located the platform, it was permitted to

stay on it for 10 seconds. If the mouse did not find the platform

within 60 seconds, it was guided to the platform and placed on it

for 20 seconds. As parameters, escape latency (sec), swim path

length (cm), and swim speed (cm/sec) were extracted from the

recording data and averaged for each session of the trials and for

each mouse. To evaluate the spatial reference memory 24 hours

after the last trial of the invisible training test, all mice were given a

probe trial consisting of removing the platform from the pool and

allowing the mice to swim for 60 sec in its search. A record was

kept of the swimming time (sec) in the pool quadrant where the

platform had previously been placed. Swim speed (cm/sec),

latency time to find the platform (sec), and the number of target-

platform crossings during mouse swimming from the pool

periphery to the pool quadrant were recorded by video camera

and analyzed by a computer-controlled video tracking system

(Smart V2.5, San Diego Inc., San Diego, CA, USA).

Contextual and cued fear conditioning test
The test for contextual and cued fear conditioning was

conducted as previously described [61]. Each mouse was placed

in a test chamber (26634629 cm) inside a sound-attenuated

chamber (O’Hara & Co.) and allowed to explore freely for 2 min.

A 60-dB white noise, the conditioned stimulus (CS), was presented

for 30 sec, followed by a mild (2 sec, 0.5 mA) foot shock, the

unconditioned stimulus (US). Two more CS–US pairings were

presented with 2-min interstimulus intervals. To examine shock

sensitivity, we measured the distance traveled when the foot shock

was delivered (from 2 sec before shock to 2 sec after, total 6 sec).

Context testing was conducted 1 day after conditioning in the

same chamber. Cued testing with altered context was conducted

on the same day, following the context testing, using a triangular

box (35635640 cm) made of white opaque Plexiglas, which was

located in a different room. Data acquisition, control of stimuli

(i.e., tones and shocks), and data analysis were performed auto-

matically. Images were captured at one frame per sec. For each

pair of successive frames, the size of the area (pixels) of mouse

movement was measured. When this area was below a certain

threshold (i.e., 20 pixels), the behavior was judged to be ‘freezing’.

When the area equaled or exceeded the threshold, the behavior

was considered ‘non-freezing’. The threshold (amount of pixels) for

determining freezing was determined by adjusting it to the amount

of freezing measured automatically, and ‘freezing’ that lasted

,2 sec was not included in the analysis. Analysis was performed

automatically using Image FZ software (see ‘Image and data

analysis’).

Tail suspension test
The tail suspension test was performed over a 10-min test

session according to the procedures described previously [62].

Twenty-three-week-old mice were suspended 30 cm above the

floor in a visually isolated area by adhesive tape placed ,1 cm

from the tip of the tail, and their behavior was recorded over a 10-

min test period. Data acquisition and analysis were performed

automatically using Image TS software (see ‘Image and data

analysis’). One wild type mouse dropped and failed to finish the

task.

Immunohistochemistry
To evaluate the affected brain region in regard to sensorimotor

gating, we assessed male tauopathy model mice at 4 months of age.

Mice under deep pentobarbital anesthesia were perfused via the

aorta with 50 mL of phosphate-buffered saline (PBS). After

perfusion, the brain was quickly removed, followed by fixation

with 4% paraformaldehyde in 100 mmol/L phosphate buffer (PB)

for overnight and then transferred to 20% sucrose solution in

100 mmol/L PB at 4uC. After cryoprotection, the brain was

rapidly frozen by heat exchange from vaporized carbon dioxide

gas (270uC) connected to a carbon dioxide gas tank. The frozen

brain was kept in a cryostat until adjusting to the surrounding

220uC-temperature. Brain pieces, 12 mm thick, were cut with a

cryostat and pasted onto glass slides. Brain slices were incubated

with primary antibody, mouse monoclonal antibody to detect

human phosphorylated tau and paired-helical filaments (AT8,

Innogenetics, Gent, Belgium) overnight at 4uC, and next with

biotinylated antibody to rabbit IgG (Vector Laboratories, Bur-

lingame, CA, USA) for 1 h at room temperature. Then the

sections were incubated with avidin peroxidase using a VECTAS-

TAIN ABC kit (Vector Laboratories) for 1 h at room temperature.

All sections were rinsed several times with PBS between incu-

bations. Labeling was revealed by DAB, which yielded a dark

brown color. After incubation, cellular nuclei were stained with

Mayer’s hematoxylin solution (WAKO, Osaka, Japan). Histolog-

ical analysis of the lateral globus pallidus (bregma 21.60 mm,

coronal section), auditory cortex, amygdala (bregma 22.18 mm,

coronal section), and ventral hippocampus (bregma 23.64 mm,

coronal section) was performed by fluorescence microscope BZ-

9000 (Keyence, Osaka, Japan).

To evaluate the affected brain region regarding behavioral ab-

normalities with cognitive dysfunction, we assessed male tauo-

pathy model mice at 6 months of age. Histological analysis of the

cingulate cortex (bregma 20.10 mm, coronal section), anterior

cortical amygdaloid nucleus and dorsal hippocampus (bregma

21.06 mm, coronal section) was performed in the same way as

above.

Immunoblotting
Tau protein levels of brains of mice at 6 months of age were

determined by homogenizing brains (whole cortex and whole

hippocampus of each mouse) in 2 ml/g tissue of ice-cold high-salt

reassembly buffer (RAB-HS) (0.1 M MES, 1 mM EGTA, 0.5 mM

MgSO4, 0.75 M NaCl, 0.02 M NaF, 1 mM PMSF, and protease

inhibitor cocktail (Roche Diagnostics, Switzerland), followed by

centrifugation at 50,0006 g for 40 min at 4uC. Protein

concentrations were determined and SDS-PAGE, followed by

western blot analysis, was performed as described [63,64].

Image and data analysis
The applications used for the behavioral studies (Image LD,

Image EP, Image PS, Image SI, Image YM, Image CSI, Image

BM, Image FZ, and Image TS) were based on the public domain

NIH Image program (developed at the U.S. National Institutes of

Health available at http://rsb.info.nih.gov/nih-image/) and the

ImageJ program (http://rsb.info.nih.gov/ij/), which were modi-

fied for each test by Miyakawa (available through O’Hara & Co.).

Statistical analysis was conducted using StatView (SAS Institute,

Cary, NC, USA). Normality was analyzed by Kolmogorov-

Smirnov test, and the equality of distributions by Bartlett test. Data

were analyzed by two-tailed t-test (Student’s t-test, Welch’s t-test),

Mann-Whitney’s U-test, one-way analysis of variance (ANOVA),

or two-way mixed model ANOVA for each behavioral analysis.
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Significant differences were defined as p-value,0.05. Values in

graphs were expressed as mean 6 SEM.

Supporting Information

Figure S1 Time course of each task of behavioral analysis.
GC: General conditions, LD: Light/Dark transition test, OF: Open

field test, EP: Elevated-plus maze, PS: Porsolt forced swim test, HP:

Hot plate test, SI: Social interaction test, RR: Rotarod treadmill test,

PPI: Prepulse inhibition test, YM: Y-maze test, CSI: Crawley’s social

interaction test, BM: Barnes maze test, MW: Morris water maze test,

FZ: Fear conditioning test, TS: Tail suspension test.

(TIF)

Figure S2 General conditions in 13-week-old mice. Body
weight (A), Rectal temperature (B), Grip strength (C), Wire hang

duration (D). No statistical significance was observed at this age

between tauopathy model mice and wild type mice. Controls: wild

type mice (n = 19); Mutants: tauopathy model mice (n = 16).

Tested with Student’s t-test.

(TIF)

Figure S3 Light/dark transition test. Distance traveled (A),

Stay time in the light chamber (B), Number of transitions between

light and dark chambers (C), First latency to enter light chamber

from dark chamber (D). No statistical significance was observed

between tauopathy model mice and wild type mice. Controls: wild

type mice (n = 19); Mutants: tauopathy model mice (n = 16).

Tested with Student’s t-test.

(TIF)

Figure S4 Rotarod treadmill test (A) and hot plate test
(B). In rotarod treadmill test, tauopathy model mice tended to be

hyperactive compared to wild type mice. However, no statistical

significance was observed. Tested with two-way mixed model

ANOVA, F(1, 33) = 2.526, p=0.1215, between groups). In hot

plate test, latency to react to stimulation was significantly reduced

in tauopathy model mice. Controls: wild type mice (n = 19);

Mutants: tauopathy model mice (n = 16). Tested with Student’s

t-test.

(TIF)

Figure S5 Tail suspension test. One wild type mouse

dropped during the test and failed to complete the task. No

statistical significance was observed between tauopathy model

mice and wild type mice (F(1, 32) = 0.884, p=0.3524, between

groups). Controls: wild type mice (n = 18); Mutants: tauopathy

model mice (n = 16). Tested with two-way mixed model ANOVA.

(TIF)

Figure S6 One-chamber social interaction test. Genotyp-

ic mismatch was found in one pair (tauopathy model pair) and

they could not be analyzed. Total duration of contacts (A), total

number of contacts (B), total duration of active contacts (C), mean

duration per contact (D), total distance traveled during the test (E).

No statistical significance was observed between tauopathy model

mice and wild type mice. Controls: wild type mice (n = 9);

Mutants: tauopathy model mice (n = 7). Tested with Student’s

t-test.

(TIF)

Figure S7 Barnes circular maze test. Training session

(A–C), probe test 24 h after the last (24th) training (D). No

statistical significances were observed in the training session

(Distance to 1st: F(1, 33) = 0.458, p=0.5031, between groups.

Latency to 1st: F(1, 33) = 0.153, p=0.6079, between groups. Error

to 1st: F(1, 33) = 0.069, p=0.7937), between groups. Tested by

two-way mixed model ANOVA. In the probe test, time spent with

the hole next to the target significantly differed between tauopathy

model mice and wild type mice. No statistical significance was

observed with the target. Controls: wild type mice (n = 19);

Mutants: tauopathy model mice (n = 16). Tested with Student’s

t-test.

(TIF)
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