1.0 i 2
= |I!ll3 122
| L=
= \IIII
1.2

23 s e

HETR LD
JUL 28 1993
OSTI

The
by a contractor ot the
under contract No.
Accordingly,

U. S. Government purposes.

submitted manuscript nas been authored
U. S. Government
W-31-109-ENG-38.
the U. S. Government retains a
nonexclusive, rqyaity-tree license O publish
or reproduce the pubhished form of this
contribution, o allow others 10 do 5O, for

p4-Linda: A Portable Implementation of Linda

Ralph M. Butler *
Alan L. Leveton

(‘ollege of Comp. and Inf. Sci.
University of North Florida
Jacksonville, FL 32224
rbutler@sinkhole.unf.edu

Abstract

Facilities such as inlerprocess comimunication and
protection of shared resources have been added to oper-
aling systems to support multiprogramming and have
since been adapted to erploit explicit multiprocessins
within the scope of two models: the shared-memory
model and the distributed (message-passing) model.
When multiprocessors (or networks of helerogeneous
processors) are used for explicit parallelism. the differ-
ence between these models 1s ezposed to the program-
mer. The p4 tool set was originally developed to buffer
the programmer from synchronizalion i1ssues whale of-
fering an added advantage in portabulity, however two
models are often still needed to develop parallel algo-
rithins. We prorvide two unplementations of Linda in
an altempl to support a single high-level programming
model on Lop of the existing paradigms in order lo pro-
mde a consistent semantics regardless of the underly-
ing model. Linda’s fundamental properties associaled
with generalive communication eliminate the distinc-
fion between shared and distributed memory.

1 Introduction

We have implemented two compatible versions
of Linda on top of the p4 portable parallel pro-
gramiing system, one to take advantage of shared-
memory architectures, the other to utilize a net-
work of heterogeneous processors, offering an advan-
tage in portability. Each implementation is based
on a different programming model: an abstract data

*This work was partially supported by National Science
Foundation grant CCR-9121875.

' This work was supported by the Applied Mathematical Sci-
enees subprogram of the Office of Energy Research, ULS. Depart-
went of Energy, under contract W-:31-109-Eng-38.

MASTER ...

oo

Ewing L. Lusk

Math. and Comp. Sci. Division
Argonne National Laboratory
Argonne, IL 60439
lusk @mcs.anl.gov

structure called a monitor synchronizes access to
shared data in shared-memory architectures, whereas
processes in distributed-memory space communicate
through message-passing operations. Both program-
ming paradigms are high-level abstractions in them-
selves and provide an intelligent means to construct
parallel programs in diverse environments. The chal-
lenge was to bootstrap the approaches to a higher level
of abstraction - that of the Linda model.

Although shared-memory seems natural for Linda’s
tuple space. some means is required to make the opera-
tions on tuple space atom‘z. During the brief moment
in w 1ich a process either places a tuple into tuple space
ot .nsumes a tuple, the process must be assured of
being the sole process operating on the data. Moni-
tors provide a coherent means to protect tuples from
simultanenus access by processes executing in parallel.

The niessage-passing program:mning model provides
a means for distributed. loosely-coupled processes to
communicate solely through messages. [t supports an
implemfentation of Linda that works on both shared-
memoyy machines and distributed machines that com-
municate over a network. This model may run on a
large multicomputer. or on a collection of heteroge-
neous machines. including a network of workstations.
It provides a more portable system at the possible risk
of suffering some loss in performance.

2 Linda Background

Linda is described in [8]. (Gelernter introduces
generative communication. which he argues is suffi-
ciently different from the three basic kinds of concur-
rent programming mechanisrus of the time (ronitors.
message-passing, and rernote operations) as to make
it a fourth model. 1t differs from the other models in
requiring that messages be added in tuple form to an

CREVL N O T i DORL YR W R e

environtnent called tuple space where they exist inde-
pendently until a process chooses to receive them.

The abstract environment called tuple space forms
the hasis of Linda’s moael of communication. A pro-
cess generates an object called a tuple and places 1t
in a globally shared collection of tuples called tuple
space. Theoretically, the object remains in tuple space
forever, unless removed by another process [6].

Tuple space holds two varieties of tuples. Process
or “live” tuples are under active evaluation, incorpo-
rate executable code, and execute concurrently. Data
tuples are passive, ordered collections of data itemns.
For example. the tuple (“mother” age” 56) contains
three data items: two strings and o integer. A pro-
cess tuple that is finished executing resolves into a
data tuple. which may in turn be read or consutned
by other processes [6].

Four operations are central to Linda: ont, in, rd and
eral. Out(r) adds tuple t to tuple space. The elements
of ©are evaluated before the tuple is added to tuple
space 1], For example if array[4] contains the value
10, ot (s 2array [H]) adds the tuple ("™ 2,10)
to tuple space and the process continues inunediately.

In(iy) attempts to mateh some tuple toin tuple
space to the template moand, if a tateh is found,
retnoves t {rom tuple space. Normally, 1 consists
of a corbination of actual and formal parameters,
where the actuals in m must mateh the actnals in ¢ by
type and position and the formals in m are assigned
values in t [1]. Thus. given the tuple noted above,
m(sum”UUU7)) matehes sumT L assigns 2 to o, 10 o
Rd is
similar to in except that the matched tuple remains in

J.and the taple is removed from tuple space.

tuple space. Unlike the other operators, the executing
process suspends 1f an i or rd fails to mateh a tuple.

Eval(t) is simdlar to out(t) with the exception that
the tuple argument to eval is evaluated after tis added
to tuple space. A process executing eval ereates a live
tuple and continues. In ereating the active tuple, eval
implicitly spawns a unew process that hegins to work
eviaduating the tuple [6]. For example. if the fune-
tion abs(x) computes the absolute value of x, then
eval("ab” -6 abs(-6)) creates or allocates another pro-
coss to compute the absolute value of -6. Once eval-
nated, the active tuple resolves into the passive tuple
("ab” .-6.6) which can now be consumed or read by an
inor rd. Evalis not primitive in Linda and is actually
constructed on top of vut and provides Linda with a
mechanism to dynamically create multiple processes
to assist i a task. Limplementations of Linda exist
that do not recognize the eval operation (1], including
anetwork maodel based on worker replication - n nodes

are given n copies of a program. thereby obviating the
need for dynamic process creation.

Tuple members are usually sumple data types: char-
acters. one-dimensional strings. integers, or floats. In
some Linda implementations tuples can include more
complex data types (e.g.. integer arrays) [6]. These
data structures are removed from or added to tuple
space just like the more fundamental types.

Operations which insert or withdraw from tuple
space do so atomically. In theory, nondeterminism is
inherent; it is assuwimed that the tuples are unordered
in tuple space so that, given a template m and match-
ing tuples 1. t2 and t3. it can not be determined
which tuple will be removed by in(m) [8]. In praec-
tice, implementations of tuple space fall short of pure
nondeterminism. Some ordering is inescapable but re-
mains implementation dependent. It is in the spirit
of Linda programming not to presuppose any order-
ing of tuples in the underlying mechanism. Sequenc-
ing transactions upon tuple space is facilitated using
a sequencing key as an additional tuple element [10],
a method employed to program distributed arrays i
Linda. Thus the ith element of vector "A”
via

is accessed

in("A",i,<some_number>)
while the ith + 1| element is added to tuple space with
out("A",i+1,<some_number>)

Several properties distinguish Linda. Generative
cottnunication simply means that a tuple generated
by process pl has independent existence in tuple space
until retnoved by sotme process p2. This property facil-
itates communication orthogonality hecause a receiver
has no prior knowledge about a sender and a sender
has none about the receiver - all communication is
mediated through tuple space. Spatial and temporal
uncoupling also tuark Linda. Any number of processes
may retrieve taples, and tuples added to tuple space
by out remain in tuple space until removed by in {8].

A property called structured naming deserves spe-
cial consideration. Given the operations out(tl) and
in(ml), all actuals in t1 must mateh the corresponding
actuals in m! for matching to succeeed. The actuals in
t1 constitute a structured name or key and, loosely
speaking, make tuple space content addressable. For
example, if (“suun™ 10,9) is a tuple in tuple space,
then the success of the operation in{“sum”™,7x.10) is
predicated upon the structured name [“sum”™, 10, We
are reminded both of the restriction operation in rela-
tional databases and nstantiation w logie languages
[8]. The structured name shonld not be confused with
the logical name, which is simply the imtial

3 p4 Background

p4 (4] [2] [9] is a set of parallel programming tools
designed to support portability across a wide range
of multiprocessor/multicomputer architectures (hence
the name “Portable Programs for Parallel Proces-
sors™). Three parallel processing paradigins are sup-
ported:

o shared-tmemory multiprocessors:

e o set of proeessors that communicate solely
throngh messages (typically, a distributed-
memory multiprocessor. or a group of machines
that cotunminciate over a network):

e cotnmmunicating clusters (sets of large multiproces-
sors that communicate via shared-mewmory locally
atrd via tessage-passing remotely).

The tools that support these paradigms achieve
portability by hiding machine dependent details inside
" procedures,

Programming tmultiprocessors in which processes
can comrmunicate via globally shared-memory requires
that shared objects must be protected against un-
safe concurrent aceess. One approach to program-
ming such systems involves the use of an abstract
data type called a montor ta synchronize aceess to

shared objects. Monitors coordinate efficient use of

locking mechanisis to zuarantee exelusive access to
shared resourees and protect eritical sections of caode
at any one time, They are responsible for suspending
processes that wish to enter the monitor prematurely.
and releasing processes blocked on the condition gueue
when the resource is free and use of the monitor relin-
yuished.

p-t inclides high-level monitor operations built on
tap of low-level. machine-dependent primitives. One
special-purpose mechanism s called the askfor mon-
or. A common pattern in multiprocessing, some-
times called agenda parallelism [6], focuses on a list
of tasks ta be performed and s epitomized in the
master/worker paradigm. A master process initializes
acomputation and ereates worker processes capable
of performing, in parallel. a step in the computation.
Workers repeatedly seek a task to be performed, per-
form the task. and continue to seek tasks until an ex-
hanstion state is reached. The askfor imonitor manages
Justosueh apool of tasks and is invoked with:

askfor(<monitor_name>,<num_processes>,
<get_problem>,<task>,<reset>)

where monitor_name is a unigque name of the monitor.
num_processes is the number of processes that share
the task pool, get_problem is a user-defined function
that provides the logic required to remove a task from
the pool, task is the actual piece of work removed from
the pool, and reset is the logic required to reinitialize
the pool. Askfor includes the logic required to delay
and continue processes if tasks cannot be taken from
the pool.

Message-passing is the most widespread method for
coordination of cooperating processes. In message-
passing, we create parallel processes and all data struc-
tures are maintained locally. Processes do not share
physical wemory, but communicate by exchanging
messages. Processes must send data objects from one
process to another through explhicit send and receive
operations. For algorithms that can be formulated ax
such, the pd package includes the following primitives:

p4_send(<type>,<id>,<msg>,<size>)
pd_recv(<type>,<id>,<msg>,<size>)

where id is the process identification of the intended
recipient of the message (for sendj or the process wd of
the sender (for receive), Lype s the message type, and
size 1s the length of the message. The message type
actually points to a structure in which the message
is ‘packetized” and must be of a consistent specified
format across all nodes that use the particular message
type. piosendr {send with rendezvons). an alternative
tosend, forees the sending process to suspend antil it
receives acknowledgement from the recipient.
Processes are cre-
It reads a file.
called the procgroup tile, to determine an which ma-

ated in pd via pfocreate.procgroup().

chines processes are to be started. and the number on
each tachine,

4 Interface to p4-Linda

Linda operations must adhere to astrict format in
our implementatious. In particular, a format string
or mask, must be present as the first argument to
some of the Linda operations; it should not be con-
fused with the tuple elements themselves. This mask
is unusual in our implementation. but is typical for
many ' libraries that contain functions which accept
variable length argument lists (e.g., printf). The range
of valid data types for tuples include integers, one-
dimensional strings, floats (doubles), and aggregates
(arrays of any of the other types). The value of each

element is formatted according to the codes embed-
ded in the mask. For sunple actuals (actuals that
are not aggregates), the mask format specification is
< U Type >, where Type is d (integer), [(double),
or s {string). For aggregates the format specification
15 <2: Type >, The Linda operations must distinguish
hetween actuals and formals: thus a different type sep-
arator is used for simple formals: <7Type >, where
type is again d, f, or s. Another restriction is that the
tirst tuple element (the logical name) must be a string
or integer actual. Out is exemphified in the following

code:

func()

{ Y
int i, num, big[10];
int size = 10;
char buf[20],mask[20];

num = 100;

strcpy(buf,"anything');

for (i=0; 1 < 20;1++)
biglil = i;

out("%s%s'd:d","key" ,buf,num,big,size);
}

A necessary limitation of our maodel is ihat tuple
arguinents to out must be actuals. Furthermore, a
tuple may contain one more elemnent than type identi-
fiers hecanse aggregates require an integer dirmension
following the array name. When the parser recognizes
the aggregate type separator, it automatically pops
the dimtension (size) off the argument stack. Given
the same declarations and assignments, when execut-
g

in("%s?s?d:d","Key" ,buf,&num,big,&size)

the parser interprets all arguments as formals, except,
the kev Sinee all formals are addresses of (' variables,
atnpersands are required for the integers (names for
strings and arrays are the addresses for these types).
Note that the first tuple argument is the only one nsed
for matching criteria, If we execute

in("%s7?s%d:d","key" ,buf,2,big,&size)

then the matching eriteria consists of “key”™ and *2".
One may wonder why the type separator for an aggre-
gate formal () s the siame as its actual counterpart.
In our implementation, aggregate arguments to rd and
i are restricted to formals and no distinguishing spee-
ier Is necessary.

p4-Linda requires that the user program include a
header file and invoke initialization and termination
procedures. Processes are created as part of the ini-
tialization procedure, by reading a procgroup file that
includes the following information:

e the name of each (remote) machine on which pro-
cesses are to he created

e the number of processes that are to he created
and share memory on each remote machine

e the full path name of the remote program on each
machine

We wanted to design a Linda model, not a complete
Linda kernel: hence. the fundamental decision to code
the Linda operations as functions. Further, we ob-
served that much of what is standard in C' (i.e. the
library of 1/0 functions) are procedures built on top
of a minimal set of instructions and we simply viewed
the pd-Linda primitives as an extension of this stan-
dard. This decision resulted 1n certain limitations on
eval and out. A Linda kernel cited in [7] allows eval
tuples to have more than two elements. For example.
a typical eval may appear as:

eval("key",i,primes(1i))

which spawns a process to compute whether or not
s prime. After the tuple is evaluated. the tuple
(“kev i result ») is added to taple space. In our
implementation it is impossible to defer the evaluation
of primes(i) - the function will return a value prior to
process creation. Instead we use:

out("prime_args',i)
eval("key”,”primes")

where “primes” is the name of a function which s
found in a table supplied by the user at initializa-
tion. The primes procedure would then obtain its ar-
guments by doing:

in("prime_args",&i)

Also, our iniplementation of eval Jhes not place a tuple
in tuple space, rather the invoked procedure (primes
in this case) is responsible for doing an out operation
when it completes.

In p4-Linda, the arguments to out are restricted to
actuals. Some Linda kernels allow for inverse struc-
tured naming, in°which formals are permitted as ele-
ments in tuple space. Although the monitors model
can be enhanced tomclude a restricted form of inverse

LU L T T

naming (the formals would have to be shared vari-
ables). withour special locators or distributed point-
ers this s would be quite difficult to implement in a
loosely-coupled environment.

5 Design of the Shared-Memory Im-
plementation

Tuples are stored in shared-mewmory as self-
contained data structures. The representation of tu-
ples includes not only data, but also typing informa-
tion required for ruatehing and retrieving the tuple.
The first element of the tuple structure, called the
hanger. contains the data, i.e. formals or actuals that
constitute the tuple. The tuple mask is the second
element and contains the typing information required
to process the tuple. Note that all elements are actu-
als, a necessary restriction placed on out in our imple-
mentation. Actuals that are integers. floats, or simple
strings are copied into the hanger. For actuals that
are aggregates, a global copy is made and a pointer
ta the copy is stared in the tuple hanger. The tuple
structure s hashed into any one of 256 linked lists.
These hash lists, 1o thetr entirety, are at any time the
physical etibodiment of tuple space. ‘

We constdered two possible umplementations
for eval in the shared-temory model. One
method dynamically creates processes as needed, je.
evid(“key ™ fune) would cause a new process to be cre-
ated. The other method would cause aset of processes
to be ereated at initialization. These processes would
then share the task of handling any new work that is
generated, remaining active until termination of the
user's program. The latter approach was selected be-
cause 1t follows the established pd model which as-
sumes that process create/destroy may he an expen-
sive aperation on many tachines,

The four basie Linda operations are implemented
as functions in the shared-memory model. A single
tmonitor protects two resources: a quene of uneval-
nated functions and the linked list representation of
tuple space. Two askfors control respective aceess to
tuple space and process-to-task initiated by eval,

Out is relatively easy to process. A statement of
the form

out(mask,argl,arg2,...,arghN)

invokes a function which examines each arguinent for
tis type based on the relative position in mask. The
mask informs the function how to butld the hanger.
Al that remains 1s Lo elaltn access to the monitor,

link the tuple structure to the appropriate hash list.
and relinquish the monitor.

In and rd are more complicated because a process
must suspend if no tuple matching nccurs. A state-
ment of the form

in(mask, argi, arg2,...,argh)

where the arguments are a collection of actuals and
formals, invokes a function that constructs a local tem-
plate based on typing information in mask. The pro-
cess must then gain exclusive access to the tuple space
monitor to search for a matching tuple. The askfor
monitor provides the answer. Recall that one of the
parameters 1o askfor 1s < get,roblem >. a pointer to
a routine whose purpose is to return a task from a
pool of work. In our case that routine includes the
following logic:

e search the appropriate hash list for a matching
tuple

e if A match is found. delete the tuple structnre
from the hash list and return success to askfor

e if no match is found, return failure to askfor

‘Two characteristics of askfor are crucial to the p4-
Linda operations. If a match is found, the matched
tuple is returned in < task >, another of the parame-
ters to askfor. If no match is found, the askfor monitor
attomatically delays the process on a monitor (ueue.
Rd initiates a similar process, except that the tuple
structure is not deleted from the hash list.

Eval’s basic design is best explained by example.
Suppose we have defined a function to compute the
number of pritnes within the range 2 to N. If primes
is a pointer to a function, eval(“some_tag”, “primes”)
spawns a process that calls the function. Arguments
to the function are passed via tuple space - the process
executing the eval adds the arguments to tuple space:
the process allocated by eval retnoves the arguments
from tuple space. The example is coded in our system
as:

main()

{
/* masks omitted for convenience */
out ("prime_arg",3);
eval("prime_test","primes");
/* collect primes with */
/* "is_prime" tag */

primes()
{

int i,result;

in("prime_arg",1)

/* compute result and */
/* put in tuple space */
out("is_prime",result);

}

With these restrictions in mind, the design of eval
only has to assign unevaluated live tuples to waiting
processes. A separate askfor is used to this end. Eval
is basically a three stey operation: enter the eval-
uation monitor, add the function name to the pool
of tasks (a linked list of pointers to functions), and
exit the monitor. Note that we have slightly altered
the traditional semantics of eval. Heeding the caveat,
process creation may be expensive on many machines,
we decided to create N processes up front where N is
the number of processes specified by the user in the
procgroup file. This permits us to “reuse” processes
rather than repeatedly create them. The p4 proce-
dure pf_ereate_procgroup() spawns processes which be-
gin execution at a procedure that invoke an askfor
that manages the assignment of unevaluated tuples to
available processes, and then invoke the function in
the tuple retrieved from the pool.

6 Design of the Message-Passing Im-
plementation

A pd-Linda program based on message-passing re-
quires a miniiuin of two processes: a master process
to initialize the environment and a process to act as
tuple space manager. Of course. if there are not other
processes, then the master process will be the only pro-
eess to alter tuple space. All communication between
the tuaster process and slaves is mediated through p4-
Linda operations and ruple storage haundled by the
manager.

A fundamental decision in the message-passing
madel wis whether tuple space should be centralized,
distributed, or even replicated. We opted for a cen-
tralized tuple space because the alternative methods
require building fast deletion and broadcast protocols,
an effort beyond the scope of the project. For an in-
teresting discussion of these schernes see [A].

Tuples are stored as structures in the local memory
of the tuple space manager. A tuple structure includes
the following elements: a mask contains the typing in-
fortnation: the hanger contains the data correspond-

ing to simple data types, a type identifier indicates
whether a request is in. rd, or out; size identifiers store
the tuple and aggregate lengths; and a separate area
stores aggregate data. Note that all data, including
aggregates, are copied into the tuple structure’s data
areas; pointer storage is meaningless in distributed-
memory space. Once again, a tuple structure is hashed
into any one of 256 linked lists. A similar structure,
which we call the tuple channel, serves as the primary
message type through which processes communicate
tuple information to the tuple manager.

The initial steps of in and rd require argument ex-
amination and template construction. The tuple chan-
nel is used to send the template to the tuple space
manager and to receive the actual tuple from tuple
space. The two statements:

p4_send(type,manager_id,channel,size)
p4.recv(type,from_id,channel,size)

not only commmunicate a matched tuple to the process
executing the in or rd, but suspend the process unti} a
match is found. A process retains a copy of the tem-
plate, and defers the assignment of actuals to formals
until receiving a matched tuple. Send was preferred
to sendr because the dialogue between a Linda process
and the manager uses self-synchronizing pairs - a send
is immediately followed by a receive in any process
executing rd or in. Out examines the argument list,
populates the tuple channel and uses send to commu-
nicate the information to the tuple manager.

The tuple manager takes the place of the monitor
in the message-passing implementation. [t’s sole job
is to receive a request on tuple space, process the re-
quest dependent on the tuple type, and iterate. If the
tuple type is rd or in, the manager searches the appro-
priate hash list. If a match is found, data is packed
into the tuple channel and returned to the suspended
process. When no match is found the identity of the
requester, the tuple type and the template are linked
to a wait queue. Upon receipt of a tuple of type out,
the manager first searches the wait queue, satisfying
all pending requests (there may be several rd’s wait-
ing on the same tuple) until the first matched in is
encountered or the search is exhausted. If no in is
encountered, the information in the tuple channel is
copied into a tuple space structure and linked to the
appropriate hash list. The manager serves requests
until it receives a special tuple of type END which
signals termination.

7 An Exampie Program

As an examnple, we present a simple program whose
maintine procedure puts MAXVAL items into tuple
space. For each item inserted. it evals the procedure
named consumer to process the item, and then ex-
tracts an acknowledgement from tuple space indicat-
ing that the itern was processed. To process an item,
constimer simply removes it from tuple space and outs
the acknowledgement.

#include ''sr_linda.h"
#tdef ine MAXVAL 1000

main(argc,argv)

int argc;
char =xargv;
{

int primes();
int last,i,ok;
struct linda_eval_tbl linda_eval_funcs([2];

linda_eval_funcs[0].ptr = consumer;
strecpy(linda_eval_funcs{0] .name,'consumer");
linda_eval_funcs([1].ptr = NULL;

linda_init(&argc,argv,linda_eval_funcs);

for (i=0; 1 <= MAXVAL; i++)

{
out("%s%d","msg",1);
eval("%s","consumer");
in("%s%d", "ack",1);

}

printf ("mainline exiting\n");

linda_end();

int consumer()

{
int 1i,val;
in("%s?d", "msg" ,&val);
out("%s%d","ack",val);
return(1);

}

This program works with both versions of the code if we
merely replace the include for grolinda.h with mon_linda.h.
When the progriam executes linda_init, p4 will spawn some
number of processes to participate in the execution. The
nmnber of processes spawned will be determined by the
contents of the pd4 procgroup file. The srilinda version

will use vne of those processes to manage the tuple space.
The mon_linda version will use all processes to evaluate
live tuples and coordinate their access to tuple space via
monitors: each process will be in a loop looking for live
tuples to evaluate. Thus, note that the mainline program
does one eval for each number to be examined. Each eval
causes the procedure primes to be invoked as part of the
evaluation,

To reiterate an important point however, now that if
the program is run in a niessage-passing environment, it
can run on a shared-memory machine, and p4 will han-
dle message-passing through the shared-memory. The pro-
gram could even run on a netwoark of shared-memory ma-
chines, and p4 would use shared-memory when possible.
passing messages over the network only when necessary,

Table 1 contains the run times for three executions of
the program, one in which all communications are handled
via monttors, one in which commnuunications are handled via
message-passing through shared-memory, and one in which
all communications are handled via message-passing over
a network. Note that the message-passing versions are
slower because all ins and outs must be handled by an
extra process, the Luple space manager.

Syuchronization | Communication | Time in
Method Medium Seconds
Monitors Shared-memory 3

Message-passing | Shared-memory 25

Message-passing Ethernet 70

Table I: Times for Example Program Executions

8 A Semigroups Problem

There exists a class of programs iu which communica-
tion costs decrease as execution time increases, The semi-
groups problem [11] falls into this category. and thus is a
very goud candidate for p4-Linda’s message passing imple-
mentation. A short discussion of an algorithm suggested
by [3] follows the problem description.

As input, the program is given a set of words and an
operation table that defines how to build new words from
existing ones. The object is to build a unique set of words
by applying the operation table to the original set and
any newly derived words. The set of all possible words is
usually very large when compared with the solution set.
For example. if there are six nnique values for a character
in a word, and a 6x6 operation table defining the product
of a character pair, for a 36 cicment word one can derive 6
to the 36th words., Eliminating duplicates yvields a solution
set of only 223 words.

Vo

A p4-Linda parallel solution to the problem requires a
master and any number of slaves. For efficiency, all slaves
are required to build local copies of the word list and no
two slaves can receive the same piece of work, represented
by an index into the local word list; thus, it is incumbent
upon the master to communicate new words to slaves via
tuple space. To meet this requirement, new-word tuples
are indexed by slave. [nitially the master must communi-
cate unique id’s to each slave by placing into tuple space n
tuples of the form (*id” i} where n is the number of slaves
and i is some arbitrary integer. After the master places
the operation table and initial word list nto tuple space,
it in's tuples of the form:

("master',&type,&id,vord);

where tvpe takes the value Candidate (a slave found a
word it thinks is new) or Work_request {a slave needs an
operand from which to generate new words). [f the master
in's a Candidate that is indeed a new word. it adds the
word to the master iist and outs the tuple:

(id,type,word, idx)

where tvpe is New_word. id is the unique id of the target
slave, and idx is an indication of where word is to be placed
in the local list.

Slave processes in tuples of the form:

(id,&type,word,&idx)

where tvpe contains one of two flags: New.word, which
informs the slave to add word to its local list; or Work,
which prompts the slave to generate new words from the
word pointed to by idx. If a derived word exists focally, it
is discarded. If a derived word is not in the local list, the
slave unts the tuple:

("master',type,id,vord)

where tvpe is Candidate. The master now searches the
primary list for the word. If the master discovers the word
s truly new, he adds it to the primary list and outs n
copies into tuple space, where nis the number of slaves.

C'ommunication costs are substantially curtailed by
maintaining a master list and several local lists. I each
slave's list 1s a subset of the master list, a slave can elimi-
nate as many duplicates a possible on a local level, rather
than communicate all generated tuples to the master.

Some results for problems of two different word sizes
are recorded in Table 2. All processes were running on
a shared-memory Sequent Symmetry. The results are
promising for lovsely-coupled processors also because, as
execution time increases. generated words are more likely
found in local lists, and communication through tuple
spice only vcenrs infrequently.

Number of Processes | Word Size 25 | Word Size 36
1 3.5 31.5
\ 2 2.3 19.6
[1 2.3 1.3

Table 2: Time (seconds) for Semigroup Problem

9 Future Directions

The p4-Linda implementations provide a minimal set of
Linda operations: eval, out, in, and rd. Boolean versions of
the primitives might prove useful to perform existence tests
on tuples in tuple space. [np and rdp would attempt to
locate a matching tuple and return 0 if they fail; otherwise
they would return a 1 and perform the usual matching of
actuals to formals that are found in a normal in or rd.
Constructing these predicate versions on top of in and rd
would require minimal modification to the existing code.

Our hashing scheme works best when tuples are re-
stricted to a single unique key. Once such a key is iden-
tified in tuple space, the tuple will match any template
with the same key. If the hash distribution is good, this
translates into a match with the first tuple in the hash
list. Unfortunately, not all tuples fall into this category.
In problems where the matching criteria include two tuple
elements (the logical name and one or more additional ac-
tuals) hashing on a combination of these elements should
result in a faster search for a matching tuple. Our hash-
ing method is less than optimum for tuple patterns like
these. and we therefore recommend experimentation with
concatenated index schemes to alleviate potential search
bottlenecks.

Finally, there is the issue of a distributed tuple space.
Suppose we wished to add two matrices “A”™ and “B". To
inform matrix A" of its row index and data we write:

out (A", index,data).

The logical *A" identifies a specific vector, while index
points to a specific element of the vector. An element is
retrieved by matching on the first two tuple members:

rd("A",index,&data) .

The amount of searching can be reduced if we placed vector
*A" in one segment of tuple space, thus eliminating the
need for combined keys. In the message-passing model,
this translates into multiple tuple managers. A distributed
askfor, or use of several monitors, may provide the answer
to distributed tuple spaces in the monitors model. A Linda
kernel described in {10] implements multiple tuple spaces.

10 Conclusions

We have implemented two compatible versions of Linda
on top of the p4 portable parallel programming system,
one to take advantage of shared-memory architectures, the
other to ntilize resources of networked machines, offering
an advantage in portability. We have described the advan-
tages and disadvantages of each implementation and meth-
ods in which the performance of each might be enhanced.
We view these umplementations as being prototypes and
suggest that if there is sufficient interest, we would like
to further develop them. The code for these systems is
available in the pub/p4 directory at info.mcs.anl.gov.

11 Bibliography
References

{1] S. Ahuja, N. Carriero, and D Gelernter. Linda and
friends. [EEE Computer, 19(8):26-34, August 1986,

[2] James Boyle, Ralph Butler, Terrence Disz, Barnett
(ilickfeld, Ewing Lusk. Ross Overbeek, James Patter-
son, and Rick Stevens. Portable Programs for Parallel
Processors. Holt. Rinehart, and Winston, 1987,

(3] R. Butler and N. Karonis. Exploitation of parallelism
in prototypical deduction problems. In Vinth Inter-
national Conference on A - tomated Deduction, pages
333-343, 1988.

(4] Ralph Butler and Ewing Lusk. User’s guide to the p4
parallel programming system. Technical Report ANL-
92/17, Argonne National Laboratory, Mathematics
and Computer Science Division, October 1992,

(5] N. Carriero and D. Gelernter. The s/net’s linda
kernel. ACM Transactions on (Computer Systems,
4(2):110-129. May 1986.

{6] N. Carriero and D. Gelernter. How to write parallel
programs. AWM Computing Surveys, 21(3):323-356,
September 1989,

[7) N. Carriero and D. Gelernter. Linda in context. (C'om-
munzcations of the A0 M. 32(4):444-458, April 1989.

(8] D. Gelernter. Generative communication in linda.
ACM Transactions ony Programming Language Sys-
tems, T(1):80-112, January 1985,

[9] Virginia Herrarte and Ewing Lusk. Studying paral-
lel program behavior with UUpshot. Technical Report
ANL-91/15, Argonne National Laboratory, Mathe-
matics and Computer Science Division, August 1991.

[10] W. Leler. Linda meets unix. [EEE Cumputer,
23(2):43--34, February 1990.
[11] E. Lusk and R. McFadden. Using automated reason-

ing tools: A study of the semigroup f2b2. Semigroup
Forum, 36(1):75-88, 1987,

