
iiiiio 1,1
illll Illll_

viF"" !v D
under contraCl No. W.31.109-ENG'38. I

/ AccordlOgiV,tl_e U. S. Government retains aJUI.28 1993 , ,,o.n,..',,I
/ contr,butlon, or allow I

OSTI u

p4-Linda: A Portable Implementation of Linda

Ralph M. Butler"
Alan L. Leveton Ewing L. Lusk t

(!o[lege of (i'omp. and Inf. Sci. Math. and Comp. Sci. Division

(;niversity of North Florida Argonne National Laboratory

Jacksonville, FL :}2224 Argonne, IL 60439

rbutler'C_siukhole, uhf.adu lusk #mcs.anl.gov

Abstract structure called a monitor synchronizes access to
shared data in shared-memory architectures, whereas

Facilities .such as mterprocess commanzcatwn and processes in distributed-memory space communicate

protectwn of shared resources have been added to oper- throug[, message-passing operations. Both program-
atm9 systems to _upport mult_programmmg and have ruing paradigms are high-level abstractions in them-
since been adapted to ezplott ezphcit mult_processm¢ selves and provide an intelligent, means to construct
w_thzn the .scope of two models: the shared-memory parallel programs in diverse environments. The thai-
model and the dzstmbuted (message-pa.s.szng) model, lenge was to bootstrap the _pproaches to a higher level

When multiprocessors (or networks of heterogeneous of abstraction - that of the Linda model.
proce.ssors) are used for ezpll,:zt parallehsm, the differ- Although shared-memory seems natural for Linda's
ence between the.se models ts ezposed to the program- tuplespace, some means is required to make the opera-

mar. The P,I teel yet was orzgznally developed to buffer tions on tuple space atom:- During the brief moment

the programmer from synchronization zssues whale of- in v, aicha process either places a tuple into tuple space
ferzng an added advantage zn portability, however two ot .nsumes a tuple, the process must be assured of
models are often stall needed to develop parallel algo- being the sole process operating on the data. Moni-
rzthm._. We pr,,'tde two lmplementattons of L_nda _n tors provide :t coherent means to protect tuples from
art attempt to _upport a _tngle htgh-level programmu_g simultane,,_us access by pr.Jc_'sses ,_xecuting in parallel.
m,,del on top ,,f thr ezrstzng paradtgms zn order to pro- The message-pa.ssing programming model provides
t?lde a con.szstent semanttcs regardless of the underly- a means for distributed, loosely-coupled processes to

Lng model. Lznda's fundamental propertzes associated communicate solely through messages, lt supports an
_uzth generatzve communtcatzon elimznate the drstznc- implementation of Linda that works on both shared-
tzon between .shared and dzstrzbuted memory, memo/y machines and distributed machines that com-

municate over a network. This model may run on a

large multirornputer, or on a collection of heteroge-

1 Introduction neous machines, inclu_ling a network of workstations.
lt provides a more portable svstem at the possible risk

W,_ have itnplettwnte<l two contpatible versions of suffering some loss in performance.
<_f Linda on top of the p4 portable parallel pro-

gramming system, one to take advantage of shared-
rtwtttory architectures, the other to utilize a net- 2 Linda Background
work of heterogeneous processors, offering an advan- Linda is described in [8]. (;elernter introduces
t.age in portability. Each implementation is based
on a different programming model" an abstract data generative communication, which he argues is suffi-ciently ,lifferent from the three basic kinds of concur-

°This work wa._ partially supported by National Science rent prograrnming mechanisnts of the tirrw (monitor:_.
F,,uudatiou Krant ('CR-9121875. r_wssage-passing, and rernote oi)orations) a.s to make

tThis w,,rk wa._ _upported by the Applied Mathematical S,:i- it a fo_lrt, h model, lt differs from the other menials in
,'m'_._ _ubpr,,Kr;tu_,,f the ()trice of E_ergy Ftesearch, II ..q. [)epart-

tu,:_t ,d E_terKy, ,u,ler ,-,retract W-:_I-10.9-EaK-38. req_,iring that [itessages J)_"added in tuple form to an

,>llvir,,nIiient called tupl, _ space where they exist inde- art, given li copies ,_f a pr_,granl, therel,y ,:,bviatin_ the

i>,,ti,l_,ntly ilnt.il a process cllooses to receive theln, need for dynamic process creatimt.

Tile al,st.ract environment called triple space forms Tllp]e men,hers arc, usually simple tl:o.a types: char-

the ha.sis of Linda's model ,sf romnmnie_tion. A pro- acters, one-dimensional strings, integers, or floats. In
cess _ener,-ttes an object ca.lied a tuple and places it some Linda impleznentations t_lples can include lllore

in a _lc>hally shared collection of tuples called tuple complex dat, a types (e.g.. integer arrays) [61. These

space. Theoretically, the object remains in t,uple space data structures are removed frurrl or added to tulJle

fi)rever, unDss rentcwed by another pre, tess [6]. space just like the more fundamental types.

Tuple sp;ice holds two wtrieties of tuples. Process Operations which insert or withdraw frorn tuple

,_r "'li,J' luples are uiider active evaluati<_u, incorpo- space do s_ _ttonlically. In theory, m>ndeternlinisul is
rat, _ executable so,le, and ex¢_cut.e cr,nc_lrr,,nt,]y. Data inherent; it. is :_ssutned that the tuples are unorder,-'tl

I,ll_Ds ,tr,. passiw,, or_lerml c,_llecti,:ms ,_f ,l:tta it ellis, in tuple space s(_ that, _iwn a template ni and nlatch-
l",,r ,_xalxJple, the tuple ("illother","age".TI6) contahls ing tuples tl. t2 a,nd t:l. it can not h_ det.ermine<l

which tuple will be renloved by in(m)[,"4]. Iu prac-three data it.etlls: two strings and tn iilt.eger. A pro-

ct,ss t Ul_],' t_hat is finished executing resolves into a t.ice, ilnplelileutat, ions of t.llp]e space fall short ,ff pure

:lat;_ i_ll_le, which Inay in turn I)e read or consulned non<leterminism. Sol, le c,rdering is inescapable but re-

Iw ,,th,_r pr,cesses {6]. mains implenientation ctepenltent. It, is in the spirit
" of Linda prograrniliing not to presut)p,)se ;my order-

F,_ltr ,)l--'rations are centr;tl t.cl Linlla: _ul, zn. rdand ing of tupies in tile underlying rnechanisin. Sequenc-

,ral. tl)_lt.(1) adlls t.llple ! t,_ till;lie space. The ,qements ing transactions upon t.uple space is facilitated _lsing,
,)f l. ;ire ,-wa, lll_t, tt.'d I)efore the t.u|)le is ;tdlled to tuple

sl,ac,- [1]. F,,r exa,ilple, if array[4] c,,rlt.ains the value ase_luencing; key as an allditional tuple,qe_llent [10],
" a Inet, h,_d _,rliplc, yelt t,, prc, e,raln ,iistribllt,_,t ;trrays iii

Iii. ,,,a:t("s,il,l" .'2.array[.l])ad,ls t.ixe t.,ll_l,, ("'s,ll,,'" ,2.10) Lin_i;t. Th,lS the it.ii e]t',,lt'n, of vector "'rX" is :u'c,'sse,{
I,I fill,lt" Sll;tCe ;tlll[|.lie pr,_cess c,_ntin_l,,s il_lll_,'_liatelv.

" vi;t

ill(iii) ;tlte"iill)tS t{I Ill&tell S_illle ltlllie t iii till)le

Sl,aCe Io the' teillplal.e iii ;tlll{, if ,t lilgtl.l.h is foilll_l, in("l",i,<some_nti_ber>)

retil,_,ves t, troll] till)le Sl)aCe. N<Jrilially, iii CoilSiSl,s W|lile tile ith + [eleniellt is adtl,'lt to tulJle Sl)aC+"with
of ;t colill)iiiaii<_ii of act]]ai aiid refill;li I>;I.r;lllieters,

wher<, the actlials ill fit lilliSt iliai.cti tile ;toil]als ill t I)y out (".4", ±+1, <_ome_numh_r>)

lyl>_, and p_Jsili,>li ;tilt[I]ie f, Jrlll;l.iS iii III art_ assignelt Several l>rOl_erties <[istingliish Lint]a. (lener<'ttive

v;tilieS in I ii]. "I'hus. {iv,,n ttie tj]iii,, il,,i_,tl ;ll)cwp, C,>liiliiUliiC;il.i<Jn sill]lily ilie;uls rh;ii. ;t l,ut>le 14eller;tte_l

iii("'slilil".'.'i.'.'j) liia.l.cli_'s "Sillil". ;tssit4ns 2 i<j i. 1() to IO" I,r,,cess pl tias ili_lt'lieil,lelit, ,'xistence iii tj]pie sp;lee
.i. ;ili,i till' tlllll,' is rl,iil,,v+,<l fr, iii] till>le SllaCe. Ilxl is iintil r+,llillvt,_l liv SlJlllt' i)roc_'ss p2. This prol)eri,y facil-

siiilil;tr t,, ill _,xcept. tit;li the lilalchelt tllple relliains iii il.at, es coililiiuiiic;tti_._ll,Jrthogolia.iity hec;tlise a receiver

lilple Sll;lc,'. I'ulik_' t.lit' ,,th,'r ol ler;ttors, tile executing ii;ts iii) prior knowledl4e ;tl)clllt _t sender :-till[g-Lseliller
I,r,,cess SUSlleli_ts if ;ill iii or r<i fails t.,-, li]al.oh ;t tuple, ti_s llOne ;tbout the receiv,_r - ali coinlliunication is

l'_'.v;d(t) is silliilitr t,_>out(t) wit.ii].he eXCel)ti_m that i'iietliated throiigti tuple Sllace. SlJatia] and tell]petal

_].lie tlll_le ;tr_lllliellt i._l t_val is ev;dilated after t is allded uncoupling also Illitrk tin<la. Any lllllIi])er of processes

t,, l lillle ;;i,;lc, ,, ;%llr_>cess execilt.ilil4 eva[cre_tl.es ii live lll;ty retrieve l.litl]es, ;til<t t,llples added to tj]pie space

fill,le ;tlltl C,,lltilillt'S. In creating tile ;u'l, ivt_ tilllle, ev<'t] l/v Olll. r_'lll;till iii tulll_" space Illlt.i] reliloved I)y iii [8].

illll_licitly Sl,;twlis Jt liew process l.h;tl. I_egins i,o w<,rk A i)roperty called sl,riictlired nailiilig <]eserves spe-

- ,'v;tliiatilij4 rh,. illl_l,']iii. For ,'x;ulillle. if tile flint- cial consid,>rat.ion. (liven tile operations olit(tl) ;tlilt

i.i_,ii ;ills(x) c<_liilJili._,s _]l_, abs,,lill, e willie of ×, then iii(li]l), ali aci,ua]s ill tl inusl, lii_ttc]i tile corresllonding

,'val("'ab".-li,;ills(-t$)) creates or ;t]l<,cittes a.not.]ler ::irt)- actua]s iii I111 for illa.tchill,t_ 1.o Sllcceed. The act, uit]s iii

,','ss Iii cc_liilllll.,' l.lie ;t]_sollll.e v;tlllp c_f-6. ()nee oval- l.l constitllte ;t st.ructlirelt nallie or key' and, loosely

lial.,'ll, iii,' ;tciiv," tlill]e r,->solves ini._)the l,;tssive tut)le speaking;, li:lake till)le sp;lee colltellt addressable. For

("al>",-tiJi) wliicl_ can ll,_w he <'<,ns_lill,'ll ,,r r,,a_l by an exalilple, if ("su,a",llJ,!_) is a t,_lple in tliple space,

iii ,,r r<l. Eval is i_,,t, llriIliitive iii l,ili_la all,I is actually ttlen the success ,,f tile Ol)eratioli in("suui",'._x,i()) is

c, liistrll,'lt',l ,iii lep of ,Jill. iiiicl I,rovides l, ililla with _t pr,.llicate<l IIpOIl til+' sl.rllt'l.llre_l II_tlile ["Sllill",i0]. We

iliecliailisili i,, ,lynailiic;ll]y create iliultilll,, llroeesses ar_, rmliinl]e_l tl,,th ijf].lie r_,st,rict.il_li olJer_tl.ioli iii r_'la-
- l,i assist iii ;t task. ililpleliielil.;tl.iclllS ,_["],iii<la ,,xist, tional i];tt.allas+,s &llll iilSt;tlll, igll. ioll iii legit]allgllltges

t.l_;,t.,I,, _,,t r,.,',,g_liz,, til,. ev;ii Ol_,'rai, i,,l_ [1], incl_i,ling [.*]. Til,, str_lci.ur,,,I l_ti,_,, sl_,,_ll,l i_<Ji,I,,, ,'l,nt'_iseli with
;t lit,l.w_/rk liil,l,,] I,asell Oil w,_lrk_,r r_,l,licati<,ii- ii ilo<les i.h,, Iogiral li;till]', whic]l is sillll!ly tile initial

3 p4 Background whore nlonit,;,r_Jlatne is a tlnique name of tile monitor
nttn__processes is t,he nutnber of processes that, sharp

p-I [.l] [2] [9] is a set ,ff p_trallel pro_ramtnin_; tools the t_Lsk pool, get_pr,-,hlen_ is a user-defined funrt, iot_
desigtw,I to _upporl, port._bility across a wide range that prr>rifles t,he logic required t;o rernove a task fron_

_f nltlltipr¢_cessor/multicomputer architectures (hence the pool, task is the actual piece of work removed fronl

the nazt_e "l-'ortable Programs for Parallel Proces- t,he pool, and reset, is the logic required to reinitialize

sors"). Three parallel processing paradigms are sup- the pool. Askfor includes the logic required to delay

p,_rre,l: and cont, inue processes if ta.sks cannot be taken from
the pool.

• shared-tttettt_rv ttttllt, il_ro<'essors: Message-p;_ssin_ is the tttt_st, widespread rlletJiod for
c,_,:,rdinat, ion of cooperating processes. In rtlessa_,e-

• a s,_t ,ff pr, w,+ssors t.ha.t, c_.,tntllttnh';Ll,e solely pa.ssin._, we create parallel processes and ali data struc-

t ltr,:,,t_h ttwssa_,es (typically, a distributed- t ures are tnaitlt.ained locally. Processes do not. shar+o

,tt,,t,k,,r,,' ttt,_lt.il,r,.,c,.ss_r. ,tr a _r,_+,tp ,,f tt_achines physical tuetnory. I)_t, con_n_unica.t,e bv exchan_in_

I hat. c,,tt_t_,_aciat,-' ,,v,+r ,'-tn,-.l.wurk): n_essages. [lr(}cesses rtmst, send ,lata. object.s frot_ ,>ne_

process lt_ at_other through explicit, send and rpcei,+o

• ,',,_ttl_t_iCzU.iu_,,'l_sters (sets oi'large tt_ltiproces- ,)l),wat+ions. For al<_,rit.hn_s t.hal, can be fi._rttu_ln.t+,'_l:_.;

s,,rs 11_4.1,'t_ttttt_t_i,';tu' via. shared-ntetnc+ry locally s_ch, the p.l package includ,'s the fi_llowin_ i_rit_it, t,.,'s:
:u,_t via t,,essa_P-I_:t.._sit_ _ ron,ot.ely).

'l'h,. t,,,,ls that s,tpp,)rt, these im.ra.tligt,ts achieve p4_send(<'t;ype>, <td>, <msg>, <size>)

I,,,rt;d,ilitv I_v l_i,lin_ _t_achitw ,l_-.I-'tt<l,'nt, d,q.ails inside p4_recv(<type> ,<td>, <msg> ,<size>)

- (' I_r'w"_l_tr'_s' wlwr,' id is t.l_e pr<_cess i<l,,t_t.ilica.t.ic_t_ ,+,f the inten,led

t'r,,_r;u_ttt_ing tt_,_ltil_r,,,',+ss,,rs in wl_i('h I)r,,cesses rs+cit)tent ,,ftho tttessn._,,:' (fi,r sen_l) or the I)r, wess id of
ca,, ,',,t,,n,,_nicat,' via ¢l,,h;tllv sh:tr,+,l-t,,e,t,ury r_.',luires the set,,I,-.r (fi,r receive). _+}'pein the r_,essage tyl)e, .m,I

).hre sl_aretl ,)bjects ttt_sl. I),. t)r,)te('t('tl aga.it_st un- size is t.h,. t,'tuz,t.h ,:,f the tt)(+ssa,<,_.. '-['lie tt,essa_,.' type
s_tt'e ('(+)ll('llrrel]|, ;t('t't,_s. ()lit' ;q)l)r()ach 1(, I)r_)j_ralll-

a.ctt_ally i_,,it_t.s t,_a st.rt_ct+urp in which the tt_essagp
tt_in_ st_ch syst.ettts in,,,,I,,','s t l_,' _tse of ;m ;_l_sl+r;tct+

is 't,ackel.ized" ;ul_l tttttst, be of a consistent, specified
tl;tt.;t tyl,e callp,I a m,,tlur t,, s,,t_chr, miz+, aec+,ss t.,>

f, ,vii|al, ;tcr<,ss ali t_,,,I,'s lh;tr _s,' the pa.rt.ic_lar nwssag, +.
sl_;tr,,_t _,b.j+.cts. .X,l,,t_it,)rs ,', ,, ,r_linat.e Nfici,'t_t, t_s,' of

t+Vl_,., p..__.,+_,,h'(s,,n<l witl_ r,.n,l,_zv,_,_s), au allrertrl;ttiv_
I,, s,'_,l+ fur'c,,s lh,' ..<et_lill_ i_r,,,','ss t,, SUSl,eu,l ,_ntil it

sl_;tr,.,t r,,s,,,_rc,.s :ttl,I i+r,,t,'ct ,'rili,'ztl s,wti,_ns ,,fcu_lp
;tl ;til'+' ',ll_' titll_', 'l'll,'v :tr,. r,.sl_,,nsil_l,' fi,r s_Sl_,'t_tiin_

J_r__c{'sst's ;tr,' _"re-

I,I'_>cpssoS thal WiSII t,, +'Ilt_'r t.[l_' t_lc,llit._tr [)r,'l[_at+_lrely. ;_.tpd in i_.1 via p.__cr+_z/r_l,r',wgruul4). lt rea,Is a file.
;tt_<l r,,l,,;_sit_ i_r,,,',.ss,'s I,l,_ck,,_l ,m the c,.m_liti,_n qtwue
wl_,'u ttw r,,s_,_trc++ is fr,.p and use cff the tttonitx:,r relin- calle, I the l,r'ocgr+,ul _ Iii,', t,, _let._'rtt_ine +_t_ which t_a-

<'hines I_r<,c,'sses ;tr,' t,, b,, st,art,+'_l, anti lh,, ,,,,t,tl+or ,st,
,I,,i+h,'<l. each tti_tchine.

t,,I _ ,,f I,,w-l,'v,'l. ll_achitw-<t++l+,+'n<l++nt,I+ritt=it.ivos. One

l,,.<'i:tl-i,,lrl,,,s<. ttl,.,'l,;mist is ,'all,,tl the rrskf,,r t_,.,t_-
i_,,r+ A ,',,t_t_t,,t, I+;ttt,'rt_ it; t_ltiproc,,ssing, s, Jtt_e- 4 Interface to p4-Linda
tilt_,'s ,';tll,',i ;u.r,,.n,I;t I>arall,'list_ [6], ltsouses _,n a list.
,,l" task+,, i,, I_,, l_+,rl'+,rtt_,.tl ;tt_l is ,,l_it,,t,_iz,',l i_, lrho Lit_tla,,l,t,rat.iuns t_ttlsl+ ;ulh,.r+' t.<, ;+strict, fi:,rtt_;tt it_

lll:tSl,.r/'wi,rk,+r l+aratli_ttl. A lll;tsl,,'r l+rr_ct'ss initializes ,,tlp itlll+lotll+,nt.at.J<_tlS. Ill l,art.icular, zt l'r,rn_at strin._
;t c,,It_l_It;tt, i<,ll ;tlttl crt+;ttes w,,rkl+r l,rt,,"t'ssps ealm.l)le ,,r tll;tsk, r_itlst, I>, + pre,;;etlt ;ts the first, _trgllItleltt t_

,,f l,,,rf,,rlllitl_, irl p;tr;tll_.l. ;_+st.,+l_ in t.l_,, c<_llll_tltn.l,i<Jtl, sl_tlll + +,f t.l_e l.,in,la _l)er;tt.iotls' it, sh,:mltl tlt_t. J+e clltl-

W,,rk,.rs n.l,,.;m, lly s,.,+k a l.;tsk t,<t I_e I,,'rfi,rt_wd, I_er- filsed with tile t,ul)h+' elet_+'nt.s t.h,'t_tselves. This t_ask

t',,r_ t+l_,'task+ ;u_,l c,_l_tin_e to st+ek t,asks _nt+il ,u_ ex- is ,_t_s_al it_ o_r itttl+lett_ent.;tt.ic, t_. I)_lt. is typical fi,r

ti;u_st i,,ti sl;tr,, + iS r,.;tclu._l. "Ftu' ;t:;ki'<,r t_u.,ttiu.,r tll;l.llages IStatiy (' lil_rarios t.hat_ <',,tlt+;ti_l f,_ncl, ions which ;u'Cel_t

.i,lst s_l,'ll a 1,,,,,I ,,t" tasks atl,I in itiv,+k,+<l witll: varial>l, +I,+n_t,h ar_u_mnl, lisls (,+.jr,.+i,rintf). Th, + range
, ,,f va.li_l +la.ta types l'_r t,ttl_l,'s incl_itl,, itlt.egers, Olle-

askfor(<monitor_name>,<num_processes>, _litll<'l_Si<Jnal st.clings, tt,mt.s (tlr_ul,l,+s), at_,l a_gr,+gate+

<get_problem>,<task>,<rese_>) (;trrays of ;tl_y of til,, oi, her t,yl+e,,+). The valu+, <,("+,;tcll

,'letll,-'Ut iS forlxl;tt, t,'d according tc, the cocles embed- p4-[,in_la requires that the user program include a
,l,-,I iii the tl_ask, l",,r slip,pie actuals (actuals that header file and invoke initialization and t.ernlination

;tr,, n,,l ;tg_gregates), the nl;tsk format sp,_cification is procedures. Processes are created _s part of the in;-

.:. ':4 T.,ttw >, where Type is d (integer), f (double), tializatinn pr,Jcedure, by r_'ading a procgroup file that

,,r s (strillg). g,_r ;_g;gregates th_ t;_rlnat specification includes the following information:

is <: T!lpe >. The Linda operations must distinguish
b,_tw_,m actlmls and formals: thus a different type sep- ,, the name of each (remote) machine on which pr,_-

arator is used for simple formals: <'".T!lpe >, where cesses are to be created

l.y'l,- is again _t, f, _r s. Another restriction is that the
• the number of processes that a.re I,) be create¢l

first t_lt)l," ,'lett_ent (the logical narne) must be a string
and share lllelllory oll each reniote n_achine

,,r integ,_r ;_ct.lla[. ()tit iS exemplitied in the following

c,,te: • the fllll path nanle of the remote program on each
n_achine

func()

{ -_ We wanted to design a Lmda n,_del, not a cOnll)lete
inr. ±, mu_, big['10]; Lindakernel: hence, the fundamental decision toco_le

inz s1.ze = t0; the Linda operations a.s functions. F_lrt, her, we ob-
char bug[20] ,mask[20]; served that Itlllch ,)f what is standard in (i' (i.e. the

library of I/() functions) are procedures built on top

nnm = 100; ,)f a lllininml set of instr,,ct.ions and we sinlply viewe_t

strcpy(buf,"anything"); the p4-Linda primitives .-_s an extension of this stan-
for (i.=0; 1. < 20;i.++) dar, I. This d,_cision resulted in certain linlitationson

bigr'i] = i; eval ;.tad out. A Linda kernel cited in [7] allows eval
• .. tuples t.o have n_ore than two elements. For exanlple.

ouz ("Y, sY,sY.d: d" ,"key" ,bnl ,nnm,big,size) ; a typical eval nlay appear as:
y

eval ("key", i,primes (i))
A ne('('ssary liIllitat, ion of our iI,(:)del is that tuple

:tt l_,lllll_'lllS l() _)llt I[lllSl i)_' a.Ctllals, g_rtherl_mre, a which sp;twns a process lo cOlllptlt(" whether or llOt

llll;le lll.l.y ,'C_lllaill ,,lie lily,re elelllellt thall type identi- i is pri_,_. After the till)le is eva]llated, the tUl)]e
ti,.rs },,,'a,lSe ;tggr,.'_,;tles r,,,i,_ire ;tn }_tt_,g_'r ,li[t_ension ("key".i,< r,.sult >) is ;t,l,le,{ I.,, lilt)l,' .'5.'l_a.C,'.in ,_llr

(;,ll_,will< the array ,ar_,'. Whel_ the Imrs,'r recognizes illlplelllellt;tti,._ll ii is itnl_,_ssible u, _lefer Ill,' eval_lation

11_,, ;lg/Rr,,g;tt,, l.yl_e separal._r, ii, ;u_to_atically pops of pri_les(i)- the f,_ncl.i,)n will rm _rn a valt,e I_ri,_r _

III,' ,lill|ellSi()ll (siZe') ,,lr the arglllllellt stack. (;iVOll pr,.)cess creal.i_)ll. [llStl.at[we IlSe:

til,' s;tltte declaral.iOllS &lid _tsSiglllllelltS, when execllt-

i I_g out ("pr ime_ args", i)
eval ("key", "primes")

in("'/.s?s?d :d", "key", bug, &hUm, big, _size)
wh,,r,-" "'princes" is the nanm of a. func_io, which is

)t_,' I);trs,'r in)('rl)r,-'ts ;til argive)tents as f:)rt)_als, _'XCel)t f,:_))n(I in a table s))pl)lied by th,: user at illit, ializa-
tl_,, k,'v. Sin,',' :til fr,r_als are a(](tr,.ss,,s of(' vari;d)les, _i,m. The I)ri_ws l)ro('e<lure would then ,i.)btain its ar-

;tlIII,,'FS;tlI,[S ;tr,' r_-',luir,_t f,_r the integers (llitllleS for g_tlwnts by doing:

.-,_ri,,gs ;tll,[arrays are 1h,, ml_lresses fc_r these types).

N, ,_,' lib;t! I li,' tirst t_ pie ;trgtll!lent is the only one _lsed in ("prime args", _i)

f,,r _t,atching crit,,ria. If we ,'X_ClII, e Also, our i_l_h'mentat, ion of eval ,t)es not piace, a tuple

±n("Xs?sXd'd" ,"key" ,bug,2,b:i.g,&size) in tuple SlmCe, rather the illVOk_.'_.{procedure (pri_ms
in this case) is responsible for doing an out operation

i,,_t _l_,, _,_atcl_ing trite'ria _'onsists of "'key" and "'2". when it completes.

(),,' _,;ty.' w,_,,b.r why _h- tyl_e separator fi_r an aggre- In p4-Linda, the argu_ttents to out are restricted to

;tl, [;,r_,;t] (:) is the sal_e ;ts its ;tci._la[c_,nt,,rpart, acl, li;tls. S_,I_,,"I.inda kernels all¢,w for inverse st, r_c-

I,_ ,,,_r i_tl_l,q,,'_l;tti,,_, ;tggreg;tl.,, arg_,ents to rd a.ild ture_l n;u,_ing, in'whict_ g_r_,_a[s ,_,r_"permitted as ele-

i_, ;u',' r,,s_ricl,',l _,_ t',,rl_als;u_l I_ _listing_ishingspec- _,,nl,s ill filial," Sl)aC,'. Altho,.Igh the r_lonitors lllO_]el

iti,.r is _,.c,,ss;try. can I_,. ,mhancml I,, incl,_l_, a restricted forn_ of inverse
_

ii:tnling; (the forr_lals wouhl have to be shared vari- link t,he tuple structure to tile appropriate ha.sh list.
;thl.s), wlth,:.Jt special l_cators or _list.ril,uted point- and relinqtlish the ttlonitor.

,.rs t,his is wotlld be tlllite difficult to irnplenlent in a In and rd are more complicated because a process

l_,_soly-co_pled environ_imnt, must suspend if no tuple matching occurs. A state-
ment of the fi.-)rnl

5 Design of the Shared-Memory Im- in(mask, axgl, mrg2,... ,argg)

plenlentation where the argun-_ents are a collection of actuals and
formals, invokes a function that, constructs a local tem-

Tul_los are storml in shared-n_,_tnory as self-
plate based on typing information in rn;mk. The pro-

C(_tltltille_[data. strllcturos. The reprosental ion of til-

pies incllldes not only ,teta. but also typing informa- cess tmlst then gain exclusive access to the tuple space

t.i,m r_',ll_ired for matching and retrieving the tuple, monitor to search for a matching tuple. The a.skfor
monitor provides the answer. Recall that one of the

Th,. tirst elelIlent ,:,f the t.uple structllre, called the parameters to a.skfor is < gelr, roblem > a pointer to
llimger, c()lltaillS the data. i.e. formals or ;tcttlals that

c,_|lst.it.tlte the tllple, l'he tllple m_sk is the second a routine whose purpose is to return a task from a
pool of work. In our c_e that routine includes the

,.lo_.nt. and contains the typing information re(luired following logic:
t,,, proct.ss the t,uple'. Noto that ali elements are actu-

als. ;t n,_c,ssary restriction placed on out in our imple- * search the appropriate hmsh list for a matching
lllenl;tt, i,:,n. Actlials thai are integers, lh)ats, or simple tltple
strings :tre c_)pi._l int.,-, the hanger. For actllals that

;tre ,'t r,rre,r't_..,, tt-'s.. ;t gl,.)l)a] copy is made ;tnd a I)ointer * if a match is fot_nd, delete the t_lt)lo st,ruc_ure
t,_, t.h. ce)lO' is st,,r,.(I iz_ th_. tuple hanger. The tut)le from the ha.sh list an(I rot.urn success to askfor
s_.r_ct,_r, is hash,:.,I i_,, any ,)_e of 251i linked lists.

l'l..s,-, hash lists, in I.hoir ont.ir_ty, are at any til_e the * if no lllatch is follild, ret_lrn faill_re to ;mkfor

l_lLvsi('al ,-.t_l),,,li_ent ,ff l_l)le' sl)ace.

Vr',_ ,',)nsi_h.ro_l t.w,_ p,)ssil)le i_nl)len.mtations 'Fwo characteristics of a.skfor are crucial to the t)4-
t;,r ,'vmi in the sharmt-_nomory model. ()he Linda operations. If a match is found, the matched

_,,_1_,,,I ,lyn;u_ically cr,.a.t,,s processes its neo,le¢l, i.e. t,_ple is returned in < lask >, another of the parame-

,'v;tl("'k,.v".fi_c) w,:,_l(t ,';u_s. a _ew pr,.',.ss t,., I),-, (.r,_- ters to a.skfor. Ifno n_atch is found, the askfor monitor
autot_at, ically _t,.}ays the process on a monitor ([llelle.

;tl('(l. The ()[hfr lllO|,h_)_l Wolll{l CallSe ;t set _)f l)rc)r,.sses

l,, I_," cr,-.at,,I .tr it_i_ializ;vi(,_. "l't.'se i_r,_c,.ss,_s would ft(I initiates a sit,tiler process, except that the tuplo

l,. .;hitr- tlm task ,,f ll,'-m_l!ing any n,.w work that is structure is m._t ,DI.ted fron_ the ha.sh list.

g,,n,.ral,.(I, re_aining active _ntil l.erl_til_al, i_.,n of the gval's basic ,lesign is best explained by example.

_s,.r's l)r,)gra_t. The latt.r approach was selected be- Suppose we have defin.d a fi_nction to compute the

C;tllSe il. f(,llows tlm .stal)lishe_l I)4 _no_l,'l which _s- numl)er of prir_os within the range 2 to N. If primes
is a pointer to a function, ev;d(' t "'some_ ag ,"prirnes")

SIIIII,:'S l, ll;tt i)r,.,cess create/(Iost, roy tllay lie ali expert-

sly,, ,,I,-rati,,_ ,.,l_ _t;uLv _a('hin,_s. Sl)awns a process that calls the f_nction. Argurnents

'l'h,' f,,_r Imsic Lin,la ,q)eralions ;tr,-* i_ll)h._t.,nt_(I to the function are l);_sse(I via tuple sl)ac(-" - the process

;ts t'_tcli,,I_s i_ lt.' share_l-_,,t_ory _t,.l-l. A single executi_g the eva[a(l(ls rh,' arglllllellts tO tuple space:

Iit_,liit,,r i,r,_t_,cts tw,_ r-s,,,irc.s: a (Itle_le ,_[" IllleVal- t,ho i)r_)('ess allocate(I hy oval ren.:,ves the argunwnts

_l;tl,.I fun('ti,,ns an_l tt_. linke_l list r,'l_r-sm_t,;ttio, of from tllp]e slm.ce. The example is c,.le(t in o_r systelll

l.llj)]_, sl_;tt'e. Two askfors c,,,_tr,.,l r_,sl),-,(-t,iv_, acc.ss to its:

t_l_l_' sl,ac_-' an{t l_r,.,c_'..,s-l_-ta.'s.k initiate(I I)y oval.

()_ is r.lativ.lv _,;tsy' t._:,i_r_,(-ess. A stat,-.lllent of main()

/* masks omitted for convenience */

ouC(mask,argl,arg2,...,argN) out(p _me_ rg ,3);
eval("prime_test", "primes") ;

il_v,,k_'s it t'_ct.i,,n which ,'x;u_,i_,:'s ea('h arg,_l_,'nt for /* collect primes with */

ii.,., tyl,,, I,as,._l ,,j_ the r.lativ. I_osition in t_;tsk. The /* "is_prime" t;ag */
lll;tsk illf_rll._s i,]le t',_n,'ti,_r_ how u, I_il_l rh,. hanger. }
All IJl;tl r,'lllit.ills is t,, (']aillJ access la, rh,. _,_(,nitor

primes() ing to simple data types' a type identifier indicates

{ whether a request is iii, cd, or out: size identifiers store
inr i,resull;; the tuple and aggregate lengths; and a separate area

stores aggregate data. Note that ali data, including

in("prime_axg" ,i) aggregates, are copied into the tuple structure's data
/* compu'ce result and */ areas; pointer storage is meaningless in distributed-

/* put in tuple space */ memory space. Once again, a tuplestructureishashed

out("is_prime",result) ; into any one of 256 linked lists. A similar structure,

]- which we call the tuple channel, serves a.s the primary

message type through which processes communicate
With these restrictions in mind, the design of eval tuple information to the tuple manager.

,ully h;us to assign unevaluated live tliples to waiting

processes. A separate askfor is used to this end. Eval The initial steps of in and rd require argument ex-
is basically a three stet- operation: enter the eval- amination anti template constrtiction. The tuple chan-

tiai.i,_n monitor, add the function name to the pool nel is used to send the template to the tuple space

,,f t;usks (a linked list of pointers to functions), and nianager anti to receive the actual tuple from tuple

_xit the morlitor. Note that we have slightly altered space. The two statements:

the t,ra_litiona[selnantics of eval. Heeding the caveat,

pre, tess creation may be expensive on many machines,

we ,tecided t_-) crf_at,e N processes tlp front where N is p4_send(type,manager_id,channel,size)

t,he nulrlber of processes specified by the user in the p4_recv(type,from_id, channel,size)

procgro,lp file. This permits us to "reuse" processes
rather than repeatedly create them. The p4 proce-

,.lure p/__creatc_procgroup() spawns processes which be- riot only cornmunicate a matched t.Ul)le to the process
._in execution at a procedure that invoke an askfor executing the in or cd, but suspend the process until a

that manages the assignment of unewduated tuples to match is found. A process retains a copy of the tern-

available processes, and then invoke the function in plate, and defers the assignment of actuals to formals

the t,ul)le retrieved frorri the pool. until receiving a matched tuple. Send was preferred
to send: because the dialogue between a Linda process

and the manager uses self-synchronizing pairs - a senti

6 Design of the Message-Passing lm- is imrnediately followmt by a receive in any process

plenlentation executing rd or in. ()ni exaniines the argument list,
populates the tuple channel and uses send to commu-

nicate the information to the tuple manager.A I)4-Lintla I)rograni based on message-passing re-_
,Itiires a tllinitiluin of two processes: a master process The tuple manager takes the piace of the monitor

t,, initializ, _ the environment and a process to act as in the nwssage-passing implementation. It's sole job

- tul_le space titanager. ()f course, if there are not other is to receive a request on tuple space, process the re-

- pr,,tesses, then th__ in_ster process will be ttle only pro- quest dependent on the tuple type, and iterate. If the

: toss t.o alter till)le space. Ali communication between tul)le type is rd or in, the Inanager searches the appro-
t]le til;tst.er jlr¢,'oss and slaves is Inediate_¢l tlirough 174- priate haMl list., if a match is foiind, data is packed

Lill<la ,:,l,_r:tt.i<,lis atl<l ruple st,orate handled by the into the tul)le channel and returned to the suspended

illallag,'r, process. When ii<) match is found the iclentity of the

A t'liiltlalliental (Iocision iii thr rnessage-i)assing requester, the till)le tyl)e and tile ternl)late are liriked

iil,_¢l,.l was whether tul)le Sl)aCe sholild I)e teritralize<l, to a wait queue. Ut)on receipt of a tuple of type out,

- _tistril_lite_l. ,Jr ,'veil replicated. We oi)ted for a cell- the manager first, searches the wait qiletle, satisfying

- t,raliz,,<l tliple sl)ace because ttie alterriat/!ve niel, hods ali I)ending requests (there may be several rd's wait-

rvfluir,, bliilding f;.l_stdeletion and I)roadcaa_t protocols, ing on the same tul)ie) until the first matched in is

ali eff,,rt l,_yoll_l the scope of the project. For an iii- encountered or the search is exhausted. If no in is

t.i,r<_st,iilg ,list ISSi,Jii of these schellies see [_i]. encountere_l, the inforlnation iii the tuple channel is

Tlillles ;irt, si.,,rml ;is strilCtllres iii the local liielnory copied into a tuple space str,lit,Ire and linked to t,iie

,,f tile till)le sllate lliallager. A till)le strllCtllre includes a.I)llrol/riate harsh list,. The lllanager serves relllleSts

- l.lio followiiigeleliients: a iii;l.sk tolllailis the typing iii- iinti] ii, receiv+,s a special tllple ,Jt i,yp_-> END which

- f_rliiat.icm' the haliger colil, ailis th_' tlata correspond- signals t,eriiiinal, ioli.

I, , w

7 An Example Program will use one of those processes to manage the tuple spetce.
The mon_linda version will use ali processes to ev,'duate

As ;tri ex_mlp]e, we present a simple program whose live tuples and coordinate their access to tuple space via

mainline prcwecture puts MAXVAL items into tuple monitors: each process will be in a loop looking for live

sl,;tce. For ,,ach item insert, etl, it, evals the procedure tuples to evaluate. Thus, note that the mainline prog;ram
nanlecI ('onstuner to process the item, and then ex- does one eva] for each number to be examined. Each ev,'d

causes the procedure primes to be invoked as part of the
t,r¢_cts an acknowledgenlent from tuple space indicat- evaluation,
ing thai; the item w_s processed. To process an item, To reiterate an important point however, no_,e that if
ccmsumer simply removes it from t,ul)le space and outs the progr;un is run in _ message-pa_ssing environment, it
the acknowledgement,, can run on a shared-memory machine, and p4 will han-

dle message-pa,,;sing through the shared-memory. The pro-
#include "sr_linda.h" gram could even run on a network of shared-memory ma-

chines, and p,l would use shared-memory when possible.

#define MAXVAL 1000 passing messages over the network only when necessary.
Table 1 contains the run times for three executions of

main (argc, a.rgv) the program, one in which ali communications are handled
inr argo; via monitors, one in which communications are handled via

char **argv; ,nessage-pa>_sing through shared-memory, and one in which
{ _dl communications are handled via message-pa._sing over

inr primes(); a network. Note that the message-pa.ssing versions are
int last,i,ok; slower because ali ins and outs must be handled by an
struct linda_eval_tbl linda eval funcs[2];

extra process, the tuple space manager.

linda_eval_funcs[0] .ptr = consumer;

strcpy (linda eval runts [0]. name, "consumer") ; Synchronization C,ommunication Time in
linda_eval_funcs[I]•ptr = NULL; Method Medium Seconds

' ._lonitors ,qlia.red- memory 3iinda_init(&argc, argv, linda_eval_ funcs) ; Message- pa4.ssing Shlared-memory 25

for (i=O; i <= MAXVAL; i++) Message-pa.ssing Ethernet 70

{

out("'/,sXd" ,"msg" ,i); Table 1' q'illJ,'s for Example Program Executions
eval ("?,s", "consumer") ;

in ("'/,sXd", "ack", i) ;
}

printf ("mainline exiting\n") ;
_

8 A Semigroups Problem1 inda_end () ;
}

There exists a cl,ss of pro_rams it_ which communica-
tion costs decrease. ;ts execution time increases. The sv.lr

inr consumer() 9roup.s problvm [11] falls into this category. ;tnd thus is a
{ very good candid;tt.e for p4-[.inda's message pa.ssinl¢ imple-

= inr i,val; mentation. A short discussion of au algorithm suggested
by [3] follows the problem description.

in("Y,s?d","msg",gtval) ; As input, the program is g,iv,.+n a se+t of words ;tnd an
out("ZsXd","ack",val); operation table that defines how to build uew words from
return(I); existivg c,nes. The object is to build a unique set of words

} by applying the operation table to the original set and
any newly derived words. The set of ali possible words is

This program works with both versions of the code if we usually very lare, e when compared with the solution set.
merely replace til,, include for .sr_linda.h with mon_lir_da.h. For example, if there itr(: six unique values for a character
X,Vh,m the prog, ra,, executes lzr_da_mit, 1)4 will spawn some in ;t word, an,l a i;x6 operation table defining, the product
number of processes to participate+ in the t:xecution. The of a ch;tract.er pair, for a 36 _:hsment word one can derive 6
nulnb,.r ,Jt t,r.,:essc's spawned will be determinc'd by the to the 36t1, words, l']li,ni,latinR duplicates yiehls a solution
CtJllt,ents of tilt: p4 prc,c_roul_ tilt+.. The sr_linda version set of only 223 words.

A p,l-Linda parallel solution to the problem requires a
m_L_ter and amy number of slaves. F_orefficiency, ali slaves Number of Processes Word Size 25 Word Size!i6.._
are required to build local copies of the word list ,_nct no 1 3.5 31.5
two slaves c;ul receive the same piece of work, represented 2 2.;i . 19.6
by _n index into the local word List' thus, it is incumbent 4 2.3 11.3
upon the minster to communicaLte new words to slaves via
tuple space. To meet this requirement, new-word tuples
are indexed by slave. Iv|itially the m_ster must communi- Table 2" Tinle (seconds) for Sernigroup Problem
care _lniclue id's to each slave by piercing into tuple space n
tuples t_f the form ("'id",i) where n is the number of slaves
and i is sume arbitrary integer. After the ma.ster places 9 Future Directions
the operation table ,ual initial word list into tuple space,
it in's tuples of the form:

The p4-Linda implementations provicle a minimal set of

("master",_type,_id,_ord); Lindaoperations: eval, out, in, and rd. Boolean versions of
the primitives might prove useful to perform existence tests

: where typ,_ takes the v_ue Candidate (a slave found a on tuples in tuple space, lnp and rdp would attempt to
word it thinks is new) or Work_request (a slave needs an locate a matching tuple and return 0 if they fail; otherwise
operand from which t.o generate new words). If the master they would return a 1 and perform the usuM matching of
in's a ('andidate that is indeed a new word. it adds the actuals to formals that are found in a normal in or rd.

word to the ma._ter iist and outs the tuple: Constructing these predicate versions on top of in and rd
would require minimal modification to the existing code.

(id,type,r_ord,ictx) Our hashing scheme works best when tuples are re-
stricted to a single unique key. Once such a key is iden-

where:: type is New_word. ict is the unique id of the target tiffed in tuple space, the tuple will match any template
slave, amtidx is an indication of where word is to be placed with the same key. If the ha.sh distribution is good, this
in the lucal list. translates into a match with the first tuple in the ha.sh

Slav_: processes in tuples of the form list. Unfortunately, not ali 'uples fall into this category.
In problems where the matching criteria include two tuple

• (id,g_type,_ord,&idx) elements (the logical name and one or more additional ac-
tuals) hashing on a co|nbination of these elements should

wh,:re typ_ contains one of two flags: N_.w_word, which result in a faster search for a matching tuple. Our hash-
informs the slave to ;tcht word to its local list: or Work. ing method is less tha,a optimum for tuple patterns like

which pr_mtpts th_: slaw_ to gener:Lte new words from the these, and we therefore recommend experimentation with
• wur_l imknt_l t,o bv idx. lfa deriw:d word exists locally, it concatenated index schemes to alleviate potential search

is discarded, lfaderived word is not in the local list. the bottlenecks.

slaw_ uuts rh,: tul)le: Finally, there is the issue of adistributed tuple space.
Suppose we wished to add two matrices "A" ;uld "B". To

("master",type,id,uord) inform matrix "'A" of its row index and data we write:

wher¢_ typ,: is (Tandidate. The ma.ster now searches the
primary list for the word. If the master discovers the word out("A",index,data).
is truly n,_w. he adds it to the prim;Lry list and outs n

copies int_J tuple sp;u:e, where n is the number uf slaves. The logical "'A" identifies a specific vector, while index
('ummunication costs ;tre substantially curtailed by points to a specific element of the vector. An tdement is

m;tintaining a ma.';ter list and several local lists. If each retrieved by matching on the first twotuple members:
_ slave's list is a subset of the ma._ter list, a slave can elimi-

- hate as many duplicates a possible on a local level, rather
t,h,tn communicate a.ll generated tuples to the master, rd("A",index,_data) .

Sumt_ results for pr_;blems of two different word sizes

are recurded in TiLble 2. Ali processes were running on The a|no||nt ofse_rching can be reduced if we placed vector
a shared-memory Sequent Symmetry. The results are "'A" in one segment of tuple space, thus eliminating the
prumisin_ fur loosely-coupled processors also beca||se, as need for combined keys. In the message-passing model,
,'xecution tim__.increa.ses, generated words _tre more likely this translates into multiple tuple managers. Adistributed
fuun_l in h;cal lists, av,d communication through tuple a-,;kfor, or use of several monitors, may provide the answer

z sp;tc:,, unly uccurs infrequently, to distributed tuple spaces in the monitors model. A Linda
kernel described in [10] implements multiple tuple, spaces.

_

-

10 Conclusions
...

We have implenmnted two compatible versions of Linda • ,.
on top of the p,t portable parallel programming system,
one to take :utv_tntage of shared-memory architectures, the
other to utilize resources of networked machines, offering
;tn advantage in portability. We have described the advan-
t,'tges and disadvantages of each implementation ;tnd meth-
ods in which the performance of each might be enhanced.
We view these implementations a._, being prototypes and
suggest that if there is sufficient interest, we would like
to further develop thelu. The code for these systems is
;tvailable in the pub/p4 directory at info.mcs.anl.gov.

11 Bibliography

References

[1] S. Ahuja, N. (:arriero, ;_nd D Gelernter. Linda and
friends. IEEE Computer, 19(8):26-34, August 1986.

[2] .James Boyle, RMpt_ Butler, Terrence Disz, Barnett
(',lickfeld, Ewing L||sk. Ross f)verbeek, .lames Patter-
son. and Rick Stevens. Portable Programs for P(_rallel
Pro,'e'.s.s,,'.s. Holt. Rinehart, and Winston, 1987.

[3] R. Butler and N. Karonis. Exploitation of parallelism
in prototypical ded||ction problems. In Ninth lnter-
uational ('onference on .4" tomated Deductzon, pages
:133-34:1, 1988.

[4] Ralph Butler and Ewing Lusk. l'ser'sguide to the p4
parallel programming system. Technical Report AN L-

,tt'.'/17, Argonne. National Laboratory, Mathematics
_uld ('omputer Science Division, ()ctober 1992.

[5] N. (';Lrriero and D. (;elernter. The s/net's linda
kernel. .,t('M Trtmstu'tZ(ms on ('omputer ,b'ystem._,
4(2):110-129. May 1986.

[6] N. ('arriero and D. (;elernter. How to write parallel
programs. A(:M ('omputing Surveys, 21(3):323-356,
September 1!189.

[7] N.('_trri¢_ro,uM D. (',elernter. Lindain context. ('ota-
_ r.u.zc_ltio.s of the .4 ('M, 32(4):'144-458. April 1989.

[,_] [). (;elernter. (;enerative communication in linda,
A('M Trrms_ction._ on, Programming L_lngur_ge Sys.
t_'ms, 7(1):8_1-11'2, January 198.5.

[9] Virginia Herrarte and Ewing Lusk. Studying paral-
lel program behavior with Lrpshot. Technical Report
ANL-9t/15, Argonne National Laboratory, Mathe-
matics :Lnd ('omputer Science Division, August 1991.

- [1_1] W. Leler. Linda meets unix. IEEE (:,.mputer,
23(2):,I:_.-5,1, February 1990.

[li] E. Lusk and R. McFadden. IJsing automated rea.son-
ing tools: A study of the semigroup f2b2. ,%'emiyroup
Forum, 36(I):75-88. 1987.

