
Received January 7, 2020, accepted January 25, 2020, date of publication January 30, 2020, date of current version February 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2970683

P4 to FPGA-A Fast Approach for Generating
Efficient Network Processors

ZHUANG CAO , HUAYOU SU , (Member, IEEE), QIANMING YANG ,

JUNZHONG SHEN , MEI WEN , AND CHUNYUAN ZHANG , (Member, IEEE)
College of Computer, National University of Defense Technology, Changsha 410073, China

Corresponding author: Qianming Yang (yqm21249@nudt.edu.cn)

This work was supported in part by the National Key Research and Development Program under Grant 2016YFB1000400, in part by the

National Key Program of China under Grant JZX2017-1585/Y479, and in part by the Youth Fund Project from the National Natural

Science Foundation of China under Grant 61802420.

ABSTRACT This paper presents a framework for converting P4 programs to VHDL and then implementing

them on Field-Programmable Gate Array (FPGA) platforms. In this framework, a match-action-based

hardware architecture is introduced with clearly designed components, which correspond to the described

functionalities in the P4 programs. A pre-built template library is used for the compilation that includes

optimized VHDL templates corresponding to specific clearly designed components. From the output of

a standard frontend P4 compiler, the proposed compiler extracts parameters and relationships within the

functions being employed, maps them to corresponding templates by calling, configuring, optimizing and

instantiating them, and finally generates the appropriate FPGA code. A pre-built evaluation library is also

proposed that helps the compiler to optimize the implementation during the mapping phase. A prototype of

this framework is also implemented and evaluated; in this process, it is found that the generated processors

use few resources and have high throughput and low latency. Compared with a state-of-the-art solution,

the packet processing time is halved. In addition, the generated processors are able to operate at a line rate

of nearly 100 Gigabits per second for a basic layer-3 forwarding application.

INDEX TERMS P4, VHDL, FPGA, template, network processor.

I. INTRODUCTION

Network devices use various types of processors, includ-

ing Central Processing Units (CPUs), Application-Specific

Integrated Circuits (ASICs), and Network Processors (NPs),

as the processing cores. The variety in the scope of the appli-

cations is not fully addressed by the inflexible ASIC designs,

while high computation requirements and flexible demands

makeCPUs andNPs an inefficient alternative. These different

types of processors are used in different application scenarios:

for example, CPUs have the highest flexibility but lowest per-

formance, and are usually used on software routers [1], [2],

while ASICs have the highest performance but poor flexibil-

ity and are used in high-performance network devices [3], [4].

Moreover, NPs [5] have limited programmability and aver-

age performance, and are used in devices that require some

programmability and do not present a performance challenge.

If they are to meet different user requirements, E-commerce

The associate editor coordinating the review of this manuscript and

approving it for publication was Junaid Shuja .

platforms, data centers and internet service providers (ISPs)

require the ability to deploy flexible high-speed networks;

this drives the need for flexible high-performance network

processors.

Software Defined Networks (SDNs) [6], [15]–[17] have

been widely deployed in various networks. To support

this kind of network, devices should be Protocol-

Independent, quickly developed/ deployed, and high-

performance. To meet these requirements, Reconfigurable

Match Tables (RMTs) [7] and disaggregated Reconfigurable

Match-action Tables (dRMTs) [8] have been proposed to

reconfigure ASICs. These two hardware architectures are

designed based on the ‘‘match-action’’ architecture, which

implements a rigid sequence of match-then-actions. Each

‘‘match-action’’ is clearly defined with different memories

and various logic operations, such as ‘‘and’’, ‘‘or’’, ‘‘shifter’’,

‘‘arithmetic’’, etc.

When combined with high-level Domain Specific

Languages (DSLs) [11], [12] and their corresponding

compilers [13], [14], the use of ‘‘match-action’’ architecture

23440 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0001-6079-0313
https://orcid.org/0000-0002-3587-0917
https://orcid.org/0000-0002-8796-6187
https://orcid.org/0000-0001-6233-6800
https://orcid.org/0000-0002-5875-3297
https://orcid.org/0000-0002-0944-2708
https://orcid.org/0000-0003-0726-5311


Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

can greatly reduce the design effort required. One such lan-

guage is the P4 language [11], whichwas proposed in 2014 by

Nick Mckeown et al. in order to improve the programma-

bility of the data plane. The P4 language is reconfigurable,

protocol-independent, platform-independent, and easy to use.

It means that the developers can customize new protocols or

process existing protocols on demand; it is also independent

of any specific hardware platform, allowing the P4 programs

to be quickly ported among different platforms such as hard-

ware switches, FPGAs, SmartNICs, and software switches

after compiling by hardware-related back-end compilers,

thereby improving development efficiency.

Advances have been witnessed in new processors [9], [42],

which combine ‘‘match-action’’ architecture with the P4 lan-

guage. Reference [9] is the fastest programmable network

processor and can achieve a line-rate of 6.5 Tbit/s, which far

exceeds that of traditional switches. However, there are three

main disadvantages of these new programmable processors.

• Devices containing processors of this kind are expen-

sive [9] for small-scale application scenarios that use

only a few ports, but are required to be high-performance

and reconfigurable. For example, co-processors running

special customized protocols are deployed to specific

network nodes in data center or E-commerce platforms.

• The capability to execute ‘‘external’’ functions (defined

as being capable of performing additional operations on

the packets apart from forwarding) is also important for

router operations, such as packet inspection, decoding,

encoding, etc.; however, such processors lack the ability

to perform these functions with high performance due to

the hardware architecture.

• Although these processors can be programmed, their

table sizes, bus widths, and resource types cannot be

changed, and new instructions cannot be added; in other

words, new features and specific resource-intensive

applications cannot be supported.

Due to the ‘‘match-action’’ architecture which can be

decomposed into various components of different functional-

ities, these components can be easily abstracted to templates.

Due in part to the advantages provided by the ‘‘match-action’’

architecture and the P4 language, FPGAs provide a viable

approach to addressing these problems. When combined

with P4, this flexible hardware platform can greatly reduce

the effort required to design a match-action-based proces-

sor. Accordingly, in this paper, we propose a framework to

implement P4 programs on FPGAs: this framework includes

a customizable hardware architecture based on ‘‘match-

action’’, as well as a compiler that converts P4 programs

to VHDL. The main contributions of this paper are as

follows:
• The design of a match-action-based hardware archi-

tecture for FPGAs, which can be assembled from

many independent hardware components for different

functionalities. These components are clearly defined,

and their corresponding VHDL templates have been

well-designed and thoroughly tested by FPGA experts

in order to reduce the processing latency and resource

usage.

• The design and implementation of a framework that

converts P4 programs to VHDL in order to produce

an FPGA-based network processor. A simple mapping

algorithm is proposed that extracts parameters from

P4 programs, then maps them to VHDL templates;

moreover, a simple back-end compiler is used in our

framework. In addition, judicious pipeline scheduling

for the parser, deparser, and match-action tables are also

proposed.

• The creation of an evaluation library, which includes

resource usage and timings of each template with typical

configurations, and is used in the compilation process to

optimize the design and fast estimate the performance of

the designs before synthesizing.

Experiments were also carried out to evaluate the proposed

framework. The results demonstrate that the experimental

P4 programs are converted to VHDL efficiently, and the

generated processors consume few resources and have low

latencies. The processors can achieve a line rate of nearly

100 Gbps for a basic layer-3 forwarding application.

The remainder of this paper is organized as follows.

Section II reviews the researches on designing efficient

network processor with reconfigurable ASICs and FPGAs.

Section III presents themicro-architecture of the hardware for

the FPGA platform. Section IV describes the working flow

of the compiler, which converts the P4 programs to VHDL

by mapping the functions in the P4 programs to correspond-

ing components in the hardware architecture. In Section V,

the proposed framework is evaluated in terms of resource

usage, clock rate, throughput and latency, which are extracted

from the generated processors or components. Finally, future

work and conclusions are discussed in Sections VI and VII.

II. RELATED WORKS

Many researchers have studied the problem of how to rapidly

design an efficient network processor. Approaches include

the use of reconfigurable chips and FPGAs.

The use of ‘‘softly’’ defined networks was first proposed

in 2014 [18]. This method aims to convert Px++ [39]

language programs to a low-level Hardware Description

Language (HDL), then synthesize and implement it to bit-

streams [19]. A network development tool ‘‘SDNet’’ based on

an FPGA platform was designed in [20]. Native support for

the P4 language by SDNet allows for the conversion of P4 to

verilog [21]. This tool has been continuously updated, and its

license is made available to people who work in academic

fields supported by the Xilinx University Program.

NetFPGA [22]–[24] provides an open low-cost reusable

platform that allows network researchers to build Gbps-level

high-performance network system models on hardware for

next-generation networks. This platform supports modular

design, and complex design can be executed through the

combination of various modules. In addition, the existing

development resources (such as peripheral modules, drivers,

VOLUME 8, 2020 23441



Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

FIGURE 1. Hardware architecture. This figure illustrates the relationship between the different components and
the packet processing within the processor. ‘‘External’’ function interfaces are reserved in the parser and deparser
for customized applications.

GUIs, etc.) can be shared with developers, thus reducing

the need for repetitive development and simplifying the task

of network research. At present, this platform is used for

experimental courses in many universities to implement net-

works and routers. However, compared with the state-of-

the-art solutions, the performance of its generated network

processors is insufficient.

P4FPGA [25] presents a solution in which P4 programs

are first converted to Bluespec [40] programs. The Bluespec

compiler is used to generate Verilog source code, which

can be processed with standard EDA tools. In EMU [28],

the Kiwi compiler [14] is used to convert C# programs to

Verilog. In [31], moreover, a line-rate parser is used to convert

P4 programs to a high-level language such as C++, which is

followed by the use of a high-level synthesis (HLS) develop-

ment tool kit.

The abovementioned methods mainly make use of the

flexibility of high-level languages and existing compilers to

reduce the development time required. This approach results

in the performance of the generated circuits being dependent

on third-party compilers, which are limited by the HLS tech-

nologies used for FPGAs; moreover, multi-step conversion

results in greater performance losses. Furthermore, some

intermediate results are opaque to users during the multi-step

conversion process, making manual intervention difficult.

Benáček et al. present another solution, ‘‘P4-TO-VHDL’’

[26], [27]. As laid out in the structure of its hardware architec-

ture, the compiler reads the P4 programs and then generates

synthesizable VHDL codes for blocks of the network pro-

cessor to various FPGAs; these generated processor blocks

are able to reach high speeds of around 100 Gbps. However,

the development of this solution is still in progress, and it

can currently only generate the blocks of the network pro-

cessors’ parser and deparser. In addition, this solution only

supports P414.

Compared with these state-of-art solutions, the advan-

tages of our proposed framework are numerous. First,

components are clearly defined in the hardware architecture,

corresponding to the functionalities described in the P4 pro-

grams, and abstracted to templates with the help of FPGA

experts. Implementations of this kinds can achieve high

performance while using fewer resources. Second, a simple

mapping method is introduced that implements conversion

only once, so as to avoid any performance loss caused by

a series of language conversions. Moreover, it also avoids

designing complicated compilers; these compilers also help

to decide the performance of the designs. Third, the eval-

uation library helps to optimize the design in the compi-

lation process, thereby improving the design performance.

In addition, the fast reporting helps programmers to estimate

resource usage and clock frequency in advance and modify

their programs accordingly, which saves synthesization time

and improves the development efficiency.

III. FPGA HARDWARE ARCHITECTURE

The key advantages of designing an ASIC are that the

resources and their locations can be arranged according to

requirements, allowing resource and clock rate limitations to

be avoidedwithin the range allowed by the chipmanufacturer.

Compared to ASICs, FPGAs can also be customized, albeit

with limitations. Firstly, programmable primitives of FPGA

are pre-laid out in the chip; this fixed position may affect

the wiring and clock rate. For example, due to the limited

number of wires between adjacent blocks, blocks with farther

distances will be involved in implementing some functions.

This leads to an increase in wiring complexity and propaga-

tion delay, which reduces the clock rate. Secondly, limited

resources are not always able to meet the requirements of var-

ious applications, since these applications may incur heavy

resource costs in terms of Lookup Table (LUT), block RAM,

or other resources. Due to these inherent characteristics of

FPGA, it is not appropriate to copy the ASIC architectures

to FPGA directly, as this may lead to a lack of particular

resources or other unacceptable performance. However, com-

ponents in the architectures can be reorganized and optimized

for FPGAs, enabling the full use of limited resources and the

exploitation of parallelism.

A. MICRO-ARCHITECTURE

As shown in Fig.1, this hardware architecture is primarily

composed of a parser, match-action engine, deparser, packet

buffer, merger and ‘‘external’’ functions; other memories and

23442 VOLUME 8, 2020



Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

accessorial components, such as FIFOs, Muxes, etc., can be

added if necessary. These function modules can be further

decomposed into many components. For example, the match-

action engine is mainly composed of Content Addressable

Memory (CAM), Random Access Memory (RAM), and var-

ious logic operations. By configuring the parameters of dif-

ferent components and then organizing them based on the

designs, network processors with different functions and per-

formance capabilities can be constructed.

Based on the hardware structure shown in Fig.1, when a

packet is taken into the processor, a header slice is split from

the packet and then sent to the parser. Some fields of the

header slice are extracted and loaded into the header vector,

which stores these fields along with some accessorial values

during the parsing process. Some fields in the header vector

are used as a key to facilitatematching, while others are edited

in the match-action engine. The deparser updates the header

slice with the new field values in the header vector. Finally,

themergermerges the new header slicewith its corresponding

packet to create a new packet and then send it to the output

queues. ‘‘External’’ functions are scheduled such that their

functions are executed in parallel with the forwarding com-

ponents and their results are also kept in alignment with the

data stream. In contrast with the match-action architecture

of ASICs, this architecture can be customized based on the

P4 program and there is no need to reserve circuits for unused

functions.

B. IMPLEMENTING ‘‘EXTERNAL’’ FUNCTIONS

As defined in Section I, ‘‘external’’ functions perform

additional operations on the packets. Implementing such

‘‘external’’ functions in network processors helps in eas-

ily offloading the upper-layer applications to the hardware,

which improves the forwarding performance of the switches.

Although these ‘‘external’’ functions can be implemented in

the programmable network processors (ASICs) on demand,

they are executed through the execution of a large number

of instructions by Arithmetic Logic Units (ALUs), a method

consumes a large number of processing cycles. In addition,

it is difficult to change their start execution times due to the

fixed hardware structure; this may result in stalls if they are

unable to generate results in time. However, FPGAs can be

implemented with circuits that generate the results within

far fewer cycles, and their start execution times can also be

adjusted by scheduling the pipelines, thereby avoiding or

reducing the stalls.

There is a simple example of implementing the ‘‘external’’

function.We assume that our switches need to certify the data

for each incoming Secure Socket Layer (SSL) protocol packet

using MD5 [43]. The function dictates that if the calculated

hash code does not match that in the incoming packet, this

packet should be abandoned. The SSL protocol is a kind of

protocol that runs over the TCP/IP and allows the incoming

packet to be forwarded even without MD5 certification. This

certification function can be implemented on FPGAs via

programming and generates the result in only a few cycles.

TABLE 1. Conflict and halt in header parsing.

This function begins to execute once the TCP header is

parsed and is executed with other independent functions in

parallel. The generated result can be used without any stalls

occurring through arranging the pipeline, thereby improving

the performance.

C. PARSER AND DEPARSER

In our proposed hardware architecture, the parser takes in

packet headers and extracts specific fields to update the

header vector. By contrast, the deparser accepts updated

header vectors from the match-action engine and updates

the original packet header. There are many parsers available

for ASICs or FPGAs [29]–[32]. Some FPGA implementa-

tions can achieve very high performance but require very

long pipeline stages or extensive resources. Moreover, they

generally do not allow execution of the ‘‘external’’ func-

tions while parsing the packet header, a feature that would

work to improve parallelism and reduce processing latency.

In addition, some non-pipelined parsers based on Finite State

Machines (FSMs) begin to process the next packet only after

parsing the previous one, which reduces the throughput.

We propose a pipelined parser that takes full advantage of

the reconfigurable nature of FPGAs. This parser is designed

and scheduled based on the supported network protocols, and

each pipeline stage in the parser processes one protocol in

each cycle. A previous version of this idea was presented

in [33]; we will briefly review it and add newmaterial regard-

ing the ‘‘external’’ function to the pipeline scheduling in this

section.

1) PIPELINE SCHEDULING

A parse graph is established based on parse dependencies

among the supported protocols. Fig.2 (a) presents an example

of such a graph. In the parse graph, each node represents

a pipeline stage to process a protocol header or execute an

‘‘external’’ function, while the arrows denote the parsing

sequence. Each path (no ‘‘external’’ function) in the graph

indicates a protocol transition within the packet header, and

all these paths are parsed by the parser.

Due to the presence of interlock branches in the parse

graph, it would be unwise to implement such a parser in

FPGA, as this would result in low performance due to con-

flicts and halts. For example, suppose that three different

packets are inputted sequentially to the parser; Table 1 lists

the conflicts and halts during the parsing.

The parser accepts the first packet and processes

‘‘Ethernet’’ in the first cycle. It then processes ‘‘VLAN’’ and

VOLUME 8, 2020 23443



Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

FIGURE 2. Parse graph and pipeline scheduling. (a) is the initial parse graph from the P4 program, (b) and (c) represent the
intermediate process of the pipeline scheduling, and (d) is the final scheduling result.

FIGURE 3. Hardware structure of the parser. Arrows indicate the direction of data flow.

accepts the second packet in the second cycle. However, in the

third cycle, two ‘‘IPv4s’’ need to be processed in the same

pipeline stage; this conflict forces the second packet to halt,

meaning that the third packet cannot be accepted due to the

halting of the second packet.

The proposed pipeline scheduling approach solves this

problem by implementing the following steps. For illustrative

purposes, Fig.2 (a) is taken as an example to help demonstrate

this method, while the remaining graphs in Fig.2 presents

the pipeline scheduling process. The corresponding pipeline

scheduling steps are laid out below.

1) Find one of the longest paths in the parse graph. There

are several longest paths containing five nodes, such

as ‘‘Ethernet → VLAN → VLAN → IPv4 → TCP’’

and ‘‘Ethernet→VLAN→VLAN→ IPv6→UDP’’;

for illustration, we choose the first path and take it as a

trunk;

2) Choose any one of the remaining non-trunk nodes and

find all of its parents in the trunk. Then, reserve the

dependency relationship with the last node in the trunk

and delete all other dependencies. If ‘‘IPv6’’ is selected

as an example, the reserved dependency should be that

between ‘‘IPv6’’ and the second ‘‘VLAN’’ in the trunk

(shown in Fig.2(b)), while dependencies marked by

dotted arrows will be deleted.

3) Merge this chosen node with its brother in the trunk

to form a new one and update the dependencies of its

children (this process is outlined in Fig.2(c)).

4) Go through the remaining non-trunk nodes one by one

and add them to the trunk by repeating steps 2 and 3.

The schedule is completed when all nodes are in the

trunk; Fig.2(d) shows the result.

Furthermore, in our example, we assume that there is

an ‘‘external’’ function that depends on some fields of the

‘‘IPv4’’ header, and this ‘‘external’’ function can only start

executing after the ‘‘IPv4’’ header has been parsed. This

function can be treated as an independent protocol during

the scheduling, and is scheduled to the same level as the

‘‘TCP’’ and ‘‘UDP’’ protocols. Since the parser has a fixed

number of pipeline stages, and all packet headers go through

these stages, the incoming packets are parsed within constant

latency, which is decided by the pipeline stage number.

2) PIPELINE CONFIGURATION

After scheduling the pipeline, the parser can be configured

and then instantiated, e.g. the width of the header slice and

header vector, as well as the parameters for each pipeline

stage. Fig.3 presents the hardware diagram of the illustrated

case.

The width of the header slice is equal to the longest

header supported by the processor, regardless of the length

of the incoming packet, and the width of the header vector is

decided by the number of extracted fields and the accessorial

data. Each pipeline stage in the parser has the function of

extracting fields, updating the header vector, and generat-

ing its next header type, etc. It works only the incoming

header slice includes corresponding protocol header, other-

wise, the header slice goes through without any processing.

3) PIPELINE CONFIGURATION FOR THE DEPARSER

The deparser has a similar pipeline architecture to the parser,

but different functions. Firstly, the deparser pipeline is sched-

uled using the same method described in Section III-C1.

Secondly, each pipeline stage has similar parameters to the

pipeline stages in the parser. When the data are ready,

the deparser takes in the header slice from the packet and the

header vector, then edits the header slice by using the fields in

the header vector (including adding / deleting / updating the

23444 VOLUME 8, 2020



Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

FIGURE 4. Match-action flow in the L2L3 program [41]. Here fi indicates the match fields, while ai indicates modified fields in the
table.

field in the header slice). The new header slice will be sent

out to the ‘‘Merger’’ in the hardware architecture, enabling

the header slice in the packet to be replaced with this new

one.

D. MATCH-ACTION ENGINE

Match-action engine is a control flow among a series of

match-action tables. This flow decides how the incoming

packets are forwarded, and decisions such as routing, drop-

ping, calculating, statistics, etc. are made during this pro-

cessing. When a header vector is inputted in, some fields

of the vector are used for matching to find out their related

information, for example, the destination IP addresses are

always related to the output port, MAC address of the next-

hop, etc., while some other fields are involved in the actions,

they can be operands or to store processed results. Before

describing our idea for this section, we first acknowledge the

authors of [41], who presented methods for mapping logical

match-action engine to reconfigurable switches; their work

has inspired our ideas for FPGAs. In this section, we borrow

their example program, namely L2L3: this program describes

a simple L2/L3 IPv4 switch and its match-action engine,

consisting of seven tables. Tables in this example are shown

in Fig.4.

Firstly, the source MAC address and VLAN tag are

matched in the tables ‘‘MAC Learning’’ and ‘‘Routable’’.

The match result from ‘‘Routable’’ decides which table will

be next in the data flow: ‘‘Switching’’, ‘‘Unicast Routing’’

or ‘‘Multicast Routing’’. Subsequently, the data flow will

complete matching and action in the subsequent tables, such

as table ‘‘ACL’’ and ‘‘IGMP’’.

1) SUB MATCH-ACTION MODULE DESIGN

Tables in the match-action engine consist of match tables,

registers and action units, as shown in Fig.5. Part of the fields

in the header vector are used to do matching in the table, with

some others used to be handled in action units or ‘‘external’’

functions. Match results from the match table and some fields

from the header vector are operated by the action units.

Finally, results from the action units and ‘‘external’’ functions

are stored in the action vector and sent to its subsequent

tables.

FIGURE 5. Micro-architecture of the table in the match-action engine.

FIGURE 6. Match logic module and action module. (a) indicates the
match logic and (b) indicates the action unit.

The key components in each table are the match logic and

action units. The match logic is illustrated in Fig.6(a), while

the action unit is shown in Fig.6(b).

Match logic comprises CAM and SRAM. CAM [34]–[36]

is a kind ofmemory used in certain very-high-speed searching

applications. It is used to compare an input key-value against

a table of stored data and return the address of matching data.

Since expensive CAM takes up a large number of LUTs or

block RAMs in FPGAs, it is usually used to store values of

match key type and output indexes in order to select big data

stored in SRAM. One or more fields combined to form one

key in the header vector can act as thematch key for the CAM;

the result from CAM selects the content in the SRAM, and

this selected SRAM will be outputted to action units.

A set of logical operations in the action units edit the

fields from SRAM, the header vector, and the action vector.

The action vector stores the results of each action unit in

all tables. ‘‘External’’ functions are executed in parallel with

these operations. Taking the basic layer-3 forwarding as an

example, the CAM stores the destination IP addresses while

other forwarding information (e.g. output port, MAC address

of the next hop, etc.) can be stored in SRAM. The action edits

VOLUME 8, 2020 23445



Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

FIGURE 7. Table dependency; here, the nodes indicate the table, while
the edges indicate the dependencies.

the TTL value and finally updates these forwarding data to the

action vector.

2) DEPENDENCIES AMONG MATCH TABLES AND

SIMPLIFICATION

There are four dependency types among tables in the

match-action engine, as abstracted in [41]: ‘‘Match depen-

dency’’, ‘‘Action dependency’’, ‘‘Successor dependency’’,

and ‘‘Reverse match dependency’’. Based on the dependency

types, we convert Fig.4 to a Table Dependency Graph (TDG),

which is presented in Fig.7(a).

In this figure, the matching result of the table ‘‘Routable’’

determines where the packet data goes next—to the

table ‘‘Unicast’’, ‘‘Multicast’’, or ‘‘Switching’’—and the

successor dependencies. The fields ‘‘ethernet.sMac’’ and

‘‘vlan_tag.vlan’’ aremodified in the table ‘‘Unicast’’, andwill

be the matching key in the table ‘‘Switching’’ for the next

step; this is match dependency. The table ‘‘Multicast’’ and

the table ‘‘IGMP’’ update the field of ‘‘std_meata.mcast_idx’’

one after another, which constitutes an action dependency

between them. Finally, the matching executions of the tables

‘‘MAC Learning’’ and ‘‘Routable’’ need to be completed

before the action of the table ‘‘Unicast’’; accordingly, this

constitutes a reverse match dependency between the former

and the latter.

Aspects of pipeline layout, such as pipeline branch number,

pipeline stage, and table order in the pipeline, can be decided

based on these dependencies. For example, match depen-

dency decides that the latter table begins to execute matching

after the completion of its former table. By contrast, action

dependency decides that the action of the former table and the

match operation of the latter table can be executed in paral-

lel. Obviously, there may be multiple dependencies between

nodes; these dependencies can be confusing when laying out

the tables in the match-action engine, where only the strictest

dependencies decide the final layout. For example, if both

‘‘Successor dependency’’ and ‘‘Match dependency’’ exist

between two tables, the ‘‘Match dependency’’ determines the

layout of the table, while the ‘‘Successor dependency’’ can be

ignored.

Due to the existence of multiple dependencies, we need

to establish multiple data paths among different match tables

based on the dependencies during the layout. However, this

layout solution brings about stalls due to the arising of poten-

tial conflicts; this situation is the same as that in Table 1.

One typical solution used to avoid conflicts is to duplicate

the match tables in order to establish all possible data paths.

However, this solution incurs high resource-costs due to the

fact that each match table takes up a lot of resources. For

these reasons, both of them are unsuitable for the FPGAs.

Instead, the multiple dependencies need to be simplified in

order to enable a pipeline layout solution to be found; this

solution will reduce the resource usage and process latency

for the FPGAs. Thus, we simplify the TDG by going through

all nodes in the TDG, and the method is as below:

• Precedence exists among these four dependencies,

as follows: ‘‘Match dependency’’ > ‘‘Action depen-

dency’’ > ‘‘Successor dependency’’ > ‘‘Reverse match

dependency’’;

• If more than one dependency exists between two tables,

reserve the highest-priority dependency;

• If a table has more than one predecessor, these predeces-

sors can be constructed into a dependency chain, so the

highest priority dependency is reserved and the remain-

ing dependencies are ignored. If there is no dependency

between any of the two predecessors, reserve all its

dependencies.

A simplified TDG is shown in Fig.7(b). However, multiple

dependencies may still exist in the graph, such as the table

‘‘Unicast’’. Two predecessors of this kind can be merged into

one virtual table, and the dependencies between the virtual

table and its successors are also updated. Thus, all tables

have only one predecessor apart from the entry table; this

result is shown in Fig.7(c), which will be used for the pipeline

schedule.

3) PIPELINE SCHEDULE FOR THE MATCH-ACTION ENGINE

Based on the dependencies, the pipeline structure with depen-

dency tables (including the table order, pipeline branches,

etc.) can be determined by simplifying the TDG. For exam-

ple, in Fig.7(c), the ‘‘Successor dependency’’ generates two

branches for the pipeline, while the other dependencies

decide the table order in the branches. Moreover, for the

match-action engine pipeline schedule, the following works

are included.

Reorganize Dependency Tables: As shown in Fig.8, dif-

ferent dependency types decide how the multiple tables run

in parallel. For example, if two tables exist in a match depen-

dency, the table in stage 2 can only begin matching after com-

pleting the action of the table in stage 1. If the dependency

between them is an action, the table in stage 2 starts the match

after completing the match of the table in stage 1. For the

successor dependency, reverse match dependency, and no-

dependency, tables in sequential stages can start running at

the same time. Accordingly, tables in different stages can be

23446 VOLUME 8, 2020



Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

FIGURE 8. Dependency types and latency delays in FPGAs. Table in
stage 2 depends on table in stage 1.

FIGURE 9. Pipeline scheduling for the match-action engine. The arrows
indicate the dependencies between tables. Tables Xi represent the tables
without dependency. Node ‘‘EXT’’ represents an extra pipeline stage for
keeping data aligned. ‘‘Exit’’ Nodes represent the pipeline stages that
combine the results from different pipeline branches.

reorganized based on their dependencies, matches, and the

actions from different tables are run in parallel, which reduces

the process latency in the match-action engine.

Add None-dependency Tables: In the match-action

engine, no-dependency tables is the other aspect that needs

to be planned out during the pipeline scheduling. All

no-dependency tables can start executing at the same time,

meaning that they can be arranged in one pipeline stage;

however, it may cost extra resources to keep all fields aligned.

We distribute these tables evenly over a pipeline branch,

the stage number of which is equal to the minimum stage

number in the existing pipeline branches.

Data Alignment: As tables can consist of match, action,

or both, they process packet data with various latencies.

In addition, different actions may take different numbers of

cycles to complete. An extreme example is as follows: if we

assume that our applications run at a clock rate of 500MHz or

higher, calculating
√
x costs more cycles than x + 1. In addi-

tion, pipeline branches with different amounts of tables lead

to further differences in latency. As a result, it is a challenge

to keep all fields in one packet aligned to flow out of the

match-action engine. To solve this data alignment problem,

we need to first calculate the latencies for processing the

fields in the tables, then insert pipeline stages to short pipeline

branches in order to ensure that the results are outputted from

associated pipeline branches at the same time.

For illustration, we assume that each table is one stage

of the pipeline that costs a constant number of cycles.

Fig.9 presents an example of scheduling the pipeline. In this

FIGURE 10. Workflow of the proposed compiler. Key steps in the
compilation are shown in this figure, including calling the standard
P4 compiler and the EDA tool.

diagram, there are three main pipeline branches: the first

branch consists of table Xs, and the remaining branches are

‘‘Routable (MAC), Unicast, Switching, ACL’’ and ‘‘Routable

(MAC), Multicast, IGMP’’, respectively. The first pipeline

branch with tables Xi handles the fields without dependen-

cies, while the other two branches handle the fields with

dependencies. By adding the ‘‘EXT’’ stage, the results from

the first pipeline branch are kept aligned with the results from

the second one; moreover, the results from table ‘‘X3’’ are

kept aligned with the results of the third one.

IV. CONVERSION OF P4 TO VHDL

The use of a high-level language such as P4 to design a

network processor obviates the need for network program-

mers to be familiar with the details of the hardware. We now

propose a compiler that converts P4 programs to VHDL, then

uses standard EDA tools to generate bitstreams for the FPGA

targets. This process can be used to reduce the effort required

for development.

A. COMPILING PROCESS

Several steps are needed to convert a P4 program to VHDL:

namely, P4 program parsing, pipeline scheduling, mapping,

VHDL code generation, and synthesis and implementation.

Fig.10 presents the workflow.

1) P4 PROGRAM PARSING

The official P4 compiler [37] is used to parse the P4 pro-

gram. This generates an intermediate file in the extensible

markup language that can be easily parsed by various backend

compilers to facilitate their solution, such as generating exe-

cutable instructions, or generating other high-level languages.

Our proposed compiler is this type of backend compiler.

This compiler extracts different functions of the described

network processor associated with their parameter values, but

for reconfiguring the VHDL templates.

VOLUME 8, 2020 23447



Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

FIGURE 11. Optimization for increasing clock rate by inserting pipeline
stages. ‘‘P’’ and ‘‘R’’ in this figure refer to ‘‘Pipeline Stage’’ and ‘‘Register
Array’’, respectively.

2) PIPELINE SCHEDULING AND OPTIMIZATION

The parser pipeline stages of the processor are firstly sched-

uled for parsing the supported protocols without conflicts

and halts, as described in Section III-C. Another function of

this compiler is to schedule the pipeline in the match-action

engine so as to reduce the processing latency, as described

in Section III-D. To accomplish this, all related functions and

their dependencies and latencies are firstly abstracted to form

a Directed Acyclic Graph (DAG), which can be processed

directly by the compiler.

In addition, the compiler needs to insert additional pipeline

stages in order to keep all data aligned, as well as to ensure

that the generated application can run at the specified fre-

quency. As an example, consider a computation in the net-

work processor: the processor calculates a result based on the

formula of pkt.f 1 = pkt.f 2+ pkt.f 3− pkt.f 4.1 We can get a

result in one cycle by implementing it with pure combinato-

rial logic; this implementation model is shown in Fig.11(a).

However, the clock rate of the model in Fig.11(a) would

be lower than the model with inserted registers (pipeline

stage) shown in Fig.11(b). This is because the former has a

longer propagation delay, while the latter achieves a shorter

propagation delay by inserting registers (pipeline stages) to

break the long path. More details of the optimization strategy

are presented in Section IV-C.

3) MAPPING AND GENERATING HDL CODE

Once the pipeline consisting of the various functionalities,

match tables, logic operations, connections, etc. has been

determined, the compiler can map them to their related

VHDL templates that are stored in the template library. The

compiler initializes the templates by configuring their param-

eters; for example, CAM is initialized with width, depth,

resource type, memory type, etc. The compilation is termi-

nated if no corresponding template is found and resumes

when the required template is added. More template details

are provided in Section IV-B. Finally, the compiler generates

VHDL code with instantiated templates and their wrappers.

B. TEMPLATE LIBRARY FOR CONVERTING

The availability of a modular template library for all basic

functions used in the P4 program is a precondition for subse-

quent compilation to continue. We built up a VHDL template

library, the templates of which are managed by a configura-

tion file based on the XML format.

1Where pkt.fi refers to the i field of the packet

1) TEMPLATES CREATION

A VHDL template for each basic function in P4 programs

is created by experts in FPGA design. These functions

may include the operations in the parser that extract fields,

update vectors, or rams that stores the forwarding infor-

mation, and operations of add, subtract, etc. Each template

includes parameter values that control the final implementa-

tion, including resource usage, pipeline stages, performance,

etc. Once these templates are instantiated by the compiler,

they become basic components of the hardware architecture

that can be reorganized to construct a network processor for

different protocols. For example, different clock rates and

table sizes for CAMs can be designed by setting the depth,

width, and pipeline stages.

Table 2 presents a subset of our template library, which can

be called and initialized by the compiler according to require-

ments. The templates in the first three categories are created

based on the basic components of FPGA circuits, which

enable the applications run on the FPGAs. The templates in

the fourth category are created based on partial elements of

our designed network processors, which themselves consist

of basic components in the first three categories. Creating

these element templates means that only a few parameters can

be set, but complex functions can be achieved as a result; thus,

the compiling process can be highly simplified.

2) ADD CUSTOMIZED COMPONENTS

Generally speaking, the existing templates in the library

should be sufficient to enable the construction of a general

network processor. However, customized functions or intel-

lectual properties (IPs) should be used to support new features

or improve performance. For illustration, we demonstrate

how to add an ‘‘adder’’ template to the library. The XML

text below describes the connection interface of this ‘‘adder’’,

which includes function names from the P4 program and tem-

plate names from the template library, as well as properties for

hardware implementation.

<Component>
< !−−S ign or Name i n P4~ language−−>
<FunctionName> + < / FunctionName>
<TemplateName>Adder< / TemplateName>
<De f a u l t L a t e n c y >0< / De f a u l t L a t e n c y >
<Gene r i c s >

< F r o n t P i p e l i n e S t a g e s >0< / F r o n t P i p e l i n e S t a g e s >
<A f t e r P i p e l i n e S t a g e s >0< / A f t e r P i p e l i n e S t a g e s >

< / Gene r i c s >
< P o r t s >

< I n P o r t >
<Name>Clk< /Name>
<Type> s t d _ l o g i c < / Type>

< / I n P o r t >
< I n P o r t >

<Name>Rese t < /Name>
<Type> s t d _ l o g i c < / Type>

< / I n P o r t >
< I n P o r t >

<Name> I npu t 1 < /Name>
<Type> s t d _ l o g i c _ v e c t o r < / Type>
<Gene r i c > I n pu t _w i d t h < / Gene r i c >

< / I n P o r t >
< I n P o r t >

23448 VOLUME 8, 2020



Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

TABLE 2. Partial template set.

<Name> I npu t 2 < /Name>
<Type> s t d _ l o g i c _ v e c t o r < / Type>
<Gene r i c > I n pu t _w i d t h < / Gene r i c >

< / I n P o r t >
<Ou tPo r t >

<Name>Outpu t< /Name>
<Type> s t d _ l o g i c _ v e c t o r < / Type>
<Gene r i c >Ou tpu t_wid th < / Gene r i c >

< / Ou tPo r t >
< / P o r t s >

< / Component>

There are five connection ports of this component, some

of the type ‘‘vector’’ and some of the type ‘‘bit’’. Their

properties, such as port width and registers (pipeline stages),

can be changed by setting the related generics. By inserting

the description into the configuration file, the compiler can

find the template and initialize it using the values parsed from

the P4 program. However, it is challenging for the compiler

to connect its ports, as it is difficult to distinguish between

ports of the same type. For example, if we initialize both of

the two input ports to an 8-bit ‘‘vector’’ in the exponentiation

template, the compiler does not know which port is the base

and which is the exponent. Although the answer can some-

times be inferred through the name or the order of the ports

in the description, sometimes human interaction is required.

C. BUILDING THE EVALUATION LIBRARY

Generally speaking, network programmers configure

parameters based on need without considering hardware

implementation issues. However, it may not be possible

to implement some configurations in specific FPGAs in

the desired way due to resource and/or timing limitations.

Accordingly, this section presents an evaluation library to

reduce such uncertainty and help the compiler to optimize the

applications; the method adopted involves using the existing

synthesized data of some configurations to estimate that of

other configurations.

1) ESTIMATION MODEL AND SYNTHESIZED DATA

Network processors typically consist of many compo-

nents of different functions, all of which are described by

various HDLs. EDA tools compile the programs to circuits

by using sequential primitives and combinatorial logics in

the FPGAs. The circuit of each component can be abstracted,

as shown in the middle frame in the below Fig.12: the combi-

natorial logics execute the computation, while the sequential

FIGURE 12. Estimation model. ‘‘Comb. Logic’’ denotes ‘‘Combinatorial
Logic’’ and the pipeline stages can be constructed by any sequential
primitives in FPGAs. The ‘‘Before Stage’’ and ‘‘After Stage’’ in this model
simulate the last pipeline stages in its upstream and the first pipeline
stage in its downstream, and there are no sequential primitives between
these two stages and the component. The number of ‘‘Inside Stages’’ is
theoretically within a range of natural numbers.

primitives (pipeline stages) store the medium results. Differ-

ent components are connected to form the network proces-

sors, and each component in the processor can be abstracted

to the model shown in Fig.12.

Based on the pipeline configurations of this model, four

types of timing may exist. The ‘‘InToOut_Delay’’ represents

the delay of the longest path between the ‘‘Before Stage’’ and

the ‘‘After Stage’’, when the component is pure combinatorial

logic. When there is at least one inside stage in the compo-

nent, the ‘‘Before_Delay’’ represents the delay of the longest

path between the ‘‘Before Stage’’ and the first inside stage,

while the ‘‘After_Delay’’ represents the delay of the longest

path between the last inside stage and the ‘‘After Stage’’.

Moreover, the ‘‘Inside_Delay’’ represents the delay of the

longest path between any inside stages of the component, and

only exists when there are at least two inside stages.

Due to the consistency of the EDA tools, the same VHDL

code always generates similar circuits for each of the different

conditions by the same EDA tool, which means that the

circuits have similar resource usage and timings. There is

an inherent assumption here: namely, for a specific com-

ponent, the results it synthesizes for a certain configura-

tion can be estimated using the real synthesized results of

a similar configuration. By extending this, the synthesized

results of a circuit consisting of different components can

also be estimated. For example, consider that we have the

real synthesized timings and resource usage of adders with

32-bit, 36-bit and 40-bit input port width, respectively. If there

is also an adder of 33-bit input port width, we can thus calcu-

late suitable values for its synthesized timings and resource

usage based on the existing adder data. Furthermore, if we

have exact or estimated data for all components of an applica-

tion, the synthesized timings and resource usage of this appli-

cation can also be estimated. By using this model, we can thus

generate the timings and resource usage for each component

of any configuration with an EDA tool.

2) LIBRARY ESTABLISHMENT

To establish the evaluation library, the templates are firstly

initialized under various configurations, then synthesized and

implemented by EDA tools with a specific FPGA target.

Here, we are unable to generate the timings and resource

usage for each component of all possible configurations,

VOLUME 8, 2020 23449



Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

TABLE 3. Summary of parameters for VHDL templates.

as this would result in a heavy workload and there is no

need to enumerate all configurations. In practice, typical

configurations are chosen for the estimation data generation,

while other configurations can be estimated using the existing

data. We record the generated data for each configuration in

a database for reference, including the timings (the ‘‘logic

delay’’ and ‘‘propagation delay’’ of each path delay are stored

separately), resource usage (Flip Flop, block RAM, DSP,

and LUTs), FPGA chips, and EDA tools.

The parameters of each component have different effects

on resource usage and timings. Based on the influences they

exert on the synthesized data, these parameters can be divided

into three categories, as listed in Table 3. These parameters

can be any of a number of data types, such as ‘‘string’’,

‘‘boolean’’, ‘‘integer (natural, positive, and specific range)’’,

along with some customized data types that have different

value ranges. Different configurations are chosen in order to

establish the library; carefully choosing these configurations

can not only reduce the scale of the database, but also help

to improve our algorithm’s estimation accuracy. More details

are presented in Section IV-C4.

A simple rule is used to define the configuration

set: the parameters ‘‘Functionality’’ and ‘‘Implementation’’

in Table 3 should enumerate all their values, while the param-

eters of the ‘‘Normal’’ should use sample values. The value

ranges for the parameters of each template are formatted in an

XML file, as this file type can be easily parsed by the library

generator. Semicolons and colons are used to define the value

ranges in this file; semicolons separate multiple independent

values, while the format ‘‘a:b:c’’ defines a serial value whose

start value is ‘‘a’’, step is ‘‘b’’, and end value is ‘‘c’’. For

illustration, we take ‘‘Shifter’’ as an example to describe such

a configuration set.

<Paramete rRange>
<Range name=" SignedX ">Fa l s e < / Range>
<Range name=" SignedN ">Fa l s e ; True< / Range>
<Range name=" BitWidthX ">2 : 2 : 1 2 8 < / Range>
<Range name=" BitWidthN "> 2 ; 4 ; 8 ; 1 6 < / Range>
<Range name=" La tency ">1< / Range>
<Range name=" Reg i s t e rMode "> b e f o r e ; a f t e r < / Range>

< / Parame te rRange>

‘‘Shifter’’ takes two inputs: one is the signal ‘‘X’’ to shift,

and the other is the number of bits ‘‘N’’ to shift. ‘‘SignedX’’

and ‘‘SignedN’’ are both Boolean; the former distinguishes

the shifts of ‘‘Logical’’ and ‘‘Arithmetic’’, while the latter

indicates the shift direction. In addition, the parameter combi-

nation of ‘‘Latency’’ and ‘‘RegisterMode’’ decides the way in

which the component pipeline is implemented. These param-

eters are of the types ‘‘Functionality’’ and ‘‘Implementation’’,

and their values should be enumerated on demand. The bit

widths of ‘‘X’’ and ‘‘N’’ are of the type ‘‘Normal’’; using

the sample values is sufficient for the estimation. Based on

the above settings, there will be 1024 configurations in the

evaluation library (In practical terms, configurations in which

‘‘BitWidthN’’ is greater than ‘‘BitWidthX’’ are ignored).

So far, more than ten thousand configurations have been

created for the ‘‘Virtex-7’’ series (one chip for one series; the

chip of the smallest scale in the series is chosen to speed up

the generation) with Vivado 2015.4.

3) THE APPLICATIONS OF ESTIMATION

Optimization: The compiler always tries its best to optimize

the application in order to meet the users’ requirements.

The data in the evaluation library helps the compiler to do

this. As an example, consider the function of the ‘‘16-bit

checksum’’ with a 160-bit input width. By querying the

library, the compiler discovers that the component can run at

210 MHz without any pipeline stage, but can run at 300 MHz

if one pipeline stage is inserted. The compiler can then

insert one register array and set the clock rate to a value

between 210 MHz and 300 MHz. In our proposed solution,

we choose the strategy of ‘‘meet the minimum demands’’ to

select the configuration. Considering the example of check-

sum, if inserting one pipeline stage can meet the frequency

requirement, we will not attempt to insert two pipeline stages.

In addition, the compiler can automatically balance resource

types: for example, memories can be implemented with LUTs

or block RAMs in FPGA, and it implements some memories

with LUTs once a few block RAMs are left.

Fast Reporting: Due to the inherent characteristics

of FPGA, there may be situations in which the applications’

resource usage exceeds the overall resources of the FPGA,

or the clock rate is unable to meet design requirements. The

users can only know the result after the programs are imple-

mented, which is a time-consuming process. The evaluation

library supports rapid reporting of the applications’ resource

usage and clock rates before implementation, thereby reduc-

ing the time costs. By querying the database, the compiler

searches the estimation data for each component with the

specified configuration during the compilation, and roughly

calculates the resource usage and timings for reference.

Accordingly, the users can decide their next step: changing

23450 VOLUME 8, 2020



Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

the hardware target, optimizing the code, modifying the

required clock rate, etc.

4) ESTIMATION

For each specific component, there are only partial config-

urations in the evaluation library; their synthesized data is

then used to estimate configurations that are not in the library,

a technique referred to as static estimation. Based on the

relationship between the parameters and the synthesized data,

an equation can be established for the configurations, shown

as (1).

f (x1, x2, . . . xm) = (TR1,TR2, . . .TRn)
2 (1)

Below are the steps of the static estimation:
1) Find the N ‘‘closest’’ configurations in the evalua-

tion library for the pending configuration, where the

‘‘closest’’ of these is defined as the one in which all

parameters of the first two types described in Table 3

have the same values, and the parameters of ‘‘Normal’’

have the smallest errors. Taking the library of ‘‘Shifter’’

described in Section IV-C2 as the example, the configu-

rations of {false, false, 6, 4, 1, before} and {false, false,

8, 4, 1, before} are the closest to the configuration of

{false, false, 7, 4, 1, before}. The number of closest

configurations ‘‘N’’ is decided by the demands of the

estimation method. Currently, it is necessary to meet

the requirements of linear/ polynomial interpolation

calculation;

2) For the selected N configurations, the lowest-priority

parameter (for ‘‘Normal’’ type, it is always the port

width) is selected to arrange these configurations in

ascending order. Based on these data, an equation

set (2) can be established using (1);






























f1(x1, x2, . . . xm) = (TR11,TR
1
2, . . .TR

1
n)

. . .

fp(x1, x2, . . . xm) = (TR
p
1,TR

p
2, . . .TR

p
n)

. . .

fN (x1, x2, . . . xm) = (TRN1 ,TRN2 , . . .TRNn )

(2)

3) In this equation set, fp is the pending estimation config-

uration, while TR
p
1,TR

p
2, . . .TR

p
n are the pending syn-

thesized results. To calculate the resource usage and

timings of each pending configuration, the equations

can be simplified based on the synthesized result and

its related parameters of the ‘‘Normal’’ type. For illus-

tration purposes, we choose to calculate TR
p
1; the sim-

plified equation set is shown as (3).






























f1(x1, x2, . . . xl) = TR11
. . .

fp(x1, x2, . . . xl) = TR
p
1

. . .

fN (x1, x2, . . . xl) = TRN1

(3)

2where xi, (1 ≤ i ≤ m) indicate the parameters of the component and
TRj, (1 ≤ i ≤ n) indicate the synthesized results.

Subsequently, a linear/ polynomial (as well multivari-

ate) interpolation algorithm is used to estimate the

value of ‘‘TR
p
1’’. The polynomial interpolation f (x) =

a ∗ x2 + b ∗ x + c (where x is the bus width) is used

in our design, as it is able to achieve high estimation

accuracy. Other pending data are also calculated using

the same method.

Estimating the applications that consist of various basic

components is another task of the compiler’s estimation mod-

ule, which is called dynamic estimation. Essentially, estimat-

ing an application is similar to estimating a component, but is

also the combination of various components. Compared with

the static estimation, our experiments show that the dynamic

estimation is not only affected by configurations of the com-

ponents, but are also related to many other factors, including

their upstream and downstream components, the circuits’

scales, FPGA series, constraints, etc. Many of these factors

are tuned by studying a large number of real applications,

including applications in network and other domain in order

to explore the relationship among the component combina-

tion, circuits’ scales, constraints, etc.

The qualitative analysis method is used in the explo-

ration. The main operation involves maintaining all variables

unchanged except for the tested variable. This enables us to

find out how this variable affects the synthesized results when

it is changed to different values. For example, if we maintain

the component (combination) and the constraints unchanged,

but change the circuits’ scales, we can determine out how the

synthesized results change as a result. Based on the method,

the more examples are studied, the higher the estimation

accuracy that can be achieved. So far, about 100 different

applications have been used for the training; the chip occupa-

tion rate ranges from 1% to 40%. More applications should

be involved in the future.

The compiler estimates the applications based on the fol-

lowing steps:

1) Decompose the application to known and unknown

components;

2) Query the database for each known component of

their configurations and get their timings and resource

usage. For those configurations that are not in the

database, component estimation will be executed to get

their estimation data, while for those components not

in the evaluation library, the lowest clock rate and the

highest resource usage of the known component are

assigned;

3) The sum of the resource usage is used to evaluate the

circuits’ scales. The constraints are calculated based on

the lowest clock rate of the component in the design.

These are references for tuning the resource usage and

timings for each component or component combina-

tion. Subsequently, the resource usage and timings of

the used components can be updated based on the

relationship among the circuits’ scales, constraints, and

components’ orders;

VOLUME 8, 2020 23451



Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

TABLE 4. Resource consumption and clock frequency of different functions with typical parameter values.

4) New values of the resource usage and timings used in

the design are calculated based on the results from the

previous steps, and will be outputted as the estimation

report. This report can be used to automatically opti-

mize the design when the estimation results can not

meet expectations. For example, by adding pipeline

stages for the components that have a high delay.

Steps 2 to 4 may need to be repeated many times until

either the estimation results meet the requirements or

we give up.

For the customized templates and the third-party IPs, users

can generate synthesized data based on the model described

in Fig.12 and add this data to the database.

V. EVALUATION

We have carried out a number of experiments in order

to evaluate the performance of our proposed framework.

In Section V-A, some typical components of the processor

are synthesized and implemented in different configurations

to examine how the parameter values affect the performance.

In Section V-B, the processing latency of the parser and

match-action engine are evaluated. In Section V-D, the effec-

tiveness of the proposed framework is evaluated using a set of

P4 applications. In order to ensure a fair comparison with the

results in [25], we use the Xilinx XC7VX690T as the target

FPGA and the Xilinx Vivado 2015.4 EDA tool to generate the

FPGA bit-steam.

A. EFFECT OF PARAMETER VALUES

Many parameters can affect resource usage and timings,

including the pipeline stage number, bus width and table

depth. To meet our requirement of achieving the line rate

of 100Gbps by processing the smallest size packet (64 bytes),

the clock rate should be about 195 MHz, while the clock

constraints should be set to 5 ns. If the clock rate reaches

400 MHz, the constraints will be set to 2 ns in order to force

the EDA tools to do more optimization.

1) PERFORMANCE WITH DIFFERENT PARAMETER VALUES

The goal of this experiment is to determine the relationship

between configurations and their related performance, such

TABLE 5. Clock rates of two sub-table organizations.

as resource usage and clock rate. The implementation results

of some typical components, along with their configurations,

have been extracted from the evaluation library for illustrative

purposes and are presented in Table 4.

From Table 4, different values of the parameters (such as

‘‘width’’, ‘‘depth’’ and ‘‘pipeline stage number’’) can be seen

to have a positive or negative effect on performance. For

example, compared with the instance without any pipeline

stages, adding the extra pipeline stage in ‘‘Checksum’’

increases the clock rate from 212 MHz to 298 MHz while

costing only an extra 87 (0.01%) LUTs and 39 (0.01%) FFs.

However, for ‘‘Add’’, inserting four pipeline stages decreases

the clock rate relative to inserting only two pipeline stages,

and it also doubles the LUT cost.

Based on such estimation data, the compiler reports the

performance before synthesis by the EDA tools and attempts

to optimize the application. For illustration, let us con-

sider ‘‘Checksum’’ as the example: if the user sets the

required clock rate to be higher than 212 MHz, one pipeline

stage should be inserted; otherwise, pure combinatorial logic

implementation is chosen to reduce the resource usage.

2) CAM IN PARALLEL VS. CAM IN PIPELINE

TCAM with low depth can only run at clock rates lower than

200MHz. In practical applications, however, the depth should

be far higher than 128, which would result in a bottleneck in

the process chain. This experiment tries to solve this problem.

A large-size CAM can be divided into many small

sub-tables capable of running fast. These small tables can be

combined by using one of two types of processes: searching

the same key in parallel sub-tables or in cascaded ones.

Table 5 presents the results.

The results show that searching a key in two parallel

sub-tables costs more time than searching a key in only

one sub-table; by contrast, there is no significant change in

23452 VOLUME 8, 2020



Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

FIGURE 13. Parser latency v.s. number of headers parsed.

FIGURE 14. Processing latency v.s. number of tables.

search time between two cascaded sub-tables. As a result,

the cascaded strategy is chosen for the compiler to do the

CAM optimization.

B. FUNCTION MODULES COMPARISON

This experiment evaluates the performance of generated

parser and match-action engine of different pipeline stages

by comparing the results of P4FPGA; the comparison data

are those reported by [25]. The generated header slices are

set to 1024 bits, while about 50% of the bits of each protocol

are extracted and loaded into the header vector during the

parsing. In our design, the match-action engine consists of

CAM, RAM, and actions, and each of these elements con-

sumes one cycle to process the incoming packets. In addition,

we set the size of the CAMs to 48-bit width * 128 depth,

the size of RAMs to 64-bit width * 128 depth, and the width

of the header vector to 512 bits. The same as that in P4FPGA,

the ‘‘Latency’’ metric is used to evaluate the performance of

our proposed solution; Fig.13 and Fig.14 present the compar-

ison results by using this metric.

As can be seen from Fig.13, the proposed parser takes

less than 40 ns to parse a header of 16 protocols, whereas

P4FPGA takes about 450 ns. Moreover, Fig.14 shows that

the match-action engine of 16 pipeline stages takes less than

300 ns to process a packet, while P4FPGA takes about 900 ns.

TABLE 6. Evaluation of the static estimation.

As a result, it is evident that our proposed solution takes far

less time to process the packets in the parser andmatch-action

engine.

C. ESTIMATION METHOD EVALUATION

To evaluate the accuracy of the estimation methods, static

estimation and dynamic estimation experiments are per-

formed. We use the ‘‘estimation error’’ metric to evaluate

the estimation methods, including estimating the resource

usage and clock rate. This error is calculated by (4) when the

estimation values and synthesized values are generated.
∣

∣

∣

∣

stimationValue− realValue

realValue

∣

∣

∣

∣

∗ 100% (4)

1) EVALUATION OF THE STATIC ESTIMATION

In this experiment, the components ‘‘Adder’’, ‘‘Fifo’’,

‘‘Shifter’’ and ‘‘Parser Pipeline Stage’’ are chosen for illus-

trative purposes; here, the ‘‘Parser Pipeline Stage’’ is a kind of

combination of the other components and has complex func-

tionality. In addition, 20 configurations that are not included

in the evaluation library are chosen randomly for each com-

ponent. The estimation data and synthesized data of these

configurations are generated separately, based on our method

and a related EDA tool, and their corresponding errors are

calculated. We divide these errors into different levels and

record the numbers of the errors at each of these levels

separately. Table 6 presents the experimental results.

In Table 6, there are only two instances of ‘‘Adder’’ and

‘‘Shifter’’ that whose timing estimation errors are outside of

the range of 0 to 15%, and their bus widths are both 2 bits.

By investigating these instances, we can determine that the

timings have a significant error when the bus width increases

from 1 to 2, and that the result calculated by the fitting

formula is unable to cover this difference. For the first three

components, all resource estimation errors are under 5%.

However, there are 12 instances in error level 2 and level 3 for

the ‘‘Parser Pipeline Stage’’ component. By investigating

these instances, we can determine that there are 10 instances

with bus widths that are higher than 768 bits. From this

result, we can conclude that the static estimation method

achieves higher accuracy when estimating the resource usage

than when estimating timings; moreover, it has higher accu-

racy when estimating simple circuits than when estimating

VOLUME 8, 2020 23453



Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

TABLE 7. Evaluation of the dynamic estimation.

complex circuits. In fact, we can obtain similar conclusions

by applying our method to other components in the evalu-

ation library. In general, the estimation accuracy meets our

expectations.

2) EVALUATION OF THE DYNAMIC ESTIMATION

In this experiment, DAGs of the test applications are inputted

into the estimation module. Their frequency and resource

usage are then estimated based on the steps described

in IV-C4. Based on the estimation report, the constraints

for the applications are calculated by the estimated clock

rate, which is used to synthesize its corresponding applica-

tions. We also divide these errors into different levels, albeit

of different ranges. A total of 10 applications/ functions

are chosen for evaluation, such as a ‘‘parser’’, ‘‘deparser’’,

‘‘IPv4ToIPv6’’, and so on. We also select three applications

in the image processing domain, such as ‘‘YCrCb to RGB’’

and ‘‘1-D/ 2-D Discrete Cosine Transform (DCT)’’, as they

consist of the same basic components and are not included in

the evaluation library; for example, the components of ‘‘float

multiply’’. The results are shown in Table 7.

From the table, it can be seen that this module has high esti-

mation accuracy for applications in the network domain, and

only one resource estimation error exceeds our expectation

of 15%. However, two timing estimation errors exceed 15%.

For the additional three applications in the image processing

domain, the estimation accuracy is not high, and all errors

exceed our expectations. Through investigation, for the high

error instances in the network domain, we determine that the

error sources are from unknown component combinations,

while the error sources in the image processing applica-

tions are from both unknown component combinations and

components that are not in the evaluation library. In general,

the method of estimating the applications of complex func-

tions and high resource consumption should be improved;

moreover, more real applications should be used to train our

estimation model.

D. EXAMPLE APPLICATION COMPARISON

Three use cases [38] are chosen to implement their cores

using the proposed framework, which include the parser,

match-action engine, and deparser. The ‘‘Basic’’ application

is a basic layer-3 forwarding application with two protocols

in the packet header. Many key fields are extracted by the

parser, and these fields decide how the processor will process

the incoming packets: forwarding it to a specific destina-

tion, dropping the packets, or taking no action. The ‘‘Mri’’

application is a program for extending the layer-3 forwarding

that allows users to track both the path and the length of

queues that every packet travels through. Extra information,

such as identification (ID) and queue lengths in the related

queue, needs to be added to the output packet. The ‘‘Calc’’

application implements a typical state networking application

that uses a custom protocol header to implement some basic

operations with the input operands by the network processor,

then returns the result to the sender.

1) RESOURCE USAGE

As shown in Table 8, each of these three applications uses

less than 1.5% of LUTs, 2.0% of flip flops, and 0.2% of block

RAMs. This result indicates that there are a lot of resources

in the FPGA that can be used to implement other functions

in the processor, including more buffers to store intermediate

results and fixed-function runtime for different boards, such

as PCIe interface, MACs, and so on.

2) THROUGHPUT

These three applications run at a clock rate higher than

160 MHz. The throughput can be calculated by multiplying

the clock rate by the input bus width, which shows the pro-

cessing capability of the combination of the parser, thematch-

action engine, and the deparser; the final throughputs are

listed in the last column of Table 8. Considering the small-

est size packet limitation and the real network environment,

the real throughput of ‘‘Basic’’ and ‘‘Calc’’ should be higher

TABLE 8. Performance of example applications.

23454 VOLUME 8, 2020



Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

than 90.6 Gbps and 157.4 Gbps. In addition, the performance

of our design is related to the packet rate: the larger the size

of the packet, the higher the data rate that can be achieved.

Moreover, the clock rate also shows that the packet rates

achieved are close to 170 Mpps.

3) ESTIMATION

For these three application, we also use the ‘‘estimation

error’’ metric to evaluate the estimation accuracy of the com-

piler during the converting process. The ‘‘Estimation Error’’

column presents the clock rate error and resource error, and

both of them are less than 15%, which is in line with our

expectations.

VI. FUTURE WORK

Based on the proposed framework, P4 programs are effi-

ciently and rapidly converted to VHDL, then synthesized and

implemented using standard EDA tools. Effectively decom-

posing the processor into small components and creating

VHDL templates for these components are critical aspects

of the compilation flow. Future work will include adding

more templates for components not shown in Fig.1, as well

as upgrading the existing library templates to further reduce

resource usage and increase the clock rate. In addition, pro-

grammable parsers and deparsers can be added to the library

as alternatives.

Other future tasks include improving the accuracy of esti-

mation for resource usage and timings, as well as applying the

estimation model in a wide range of applications. In addition,

optimization levels should be added to balance the frequency

and resource usage.

Finally, the hardware architecture can be improved at

both the system and micro-architecture levels. For exam-

ple, a solution involving multi-chip architecture is currently

being studied. By working with off-chip DRAMs and CAMs,

FPGAs can use all of the available resources to improve the

logical processing units and avoid the limitations of RAMs

and CAMs in FPGA. High-performance buses such as AXI,

which greatly improve flexibility, can also be used in the

architecture.

VII. CONCLUSION

We proposed a template-based framework, which con-

verts P4 programs to VHDL and automatically implements

them in FPGA, to generate a network processor based

on a match-action architecture. To ensure that the gen-

erated processors use few resources while still providing

high performance, the framework implements the following

approaches:

• All components and their bus widths in the proces-

sors are generated on demand. Resources are there-

fore not wasted in the generation of extraneous

circuits.

• A pre-built library of well-designed and thoroughly

tested templates corresponding to functions in the

P4 programs are used in the compilation.

• The optimization of the processors is based on manag-

ing the basic components that construct the processor.

Process latency is reduced by increasing the parallelism

of the components, while the clock rate is increased

by adding pipeline stages based on the evaluation

library. Even though conflicts may exist between reduc-

ing latency and increasing the clock rate, the compiler

attempts to find a good trade-off.

The framework rapidly converts P4 programs to VHDL

which greatly reduces the effort required to design the

network processor for an FPGA platform. Our experi-

ments demonstrate that the generated processor uses FPGA

resources efficiently and can achieve a line rate of nearly

100 Gbps for a basic layer-3 forwarding application.

REFERENCES

[1] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, ‘‘The click modular

router,’’ SIGOPS Oper. Syst. Rev., vol. 33, no. 5, pp. 217–231, Dec. 1999,

doi: 10.1145/319344.319166.

[2] J. Lovato. Data Plane Development Kit (DPDK) Further Accel-

erates Packet Processing Workloads, Issues Most Robust Platform

Release to Date. Accessed: Jun. 21, 2018. [Online]. Available: https://

www.dpdk.org/news/press/

[3] USA. Switches for every network. Accessed: Dec. 15, 2018. [Online].

Available: https://www.cisco.com/c/en/us/products/switches/index.html

[4] China. Network Switches. Accessed: Dec. 15, 2018. [Online]. Available:

https://e.huawei.com/en/products/enterprise-networking/switches

[5] J. Morgan. (Sep. 2004). Intel IXP2XXX Network Processor Architecture

Overview. [Online]. Available: https://www.slideserve.com/bikita/intel-

ixp2xxx-network-processor-architecture-overview

[6] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui, ‘‘Software-

defined networking (SDN): A survey,’’ Security Commun. Netw., vol. 9,

no. 18, pp. 5803–5833, Dec. 2016.

[7] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,

F. Mujica, and M. Horowitz, ‘‘Forwarding metamorphosis: Fast pro-

grammable match-action processing in hardware for SDN,’’ in Proc. ACM

SIGCOMM, Hong Kong, 2013, pp. 99–110.

[8] S. Chole, ‘‘dRMT: Disaggregated programmable switching,’’ in Proc.

ACM SIGCOMM, Los Angeles, CA, USA, 2017, pp. 1–14.

[9] USA. Tofino. Accessed: Nov. 2, 2018. [Online]. Available: https://

barefootnetworks.com/products/brief-tofino/

[10] Intel Ethernet Switch FM6000 Series, Intel, Santa Clara, CA, USA, 2013.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. M. Vahdat, G. Varghese, and D. Walker,

‘‘P4: Programming protocol-independent packet processors,’’ SIGCOMM

Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014, doi: 10.

1145/2656877.2656890.

[12] B. Li, K. Tan, L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,

and E. Chen, ‘‘ClickNP: Highly flexible and high performance network

processing with reconfigurable hardware,’’ in Proc. ACM SIGCOMM,

Florianópolis, Brazil, vol. 2016, pp. 1–14.

[13] USA. P416 Language Specification. Accessed: Oct. 5, 2018. [Online].

Available: https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html

[14] S. Singh and D. Greaves, ‘‘Kiwi: Synthesis of FPGA circuits from parallel

programs,’’ inProc. 16th IEEE Int. Symp. Field-Program. CustomComput.

Mach., Apr. 2008, pp. 3–12.

[15] N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation

in campus networks,’’ SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,

pp. 69–74, Mar. 2008, doi: 10.1145/1355734.1355746.

[16] D. Kreutz, F. M. Ramos, and P. Verissimo, ‘‘Towards secure and depend-

able software-defined networks,’’ in Proc. 2nd ACM SIGCOMMWorkshop

Hot Topics Softw. Defined Netw. (HotSDN), Hong Kong, 2013, pp. 55–60.

[17] A. Abdou, P. C. van Oorschot, and T. Wan, ‘‘Comparative analysis of con-

trol plane security of SDN and conventional networks,’’ IEEE Commun.

Surveys Tuts., vol. 20, no. 4, pp. 3542–3559, 4th Quart., 2018.

VOLUME 8, 2020 23455

http://dx.doi.org/10.1145/319344.319166
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/1355734.1355746


Z. Cao et al.: P4 to FPGA-A Fast Approach for Generating Efficient NPs

[18] EE Times. Xilinx Introduces SDNet & ‘Softly’ Defined Networks.

Accessed: Mar. 31, 2013. [Online]. Available: https://www.eetimes.

com/document.asp?doc_id=1321700#

[19] G. Brebner and W. Jiang, ‘‘High-speed packet processing using reconfig-

urable computing,’’ IEEEMicro, vol. 34, no. 1, pp. 8–18, Jan. 2014, doi: 10.

1109/mm.2014.19.

[20] USA. Software Development. Accessed: Jun. 2019. [Online]. Available:

https://www.xilinx.com/products/design-tools/software-zone.html

[21] J. Zhong. (Nov. 2018). P4 based packet processing with Xilinx. Xilinx,

Beijing, China. [Online]. Available: https://www.sdnlab.com/22712.html

[22] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,

‘‘NetFPGA SUME: Toward 100 Gbps as research commodity,’’ IEEE

Micro, vol. 34, no. 5, pp. 32–41, Sep./Oct. 2014.

[23] N. Zilberman, ‘‘NetFPGA: Rapid prototyping of networking devices in

open source,’’ Proc. ACM SIGCOMM, London, U.K., 2015, pp. 363–364.

[24] USA. NetFPGA GitHub Organization. Accessed: Oct. 7, 2018. [Online].

Available: https://github.com/NetFPGA

[25] H. Wang, ‘‘P4FPGA: A rapid prototyping framework for P4,’’ in Proc.

SOSR, Santa Clara, CA, USA, 2017, pp. 122–135.

[26] P. Benácek, V. Puš, H. Kubátová, and T. Cejka, ‘‘P4-To-VHDL: Automatic

generation of high-speed input and output network blocks,’’Microproces-

sors Microsyst., vol. 56, pp. 22–33, Feb. 2018.

[27] P. Benek, V. Pu, H. Kubtov, and T. Ejka, ‘‘P4-TO-VHDL,’’ SIGCOMM

Comput. Commun. Rev., vol. 20, pp. 87–95, Aug. 2018.

[28] N. Sultana, S. Galea, D. Greaves, M. Wójcik, J. Shipton, R. Clegg, and

P. Costa, ‘‘Emu: Rapid prototyping of networking services,’’ in Proc.

USENIX ATC, Santa Clara, CA, USA, 2017, pp. 459–471.

[29] G. Gibb, G. Varghese, M. Horowitz, and N. Mckeown, ‘‘Design principles

for packet parsers,’’ in Proc. Archit. Netw. Commun. Syst., San Jose, CA,

USA, Oct. 2013, pp. 21–22.

[30] V. Puš, L. Kekely, and J. Kořenek, ‘‘Low-latency modular packet header

parser for FPGA,’’ inProc. Proc. ACMANCS, Austin, TX,USA,Oct. 2012,

pp. 77–78.

[31] J. S. da Silva, F.-R. Boyer, and J. M. Langlois, ‘‘P4-compatible

high-level synthesis of low latency 100 Gb/s streaming packet

parsers in FPGAs,’’ in Proc. FPGA, Monterey, CA, USA, 2018,

pp. 147–152.

[32] M. Attig and G. Brebner, ‘‘400 Gb/s programmable packet

parsing on a single FPGA,’’ in Proc. ACM/IEEE Symp. Archit.

Netw. Commun. Syst. (ANCS), Washington, DC, USA, Oct. 2011,

pp. 12–23.

[33] Z. Cao, H. Zhang, J. Li, M. Wen, and C. Zhang, ‘‘A fast approach for

generating efficient parsers on FPGAs,’’ Symmetry, vol. 11, no. 10, p. 1265,

Oct. 2019, doi: 10.3390/sym11101265.

[34] X.-T. Nguyen, T.-T. Hoang, H.-T. Nguyen, K. Inoue, and C.-K. Pham,

‘‘An efficient I/O architecture for ram-based content-addressable memory

on FPGA,’’ IEEE Trans. Circuits Syst., II, Exp. Briefs, vol. 66, no. 3,

pp. 472–476, Mar. 2019, doi: 10.1109/tcsii.2018.2849925.

[35] I. Ullah, Z. Ullah, and J.-A. Lee, ‘‘Efficient TCAM design based on

multipumping-enabled multiported SRAM on FPGA,’’ IEEE Access,

vol. 6, pp. 19940–19947, 2018, doi: 10.1109/access.2018.2822311.

[36] A. Ahmed, K. Park, and S. Baeg, ‘‘Resource-efficient SRAM-based

ternary content addressable memory,’’ IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 25, no. 4, pp. 1583–1587, Apr. 2017, doi: 10.

1109/tvlsi.2016.2636294.

[37] USA. P4 Compiler. Accessed: Oct. 5, 2018. [Online]. Available: https://

github.com/p4lang/p4c

[38] USA. Tutorials. Accessed: Mar. 2019. [Online]. Available: https://github.

com/p4lang/tutorials/tree/master/exercises

[39] G. Brebner, ‘‘Softly defined networking,’’ in Proc. ACM/IEEE Symp.

Archit. Netw. Commun. Syst. (ANCS), Austin, TX, USA, Oct. 2012,

pp. 1–2.

[40] R. Nikhil, ‘‘Bluespec system verilog: Efficient, correct RTL from high

level specifications,’’ in Proc. ACM/IEEE MEMOCODE, Jun. 2004,

pp. 69–70.

[41] L. Jose, L. Yang, G. Varghese, and N. McKeown, ‘‘Compiling packet

programs to reconfigurable switches,’’ in Proc. NSDI, Oakland, CA, USA,

May 2015, pp. 103–115.

[42] Cavium and XPliant Introduce a Fully Programmable Switch Silicon

Family Scaling to 3.2 Terabits Per Second, Cavium, San Jose, CA, USA,

Sep. 2014.

[43] A. Freier, P. Karlton, and P. Kocher, ‘‘SSL protocol,’’ in The Secure Sockets

Layer (SSL) Protocol Version 3.0. New York, NY, USA: Columbia Univ.

Press, vol. 2011, pp. 12–36.

ZHUANG CAO received the B.S. degree in

automation from the National University of

Defense Technology, Changsha, China, and the

M.S. degree in computer science and technology

fromXiangtanUniversity. He is currently pursuing

the Ph.D. degree with the Department of Com-

puter Science in National University of Defense

Technology.

His main research interests include high-

performance computing, parallel computing, and

reconfigurable computing.

HUAYOU SU (Member, IEEE) was born in 1985.

He received the B.S., M.S., and Ph.D. degrees

in computer science and technology from the

National University of Defense Technology,

Changsha, China.

He is currently an Assistant Professor with the

Computer College, National University of Defense

Technology. His main research interests include

high-performance computing, GPU programming,

and parallel computing.

QIANMING YANGwas born in 1984. He received

the B.S., M.S., and Ph.D. degrees in computer sci-

ence and technology from the National University

of Defense Technology, Changsha, China.

He is currently an Assistant Professor with the

Computer College, National University of Defense

Technology. His main research interests include

computer architecture, high-performance comput-

ing, and reconfigurable computing.

JUNZHONG SHEN received the M.S. degree

in computer science and technology from the

National University of Defense Technology,

Changsha, China, in 2015, where he is currently

pursuing the Ph.D. degree with the Department of

Computer Science.

His current research interests include deep

learning, computer architecture, and reconfig-

urable computing.

MEI WEN received the B.S., M.S., and Ph.D.

degrees in computer science and technology from

the National University of Defense Technology,

Changsha, China, in 1995, 1999, and 2006,

respectively.

She is currently a Professor with the Computer

College, National University of Defense Technol-

ogy. Her research interests include computer archi-

tecture, parallel programming, and scientific com-

puting.

CHUNYUAN ZHANG (Member, IEEE) received

the B.S., M.S., and Ph.D. degrees in computer sci-

ence and technology from the National University

of Defense Technology, Changsha, China, in 1985,

1990, and 1996, respectively.

He is currently a Professor with the Computer

College, National University of Defense Technol-

ogy. He is also the Director of a series of research

projects, includingNational Natural Science Foun-

dation projects of China. His research interests

include computer architecture, parallel programming, embedded systems,

and scientific computing.

23456 VOLUME 8, 2020

http://dx.doi.org/10.1109/mm.2014.19
http://dx.doi.org/10.1109/mm.2014.19
http://dx.doi.org/10.3390/sym11101265
http://dx.doi.org/10.1109/tcsii.2018.2849925
http://dx.doi.org/10.1109/access.2018.2822311
http://dx.doi.org/10.1109/tvlsi.2016.2636294
http://dx.doi.org/10.1109/tvlsi.2016.2636294

