
P4P: A Practical Framework for Privacy-Preserving Distributed Computation

by

Yitao Duan

B.S. (Beijing University of Aeronautics and Astronautics) 1994
M.S. (Beijing University of Aeronautics and Astronautics) 1997

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor John Canny, Chair
Professor Doug Tygar
Professor John Chuang

Fall 2007

The dissertation of Yitao Duan is approved.

Chair Date

Date

Date

University of California, Berkeley

Fall 2007

P4P: A Practical Framework for Privacy-Preserving Distributed Computation

Copyright c© 2007

by

Yitao Duan

Abstract

P4P: A Practical Framework for Privacy-Preserving Distributed Computation

by

Yitao Duan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Canny, Chair

Privacy is becoming an increasingly important issue in electronic commerce and other online

activities that are growing in popularity. This work introduces a framework, called Peers

for Privacy (P4P), for implementing many useful algorithms with provable privacy and

adequate efficiency in a realistic adversary model at a reasonably large scale. The basic

idea is to decompose an algorithm into a series of addition-only steps, which have very

efficient private implementation using cryptographic tools. This simple model is surprisingly

general and supports many algorithms prevalent in distributed data mining. Examples

include linear algorithms like voting and summation, as well as nonlinear algorithms such

as regression, classification, SVD, PCA, k-means, ID3, machine learning algorithms based

on Expectation Maximization (EM), etc. In fact all algorithms in the statistical query

model are supported.

The computation of the sums is based on a highly efficient verifiable secret sharing (VSS)

scheme that allows secret-shared arithmetic operations to be done over small fields (e.g. 32

or 64 bits) where private arithmetic operations have the same cost as normal arithmetic.

This thesis shows that this paradigm admits efficient zero-knowledge tools that can be

used to verify the properties of user data such as equality and boundedness. These tools

provide practical mechanisms to deal with cheating users. One such tool is an extremely

1

efficient zero-knowledge proof that verifies the L2-norm of the user data is bounded by

a constant. This is to prevent a malicious user from exerting too much influence on the

computation. The verification uses a linear number of inexpensive small field operations,

and only a logarithmic number of large-field (1024 bits or more) cryptographic operations,

and can achieve orders of magnitude reduction in running time over standard techniques

(from hours to seconds) for large-scale problems.

Concrete examples are given to demonstrate how the framework supports private com-

putation of popular algorithms such as SVD, link analysis and association rule mining.

The thesis also includes schemes for scalable multicast encryption and bidirectional group

communication. They provide secure data transmission support for the type of communi-

cation pattern required by the P4P framework and many other group-oriented applications.

Professor John Canny
Dissertation Committee Chair

2

To my parents, my wife, Dan Huang, and my son, Shaoxiong the Little Bear.

i

Contents

Contents ii

List of Figures vi

List of Tables vii

Acknowledgements viii

1 Introduction 1

1.1 Our Approach . 3

1.2 Peers for Privacy: Overview . 4

1.2.1 Security from Heterogeneity . 7

1.3 The P4P Framework . 9

1.3.1 The Computation . 11

1.3.2 Leakage by the Sums . 12

1.3.3 Security Properties . 12

1.3.4 The Main P4P Computation . 14

2 Zero-Knowledge Tools for Privacy-Preserving Distributed Data Mining 15

2.1 L2-norm Boundedness ZKP . 15

2.1.1 The Protocol . 17

2.1.2 Simulations of Typical Behavior . 28

2.1.3 Implementation and Evaluation . 29

2.2 Zero-knowledge Test of Vector Equivalence 31

2.2.1 Tools . 31

2.2.2 ZK Test of Equivalence . 32

ii

3 SVD with Privacy: P4P Style 40

3.1 Singular Value Decomposition . 40

3.2 ARPACK . 41

3.3 The Private SVD Scheme . 42

3.4 Dealing with Real Numbers . 44

3.5 The Protocol . 45

3.6 Privacy Analysis . 46

3.7 Implementation and Evaluation . 47

4 Online Link Analysis on Dynamic Weighted Graph 51

4.1 Introduction . 51

4.2 A Review of HITS . 54

4.3 Constructing a Weighted Graph . 55

4.4 Convergence of Weighted HITS . 55

4.5 Online HITS . 56

4.5.1 Basic Approach . 56

4.5.2 Computation of Eigengap . 58

4.5.3 Upper Bound of ‖ES‖F . 59

4.5.4 The Algorithm . 61

4.6 Evaluation . 63

4.7 Privacy Preserving Online HITS . 66

4.7.1 A Run of HITS . 67

4.7.2 Perturbation Checking . 67

4.8 Related Work . 68

4.9 Conclusion . 69

5 Association Rule Mining 71

5.1 Distributed Association Mining . 71

5.2 Association Rule Mining Procedure . 72

5.3 Computing c.count . 73

5.4 Association Rule Mining in P4P . 74

5.5 Discussion . 75

5.5.1 Privacy Analysis . 75

5.5.2 Near Optimal Efficiency . 75

iii

5.5.3 Dealing with Malicious Users . 76

6 An IND-CCA2 Multicast Cryptosystem 78

6.1 Secure Multicast . 79

6.1.1 Our Results . 81

6.2 Preliminaries . 81

6.3 Multicast Cryptosystem . 82

6.3.1 Notion of Security . 83

6.4 ATD-Based Multicast Encryption . 85

6.4.1 Threshold Decryption Scheme . 86

6.4.2 Basic Construction . 88

6.4.3 Extension to Construction 1 . 90

6.4.4 Sharable Trapdoor Permutation-Based Construction 91

6.4.5 From IND-CPA to IND-CCA: Generic Conversion 98

6.5 Conclusion . 99

7 Scalable Secure Bidirectional Group Communication 100

7.1 Motivation . 100

7.2 Preliminaries . 104

7.2.1 Security in Bidirectional Group Communication 105

7.3 Overview of DC Multicast Cryptosystem Construction 106

7.4 Scalable Bidirectional Group Communication 108

7.4.1 Extension for Aggregation . 108

7.4.2 Alternating Bit DC . 109

7.4.3 Initialization . 110

7.4.4 Multicast . 111

7.4.5 Aggregation . 111

7.4.6 Rekeying . 112

7.4.7 Refresh . 112

7.4.8 User Join . 114

7.4.9 User Departure . 114

7.5 Analysis and Evaluation . 114

7.5.1 Security . 114

7.5.2 Efficiency . 116

iv

7.6 Hiding Group Dynamics Information . 118

7.7 Related Work . 122

8 Conclusion 124

8.1 Summary of Contributions . 124

8.2 Related Work . 125

8.3 Ongoing and Future Work . 126

Bibliography 128

v

List of Figures

2.1 (a) Linear and (b) log plots of probability of user input acceptance as a
function of Vd/L for N = 50. (b) also includes probability of rejection. In
each case, the steepest (jagged curve) is the single-value vector (case 3), the
middle curve is Zipf vector (case 2) and the shallow curve is uniform vector
(case 1) . 28

2.2 (a) Verifier and (b) prover times in seconds for the validation protocol with
N = 50, where (from top to bottom) L has 40, 20, or 10 bits. The x-axis is
the vector length m. 30

3.1 Privacy-preserving Singular Value Decomposition (SVD) with P4P. 44

4.1 Approximation ratio: the ratio of the estimated upper bound of ‖ES‖F and
its actual value. 64

4.2 Accumulated perturbation ‖ES‖F and tolerance. (a) shows the actual per-
turbation ‖ES‖F , the upper bound we estimated based on the method of
Section 4.5.3, and the tolerance as specified by Theorem 5. (b) enlarges the
area of (a) between data item 5965 to 6078. 65

4.3 Rankings of “top” 10 users. (b) enlarges part of (a) for clarity. 65

6.1 Conversions between various primitives. A solid arrow from A to B indicates
“generic conversion”, meaning that, under some reasonable assumptions, any
A can be transformed into B. A dashed arrow, on the other hand, denotes
“existential conversion”, meaning that some A can be transformed into B. . 99

7.1 Alternating Bit DC . 110

7.2 Procedures for (a) member aggregation, and (2) center verification. 112

7.3 Procedures for (a) center rekeying, and (b) member rekeying. 113

vi

List of Tables

3.1 Datasets . 47

3.2 Enron Social Graph . 49

3.3 EachMovie . 50

3.4 RAND . 50

3.5 EachMovie (with 10−3 stopping criterion) 50

vii

Acknowledgements

It would be impossible for me to finish this work and obtain my Ph.D. without the help and

support from many people. I would like to take this opportunity to express my gratitude

towards them.

First and foremost, I would like to thank my advisor, Professor John Canny, for intro-

ducing me to the area of privacy technologies and guiding me through my research. His

insights and vision have been of immense value to me. I learned from him the importance

of applying one’s research to solving real-world problems and paying attention to practical

issues. His trust and unrestricted support allow me to explore the research problems that

intrigue me most. His advices and insightful questions shed light on the problems and help

me reach solutions. This work will not materialize without his valuable guidance.

I would also like to thank Professor Doug Tygar and Professor John Chuang for serving

on my qualifying exam and dissertation committee. Their early feedback to my thesis

proposal was very helpful for me to formulate my research plan. I am also very grateful to

them for reading and commenting on my thesis.

I would like to thank Professor David Wagner for serving on my qualifying exam com-

mittee. I learned a lot from his two excellent courses: computer security and cryptography.

They provide me with background knowledge necessary for my thesis work. I also bene-

fit tremendously from discussions with him on my research in general and the multicast

encryption scheme in particular, which is included in chapter 6 of this thesis.

I would like to thank my colleagues in the Berkeley Institute of Design (BiD) for their in-

sightful comments and intriguing discussion: Jingtao Wang, Matthew Kam, David Nguyen,

Ana Ramirez Chang, Tye Rattenbury, Jeremy Risner, Jonathan Hey, Omar Khan, Andy

Carle and David Sun.

My friends in Berkeley make these years full of joy and excitement. Ling Huang, Jialing

Lang, Wei Liu and Nan Ding, we shared many joyful and memorable trips together. Bo

Zhu gave me tremendous help in my early days in Berkeley. I am grateful to my friends

in EECS and other departments for the happy time we shared together: Yunfeng Li, Feng

viii

Zhou, Li Zhuang, Wei Xu, Jimmy Su, Hao Zhang, Qi Zhu, Weidong Cui, Kai Wei, Li Yin,

Fang Yu, and many others.

Finally, I am extremely grateful to my parents and my wife. Without their selfless

love and support, I wouldn’t be able to reach this point in my life. They supported me

with sacrifice and love during the most difficult time of my life when I was struggling with

physical illness. My wife, Dan Huang, accompanied me during all the years in Berkeley and

endured all the difficulties with great courage. I will be eternally grateful for her love, care,

support, and encouragement.

ix

x

Chapter 1

Introduction

Many kinds of analysis depend on mining data from a group of users. Examples include

linear algorithms like voting and summation, as well as non-linear ones such as regression,

SVD, k-means, ID3, and many machine learning algorithms based on the EM (Expectation

Maximization). These analysis methods can be found in a wide range of applications from E-

commerce to medical research. We consider a fully distributed setting where each user holds

her own data and participates in mining tasks managed by a few data miners. One example

scenario could be e.g. two research institutes analyzing user survey data. In all these cases,

it is very important to protect user privacy to the maximum extent possible. Indeed in some

situations laws even prohibit service (e.g. health care) providers from disclosing customers

information, even to other providers. In this case even if users are willing to cooperate,

service providers are restricted to mining data from their own customers, which may not

allow them to discover valuable results that would have been available by mining across-

providers data. At the same time, it is important to perform the same computation with

no loss of accuracy (which can mean lost revenue for the provider, or misleading results for

research institutes). Providers do not benefit directly from privacy technology, so the costs

to them must be as small as possible, and ideally zero. These are the constraints that have

guided the work reported here.

Privacy-preserving data mining has been an active area of research since it was intro-

1

duced by Agrawal and Srikant [4] and Lindell and Pinkas [83]. Existing solutions use either

randomization (e.g. [50, 46]) or cryptographic techniques (e.g. [83, 45, 123, 132, 130])

to protect privacy. Besides sacrificing accuracy, randomization has been shown to provide

very little privacy protection in many cases unless sufficient amount of noise is introduced

[72, 11, 43]. Works in the second category typically make use of private computation proto-

cols and enjoy provable privacy provided by the cryptographic primitives. However, there

has been two major inadequacies with almost all existing cryptography-based solutions:

(1) the schemes are not practical for large scale systems due to their heavy use of expen-

sive cryptographic operations, and (2) there is generally no efficient mechanism to handle

actively cheating users. All the works in [83, 45, 123, 132, 130] deal with only passive

adversary who never deviates from specified behavior. The assumption is certainly not

realistic when the data comes from individual users, some of whom may incentivized to

bias the computation or have their machines corrupted by hackers. Securing the system

against such adversary is a necessary step in incorporating privacy-preserving data mining

into real-world applications.

To summarize, for a privacy solution to be practical, it must satisfy the following, which

existing schemes fail to achieve except for very rare applications:

Privacy It must provide provable privacy.

Efficiency and Scalability It must have adequate efficiency at reasonably large scale.

Robustness It must be secure against realistic adversaries. Since the data is from the

users, it must be able to handle actively cheating users.

Cryptography provides primitives with various level of efficiency [33, 58, 34, 21]. While both

addition and multiplication are possible in most of these schemes, the practical overhead

for multiplication is much higher. Thus one way to build a practical private computation

scheme is to avoid the multiplication and focus on algorithms that can be implemented

using addition-only steps. Surprisingly, a lot can be done with such an approach. The

standard algorithms for many of the above-mentioned analysis use gradient steps which

2

sum vector data from the users. These steps are linear in per user data and can be imple-

mented using an addition-only approach. Implementing the algorithms using summation

forms has been used by other works as a general approach to parallelize the algorithms and

run them in a distributed fashion. For example, [29] and [37] showed that many popular

algorithms has a summation implementation that can be computed with Google’s MapRe-

duce framework, which is a distributed programming construct over clusters that is being

successfully deployed in production. The examples included an EM algorithm for pLSI [69],

Locally Weighted Linear Regression (LWLR), Naive Bayes (NB), PCA, etc. In fact all the

algorithms in the statistical query model [75] can be expressed in this form. They demon-

strated the versatility of vector-addition in implementing statistical learning algorithms.

This phenomena has also been observed by researchers in privacy technology field and used

as a way to implement the algorithms with privacy. These works include private SVD [21],

EM-based collaborative filtering [22], link analysis algorithms such as HITS algorithm [48].

Existing private addition-only solutions are still not always practical due to their heavy

use of public-key operations for information hiding and/or verification. While these exam-

ples have the same asymptotic complexity as the standard algorithms for those problems,

the constant factors imposed by public-key operations are prohibitive for large scale sys-

tems. On a typical computer today there is a six order of magnitude difference between the

crypto exponentiations (in large field) needed for secure homomorphic computation (order

of milliseconds) and regular arithmetic operations in small (32- or 64-bit) fields (fraction of

a nano-second). Both homomorphic arithmetic [34, 21] and VSS (Verifiable Secret Sharing)

[28] rely on public-key operations for verification. Even fast-track VSS [58] does not reduce

the asymptotic number of crypto operations.

1.1 Our Approach

We propose a new approach to address the above-mentioned difficulties and provide

practical privacy solutions for real-world applications. Our approach is called Peers for

Privacy (P4P) for its unique architecture and privacy mechanism. The main computation

3

is based on secret sharing over small field, which avoids the manipulation of large integers

so that private computation on each participant has the same cost as regular non-private

computation. To address the issue of cheating users, we provide a number of very efficient

probabilistic zero-knowledge protocols that can be used to verify the properties of user data

such as equality and boundedness. One such tool is an extremely efficient zero-knowledge

proof for verifying that the L2-norm of the user data is bounded by a constant. This

is to prevent a malicious user from exerting too much influence on the computation. The

verification uses a linear number of inexpensive small field operations, and only a logarithmic

number of large-field (1024 bits or more) cryptographic operations (in the size of the user

data). This improves significantly over standard techniques that require at least linear

number of such expensive steps. Our scheme can achieve orders of magnitude reduction in

running time (from hours to seconds) for large-scale problems. In our scheme, the cost will

be dominated by the linear number of small-field operations that one has to pay even when

the computation is done directly on user data without privacy. In a sense, privacy is almost

“free” even counting constant factors.

Our basic approach, VSS-based private computation over small field and random

projection-based method for verifying (in zero-knowledge) high-dimensional data, also opens

doors to many other practical ZK tools. These include a zero-knowledge vector equality test

and potentially many others. These protocols also use only a small (constant or logarithm

in the size of input) number of large field operations so that they preserve the efficiency we

obtained by using small field VSS. Such tools provide practical means to deal with realistic

adversary models which accommodate active cheating from the users.

1.2 Peers for Privacy: Overview

In P4P, we assume there is a single computer called the server, which is operated by a

service provider or a data miner. Unlike other server-based solutions such as [132], P4P also

involves a (small) number of designated parties called privacy peers (PP) to participate in

the computation. In contrast to previous work, privacy peers do not have to be dedicated

4

servers and can belong to users in the community. The fundamental role of the privacy

peers is to, by participating in the computation, offload the some information, thus trust,

from the server such that no one in the system, except for the owner herself, has access to

user’s data. Privacy peers are not required to be honest, and the protocol ensures that they

cannot break the privacy of the protocol without the server’s help.

This architecture is a hybrid of client-server and P2P. On one hand, the server shares the

bulk of the computation and storage, and also synchronizes the protocol. This allows us to

take advantage of its large computation/storage capacity and high availability. It also leads

to practical, efficient protocols that are not possible with fully distributed architecture. On

the other hand, the peers also participate in the computation and provide privacy. This

particular architecture is motivated by several practical considerations, not all of them

technological (privacy has never been a purely technological issue anyway):

• Client-server is the de facto business and service model for most existing service

providers. It is unlikely that they will be willing to abandon their existing infras-

tructure and practice simply for the sake of providing users with privacy.

• In a purely serve-based system, there is a tremendous power imbalance between the

service provider, who possesses all the information and controls who has access to

it, and the client users. This imbalance is prevalent in almost all aspects of their

relationship including economic, information access, and computing etc.

• Any privacy enhancing technology will inevitably reduce the amount of user infor-

mation a service provider can collect and entail additional cost. Understandably, the

service providers will be reluctant to adopt them. For any technological solutions to

be viable, (1) it must be efficient: the cost for privacy protection should be small,

ideally free, compared to the main computation; (2) the service provider’s incentives

must be taken into consideration.

• The power imbalance and the lack of incentive can be offset by the active participation

of users/peers. At minimum, privacy protection requires user awareness and control

of the collecting and use of personal information. Given the dominance and the

5

reluctance on the server side, users must be involved in the loop to secure and verify

the protection.

• Current distributed multiparty computation protocols have computation and com-

munication complexity at least quadratic in the number of participants, with large

hidden constant in the asymptotic complexity, and are not practical for large scale

systems. But for many applications, the more users involved, the better quality the

computation results are. Such applications are prevalent in data mining. The minimal

scale required by such applications makes it infeasible to carry out the computations

among the users.

P4P accommodates service provider’s existing business model while taking advantage of

participants’ heterogeneity that exists in real-world systems. The server, which is powerful

and highly available, is still responsible for most of the computation/storage but the privacy

peers work with the users to provide privacy. This arrangement allows us to use a VSS-based

paradigm for computation which can be executed in regular-sized (32- or 64-bit) fields. Big

integer field is used only for verification which involves only a small number (constant or

O(log m) where m is the size of user data) of big integer operations. This avoids the pitfall

of generic MPC protocols (e.g. [10, 60, 6, 64, 58]) which work in the big field all the time.

In P4P the cost is dominated by the regular arithmetic that one would have to pay even in

a server-based, non-private scheme. In addition, P4P computes a function over data from

all n users but it does not use an n-party protocol. Instead, computation in P4P consists

of a number of independent, parallel pairwise two-party protocols between the server and

one privacy peer. Each privacy peer services a small subset of users and each pairwise

computation produces aggregate over this subset and the server further aggregate them to

produce the final sum. Compared to a fully distributed multiparty scheme, by restricting

the number of players to 2 in each pairwise computation, many expensive operations such

agreement are made efficient. We can show that private computation in P4P is almost as

efficient as regular, centralized arithmetic operations. In this sense P4P add privacy at

almost no cost to the service provider and provides a practical solution for large scaled

private computation tasks.

6

The candidates for the privacy peers may differ with applications. Since the they are

not trusted and cannot compromise user data, there are many options. It has been demon-

strated that in practical P2P systems such as Gnutella and Napster, a small fraction of the

users in the community provide most of the services to the others. The existence of such

altruistic users is a pervasive phenomenon in communities and those users can provide the

computation cycles for the privacy peers. In this case, we assume a much smaller ratio be-

tween peer and users, e.g. while a single server would normally service millions of users, an

individual privacy peer would support a few hundreds to perhaps tens of thousands of users.

For workplace privacy, the peer would be a special employee (e.g. a union representative).

The service may also be provided for a fee by a third-party commercial “privacy provider”.

In certain cases, it may be feasible to distribute the VSS among service providers. For

example, two hospitals may wish to mine data collected from patients. However, it is not

desirable to disclose patients’ private information. In this case P4P can be used to support

this type of data mining by letting one of the service providers assume the role of a privacy

peer in the protocol and the result is that both hospitals learn the accurate (aggregate)

final computation but neither learns anything about users private data.

P4P does not overthrow existing systems. Instead, it offers a way to “patch” them,

with minimum impact on performance, to provide provable privacy for the users while

maintaining the accuracy of the computation. This approach is applicable to a large number

of existing and emerging real-world applications and is more realistic to guarantee adoption.

1.2.1 Security from Heterogeneity

The security of a P4P system is based upon the assumption that the server and the

privacy peers won’t collude (the corrupted privacy peers may collude with cheating users

or other peers). We show why this is realistic.

Collusion comes in two forms:

1. The owners of the two machines conspire and share data and coordinate their actions;

2. An attacker (who can be one of the two players) corrupts both machines.

7

These two attacks, although often handled uniformly in most schemes, rely on different

conditions to be successful: for two players to conspire, they must have the right incentive,

which may come from anticipated benefit out-weighting foreseeable risk, and overcome

the mutual distrust between them. For an adversary to corrupt both machines, it must

penetrate the armor of the better protected one. P4P defends against them with different

mechanisms, targeting at their individual conditions. Concretely, we make the following

observations/assumptions:

1. The server is well protected against outside attacks.

2. The server and the privacy peers won’t conspire and share data between each other.

3. The owner of the server won’t attempt to break into peers’ machines.

All three are provided by exploiting the asymmetry between server and privacy peer, which

is an important source of security. While peer machines are not always well maintained,

cooperations invest large amount of resources protecting their servers. In terms of incentives,

a service provider will benefit from accessing sensitive data from many users, but much less

so from data from a few users. To gain any substantial advantage, the server must collude

with or break into a large number of peers. This can hardly be done without being detected:

corrupted peers will exchange data with the server, and all will be aware of the cheating.

Any of these peers may, deliberately or accidentally, expose the server’s cheating or discover

the break-in.

In essence, by exploiting the difference in their incentives, the heterogeneity of their

individual protection, and the mutual distrust among the participants, P4P is made efficient

yet secure. In a nutshell, our system relies on the server for defending against external

attacks and uses the privacy peers to protect user privacy against a curious server. In

practice the protection offered by this arrangement is very good compared to multi-server

approaches. And economically, the P4P approach is superior since it requires no additional

resources on the server side.

8

1.3 The P4P Framework

We describe our protocols as 2-way multi-party computations carried out between the

server and a privacy peer who are called talliers. In this work we denote the server T1

and the privacy peer T2. The entire P4P computation is composed of a number of such

independent pair-wise computations.

We define a server as all the computation units under the control of a single entity. It

can be a cluster of thousands of machines so that it has the capability to support a large

number of users. From information-sharing perspective, it suffice to view all the machines

under a single control as a single entity which is referred to as a server in this work.

This is a slightly generalized version of the models many privacy-preserving data mining

schemes consider (e.g. [83, 45, 123, 132, 130])). In their models, each server holds either

a subset of attributes of all users, or all attributes of a subset of users. The former is

called vertical partition [122, 123] and the latter horizontal partition [71, 83]. In our model,

however, no user data ever leaves its owner unprotected and no server can obtain any

information about user data other than what can be inferred from the final results as long

as at least one server is uncorrupted. Arguably, this offers much better privacy protection

since it conforms to the “user-owned and operated” privacy principle that is both natural

and effective in many situations [21]. All the other models can be easily transformed into

ours by letting the servers act on users data on behalf of the owners. Formally the threat

model is defined as follows:

Threat Model Let α be the upper bound on the fraction of the dishonest users in the

system. 1 We consider a computationally bounded adversary whose capability of corrupting

parties is modelled as follows:

1. An adversary may actively corrupt at most ⌊αn⌋ users, taking full control of their

machines and causing them to deviate arbitrarily from the specified protocol.

1Most mining algorithms need to bound the amount of noise in the data to produce meaningful results.
This means that the fraction of cheating users must be below a reasonable threshold (e.g. α < 20%). Under
this condition our scheme should give the honest players fairly good privacy protection.

9

2. In addition to 1, we also allow the same adversary to passively corrupt one of the

talliers. When a party is passively corrupted, all her data is exposed to the adversary

but the party continues to follow the protocol.

This threat model is similar to that of [53] in that some of the participants are actively

corrupted while some others are passively corrupted by the same adversary at the same

time. This is an extension to the general adversary structure introduced by Hirt and Maurer

[67, 68]. Our model does not satisfy the feasibility requirements of [67, 68] and [53]. We

avoid the impossibility by considering addition only computation.

The model models realistic threats in our target applications. In general, users are not

trustworthy. Some may be incentivized to bias the computation (e.g. to drive down/up the

price of an item), some may have their machines corrupted by hackers. So we model them

as active adversaries and our protocol ensures that the active cheating from a small number

of users will not exert large influence on the computation. This greatly improved over

existing privacy-preserving data mining solutions (e.g. [83, 132, 130, 123]) which handle

only purely passive adversary. The corrupted tallier, on the other hand, is modelled as a

passive adversary that can share data with corrupted users. This captures our incentive

and non-collusion assumption mentioned earlier.

REMARKS In this thesis, we will treat both the privacy peers and the server as passive

adversaries. This is reasonable in many situations where the privacy peers enjoy a higher

level of trust already endorsed in real-life (e.g. a union leader), or restricted by legislation

or other factors (hospitals, research institutes, etc.), so that it is unlikely that they deviate

from the protocol or try to bias the computation. This does not hold, however, when the

privacy peers are from general user population. In this case we can use a random sampling

method to verify the computation of privacy peers. Again the P4P architecture still uses the

server to defend against external attacks but relies on redundancy to handle active cheating

of privacy peers. We leave careful design and analysis of such mechanism as future work.

10

1.3.1 The Computation

Let φ be a small integer (e.g. 32- or 64-bit). Since we need signed values, we consider

the specific coset representatives of the integers mod φ in the range −⌊φ/2⌋, . . . , ⌊φ/2⌋ if

φ odd, or −⌊φ/2⌋, . . . , ⌊φ/2⌋ − 1 if φ even. We write Zφ for this additive group. 2

Let ai be private user data for user i and A be public information. Both can be matrices

of arbitrary dimensions with elements from arbitrary domains. Our scheme supports any

iterative algorithms whose (t + 1)-th update can be expressed as

A(t+1) = F (
n

∑

i=1

d
(t)
i , A(t))

where d
(t)
i = G(ai, A

(t)) ∈ Z
m
φ is an m-dimensional data vector for user i computed locally,

and A(t+1) is a successor iterate to A(t). Typical values for both m and n can range from

thousands to millions. Both functions F and G are in general non-linear.

As mentioned before, this is a powerful model that includes a large number of popular

data mining and machine learning algorithms. Additional examples include SVD, k-means,

ID3, etc., most gradient-based and EM algorithms, and all the algorithms in the statistical

query model [75]. [29] showed how to turn these algorithms into such vector addition form

(so they can be implemented using Google’s MapReduce parallel processing framework [39]).

Also see [21, 22, 48] for more examples.

If d
(t)
i are computed locally by each user, our protocol allows calculation of the sum,

and thence the next iterate A(t+1) without disclosing any information about d
(t)
i or ai. In

the following we only describe the protocol for one such iteration since the entire algorithm

is simply a sequential invocations of the same protocol. The superscript is thus dropped

from the notation.

2Since our computation involves addition only, there is no requirement that this group be a field. So φ
need not be prime, and indeed it simplifies computation to take φ = 232 or 264 i.e. word-length or long
integers.

11

1.3.2 Leakage by the Sums

Our private summation protocol guarantees that no more information beyond the sums

is revealed. One thus must be careful about the potential leakage caused by the sums. For

the examples shown in chapters 3, 4 and 5 (the SVD, link analysis and association rule

mining) and others such as [109, 21], we are able to show the sums can be approximated

from the final result so they do not leak more information at all.

There is ongoing work to provide a more general analysis and we have already obtained

some initial results. 3 Basically, using the results in statistical database privacy [11, 43, 49],

we are able prove that, under some conditions, the sums are in fact safe. Roughly speaking,

these works showed that a noisy version of the sums could guarantee strong privacy provided

that Tm is sub-linear in n, where T is the total number of iterations. In our settings, we

are able to prove that, in some situations, external noise is not necessary for maintaining

privacy. Instead, the randomness associated with an adversary’s inherent uncertainty about

unknown data is enough to prevent it from gaining significant information by seeing the

aggregates. We can show that this protection is at least equivalent to that provided by the

perturbation-based approach in [11, 43, 49].

1.3.3 Security Properties

Since all user vectors are hidden, it is necessary to impose checkable bounds on the user

data. Otherwise a single malicious user could corrupt the computation with values as large

as ⌊φ/2⌋ and not be discovered. For this purpose, we use a bound on the L2-norm of each

user vector. This is both computationally natural for many applications, and also supports

a very efficient, randomized check. The maximum L2-norm for a user vector is defined to

be L, which implies that every component of the user vector must be in the range [−L, L].

Note that L must be substantially less than φ. First of all, since n user vectors are

added to reach a final total mod φ, each component value should be less than 1/n times

3Since they are still preliminary we did not include them in this work.

12

φ/2. Secondly, L should be much smaller than φ to ensure low probability of modular

arithmetic anomalies (this is made precise in theorem 1).

Our protocol achieves the following which are similar to those introduced in [21]:

1. Privacy: For any honest user i who follows the protocol and inputs valid data, no

participants, except herself, should gain any information about di, except what is

implied by the final aggregate and the validity property below.

2. Validity: A user vector d4 that is included in the computation must satisfy that,

with high probability, |di|2 < L where |di|2 denotes the L2-norm of the vector di.

3. Correctness: The computation should produce the correct sum of all valid users

data.

We adopt the privacy definition of [60] (Chapter 7) and prove the privacy of our protocol

in a simulation paradigm that is common in numerous cryptography works and can be

traced back to the notion of zero-knowledge [63]. Informally, a protocol is private if, for any

adversary that corrupts a subset of the participants as allowed by the protocol, there exists

a feasible simulator that, given the corrupted parties data and the final result, can generate

a view that, to the adversary, is indistinguishable from the transcript of a real execution

of the protocol. This guarantees that whatever information the adversary can obtain after

attacking the protocol can be actually generated by himself (by running the simulator) thus

no more information about honest parties data is leaked. For formal definition please see

[60] (Chapter 7).

The privacy our protocol achieves is information-theoretic, i.e. it holds against an

adversary with unbounded computation power, as is provided by the secret sharing and

Pedersen commitment scheme we use [99, 33]. However, the success of the validity check

relies on some standard assumptions (e.g. DDH or discrete log) so is only computational.

For validity, we provide an extremely efficient zero-knowledge protocol that, instead of

verifying |di|2 directly, checks the square sum of the vector’s projections on some random

directions. We show in theorem 1 that this check is effective in bounding |di|2. The protocol

is probabilistic and has a small failure probability. In a particular failure mode (i.e. false

13

rejection), the protocol leaks one bit of information about user data, i.e. at least one of the

projections is large (but it does not allow one to infer which direction(s)). This is made

precise in theorem 2.

1.3.4 The Main P4P Computation

Let Q be the initial set of qualified users. Let T1 and T2 denote the server and the

privacy peer, respectively. The basic computation is carried out as follows:

1. User i ∈ Q generates a uniformly random vector ui ∈ Z
m
φ and computes vi = di − ui

mod φ. She sends ui to T1 and vi to T2.

2. User i gives a ZK proof to both servers that her input is valid using the protocol that

will be described in Section 2.1.1. If she fails to do so, both servers exclude her from

Q.

3. If enough (e.g. more than 80% of all users in the group) inputs are collected and pass

the validation test, T1 computes µ =
∑

i∈Q ui mod φ and T2 computes ν =
∑

i∈Q vi

mod φ. T2 sends ν to T1.

4. T1 publishes F (µ + ν mod φ, A) and updates A.

It is straightforward to verify that if both servers follow the protocol, then the final result

µ+ν mod φ is indeed the sum of the user data vectors mod φ. This result will be correct

if every user’s vector lies in the specified bounds for L2-norm, which implies that the sum

over the integers is the same as the sum mod φ. Appropriate constraints on L will be

given in the statement of theorem 1. Privacy of the computation protocol is summarized,

together with that of the verification protocol introduced in section 2.1.1, in theorem 2.

14

Chapter 2

Zero-Knowledge Tools for

Privacy-Preserving Distributed

Data Mining

This chapter introduces a number of highly efficient zero-knowledge tools within the

P4P framework that can be used to verify the properties of user data such as equality and

boundedness. These tools provide practical mechanisms to deal with cheating users and

limit their influence on the computation. All of them use a linear number of inexpensive

small field operations, and only a constant or logarithmic number of large-field (1024 bits

or more) cryptographic operations. They achieve orders of magnitude reduction in running

time over standard techniques (from hours to seconds) thus are suitable for large-scale

problems.

2.1 L2-norm Boundedness ZKP

Bounding the L2-norm of a user’s vector is a natural and effective way to restrict the

amount malicious influence on the computation a cheating user could cause. This can be

shown from several perspectives. Firstly, notice that the result of the computation depends

15

on the sums of n vectors. To drive the sums away from correct positions by a large amount,

a malicious user must input a vector with sufficient “length”, which is naturally measured

by its L2-norm. This is especially evident for algorithms whose results are simply the vector

sums (e.g. k-means). In this case even the precision of the final result is often measured by

the L2-norm of the error vector (see e.g. [11]), which, by triangle inequality, is bounded by

the sum of the L2-norms of all noise vectors.

Secondly, many perturbation theories measure the perturbation to the system in terms

of various forms of (matrix and vector) norms, many of which can be easily transformed into

vector L2-morns. For example, let ·̃ denote the perturbed quantity and σi the i-th singular

value of a matrix A, the classical Weyl and Mirsky theorems [118] bound the perturbation

to A’s singular values in terms of the spectral norm ‖ · ‖2 and the Frobenius norm ‖ · ‖F of

E := A − Ã, respectively:

max
i

|σ̃i − σi| ≤ ‖E‖2 and

√

∑

i

(σ̃i − σi)2 ≤ ‖E‖F

The spectral norm can be bounded from above by Frobenius norm: ‖E|2 ≤ ‖E‖F . And if

each row, denoted ai, of the matrix A is held by a user, the Frobenius norm of the matrix

E can be expressed in terms of vector L2-norms:

‖E‖F =

√

√

√

√

n
∑

i=1

|ãi − ai|2

Clearly bounding the vector L2-norm provides an effective way to bound the perturbation

of the results. Similar techniques was also used in e.g. [48].

And finally, bounding the L2-norm can also be the basis of other, more specific checks.

For instance, in a voting application, the protocol can be used with L = 1 to ensure that

each user only exercises one vote.

16

2.1.1 The Protocol

Overview

A straightforward way of checking the L2-norm of user vector is given in [21] which

works with each element and requires O(m) public key operations and ZKPs. We present a

novel protocol that uses only constant or O(log m) such expensive operations thus is orders

of magnitude more efficient. The key technique is that, instead of checking each elements,

we check the projections of the user vector on some random directions. We show that

some statistical properties of these projections are related to the L2-norm of the original

vector. Therefore by verifying the square sum of a small number of such projections (in

zero-knowledge), we can check if the L2-norm of a vector with a large number of elements is

within a desired bound. The overhead to compute the projections is O(m) but these steps

only consist of arithmetic operations in the small field. As we will show in our experiments,

the cost of such operations is very small compared to the crypto operations (It is not

noticeable when m ≤ 105, and is fraction of a second when m reaches 106).

Tools

The verification protocol requires some standard primitives for homomorphic computa-

tion. These have appeared elsewhere, see e.g. [33], [21] and we summarize only their key

properties here. All values used in these primitives lie in the multiplicative group Z
∗
q , or in

the additive group of exponents for this group, where q is a 1024 or 2048-bit prime. They

rely on El-Gamal, RSA or discrete log functions for cryptographic protection of information.

Homomorphic commitment Given an integer value a, a homomorphic commitment

to a with randomness r is written C(a, r). It is homomorphic in the sense that

C(a, r)C(b, s) = C(a + b, r + s). It is cryptographically hard to determine a given

C(a, r). We say that a prover “opens” the commitment if it reveals a and r.

ZKP of knowledge A prover who knows a and r (i.e. who knows how to open A =

17

C(a, r)) can demonstrate that it has this knowledge to a verifier who knows only the

commitment A. The proof reveals nothing about a or r.

ZKP for equivalence Let A = C(a, r) and B = C(a, s) be two commitments to the same

value a. A prover who knows how to open A and B can demonstrate to a verifier in

zero knowledge that they commit to the same value.

ZKP for product Let A, B and C be commitments to a, b, c respectively, where c = ab.

A prover who knows how to open A, B, C can prove in zero knowledge to a verifier

who has only the commitments, that the relationship c = ab holds among the values

they commit to.

Bit commitment Let A = C(a, r) be a commitment to a value a where a ∈ {0, 1}, which

is called a bit commitment. A prover who knows how to open A can prove in zero

knowledge that it commits to either 0 or 1 (but not which).

ZKP for boundedness Let A = C(a, r) be a commitment to a value a. Using the above

methods, a prover can show that A contains a k-bit integer, i.e. that it encodes the

same value as Bk−1 · · · B0, where each Bj encodes 0 or 2j . If the leading “bit” Bk−1

instead encodes 0 or L − 2k−1 + 1 where k = ⌊log2 L⌋, then the ZKP proves that

a ∈ [0, . . . , L] for any k-bit positive L. Adding an additional bit which encodes 0 or

−L gives a proof of boundedness in the range [−L, . . . , L].

Protocol UDVP (User Data Verification Protocol)

Let N be a positive integer which determines the number of challenges, and sets the sta-

tistical precision of the verification. The protocol is carried out between each user and the

two servers. The execution will be identical for each user so we drop the user index in the

notation.

1. Setup: After all users send their data to all servers, T1 broadcasts a random number

r to T2 and all users. Using a public PRG (pseudo-random generator) and r as

the random seed, all players generate N independent m-dimensional challenge vector

18

ck ∈ {−1, 0, 1}m with each of its elements generated with IID probabilities {1
4 , 1

2 , 1
4},

for k = 1, . . . , N .

2. Projection & Commitment: For k = 1, . . . , N , the user computes xk = ck · u

mod φ, yk = ck · v mod φ, and sk = ck · (u + v) mod φ. Let sk = xk + yk + bk over

the integers, then bk is either zero or ±φ. The user computes commitments Xk to xk,

Yk to yk, Sk to sk, Bk to bk and finally a commitment Zk to the squared sum zk = s2
k

(computed over the large field Zq). The user sends all 5N commitments to T1 and T2.

3. Consistency Check: T1 and T2 exchange these values to confirm they received

identical data from the user. If they do not match, the user’s data is rejected.

4. Commitments Verification: The user opens Xk for T1, and Yk for T2, for k =

1, . . . , N . Both servers confirm that the openings match their data, i.e. T1 confirms

that Xk is a commitment to xk and T2 confirms that Yk is a commitment to yk. The

servers communicate the results to each other. If either opening fails or if the user

failed to send a complete response to the challenge vector, this user’s input is rejected.

5. Equivalence ZKPs: For each k, the user proves in zero knowledge to both servers

that Sk encodes the same value as XkYkBk. The user then proves in zero knowledge

that Bk encodes 0 or ±φ. Finally the user gives a product ZKP to the servers that

Zk encodes the square of the value that Sk encodes. If any of these proofs fail, the

user’s input is rejected.

6. Boundedness ZKP: The servers computes the product Z =
∏N

k=1 Zk. The user

then provides a ZKP that Z encodes a value in the range [0, NL2/2]. If this proof

succeeds, the user’s input is accepted and added to the total.

All the ZKPs used should be implemented non-interactively using the Fiat-Shamir heuristic

so that the users can upload the data to the servers in a batch without further interaction.

Field/Group Sizes

The protocol assumes that the size of the cryptographic field Zq used for commitments

and ZKPs is much larger than the “small” group Zφ used for additive secret-sharing. A

19

transition happens when zk is computed from sk. The value of sk lies in the small group,

while zk = s2
k is computed in the large field. The sum z =

∑n
i=1 zk should be less than q to

avoid modular reduction of z in the large field. This will almost surely be true. Since φ is

typically 64 bits or less, zk will have at most 128 bits, while z will be at most 128 + log2 n

which is much less than 1024.

Theorem 1. Let |d|2 denote the L2-norm of user vector d, and L be the specified bound on

this norm. Define δ = L2/|d|22. Then if |d|2 < L, and further δ > 2, the probability that a

user vector is (incorrectly) rejected is at most:

Pr[z > NL2/2] ≤
(

δ
2 exp(1 − δ

2)
)N

If instead |d|2 > L, the probability that a user vector is (incorrectly) accepted is at most:

Pr[z < NL2/2] ≤
((

7
8 − 5

24δ + 75
288δ2

)

exp
(

1
2δ − 5

12δ2
))N

Furthermore, these bounds are valid using modular arithmetic as per the above protocol if

L satisfies:

L ≤ φ/max(56.5
√

m, 2n)

where n is the number of users and m is the vector dimension.

Proof. We first present proofs for the tail bounds assuming the total sk on each round

exactly represents the weighted sum of user vectors sk =
∑m

j=1 ck · d. Because the sums

are actually computed mod φ, sk may differ by a multiple of φ from the total over the

integers. We deal with modular arithmetic effects later in this section.

Statement Let zk = s2
k, and z =

∑N
k=1 zk. Let V = E[zk] for k = 1, . . . , N and δ =

(L/|d|2)2 = L2/(2V). Then the probability that a user input fails the test is probability

that Pr[z > NL2/2] = Pr[z > δNV], and we claim that

Pr[z > δNV] ≤
(

δ
2 exp(1 − δ

2)
)N

where δ > 2

Conversely, with the same definitions and if δ < 1, the user will pass the test if Pr[z <

NL2/2] = Pr[z < δNV], which has a bound

20

Pr[z < δNV] ≤
((

7
8 − 5

24δ + 75
288δ2

)

exp
(

1
2δ − 5

12δ2
))N

where 0 < δ < 1

Proof

Since sk is a sum of independent random variables, the pdf of sk typically has gaussian-decay

tails, but the squares zk = s2
k in general are not gaussian and have simple exponential tails.

We can still prove Chernoff-style bounds for the tails of z that show exponential decrease in

the number of trials, but the bounds have only simple-exponential decrease away from the

mean. In all cases, we use bounds of the moments of zk which are derived later in Lemma

1.

Upper Tail

First, for the upper tail let δ > 1, and since E[z] = NV , we evaluate

Pr[z > δNV] = Pr[exp(tz) > exp(tδNV)]

and applying a Markov bound we obtain

Pr[z > δNV] ≤ E[exp(tz)]

exp(δNV)
(2.1)

and since the zk are independent for k = 1, . . . , N , we can factor the expected value as the

product of E[exp(tzk)]. Since we have all the moments of zk, we can compute this value as

a power series:

E[exp(tzk)] =
∞

∑

i=0

tiE[zi
k]/(i!)

≤
∞

∑

i=0

(tV/2)i(2i)!/(i!)2

=

∞
∑

i=0

(tV/2)i

(

2i

i

)

and since
(

2i
i

)

≤ 4i, this series will converge so long as 2tV < 1. The series is then

21

geometric, and has a bound of:

E[exp(tzk)] ≤
1

1 − 2tV

and substituting into (2.1) gives

Pr[z > δNV] ≤ 1

(1 − 2tV)N exp(tδNV)
(2.2)

and this bound is optimized by maximizing (1 − 2tV) exp(tδV). Taking derivatives and

solving gives t = 1/(2V) − 1/(V δ). The bound is valid so long as 0 < t < 1/(2V), which is

true if δ > 2. Substituting, we obtain:

Pr[z > δNV] ≤
(

δ
2 exp(1 − δ

2)
)N

where δ > 2 (2.3)

Lower Tail

Now let δ > 0, E[z] = NV , we evaluate

Pr[z < δNV] = Pr[exp(−tz) > exp(−tδNV)]

for t > 0, and applying a Markov bound we obtain

Pr[z < δNV] ≤ E[exp(−tz)]

exp(−tδNV)
(2.4)

the expected value factors as before into terms E[exp(−tzk)]. The expansion is an alternat-

ing sum which is difficult to bound, so instead we truncate it using the inequality

exp(−y) ≤ 1 − y + y2/2

which holds for all y > 0. This gives the bound:

E[exp(−tzk)] ≤ E[1 − tzk + t2z2
k/2]

= 1 − tV +
t2

2
E[z2

k]

≤ 1 − tV +
3

2
t2V 2 (2.5)

22

where the last step used the moment bounds from Lemma 1. Substituting into (2.4) gives

Pr[z < δNV] ≤
(

(1 − tV + 3
2 t2V 2) exp(tV δ)

)N
(2.6)

Minimizing the RHS involves solving a quadratic equation which is a function of δ. The

solution can be approximated as t ≈ (1/2− 5/12δ)/V . We can use this value as a bound in

any case, giving:

Pr[z < δNV] ≤ ((7
8 − 5

24δ + 75
288δ2) exp(1

2δ − 5
12δ2))

N
(2.7)

Dealing with Modular Arithmetic

In order for the secret shares not to leak information about user data, modular arithmetic

is used. We use the notation x[i] for the ith component of the vector x. We denote by

s̄k =
∑m

j=1 ck[j]d[j] the sum over the integers, and by sk this sum reduced mod φ, which

is what the protocol actually computes. Then we have

s̄k = sk + wφ

for some integer w. The modular arithmetic provides additional ways for the user to cheat.

e.g. the user might set some components of her vector to φ/2. If an even number of those

are included in the checksum, they will be removed by the modular arithmetic, leading to a

small sk. However, we show now that any such “large” components will cause the protocol

to fail almost surely. We consider the following two cases:

1. All components d[i] of the user’s vector are in the range [−4L, 4L]

2. Some component d[i] has magnitude larger than 4L.

Note that case 1 includes both legal and illegal inputs, since the largest legal magnitude for

any component is L. Case 2 vectors have overall magnitude greater than L and are strictly

illegal.

Case 1: If all components of the user vector are in the range [−4L, 4L], then the maximum

variance of this vector is V = 32mL2. The reduced sk will be equal to s̄k as long as s̄k is

23

in the range Zφ, i.e. as long as |s̄k| ≤ φ/2. By setting δ to the ratio of squared limit over

variance δ ≥ φ2/(32mL2), and N = 1 we can use the upper tail bounds computed earlier

to bound a single sk.

Pr[|s̄k| > φ/2] = Pr[zk > δV] ≤
(

δ
2 exp(1 − δ

2)
)

A typical safe value would be δ = 100, giving a failure probability of 2.6 × 10−20. The

bound L must satisfy L ≤ φ/
√

32δm, which for δ = 100 becomes L ≤ φ/(56.5
√

m). This

constraint would normally be satisfied in any practical system, because L must be small

enough to allow s̄k totals to be computed without wrapping mod φ. That is if there

are n users, the bound L should be such that nL ≤ φ/2, because a legal user input may

have a value of L in one element only. Satisfying both constraints gives us the result:

L ≤ min(φ/(56.5
√

m), φ/(2n)) or L ≤ φ/max(56.5
√

m, 2n)

Case 2: Some |d[i]| > 4L. Fix this i, and let s̄−i denote the sum
∑

c[j]d[j] of all terms

j 6= i over the integers. Now either s̄−i is in some range [−2L, 2L] + kφ or it isnt (we say it

is “legal” it is is in such a range). The final total s̄ = c[i]d[i] + s̄−i differs from s̄−i by either

0 or d[i] where 4L ≤ |d[i]| ≤ φ/2. If s̄−i is legal, then s̄−i ± d[i] must be illegal, which has

probability 1/2. If s̄−i is illegal to begin with, then at most both the offsets ±d[i] will be

legal, which again has probability 1/2. If p is the probability that s̄−i is legal at first, the

probability that s̄ is legal is at most 1
2p + 1

2(1 − p) = 1
2 .

Now let q ≤ N be the number of challenges for which s̄k is illegal, i.e. the number of

k for which s̄k > 2L. For each of these zk > 4L2 and the total z will be at least 4qL2.

The overall user data verification will (incorrectly) succeed if z < NL2/2, which can only

happen if q < N/8. The probability that this happens is the tail of a Bernoulli distribution

over uniform trials with probability ≥ 1
2 . Using standard formulae [89], this probability is

bounded by:

Pr[z < NL2/2] ≤ 0.8173N

This probability is strictly less than the lower tail bound derived above which is never better

24

than 7
8

N
= 0.875N . So the latter bound dominates, and we do not separately quote the

probability for modular wrap-around error.

Lemma 1. For independent random variables c[j] in {−1, 0, 1} with probabilities {1
4 , 1

2 , 1
4}

respectively, and let s =
∑m

j=1 c[j]d[j], and z = s2. Then all positive moments of z satisfy:

E[zq] ≤ (2q)!

q!2q
V q = (1 · 3 · 5 · · · (2q − 1))V q ≤ (qV)q

where V = E[z] = E[s2] as before.

Proof

We rewrite the sum for each moment as: E[zq] = E[s2q] = E[(
∑m

i=1 s[i])2q] and fully

expanding the last term gives:

E[zq] =

2q
∑

r=1

1≤i1,...,ir≤2q
∑

i1+···+ir=2q

(

2q

i1, i2, . . . , ir

)

E[s[j1]
i1 · · · s[jr]

ir] (2.8)

where 1 ≤ j1 < j2 < · · · < jr ≤ m. Next we notice that each s[j] is symmetric: Pr[s[j] =

v] = Pr[s[j] = −v]. So every term containing an odd power of some s[j] has expected value

zero. wlog we can assume that every index i1, . . . , ir in the expression above is even.

The expected values in the last formula can be computed directly since the sj are

independent:

E[s[j1]
2i1 · · · s[jr]

2ir] =
1

2r
d[j1]

2i1 · · · d[jr]
2ir

Rewriting (2.8) using this expansion, and using only even powers gives:

E[zq] =
2q

∑

r=1

1≤i1,...,ir≤q
∑

i1+···+ir=q

(

2q

2i1, 2i2, . . . , 2ir

)

2(−r)d[j1]
2i1 · · · d[jr]

2ir (2.9)

In order to simplify this last expression, we consider the expansion of (2V)q which is:

(d[1]2 + · · · + d[m]2)q =

q
∑

r=1

1≤i1,...,ir≤q
∑

i1+···+ir=q

(

q

i1, i2, . . . , ir

)

d[j1]
2i1 · · · d[jr]

2ir (2.10)

25

which contains exactly the same products of d[j]’s. We take the ratio of the coefficients of

d[j1]
2i1 · · · d[jr]

2ir in (2.9) and (2.10), giving

R = 2−r

(

2q

2i1, . . . , 2ir

)

/

(

q

i1, . . . , ir

)

(2.11)

We expand this first as

(2q)!

q!

i1!

(2i1)!
· · · i1!

(2ir)!
2−r

and notice that
ij !

(2ij)!
≤ 2−ij/(ij)!. Making these substitutions gives

R ≤ (2q)!

q!

1

2i1i1!
· · · 1

2ir ir!
2−r = (q)q 1

i1! · · · ir!2r

and finally it is easy to show that i1! · · · ir!2r ≥ 2q. This can be done inductively by starting

with r = q, and all ij = 1, and “walking” to any desired partition i1 + · · · + ir of q, each

step merging some ij which is = 1 with another. The number of groups r decreases by 1 at

each step which reduces 2r by 2, but some il is incremented at the same time, and so il! is

multiplied by at least 2. Substituting for these expressions in the denominator of R in the

last equation gives:

R ≤ (2q)!

q!
4−q

Now if we multiply equation (2.10) by this value, we guarantee that every term in its

expansion is at least as great as the coefficient in equation (2.9). Or in other words,

E[zq] ≤ (2q)!

q!2q
V q = (1 · 3 · 5 · · · (2q − 1))V q ≤ (qV)q QED (2.12)

The first (false rejection) bound is quite steep. A drop-off of 2−N is achieved for δ ≈

5.3566. If δ = 4 (user vector norm is one half of L), then the roll-off is 0.736N . The second

(false acceptance) bound is considerably shallower. In the limit as δ → 0, the bound is 7
8

N
.

For δ = 0.25 (user vector norm is twice L), the bound is 0.9265N , while for δ = 0.5, it is

0.9672N .

Theorem 2. The computation is private. Furthermore, for the purpose of verifying z <

NL2/2, UDVP is zero-knowledge. When used to bound |d|2, only in the event of false

26

rejection does it reveal information about valid user data other than its validity. And this

leakage is exactly the fact that z > NL2/2.

The proof of theorem 2 consists of standard simulation of a secret sharing scheme and

straightforward invocation of sequential composition ZKPs theorem [62], and is omitted.

Note that what the protocol actually verifies is whether z < NL2/2. For this purpose

it is zero-knowledge in that the verifier learns nothing except the fact when it is true.

However, this assertion is not completely equivalent to |d|2 < L and theorem 1 quantifies

its effectiveness in bounding |d|2. There is a small probability of false rejection where

|d|2 < L but z > NL2/2. In this case the verifier learns that at least one of the projections

is large. This does not violate the zero-knowledge property of the ZKP with regard to

z < NL2/2 because in that context this is treated as a failed proof and there is no need to

protect this information. In contrast, this is considered a leakage in our system since the

user data is actually valid (thus should be protected). We believe such leakage is acceptable

in most applications because (1) the false rejection probability can be reduced exponentially

by using large N and (2) the leakage is very small: the verifier only learns no more than

the fact that at least one of the projections is large. In particular it does not learn which

projection is large.

COMPLEXITY The protocol computes O(N) commitments and square ZKPs. In addi-

tion, the boundedness ZKP at the last step involves O(log(NL)) steps. As theorem 1 shows,

the failure probability is exponentially decreasing with N . In practice a small constant N

(e.g. 50) can provide fairly good guarantee. So the total cost caused by the expensive

large integer operations is O(log(L)). In most cases L is either constant or polynomial in

m (recall that L is the bound on the L-2 norm of an m-dimensional vector). Therefore the

number of large integer operations is bounded by O(log m). This is far superior to using

standard techniques which requires O(m) such operations.

27

2.1.2 Simulations of Typical Behavior

The bounds we derived earlier show that any user vector whose L2-norm is substantially

below L will almost surely be accepted, while any vector that is substantially above will

surely be rejected. In terms of actual behavior however, the tail bounds we derived may not

be very tight. Here we present some simulations for typical user data to show what behavior

would be expected. Simulation could also potentially be useful to honest or dishonest users:

in either case, a user with an actual input vector di can determine through simulation the

probability of that value being accepted by the server. We choose 3 specific cases:

1. Random uniform values: every component d[j] of the user vector is drawn from the

same uniform distribution.

2. Zipf distribution: component d[j] has value proportional to 1/j.

3. Single element: only one value in in the user vector is non-zero.

In all cases, user vectors are normalized so their L2-norm is fixed at some value Vd. We will

vary this value relative to the threshold L and determine the probability of acceptance.

0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Figure 2.1. (a) Linear and (b) log plots of probability of user input acceptance as a function
of Vd/L for N = 50. (b) also includes probability of rejection. In each case, the steepest
(jagged curve) is the single-value vector (case 3), the middle curve is Zipf vector (case 2)
and the shallow curve is uniform vector (case 1)

The first two cases are representative of likely user data, e.g. case 1 could represent

ratings for movies while case 2 could represent word counts in email or text messages. The

28

third case is representative of a user who wants to bias the total by using a maximum value

for one item. A second reason for these choices is that cases 1 and 3 represent probable

extremes of distributions of user vectors. All sums sk are sums of 3-valued sk[j]. The more

terms in this sum and the more similar those terms, the closer will be the final distribution

to a gaussian. The sk produced by case 1 are almost perfectly gaussian. The sk for Zipf

distributed data are mixtures of terms with very different weights, and are “less” gaussian.

Finally, the sk for single-element vectors retain a 3-valued distribution and are very far

from gaussian. Any distribution the user can produce will be a sum of such sk[j], and will

probably lie between the extremes of cases 1 and 3.

The simulations used N = 50, m = 100, and were repeated 106 times. Figure (2.1)

shows probabilities of acceptance or rejection for the 3 cases as a function of the ratio Vd/L.

Increasing N by a factor α should cause the log plots to scale by α in their y-values. When

N = 50, the upper tail bound from theorem 1 has an asymptotic slope of 25 in log(Pr) vs.

log(δ) plots. The lower tail bound slope is significantly shallower because of “saturation”

of the probability to 7
8

N
as δ → 0. The x-axes in figure 1 involve |d|/L which is 1/

√
δ. The

expected slopes from the tail bounds would be 12.5 for the rejection probability curve, and

less for the acceptance curve. The actual slope observed for rejection is about 50, while it is

around 35 for acceptance. So the typical threshold behavior for the probabilistic L2-bound

is much sharper than the asymptotic bounds from theorem 1.

2.1.3 Implementation and Evaluation

We have implemented the protocols in Java using a NativeBigInteger implementation

from the I2P anonymous network (http://www.i2p.net/). The source code will be made

available as a toolkit to the public shortly. We measured the performance on a 2.8GHz Xeon.

All tests were carried out using El-Gamal commitments and ZKPs [33] in a large field Zq

for a 1024-bit prime q. N was 50, and L was either a 40-, 20- or 10-bit number. The basic

bit commitment ZKP takes 33.7 ms for the verifier and 57.3 ms for the prover. The square

ZKP takes 35.7 ms verifier time and 24.3 ms prover time. Figure 2.2 plots prover (user)

and verifier times for the L2-norm validation protocol as a function of the vector size m.

29

10
3

10
4

10
5

10
6

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

10
3

10
4

10
5

10
6

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Figure 2.2. (a) Verifier and (b) prover times in seconds for the validation protocol with
N = 50, where (from top to bottom) L has 40, 20, or 10 bits. The x-axis is the vector
length m.

Both were dominated by cryptographic operations in these experiments, even at m = 106.

Other steps, such as random vector generation, or computation of all the products ck · d by

the prover, took a fraction of a second. At m = 106, verifying one user’s vector takes only a

few seconds. In contrast, using standard techniques which requires O(m) square ZKPs, as

is done in [21], both the verifier and prover time is in hours (about 10 hours for the verifier

and 6.7 hours for the prover). Our protocol is orders of magnitudes more efficient. The

server can easily process over 15000 users each day with a single PC. Since the protocol

for each user is independent of each other, the server can support larger user group with a

cluster, which is a common practice for today’s service providers. Most of the applications

such as collaborative filtering require only infrequent update (once per day or more), the

performance we obtained is more than enough for them. The communication overhead is

also very small since it passes very few large integers. The communication per client is only

a few kilobytes, while other solutions require some hundreds of megabytes.

30

2.2 Zero-knowledge Test of Vector Equivalence

2.2.1 Tools

The equivalence protocols require the following additional cryptographic primitives

which are also standard. They have appeared elsewhere, see e.g. [99, 33]. Here we summa-

rize their key properties.

Homomorphic commitment We use Pedersen’s discrete log based scheme [99] for it

admits an efficiency ZKP for equivalence. Let p and q be two large primes such that

q|p−1. Let Z
∗
p denote the multiplicative group of integers modulo the prime p. We use

Gq to denote the unique subgroup of Z
∗
p of order q. The discrete logarithm problem

is assumed to be hard in Gq. Let g and h be two generators of Gq such that logg h

is unknown to anyone. 1 A commitment to a is computed as C(a, r) = gahr mod p

where r ←R Zq. From now on, C(a, r) will denote such Pedersen commitment function.

We will omit the randomness r from the notation, and simply write A = C(a), if it is

not necessary to identify it.

Multiply by A Constant Let A be commitment to a ∈ Zq and c ∈ Zq a constant. One

can easily obtain a commitment to d = ac by

D = Ac mod p

This follows immediately from homomorphism. However, only the prover who knows

how to open A can open D.

3-way Commitment and ZKP For integer c ∈ Zq, a 3-way commitment, denoted

(0,±c)-commitment, is a commitment to one of 0, c or −c. For such commitment

we can construct an efficient zero-knowledge proof.

Let a ∈ {0, c,−c} be the number to be committed to. The prover computes two

1A generator of Gq can be easily found by selecting an element a ←R Z
∗

p, a 6= 1 and testing if aq = 1, since
any element a 6= 1 in Gq generates the group. g and h can chosen by the two talliers using a coin-flipping
protocol.

31

commitments B and C such that

B = C(0), C = C(0) if a = 0

B = C(1), C = C(0) if a = c

B = C(0), C = C(1) if a = −c

The prover also provides zero-knowledge proofs that both B and C encode either 0

or 1 using the bit commitment proof of [33]. Finally, the commitment to a is simply

A = BcC−c mod p

and the 3-way (0,±c)-commitment proof consists of (B, C) and their bit commitment

proofs.

To verify the proof, a verifier checks that A = BcC−c mod p and that the bit com-

mitment proofs are valid. If all these verifications are successful, the verifier accepts

the proof. Otherwise it rejects it.

It is easy to show that only when A encodes one of {0, c,−c} will the verifier accept

the proof. And it is zero-knowledge due to the hiding property of the commitment

scheme. The proof can also be made non-interactive by hashing the verifiers response.

2.2.2 ZK Test of Equivalence

In this section we introduce two equality test protocols. One tests a single element, the

other the whole user vector. Both enjoy the following:

1. No information about user data is leaked;

2. Only a small number of public key operations are involved;

3. Users do not need to be involved after the initial data input stage of the main P4P

protocol.

32

Equality Test of A Single Element

Let ai be the element of user i that defines the equivalence relation E which partitions

U . Recall that the two shares of ai, denoted ai1 and ai2, are already sent to T1 and T2,

respectively, in the main P4P protocol. The goal is, given two user indexes i, j, to determine

whether ai = aj .

This task is not as trivial as it appears. It is true that, with homomorphic commit-

ment, verifying whether two commitments contain equal numbers in zero-knowledge is easy

provided there is a prover holding the pre-images [99, 33]. Our setting, however, is a differ-

ent model. Namely, in P4P, there is no such a prover who knows both numbers. Instead,

each tallier holds a share of each number. Collaboratively they want to determine whether

the two are equal. In other words, ours is not a zero-knowledge proof task. Rather, it is

a zero-knowledge test or a two-party computation problem computing a boolean function

that returns 1 if ai = aj and 0 otherwise. This, of course must be done without leaking any

information about the numbers.

The difficulty in applying existing ZKP lies in the fact that the definition of zero-

knowledge in a ZKP system protects prover’s privacy only when the statement is true. To

see this, let Ai = C(ai, ri) and Aj = C(aj , rj) where the prover knows (ai, ri, aj , rj). The

technique for proving Ai and Aj contain the same number involves the prover revealing

δ = ri−rj and the verifier checking if AiA
−1
j = hδ holds [99, 33]. The problem is, if ai 6= aj ,

revealing δ also reveals some information about ai − aj . Namely once the random mask

is exposed, one can obtain gai−aj = AiA
−1
j h−δ mod p. And when ai − aj is small, it is

easy to recover it. In a standard ZKP setting, the prover can just admit ai 6= aj when it is

the case, thus avoiding leaking information. But this trick is not possible in P4P where no

such prover exists. The same is true for the DISPEP and PEP [87] techniques which use

ElGamal encryption.

We develop the following protocol to address this issue. To enable equality test, the

users first escrow some information with the talliers. Specifically, for j = 1, 2, user i and

the talliers perform the following:

33

1. User i computes Aij = C(aij , rij) where rij ←R Zq. She also prepares a 3-way (0,±φ)-

commitment Bi with pre-image bi = ai − (ai1 + ai2) and randomness si. She then

shares both bi and si:

si1 ←R Zq, si2 = si − si1 mod q

bi1 ←R Zq, bi2 = bi − bi1 mod q

She sends (Aij , rij , bij , sij) to Tj and broadcasts to both talliers Bij = C(bij , rij), Bi

and its corresponding 3-way (0,±φ)-commitment proof.

2. Tj verifies that Aij = C(aij , rij) and Bij = C(bij , rij). Both talliers verify that Bi =

Bi1Bi2 and that the (0,±φ)-commitment proof is valid. If any of the verification fails,

user i is excluded from the computation.

The above is executed in the user input stage together with data validation. It is the only

stage involving user interaction. The actual test can be carried out between the two tallier

afterwards. The users do not have to be online at all times.

EQUALITY-TEST:

Without loss of generality, suppose we want to check if a1 = a2. In the following description,

j ∈ {1, 2}.

1. Both talliers compute

A1 = A11A12B11B12 mod p

A2 = A21A22B21B22 mod p

and ∆ = A1A
−1
2 mod p.

2. Tj computes δj = (r1j + s1j) − (r2j + s2j) mod q.

3. Tj generates a random number kj ←R Z
∗
q \ {1} and computes ∆j = ∆kj mod p,

Hj = hkj mod p.

34

4. The two talliers exchange (∆j , Hj). If Ti finds Hj = h, j ∈ {1, 2}, j 6= i, he aborts the

protocol.

5. T1 publishes H̄1 = (H1H2)
δ1 which is hkδ1 , and T2 publishes H̄2 = (H1H2)

δ2 which

equals to hkδ2 , where k = k1 + k2 mod q.

6. Both talliers verify if

∆1∆2 ≡ H̄1H̄2 (mod p) (2.13)

If it holds, then a1 = a2. Otherwise a1 6= a2.

Theorem 3. The above protocol correctly tests if a1 = a2. Furthermore it does not leak

any information about user data.

Proof. The completeness of the protocol follows the homomorphism property. Note that

∆ computed in Step 1 is a commitment to a1 − a2 with randomness δ1 + δ2. It follows

that ∆1∆2 in Equation 2.13 is a commitment to k(a1 − a2) with randomness k(δ1 + δ2). If

a1 = a2, ∆1∆2 should open to 0, and Equation 2.13 should hold.

The soundness is guaranteed by the binding property of the commitment and the fact

that the probability of k1 + k2 ≡ 0 mod q is very small (only 1/q).

To show that the protocol is zero-knowledge, we construct a simulator that takes as in-

puts the corrupted player’s data, the public information, and the final output, and interacts

with the adversary in a simulated execution of the protocol. We need to show that this

execution is indistinguishable to the adversary.

Without loss of generality, let us suppose tallier T1 is corrupted. Note that ∆ is common

inputs to both talliers computed from users’ public commitments. The simulator only needs

to produce the rest of the conversation.

Let Z̄
∗
q = Z

∗
q \ {1}. The view of the adversary (i.e. T1) during a real execution of the

35

protocol is: 2

V IEW T1
Real = [h, k1, δ1, h

k2 , h(k1+k2)δ2]k1,k2←RZ̄∗
q ,δ1,δ2←RZq

For a non-passing execution (i.e. one that outputs a1 6= a2), the simulator just generates

two random numbers k′
2 ∈ Z̄

∗
q , δ

′
2 ←R Zq and uses k′

2, δ
′
2 in place of k2, δ2 in the protocol.

Clearly the transcript of the simulation follows the same distribution as that of an actual

execution of the protocol and only with negligible probability will the simulated protocol

(incorrectly) output a1 = a2.

For a passing test (i.e. one execution that outputs a1 = a2), the simulator works as

follows:

It generates k′
2 ←R Z̄

∗
q and computes ∆2 and H2 as specified by the protocol but with

k′
2 in place of k2. It then computes the rest of the information as required by the protocol

as

H̄2 = ∆1∆2/H̄1 mod p

= h(k1+k′

2)δ2 mod p

The adversary’s view in the simulated execution is then

V IEW T1
Sim = [h, k1, δ1, h

k′

2 , h(k1+k′

2)δ2]k1,k′

2←RZ̄∗
q ,δ1,δ2←RZq

Clearly this distribution is identical to V IEW T1
Real, the adversary’s view in a real execution.

And finally the final output reveals gk(a1−a2), not ga1−a2 . When a1 6= a2, this quantity

leaks no information about either a1 or a2, or their difference. This is because when a1 6= a2,

the difference is in the multiplicative group Z
∗
q and has an inverse mod q. For any given

value c and a1, a2, there is a k = c(a1 − a2)
−1 mod q such that k(a1 − a2) ≡ c mod q. In

other words, a1−a2 is equally likely to take any values in Z
∗
q even k(a1−a2) is revealed.

The use of Bj in the protocol is to deal with modular reduction. Note that ai, ai1

and ai2 are all in the small field Zφ. In order for the shares ai1 and ai2 not to leak any

2We omit the public commitments since they are uniformly randomly distributed in Gq (recall that
Pedersen’s commitment scheme is information-theoretic hiding [99]).

36

information about ai, they should be computed as ai1 ←R Zφ, ai2 = ai − ai1 mod φ. This

means bi = ai−(ai1+ai1) can be 0 or ±φ. Using Bj in the protocol is to correct the modular

reduction and obtain the actual commitment to ai. Also note that the sharing of bi is in

the big field Zq and there is no modular reduction problem here because of commitment is

in Gq, the cyclic group of order q.

Equality Test of the Whole Vector

Equality test of the whole vector can be done via m element tests introduced in Section

2.2.2. However, this involves O(m) public key operations and is not practical for large m.

The following protocol, in contrast, requires only O(1) public key operation and is very

efficient.

Our protocol uses similar ideas as in the L2-norm boundedness ZKP, i.e. instead of

checking every element, it checks the projections of the vectors on a random challenge

vector. We show later that, if two vectors have equal projections on these directions then,

with high probability, the two vectors are equal.

Suppose we are checking if d1 = d2. Recall that after the input and validation stage, T1

holds u1, u2 and T2 has v1, v2 such that d1 = u1 + v1 mod φ and d2 = u2 + v2 mod φ.

EQUALITY-TEST-V:

1. T1 and T2 generate a random challenge vectors c ←R Z
m
q using the a common random

seed r they agreed upon with some protocol.

2. T1 computes x = c · (u1 − u2) mod φ and T2 computes y = c · (v1 − v2) mod φ.

3. T1 commits to x with X = C(x, δ1), δ1 ←R Zq. Similarly T2 commits to y: Y =

C(y, δ2), δ2 ←R Zq. The two exchange X, Y and compute the following 3 numbers:

37

Z1 = XY mod p

Z2 = XY gφ mod p

Z2 = XY g−φ mod p

4. For i = 1, 2, 3, the two talliers run steps 3 to 6 of the single element equality test

protocol, with ∆ replaced by Zi. If any of the three runs outputs positive result

(meaning the two numbers being tested are equal), output d1 = d2. Otherwise output

d1 6= d2.

Theorem 4. Let O be the output of protocol EQUALITY-TEST-V. Let O = 1 if the

protocol concludes that d1 = d2 and 0 otherwise. If d1 6= d2, the probability that the protocol

(incorrectly) outputs 1 is at most

Pr(O = 1) ≤ 1

φ

Proof. Let δ = d1 − d2. Note that c · δ = c · ((u1 + v1)− (u2 + v2)) mod φ = x + y mod φ.

Consider the m-dimensional vector space W over Zφ. W has φm elements. For any δ ∈ Z
m
φ ,

there are at most φm−1 vectors in this space that are orthogonal to it, i.e. those on a

hyperplane V which is a codimension-1 vector subspace of W and has size φm−1. Since δ is

not known to either tallier and the c is randomly drawn, we have

Pr(c · δ = 0) ≤ 1

φ

Now we show that the protocol actually tests on c · δ. Note that Z1 = XY mod p

encodes x + y. And c · δ = x + y mod φ = x + y + b where b is one of 0 or ±φ. Clearly

x + y mod φ = 0 is equivalent to one of x + y, x + y + φ and x + y − φ is 0, which is what

the protocol tests.

38

In terms of privacy, note that the talliers compute the projection of the user vectors on

a random direction and then test equality on the projections. Due to the zero-knowledge

property of the EQUALITY-TEST protocol, this protocol does not leak information either.

In practice, φ is typically 232 or 264, so that the number fits into a machine word. This

gives a failure probability of 2.4 × 10−10 or 5.4 × 10−20. This should be enough for most

applications.

The protocols described in Section 2.2.2 and 2.2.2 represent two ends of a spectrum, i.e.,

the equivalence relation is defined by a single element and the whole vector, respectively. If

we want to test only certain elements of the user vectors, we can use the second protocol

but with challenge vectors having 0’s at certain places to mask out irrelevant elements.

39

Chapter 3

SVD with Privacy: P4P Style

In the following three chapters we demonstrate how the P4P framework can be used to

support private computation of popular algorithms using concrete examples. They include

SVD, link analysis and association rule mining. We compare their round complexity and

accuracy with their direct, non-private implementations and show that the P4P implemen-

tation provides comparable or identical performance.

3.1 Singular Value Decomposition

Recall that for a matrix A ∈ R
n×m, there exists a factorization of the form

A = UΣV T (3.1)

where U and V are n × n and m × m, respectively, and both have orthonormal columns.

Σ is n × m with nonnegative real numbers on the diagonal sorted in descending order and

zeros off the diagonal. Such a factorization is called a singular value decomposition of A.

The diagonal entries of Σ are called the the singular values of A. The columns of U and V

are left- resp. right-singular vectors for the corresponding singular values.

SVD is a very powerful technique that forms the core of many data mining algorithms

and thousands of algorithms in signal processing. Examples include clustering, pattern

recognition, Principal Component Analysis (PCA), image and text mining, collaborative

40

filtering, social analysis, etc. Perhaps the most important property of SVD is its ability

to optimally approximate the original matrix in a smaller subspace. To see this, let r =

rank(A) and ui, vi be the column vectors of U and V , respectively. Equation 3.1 can be

rewritten as

A = UΣV T =
r

∑

i=1

σiuiv
T
i

where σi is the ith singular value of A.

Let k ≤ r be an integer parameter, then we can approximate A by

Ak = UkΣkV
T
k =

k
∑

i=1

σiuiv
T
i (3.2)

It is known that of all rank-k approximations, Ak is optimal in Frobenius norm sense, i.e.

‖A − Ak‖F = min
rank(B)≤k

‖A − B‖F

and the k columns of Uk give the optimal k-dimensional approximation to the columnspace

of A, while the k rows of V T
k give the best k-dimensional approximation to the rowspace of

A.

Using Ak in place of A projects actual data into a low-dimensional space. For example,

in collaborative filtering, there can be hundreds to millions of items (this is the range of m).

The dimension k is typically less than ten. On the other hand, this dimension reduction

via SVD preserves the structure of original data while considers only essential components

of the matrix. This usually filters out noise and uncertainty and improves the performance

of data mining tasks. The effectiveness has been shown in works such as Latent Semantic

Analysis/Indexing (LSA/LSI) [78], clustering etc.

3.2 ARPACK

Our implementation uses ARPACK [80]. ARPACK (ARnoldi PACKage) is a software

package consisting of a collection of Fortran77 subroutines for solving large scale Hermitian,

non-Hermitian, standard or generalized eigenvalue problems. The package implements the

Implicitly Restarted Arnoldi Method (IRAM) and allows one to compute a few, say k,

41

eigenvalues with user specified features such as those of largest magnitude. Its storage

complexity is nO(k) + O(k2) where n is the size of the matrix. Eigenvectors are also

available upon request.

ARPACK is a freely-available yet powerful tool capable of solving large scale eigenvalue

problems from significant application areas. Industrial-scale problems with as many as

250,000 degrees of freedom have been solved with this package. It is also generally the

fastest and most dependable among the codes that are publicly available [79] and is used

internally by MATLAB routines such as eigs, arpackc and svds.

ARPACK is best suited for applications whose matrices are either sparse or not explicitly

available: it only requires the user code to perform some “action” on a vector, supplied by

the solver, at every IRAM iteration. This action is simply matrix-vector product in our

case. ARPACK features a reverse communication interface that frees the user from any

particular data structure formats and provides the user with great flexibility and control

over how to perform matrix-vector multiplication. As we will show in the next section, we

can combine this reverse communication approach with P4P’s private vector addition to

compute the singular value decomposition of a matrix that is partitioned among the users.

3.3 The Private SVD Scheme

In P4P and with user data, an SVD problem can be formulated as follows. Let A ∈

R
n×m be a n × m matrix of real numbers such that each user i owns a row. We use

Ai∗ ∈ R
m to denote the m-dimensional row vector owned by user i. In a collaborative

filtering application, this vector can be the user ratings. In user activity mining, it can

encode information (e.g. frequency) of user’s access to documents. In all cases we want to

keep this vector private.

Let k < m be a positive integer. The goal is to compute k largest singular values of A

and their corresponding singular vectors. In many context such as LSA and collaborative

filtering, k is the dimensionality of the reduced linear space that best approximates A in a

least square sense.

42

From equation 3.1, and the fact that both U and V are orthonormal, it is clear that

AT A = V Σ2V T which implies that

AT AV = V Σ2 (3.3)

This means that the singular values of matrix A are just the square roots of the eigenvalues

of AT A and the right-singular vectors of A are the eigenvectors of AT A. Similarly we have

AAT U = UΣ2 (3.4)

and it shows that the eigenvectors of AAT are the left-singular vectors of A.

Equations 3.3 and 3.4 show the connection between SVD and the symmetric eigen-

problem and give us a way to perform SVD using P4P’s vector aggregation and ARPACK.

Namely the server will host an ARPACK engine and interact with its reverse communication

interface. In our case, since both AT A and AAT are symmetric, the server program mainly

uses dsaupd, the ARPACK double precision routine for symmetric problems. Among the

arguments passed to dsaupd, the server program should ask for k largest (in magnitude)

eigenvalues.

At each iteration, dsaupd will return a vector v ∈ R
m to the server code and ask for the

matrix-vector product AT Av. To see how this is done with P4P’s private vector aggregation,

notice that

AT Av = [AT
1∗, A

T
2∗, . . . , A

T
n∗]

A1∗

A2∗
...

An∗

v

=
n

∑

i=1

AT
i∗Ai∗v

Each term in the summation, AT
i∗Ai∗v ∈ R

m, is computable by each user using private

data. We can treat it as a vector private to each user and input it to the P4P computation

which aggregates the vectors across all users without leaking any information about each

individual one. The above equation shows that the aggregate is just the matrix-vector

product that can be returned to ARPACK. This process is illustrated in figure 3.1.

43

...

ARPACK

P4P
∑n

i=1 AT
i∗Ai∗v

AT
1∗A1∗v

AT
2∗A2∗v

AT
n∗An∗v

un

u2

u1

v

Figure 3.1. Privacy-preserving Singular Value Decomposition (SVD) with P4P.

3.4 Dealing with Real Numbers

In their simplest form, The P4P protocols, like other schemes based on cryptography,

only support computation on integers. In most domains, however, applications typically

have to handle real numbers. In the case of SVD, even if the original input matrix contains

only integer entries, it is likely that real numbers appear in the intermediate (e.g. the

vectors returned by ARPACK) and the final results.

Because of the linearity of the P4P computation, we can use a simple scaling, and round-

ing (to the nearest integers), scheme to convert between real numbers in the application

domain and Zφ, P4P’s integer field. Let R > 0 be the bound of the maximum absolute

value application data can take, i.e. all numbers produced by the application are between

[−R, R]. Suppose |R| = l and |φ| = L. The integer field provides L bits resolution. This

means the maximum quantization error for one variable is R/φ = 2l−L. Summing across all

n users, the worst case absolute error is bounded by n2l−L. In practice L can be 64, and l

can be around 20 (this gives a range of [−220, 220]). This gives a maximum absolute error

of 1 over a million.

The scaling factor used must be global, meaning that it should be the same for all

users because in the end the scaled vectors will be added together. However, it is difficult

44

to predict before the computation starts and unlikely to stay static during the iterations.

This is because, since A is unknown, it is hard to predict the magnitude of the entries in

v, the vector returned by ARPACK dsaupd routine during one iteration, and AT Av, the

resulting vector returned to ARPACK. Ideally one would want to map the number with

the largest magnitude that would appear in the computation to the element in Zφ with the

largest magnitude and the same sign. This is to save maximum number of bits for precision

without causing overflow. 1 Since each AT
i∗Ai∗v is computed by individual users locally, it

is not possible to find the largest entry of AT Av other than using an expensive multiparty

computation protocol. To address this problem, we let the server scale the vector v before

it sends it to the users so that it is guaranteed that no overflow would happen. The scheme

is as follows.

Let a be an estimate of the largest magnitude of A(i, j), i.e. a ≥ |A(i, j)| for i =

1, . . . , n, j = 1, . . . , m. The server finds b = maxi |v[i]| and computes

v′ = αv (3.5)

where α = mna2b/R. v′ is then sent to all users. Each user i will convert v′ to integers in

Zφ by scaling it by a factor of φ/(2R) and rounding to the nearest integers. 2 We assume

that there is a procedure rtoi that performs such conversion. Similarly we also assume

there is another procedure, itor, that converts the integers in Zφ back to real numbers in

[−R, R] by scaling them by 2R/φ. Let di = rtoi(v′). It is straightforward to verify that

entries in
∑n

i=1 di are all within Zφ, i.e. no overflow happens.

The server then simply converts the aggregate output by P4P back to real numbers

using itor and scales it by 1/α. This will be the vector returned to the ARPACK routine.

3.5 The Protocol

The protocol is carried out as follows:

1Note that we must keep all integers, including the sums, within Zφ, otherwise P4P gives incorrect
aggregate.

2It is easy to see that this scaling maps R to ⌊φ/2⌋.

45

1. Whenever the ARPACK routine returns control to the server program with a vector

v ∈ R
m, the server computes v′ using equation 3.5. It then broadcasts v′ to all users.

2. If the number of iterations so far exceeds γm2, where γ < 1 is a parameter, the user

terminates the protocol. Otherwise user i computes

wi = AT
i∗Ai∗v

′

and then converts wi into integers using the scheme described earlier and obtains

di = rtoi(wi).

3. User i inputs di into the P4P protocol.

4. After the P4P protocol outputs d =
∑n

i=1 di, the server converts it to real domain:

w = itor(d)

and returns w/α as the matrix-vector product to dsaupd which runs another iteration.

5. When the ARPACK routine indicates convergence or stops after certain number of

iterations, the server outputs

Σk = diag(σ1, σ2, . . . , σk) ∈ R
k×k

Vk = [v1, v2, . . . , vk,] ∈ R
m×k (3.6)

with σi =
√

λi where λi is the ith eigenvalue and vi the corresponding eigenvector

computed by ARPACK, i = 1, . . . , k, and λ1 ≥ λ2 . . . ≥ λk.

3.6 Privacy Analysis

Note that the protocol does not compute Uk. This is intentional. Uk contains informa-

tion about user data: the ith row of Uk encodes user i’s data in the k-dimensional subspace

and should not be revealed at all in a privacy-respecting application. We note that in many

applications most of the desired information can be computed from the singular values (Σk)

and the right singular vectors (V T
k) which gives the best k-dimensional approximation to

46

Table 3.1. Datasets
Dataset Dimensions Density Range Type

Enron 150 × 150 0.0736 [0, 1593] Social graph

EM 74424 × 1648 0.0229 [0, 1.0] Movie ratings

RAND 2000 × 2000 1.0 [−220, 220] Random

the rowspace of A and is a good representation of anonymous user data. For example,

in collaborative filtering where Aij encodes user i’s rating on item j, user i can generate

recommendations for herself using Σ, V T , and Ai∗ which is local and private to the user

[21].

At each iteration, the protocol also reveals the matrix-vector product AT Av. This

should not be much of a privacy concern because the final results Σk and V T
k already give

an approximation of AT A (note that AT A = V Σ2V T) therefore the intermediate aggregates

do not reveal more information. In addition, AT A has m2 entries and the user will abort the

protocol if the number of iterations exceeds γm2. This prevents the server from collecting

enough information to obtain a more accurate estimate of AT A from the products. The

parameter γ is used to control how conservative the system is in protecting privacy. From

our experiments, γ typically can be 0.01 or smaller and still allows for enough iterations for

ARPACK to converge.

3.7 Implementation and Evaluation

We implemented the SVD protocol together with the P4P framework and performed

some tests. For the work reported in this chapter, we have created a Java wrapper of

ARPACK (which is in Fortran77) to allow it to be integrated with our P4P code. The Java

wrapper makes ARPACK much easier to use and may be of independent interests. It will

also be released together with the P4P code.

We measured two quantities in all our tests: N , the number of IRAM iterations until

ARPACK indicates convergence, and ǫ, the relative error. The former is the number of

matrix-vector computation that was required for the ARPACK to converge. It is also

47

the number of times P4P aggregation is invoked. Note that this number is determined

by a number of factors including the nature of the problem, the IRAM convergence rate

and possible errors introduced by converting between real and integer numbers for P4P

aggregation. To see how our privacy mechanism affects N , we also measured it using

ARPACK with a centralized, direct, non-privacy-preserving matrix-vector multiplication.

In all our experiments, we found no difference in N between this centralized method and

our P4P-based implementation.

Note that N is sensitive to how many Lanczos vectors are generated at each iteration,

which is controlled by ncv, the 8th argument to the ARPACK dsaupd routine. In our

tests we attempted to minimize it by trying different ncv. But, since our search is not

exhaustive, it is possible that our results are not optimal in terms of IRAM’s convergence

rate. However, this issue also exists in a server-based, non-private solution and is orthogonal

to the privacy techniques we developed. What is important is, as our tests indicated, our

privacy protection techniques do not affect it in a negative way.

The error ǫ is computed as

ǫ = max
i=1,...,k

|A
T Avi − λivi

λi
|

i.e. it measures the maximum relative residual norm among all eigenpairs computed.

We evaluated our implementation on three datasets: the Enron Email Dataset [31],

EachMovie (EM), and a randomly generated dense matrix (RAND). The Enron data was

originally made public, and posted to the web, by the Federal Energy Regulatory Commis-

sion during its investigation. The corpus contains email data from 150 users, spanning a

period of about 5 years (Jan. 1998 to Dec 2002). Our test was run on the social graph

defined by the email communications. The graph is represented as a 150 × 150 matrix A

with A(i, j) being the number of emails sent by user i to user j. EachMovie dataset is a

well-known test dataset for collaborative filtering algorithms [17]. This dataset comprises

ratings of 1648 movies by 74424 users. Each rating is a number in the range [0, 1]. Both

the Enron and EachMovie datasets are very sparse, with densities of 0.0736 and 0.0229,

respectively. To test the performance of our protocol on dense matrices, we generated ran-

48

Table 3.2. Enron Social Graph
k 10 20 30 40 50 60 70 80 90 100

N 67 97 122 162 109 137 172 167 171 169

ǫ(×10−8) 0.00049 0.0021 0.0046 0.0084 0.0158 0.0452 0.121 0.266 0.520 1.232

domly a 2000 × 2000 matrix with entries chosen in the range [−220, 220]. The properties of

the datasets are summarized in table 3.1.

In all the experiments, φ is set to be a 62-bit integer and the P4P key is 1024-bit.

Table 3.2 to 3.4 summarize the experiments results for the thress datasets. In all these

tests, we used machine precision as the tolerance input to ARPACK. The accuracy we

obtained is very good. The relative residual norm remains very small for all tests (10−12 to

10−8). This should be far more enough for most applications.

In terms of round complexity, N ranges from under 100 to a few hundreds. As we men-

tioned earlier, this is an orthogonal issue to our privacy technique and we did not optimize

for it in our experiments. We stress that, for comparison, we also measured the number of

iterations required by ARPACK when we perform the matrix-vector multiplication directly

without the P4P aggregation. In all our experiments, we found no difference in N between

this direct method and our privacy preserving implementation.

In our P4P implementation, with 1024-bit key length, it takes 74.73 seconds of server

time to validate and aggregate all 150 Enron user data on a single machine (each user

needs to spend 726 milliseconds to prepare the zero-knowledge proofs). This translates

to a total of 5000 seconds or 83 minutes spent on private P4P aggregation to compute

k = 10 singular-pairs. To compute the same number of singular pairs, which is typical of

collaborative filtering applications, for EachMovie, aggregating all users data takes about 6

hours (again on a single machine) and the total time for 70 rounds is 420 hours. This total

seems large. But note that the data miner’s aggregation process is trivially parallelizable.

It is unlikely a data miner would service 74424 user with a single PC. Using a cluster of,

say 50 nodes, will reduce the running time to about 10 hours. It should be feasible to run

the protocol over several days as a background process. Since the user ratings data are

changing slowly, a few days latency does not diminish the value of the aggregate.

49

Table 3.3. EachMovie
k 10 20 30 40 50 60 70 80 90 100

N 70 140 254 222 276 371 322 356 434 508

ǫ(×10−12) 0.470 0.902 1.160 1.272 1.526 1.649 1.687 2.027 2.124 2.254

Table 3.4. RAND
k 10 20 30 40 50 60 70 80 90 100

N 304 404 450 480 550 700 770 720 810 800

ǫ(×10−9) 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996

Table 3.5. EachMovie (with 10−3 stopping criterion)
k 10 20 30 40 50 60 70 80 90 100

N 25 50 90 120 150 150 175 200 225 250

ǫ(×10−4) 2.873 4.982 0.0989 0.0016 0.000004 4.099 0.6506 0.2267 0.02708 0.00431

N can be significantly reduced if the application can tolerate a higher error. This is

achieved by setting the stopping criterion of ARPACK’s dsaupd routine to a small positive

value. For example, using a stopping criterion of 10−3 (we were using machine precision for

previous experiments), the number of iterations can be reduced by as much as more than

half. And the residual norm ǫ should be still acceptable (below 10−3) for most applications.

3 Table 3.5 shows the results for EachMovie dataset. Similar results can be observed with

other two datasets as well.

3Note that the stopping criterion is an input to dsaupd, not the residual norm we are measuring.

50

Chapter 4

Online Link Analysis on Dynamic

Weighted Graph

4.1 Introduction

Link analysis algorithms have been used successfully on hyperlinked data to identify

authoritative documents and retrieve other information. For instance, the expertise location

problem [110, 73, 74, 86] is to find a person in an organization or community who is

knowledgeable (and authoritative) in an area. Several approaches [110, 73, 74] construct

an explicit social network between individuals, based on email or similar logs, and then use

graphical analysis to locate the relevant experts. Similarly, the document ranking problem

is to determine the relative levels of “authoritativeness” among a collection of documents.

Link analysis algorithms have been used in these environments to uncover such information

[77, 18].

The primary drawback to the above approaches is the need for explicit structure about

the social relations between individuals and the hyperlinks among documents, which do not

necessarily exist. For instance, in a computer-mediated environment, a group of individuals

could be using tools like software applications to access documents collaboratively, and there

is neither an explicit social network representing how each individual is related to others,

51

nor hyperlinks among documents. However, in such context, there are still compelling needs

in identifying domain experts and authoritative documents.

Another inadequacy of such algorithms, when applied to authoritative document rank-

ing, as Kleinberg acknowledged [77], is that they only make use of the structural information

about the graph as defined by the links, and fail to capture patterns of user access which

encode essential information about the user’s attitude toward the document. The intuition

behind the link analysis algorithms is that the link structure encodes important informa-

tion about the nodes. For example, according to [77], the links among documents, be it

hyperlinks on www or citations among academic papers, are constructed consciously by the

authors of the documents and represent the authors’ “endorsement” toward the authority

of documents pointed to by the links and the HITS algorithm [77] can uncover such infor-

mation to produce a ranking of documents according their level of authority. We believe

that a similar principle also holds with patterns of user access: the way a user accesses a

document could reflect his/her opinion about it. Meanwhile, a user’s level of expertise can

also be reflected by the documents that he/she accesses. There is a mutually reinforcing

relationship between these two measures, which maps naturally to what Kleinberg denotes

“hub” and “authority” [77]: a person is more likely to be an expert in an area if he/she

reads more authoritative documents and a document is more likely to be authoritative if it

is read by many experts. This phenomenon can also be observed in other graphs such as

social networks where the structure is implicitly defined by communication.

In this chapter we propose an approach to address these limitations and describe an

algorithm that is suitable for such purpose. Notice that access pattern and link structure

are not mutually exclusive. Rather, access pattern can complement or even define the

other. Our approach uses weighted graphs to model the relationship among nodes and

the weights can encode user access or communication. In situations where no explicit link

structure exists, these weights effectively define the graphical structure and link analysis

algorithms can be applied. Where there is an explicit link structure, weights obtained from

access or communication analysis can be used to augment existing graph and uncover more

information.

52

Using weights in identifying authoritative documents is not new [108]. The novelty

of this work is that we propose the use of weights to model user behavior and construct

the link structure. This enables us to apply link analysis algorithms in settings where no

such structure exists. However, computing on patterns of access or communication has two

implications: (1) instead of a static system, the graph becomes dynamic. The model changes

as more data is observed; and (2) user privacy becomes an issue due to the sensitive nature

of the user’s information used to construct and update the graph. (1) may also mandate

that the system services users’ query in real-time as there is no end to the accumulation of

observations.

Meanwhile, emergence of new applications and changes of existing ones are making these

problems more acute. For example, search engines are moving towards personalization (e.g.

http://labs.google.com/personalized) that will be relying heavily on client side logging.

While link analysis remains the core of their ranking algorithm (e.g. Google’s PageRank

[18]), the input data will be augmented by user configuration and access monitoring. Other

applications in fields such as knowledge management, IR, HCI and data mining also showed

similar trend.

To address these new issues, we devised Secure OnlineHITS, a distributed version and

enhancement of Kleinberg HITS algorithm that (1) amortizes cost across a number of up-

dates by using “lazy updates”, which makes it more suitable for dynamic environments;

and (2) uses cryptographic techniques to preserve user’s privacy while performing the com-

putation. Our technique can be easily extended to other link analysis algorithms such as

Google’s PageRank [18] but we won’t pursue it in this chapter. To make it concrete, we

describe the algorithm in the context of document and expertise ranking. However, it is

general enough to be applied to other situations where link analysis is appropriate. We use

the term document in a broad sense. It refers to any information that can be identified,

accessed and analyzed as a unit. For example, a web page or an image can all be classified

as a document.

In the rest of the chapter, we first review the original HITS algorithm in Section 4.2. We

then discuss the construction of a weighted graph and prove the convergence of a HITS-like

53

algorithm on such graphes in Section 4.3. In Section 4.5 we derive an online version of the

HITS algorithm to make it more efficient to run in a dynamic environment on accumulated

data. Evaluations are presented in Section 4.6. Finally in Section 4.7 we discuss privacy

and security issues in running such kind of user activity analysis and describe our privacy

preserving implementation of online HITS based on public-key encryption.

4.2 A Review of HITS

Kleinberg’s HITS algorithm [77] is a well-known link analysis algorithm that identifies

“authoritative” or “influential” webpages in a hyperlinked environment. Intuitively, by

thinking of a hyperlink as a citation, a webpage i is more of an authority (i.e. highly-

referenced page) as compared to webpage j if there are more hyperlinks entering i from

hub webpages, where a hub is simply a webpage that is a valuable source of links to other

webpages. Likewise, a webpage i is a better hub than webpage j if there are more hyperlinks

exiting i into authoritative webpages. Given a set of n webpages, HITS first constructs the

corresponding n-by-n adjacency matrix A, such that the element in row i and column j of

A is 1 if there exists a hyperlink from webpage i to webpage j, 0 otherwise. HITS then

iterates the following equations:

x(t+1) = AT y(t) = (AT A)x(t) (4.1)

y(t+1) = Ax(t+1) = (AAT)y(t) (4.2)

Where the i-th element of x denotes the authoritativeness of webpage i and the i-th element

of y denotes the value of webpage i as a hub. With the vectors x and y initialized as vectors

of ones and renormalized to unit length at every iteration, as t approaches infinity, x(t+1)

and y(t+1) approach x∗ and y∗, the principal eigenvectors of AT A and AAT , respectively.

Even though HITS is originally intended to locate hubs and authorities in a hyperlinked

environment, we observe that hubs and authorities map very well to the users and documents

in access based link analysis and the relationship of mutual reinforcement still holds as

mentioned in Section 4.1.

54

4.3 Constructing a Weighted Graph

By observing users behavior we can construct a graph of users/documents in environ-

ments where no such structure exists. We assume we can observe users’ document access

and communication pattern using tools like client side logger. Such tools are available from

a number of sources. In particular, we have developed a version of our own that that can

monitor user’s document access and email communication. Of course such tools have serious

privacy implications and we will address such issue in Section 4.7.

The system consciously logs the users’ activities as tuples of the form < i, j >, which

denotes the fact that user i accesses document j or communicates with user j, depending on

the context. These log entries represent tacit data about the collaborative context because

they do not directly encode the links between users nor documents. Given this activity log,

we can construct a graph, such that vertices represent the users and/or documents and an

edge (i, j) exists and has non-negative weight wi,j iff an item < i, j > exists in the activity

log.

How the weight wi,j is computed depends on the application and the goal of the link

analysis. The ideas such as TFIDF [108], and the power law of practice [94], etc, are all

good heuristics. In some situations the weight can be reduced to simple access or message

count. This decision is orthogonal to our work and won’t be pursued in this chapter. The

only assumption we make here is that wi,j is a non-negative, real number.

4.4 Convergence of Weighted HITS

Suppose we replace the 0-1 valued element Aij in the adjacency matrix A with a non-

negative weight function w(i, j). First we introduce the following two lemmas from [95].

Lemma 2. If M is a symmetric matrix and v is a vector not orthogonal to the principal

eigenvector v∗ of M , then the unit vector in the direction of Mkv converges to v∗ as k

increases without bound.

55

Lemma 3. If a symmetric M matrix has only non-negative elements, the principal eigen-

vector of M has only non-negative entries.

According to the definition of w(i, j), it’s easy to see that matrix A has only non-negative

values and the symmetric matrix AT A and AAT have only non-negative values, thus the

principal eigenvectors of AT A and AAT have only non-negative entries (lemma 3).

In running HITS on a weighted graph, if we start with a vector x with non-negative

entries, since x is not orthogonal to the eigenvector of AAT which has only non-negative

entries, the sequence {y(k)} converges to a limit y∗ (lemma 2). Similarly we can prove that

the sequence {x(k)} converges to a limit x∗.

4.5 Online HITS

Access based graph construction and link analysis introduces a number of issues of

its own such as frequent update, distributed data sources, data security and user privacy

concerns, etc. An algorithm alone cannot address all these issues. But a properly designed

algorithm can make addressing them a lot easier. In this section we describe a link analysis

algorithm that works incrementally as data is being added. We use the idea of “lazy update”

to avoid updating and running of the expensive computation so that we can amortize the

cost across a number of updates while still maintaining enough precision.

4.5.1 Basic Approach

As shown in Section 4.1 and 4.3, the intuition behind HITS fits very well to our appli-

cation. However, the algorithm is too expensive to run on every update, which can be quite

frequent. Recall that the rankings we are seeking, x and y, correspond to the principal

eigenvectors of AT A and AAT , respectively. A key observation is that a single update to

the user access traffic corresponds to a perturbation to the A matrix. Depending on the

weight function selected, it can perturb a single element or a row of A. In either case the

perturbation is local. This perturbation will cause variation to the principal eigenvector of

56

AT A (and AAT). If we can find the relationship between the variation of x and y and the

perturbation to A, we can check each update to see if it will cause too much variation to x

and y. If the change is within acceptable tolerance, we can postpone applying the update

thus avoiding running HITS for it. When the accumulated updates cause too much pertur-

bation, we apply them together and run HITS once. This is essentially an approximation to

HITS that amortizes its cost across multiple updates. We denote such an algorithm Online

HITS. Another advantage of this approach is that service of user queries and updating A

and running of HITS can be made separate. The system can update A and run HITS in

background and continue servicing user queries with old results that we are confident to be

within certain range from the latest ones. Users can enjoy nonblocking service.

Similar issues have been discussed in the context of stability of the HITS algorithm

[96, 97]. However, there is a subtle but significant difference between our approach and

theirs: we are not concerned with the incompleteness of our data or the stability of the

results. For us, the everlasting accumulation of data is an inherent feature of our system

and the results we produce are the “best guess” based on the data we have so far. It is

perfectly alright for the results to undergo dramatic change, which reflects the update of

the system’s knowledge about the world. Rather, we are interested in the bound of the

change so that we can perform the tasks more efficiently. In addition, the conclusions in

[96, 97] only apply to unweighted graphs represented by adjacency matrices. The theorem

we describe below is applicable to any weighted graph.

Online HITS is based on the following theorem:

Theorem 5. Let S = AT A be a symmetric matrix. Let a∗ be the principal eigenvector and

δ the eigengap1 of S. Let ES be a symmetric perturbation to S. We use ‖ · ‖F to denote

the Frobenius norm2. For any ǫ > 0, if ‖ES‖F ≤ min { ǫδ

4+
√

2ǫ
, δ

2
√

2
}, then the principal

eigenvector ã∗ of the perturbed matrix S̃ satisfies

‖a∗ − ã∗‖2 ≤ ǫ

1Eigengap is defined to be the difference between the largest and the second largest eigenvalues.
2The Frobenius norm of a matrix X is defined by ‖X‖F = (

∑

i

∑

j(Xij)
2)1/2

57

Proof. We use .̃ to represent perturbed quantity. Suppose S ∈ Rn×n is a symmetric matrix

with principal eigenpair (λ∗, a∗), and eigengap δ > 0. Let ES be a symmetric perturbation

to S such that S̃ = S +ES . By Theorem V.2.8 from matrix perturbation theory[118], there

is some eigenpair of S̃ (λ̃, ã) such that

‖a∗ − ã‖F ≤ 4‖ES‖F

δ −
√

2‖ES‖F

(4.3)

and

|λ∗ − λ̃| ≤
√

2‖ES‖F (4.4)

assuming the denominator in 4.3 is positive. Let L ∈ Rn−1×n−1 be diagonal matrix con-

taining all S’s eigenvalues except λ∗. A bound similar to 4.4 holds:

‖L − L̃‖F ≤
√

2‖ES‖F (4.5)

Let λ̃2 be the largest eigenvalue in L̃. By Corollary IV.3.6 of [118], Equation 4.5 implies

λ̃2 ≤ λ2 +
√

2‖ES‖F (4.6)

Since ‖ES‖F ≤ δ

2
√

2
, Equations 4.4 and 4.6 ensures that λ̃ > λ̃2, i.e. (λ̃, ã) is indeed the

principal eigenpair of S̃. Also this will ensure the denominator in 4.3 is indeed positive.

Given any ǫ > 0, if ‖ES‖F ≤ ǫδ

4+
√

2ǫ
, then 4‖ES‖F

δ−
√

2‖ES‖F
≤ ǫ thus we have ‖a∗− ã‖2 ≤ ǫ.

This theorem gives us a way to test the perturbation and bound the error on the principal

eigenvector. The proof is similar to that presented in [97] and is given in appendix.

There are two subtle issues that need to be addressed before we can use this theorem

to construct an online HITS algorithm, namely the computations of eigengap δ and per-

turbation ‖ES‖F . They have to be performed efficiently otherwise the cost of computing

them would offset the saving of not running HITS. They will be addressed in the following

subsections.

4.5.2 Computation of Eigengap

A straightforward way of computing eigengap δ is to calculate λ1 and λ2, the largest

and the second largest eigenvalues, and take the difference. The original HITS algorithm

58

is essentially a power method to compute the principal eigenvector of S. It can be revised

easily, without adding complexity, to produce λ1 and λ2 as byproducts. Two modifications

to the original HITS algorithm are introduced:

1. Instead of finding only the principal eigenvector, find the two eigenvectors correspond-

ing to λ1 and λ2. This can be done by using the “block power method” ([119], pp.

289). Concretely, start with two orthogonal vectors, multiply them all by S, then

apply Gram-Schmidt to orthogonalize them. This is a single step. Iterate until they

converge.

2. HITS normalizes the vector at each step to unit length. This is not necessarily the

only choice to ensure convergence. Instead, we normalize each vector by dividing them

by their first non-zero element. They still converge to the two eigenvectors and the

scaling factors converge to λ1 and λ2 ([119], pp. 289).

The above modifications introduce extra computation of one eigenvector and Gram-

Schmidt orthogonalization. The former doubles the work of HITS and the latter is O(n).

The total complexity is the same as HITS: O(mn).

4.5.3 Upper Bound of ‖ES‖F

Let E be perturbation to matrix A (This is our update to the graph). Then Ã = A+E

and S̃ = (A + E)T (A + E) = AT A + AT E + ET A + ET E. Let ES = AT E + ET A + ET E.

We know for Frobenius norm (actually for any norms) ‖X + Y ‖F ≤ ‖X‖F + ‖Y ‖F . So

‖ES‖F ≤ 2‖AT E‖F + ‖ET E‖F . This bound involves matrix multiplication which we try

to avoid. Note that the purpose of our online HITS is to postpone running the algorithm

so that we can save some computation. This means that we will accumulate a number

of updates (since the last time we update A and run HITS). Even though each single

update is local and involve only one element or one row of A, all the accumulated updates

will affect a number of A’s elements. This means E can be sparse but unlikely to have

only single non-zero element or a row. Let E(t) be the accumulated unapplied update

59

matrix after we observed tth update (we reset the counting each time we apply updates).

E(t) = E(t − 1) + ∆(t) where ∆(t) has only one non-zero element or row. We have

‖ES(t)‖F ≤ 2‖AT E(t)‖F + ‖E(t)T E(t)‖F (4.7)

where

‖AT E(t)‖F = ‖AT (E(t − 1) + ∆(t))‖F

≤ ‖AT E(t − 1)‖F + ‖AT ∆(t)‖F (4.8)

and

‖E(t)T E(t)‖F = ‖(E(t − 1) + ∆(t))T (E(t − 1) + ∆(t))‖F

= ‖E(t − 1)T E(t − 1) + E(t − 1)T ∆(t)

+∆(t)T E(t − 1) + ∆(t)T ∆(t)‖F

≤ ‖E(t − 1)T E(t − 1)‖F

+2‖E(t − 1)T ∆(t)‖F + ‖∆(t)T ∆(t)‖F (4.9)

The three equations above give us a way to compute the upper bound on ‖ES‖F recur-

sively. Namely we can keep running updates on the upper bounds of ‖AT E(t − 1)‖F and

‖E(t − 1)T E(t − 1)‖F using Equation 4.8 and 4.9, respectively, and add to them the other

terms in the equations to get new upper bounds for the next step.

When a single update involves only one element of A, ∆(t) has a single non-zero element.

Let ∆ij(t) be the non-zero element of ∆(t), then

‖AT ∆(t)‖F = ∆ij(t)‖Ai∗‖2

‖E(t − 1)T ∆(t)‖F = ∆ij(t)‖E(t − 1)i∗‖2 (4.10)

where Ai∗ and E(t − 1)i∗ are the ith row of A and E(t − 1), respectively.

There are two ways to compute upper bounds of ‖AT ∆(t)‖F and ‖E(t − 1)T ∆(t)‖F :

(1) keep the matrix E(t − 1) and use Equation 4.10; (2) use the largest elements of A and

E(t − 1) to estimate. (1) is accurate and involves O(n) operations. (2) is fast (only scalar

multiplication). The actual choice depends on application.

60

When an update changes a row of A, computing ‖AT ∆(t)‖F and ‖E(t − 1)T ∆(t)‖F

is more expensive and requires O(n2) operations and ‖∆(t)T ∆(t)‖F = ‖∆i∗(t)‖2
2 which is

O(n). This is at the same level of complexity as HITS but can be substantially cheaper

to run because the latter takes a number of iterations to converge while the former needs

to run only once. Kleinberg reported that the typical number of iterations for HITS to

converge is 20 [77]. If the cost is still too high to accept, there are two ways to alleviate: (1)

Frobenius norm has the property ‖AB‖F ≤ ‖A‖F ‖B‖F . ‖AT ∆(t)‖F and ‖E(t−1)T ∆(t)‖F

can be reduced to scaler multiplication (with loss of “tightness”); (2) the computation can

be made to be distributed across all clients, as described in Section 4.7.

4.5.4 The Algorithm

Putting all these together, we summarize the Online HITS algorithm in this section.

In the following, we assume there is a procedure Gram-Schmidt that, given a matrix M ,

orthogonalizes its column vectors using Gram-Schmidt process ([119], pp. 129). We also as-

sume there is a process that monitors the data and invokes our algorithm with perturbation

when it sees an update.

Let zn = (1, 1, . . . , 1)T ∈ Rn. Let z⊥n ∈ Rn be the vector that is orthogonal to zn

and has the same length. ∆ ∈ Rn×m is the perturbation caused by a single update. ǫ is

the required precision. Let x[1] be the first non-zero element of vector x. We keep global

variables ‖ES‖F , ‖AT E‖F and ‖ET E‖F . To make it concise, we use matrix computations

in the pseudocode. However, it is clear that they can either be implemented together with

HITS iterations, or only require operations on small number of the elements of the matrices

involved, as described in Section 4.5.3.

The two main procedures are NewHITS and OnlineHITS. NewHITS is the modified

version of HITS algorithm that performs block power iterations on two vectors and compute

eigengap. Note that AT A and AAT share the none-zero eigenvalues so only one eigengap

is needed. OnlineHITS is called on each update. It checks whether all the accumulated

updates would cause large perturbation to the ranking. If so it will apply the updates

61

and invoke NewHITS. Otherwise it returns the ranking from previous round. These two

procedures are listed below.

NewHITS(A, ǫ)

A ∈ Rn×m

x ← zm, x⊥ ← z⊥m

y ← zn, y⊥ ← z⊥n

Do

x ← Ay, x⊥ ← Ay⊥

y ← AT x, y⊥ ← AT x⊥

[x, x⊥] ← Gram-Schmidt([x, x⊥])

[y, y⊥] ← Gram-Schmidt([y, y⊥])

δ ← x[1] − x⊥[1]

x ← x/x[1], x⊥ ← x⊥/x⊥[1]

y ← y/y[1], y⊥ ← y⊥/y⊥[1]

Until error < ǫ

Return (x, y, δ)

OnlineHITS(∆, ǫ)

‖AT E‖F ← ‖AT E‖F + ‖AT ∆‖F

‖ET E‖F ← ‖ET E‖F + 2‖ET ∆‖F + ‖∆T ∆‖F

‖ES‖F ← 2‖AT E‖F + ‖ET E‖F

E ← E + ∆

If ‖ES‖F > Tol

A ← A + E

[x, y, δ] = NewHITS(A, ǫ)

E ← 0

‖AT E‖F ← 0

‖ET E‖F ← 0

‖ES‖F ← 0

62

Tol = ǫδ

4+
√

2ǫ

Endif

Return (x, y)

4.6 Evaluation

Compared to HITS, OnlineHITS is at the same complexity level. However, its advantage

lies in the hope that the updates may not cause too much perturbation to the ranking so

that recomputation is avoided. In addition, the operations introduced for perturbation

checking do not require iteration so they are substantially cheaper than HITS. The benefit

gained by Online HITS depends on the stability of the system in face of perturbation,

which is application-specific. We believe that in situations where data is accumulating,

Online HITS is most likely advantageous. The intuition behind this belief is that the more

data is accumulated, the less significant a new update would be to the overall ranking.

Therefore there would be more opportunities to avoid update and running of HITS.

To evaluate how well Online HITS performs, we implemented the algorithm and ran

it on the Enron Email Dataset [31]. We used some of the useful mappings created by

Andres Corrada-Emmanuel [32]. In particular, for each email, we used the mappings to

find its author and recipients. As pointed out in [32], The Enron corpus contains some

inconsistencies. In our test, we ignored emails that were mapped to multiple authors.

Multiple recipients of a single email, however, are preserved.

This test can be thought of as “identifying the central figures” in the social network

defined by the email communications. In constructing the graph, we simply used message

count as the weight for each link between two users. Since one email may have multiple

recipients, multiple links may be updated when an email is observed. There are a total of

150 users in the data set and our algorithm ranks them in “importance” according to their

email communication.

An email is treated as a log item. Online HITS constantly monitors the log and performs

63

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
1

1.5

2

2.5

3

3.5

4

Estimated upper bound of ||E
s
||

F
:||E

s
||

F
(ε=0.1)

Number of log items

γ

Figure 4.1. Approximation ratio: the ratio of the estimated upper bound of ‖ES‖F and its
actual value.

operations as described in Section 4.5. A total of 8107 log items are observed. The precision

is chosen to be ǫ = 0.1 3.

Note that we are not testing how well the ranking produced by Online HITS (or HITS)

fits the “real” ranking which is a rather qualitative and subjective measure. Instead, we are

examining Online HITS’s algorithmic properties and how it performs more efficient than

original HITS in a dynamic system.

The results of our test are shown in the following figures.

Figure 4.1 plots the ratio of the estimated upper bound of ‖ES‖F and its actual value.

I.e. for each update γ = (‖2AT E‖F + ‖ET E‖F)/‖ES‖F . It shows how tight the upper

bound given in Section 4.5.3 is. The number varies as updates accumulate and are applied,

but never exceeds 3.8.

Figure 4.2(a) shows, for each update, the actual perturbation ‖ES‖F , the upper bound

we estimated based on the method of Section 4.5.3, and the tolerance as specified by The-

orem 5. Although the details are not easily discernable due to the large number of data

points, it clearly shows the general trend of these measures, i.e. the tolerance grows as the

3The choice of the precision depends on the application and the data. As we will observe later, the
rankings of individual users in the Enron Email Dataset are quite “far” from each other and a larger ǫ can
be used without affecting their relative standings. The result will be more saving in computation.

64

5960 5980 6000 6020 6040 6060 6080

1.96

1.965

1.97

1.975

1.98

1.985

1.99

1.995

2

2.005

2.01

x 10
5 Accumulated perturbation ||E

s
||

F
 and tolerance (ε=0.1)

Number of log items

||
E

s
||

F
 a

n
d
 t
o
le

ra
n
c
e

||E
s
||

F
Upper bound of ||E

s
||

F

Tolerance

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5 Accumulated perturbation ||E
s
||

F
 and tolerance (ε=0.1)

Number of log items

||
E

s
||

F
 a

n
d
 t
o
le

ra
n
c
e

||E
s
||

F
Upper bound of ||E

s
||

F

Tolerance

(a) (b)

Figure 4.2. Accumulated perturbation ‖ES‖F and tolerance. (a) shows the actual pertur-
bation ‖ES‖F , the upper bound we estimated based on the method of Section 4.5.3, and
the tolerance as specified by Theorem 5. (b) enlarges the area of (a) between data item
5965 to 6078.

7670 7680 7690 7700 7710 7720 7730 7740 7750 7760 7770

.15

.152

.154

.156

.158

.16

.162

Ranking (ε=0.1)

Number of log items

R
a
n
k
in

g

Actual Ranking
Estimated

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Ranking (ε=0.1)

Number of log items

R
a
n
k
in

g

Actual Ranking
Estimated

(a) (b)

Figure 4.3. Rankings of “top” 10 users. (b) enlarges part of (a) for clarity.

data accumulates and allows for more and more perturbation while maintaining the given

precision. Figure 4.2(b) enlarges one area of (a) to show the details. This area lies between

data item 5965 to 6078. The horizontal line segments of red dots represent the intervals

where the perturbation is within tolerable range and no update is applied. This particular

line in Figure 4.2(b) demonstrates around 113 updates for which the NewHITS needs not

to be invoked, i.e., a saving of 113 rounds of HITS computation. Similar savings can also

be observed in other areas of Figure 4.2(a).

Figure 4.3 shows the rankings of “top” 10 users in the data set 4. Both the actual

4For privacy reasons the names of the users are withdrawn.

65

ranking of each user (obtained by running HITS at each update) and the approximation

produced by OnlineHITS are plotted. Note that in Figure 4.3(a) the rankings of the top

5 users are so close that their results appear in the figure almost as a single curve (the

curve on the top). Preliminary investigation uncovered that they are all involved in a large

number of error messages (one of them is the sender and the rest recipients) and, as the

HITS algorithm discovered, they share similar roles in terms of their email communication

pattern in the data set. Our algorithm discovers this structure as well. The estimated

rankings are so close to the actual ones that it is difficult to distinguish them in Figure

4.3(a). Figure 4.3(b) enlarges part of (a) for clarity. It shows that the estimated rankings

closely track the actual ones even when no recomputation is performed.

Our test demonstrates the substantial advantage of OnlineHITS when applied to an

actual data corpus. We believe it is applicable to other dynamic environments as well. In

particular, for systems that do not have a clearly marked leisure period (e.g. a system

serving users from all time zones around the world), simply “running HITS at night” will

not work. Our algorithm can provide an accurate estimate on the perturbation a update

can cause and offers precise ranking in real-time.

4.7 Privacy Preserving Online HITS

The algorithm described in previous sections addresses the dynamic and real-time re-

sponse issues of using access patterns in link analysis. However, in many situations, a naive

implementation of the algorithm has severe privacy implications. In most applications, the

weight on each edge of the graph represents the “rating” or “preference” of a user to the

documents or other user and is gathered via client side logging. Such information is quite

personal and exposing it would jeopardize the privacy of users thus hindering the acceptance

of our system. If implemented directly, the online HITS algorithm would require the server

running the algorithm be able to see all the data and involve substantial amount of network

communication. In most situations trusting the server or network is not acceptable.

This problem can be solved with our P4P framework. In the following we will only

66

consider the computation of document ranking, x. Expertise ranking is done in a similar

fashion.

4.7.1 A Run of HITS

The results of the tth iteration of HITS, xt and yt which are aggregate data, are made

public. User i is responsible for his own rating of the documents (obtained via analyzing his

document access pattern), namely the ith row of matrix A. Let AT
i = [ai1, ai2, . . . , aim] be

that row. For the step xt+1 = AT yt, all that is involved from i is his own expertise ranking,

yt
i , and AT

i . User i computes yt
iA

T
i and inputs the vector to the P4P computation which

computes and broadcasts the aggregate. This is xt+1.

To compute yt+1 (which is Axt+1), user i computes AT
i xt+1 which is yt+1

i , the ith

element of vector y at iteration t+1, and publish it. If every user does this, the vector yt+1

can be obtained.

The iteration can stop when enough precision is achieved.

4.7.2 Perturbation Checking

The scheme described in Section 4.7.1 shows a run of HITS, not Online HITS. To

fit online HITS into such a scheme, we need to find a way to compute the perturbation,

‖ES(t)‖F , with encrypted data or allow each user to compute with local data.

Recall that Equations 4.7, 4.8, 4.9 and 4.10 give us a way to update the upper bound

of ‖ES(t)‖F . The terms that need to be computed for each update are ‖AT ∆(t)‖F , ‖E(t−

1)T ∆(t)‖F and ‖∆(t)T ∆(t)‖F . Since for user i, ∆(t) has non-zero elements only in its ith

row (and these numbers are obtained locally via his document access pattern analysis),

AT ∆(t) only involves the ith row of A, which the user maintains. Similarly, E(t− 1)T ∆(t)

only involves the ith row of E(t−1). In short, each user’s update only involves his local data

and it is straightforward to perform perturbation checking without disclosing private data:

‖ES(t)‖F , ‖AT E(t)‖F and ‖E(t)T E(t)‖F are made public and each user will update them

using Equations 4.8, 4.9 and 4.10 with their local updates. When it is determined that it

67

is time to update A, each user will update his own row and reset the perturbation records.

All of them then collaboratively run the HITS algorithm as described in Section 4.7.1.

Note that we have actually killed two birds with one stone if we perform perturba-

tion checking this way. Not only could we preserve user’s privacy, we also distributed the

computation among all users and parallelized the process.

4.8 Related Work

In [110], a set of heuristic graph algorithms are used to uncover shared-interest relation-

ships among people, and to discover the individuals with particular interests and expertise,

based on the logs of email communication between these individuals. The limitation with

this approach is that experts are assumed to be communicating with fellow experts, which

is not necessarily true in the real-world where experts may not be acquainted with one

another, or may be rivals. Our approach does not assume any particular communication

patterns between experts, and instead locate the experts based on their activities, e.g. if an

expert accesses this set of authoritative documents, another person who accesses the same

set is likely to be an expert as well.

The Referral Web [73, 74] is an interactive system for restructuring, visualizing and

searching social networks on the World Wide Web. It constructs a graph of all users based on

their email communication logs, which it uses to send a chain of referral requests until these

requests reach an expert user. Like our Online HITS algorithm, Referral Web constructs

the social network incrementally as it indexes the documents created and received by users.

In contrast to our approach, however, the Referral Web raises possible privacy concerns

because the chain of referrals inevitably reveal who someone down the chain knows to the

user who initiates the search, unless individuals down the chain chooses not to forward the

referral, in which case it becomes harder for the query to succeed.

Pirolli et al. [103] use a link-based approach like HITS to categorize webpages. It

is similar to our weight-based algorithm in that users’ access paths and metadata about

webpages are used to construct the appropriate matrices. It differs significantly from ours

68

in that while we use successive iterations to converge on our results, Pirolli et al. construct

an activation network based on the strength of association between webpages and use the

spread of activation in this network, starting from identified source webpages, to identify

the webpages that exceed a threshold quantity of flow.

Carriere and Kazman’s WebQuery system [24] rank webpages by considering the num-

ber of neighbors in the hyperlink structure that each webpage has. WebQuery performs

link-based query post-processing to improve the quality of the results that it returns. In

contrast, our incremental approach assumes that the hyperlink structure is highly dynamic,

and postpones processing until the latest user-document accesses accumulate significant

perturbation.

4.9 Conclusion

We extended the HITS hyperlink analysis algorithm to make it applicable to analyzing

dynamic weighted graphs. Our generalizations are in two directions. First, we replaced the

0-1 valued connectivity property with a non-negative valued weight function to allow for

encoding of richer information. We proved the convergence HITS on such weighted graphes.

Second, we created an online version of the HITS algorithm that can approximate the results

efficiently in face of frequent updates by estimating the upper bound of perturbation and

postponing applying the updates whenever possible. Both theoretical analysis and empirical

experiments show that our generalized online algorithm is more efficient than the original

HITS under the context of dynamic data.

Finally we developed a secure and distributed implementation of our online algorithm

that solves the potential privacy issues that may occur when deploying large-scale access

pattern-based document and authority ranking systems. Our scheme makes use of crypto-

graphic techniques such as threshold decryption and homomorphic public-key encryption

and distributes computation among users. Only aggregate or encrypted data are exposed.

The scheme is also robust against a number of dishonest users up to a certain threshold.

Our extensions to Kleinberg’s original HITS algorithm result in a generalized algorithm,

69

Secure OnlineHITS, that is practical for link analysis in scenarios such as collaborative

work and online communities, in which there is no explicit link structure among nodes, and

that users’ access patterns of documents are highly dynamic, complex and should remain

private.

70

Chapter 5

Association Rule Mining

The association rule mining [2] is still one of most popular pattern-discovery methods in

the field of knowledge discovery. Briefly, an association rule is an expression X ⇒ Y , where

X and Y are sets of items. The meaning of such rules is as follows: Given a database D of

records, X ⇒ Y means that whenever a record R contains X then R also contains Y with

certain confidence. The rule confidence is defined as the percentage of records containing

both X and Y with regard to the overall number of records containing X. The fraction of

records R supporting an item X with respect to database D is called the support of X.

5.1 Distributed Association Mining

Let n be the total number of users and m be the total number of items. User i maintains

a private data set Di, i = 1, 2, . . . , n (which may contains e.g. her purchase records). The

data set [D1 ∪ D2 ∪ · · · ∪ Dn] forms a database, which is actually the concatenation of D1,

D2, · · · and Dn. The database can be represented by a n × m boolean matrix x where

xij = 1 if record i contains item j and 0 otherwise. We consider horizontally partitioned

database [134] where each user’s data set contains the same attributes. Without causing

confusion, we also use Di to denote the rows of the matrix x maintained by user i.

The goal is to conduct association rule mining on [D1 ∪ D2 ∪ · · · ∪ Dn] and to find the

71

association rules with support and confidence being greater than the given thresholds. We

say an association rule (e.g., X ⇒ Y) has confidence c% in the data set [D1∪D2∪ · · ·∪Dn]

if in [D1 ∪ D2 ∪ · · · ∪ Dn] c% of the records which contain X also contain Y (namely, c%

= P (Y | X)). We say that the association rule has support s% in [D1 ∪ D2 ∪ · · · ∪ Dn] if

s% of the records in [D1 ∪ D2 · · · ∪ Dn] contain both X and Y (namely, s% = P (X ∩ Y)).

Consequently, in order to learn association rules, one must compute the candidate itemsets,

and then prune those that do not meet the preset confidence and support thresholds. In

order to compute confidence and support of a given candidate itemset, we must compute,

for a given itemset C, the frequency of attributes (items) belonging to C in the entire

database (i.e., we must count how many attributes in C are present in all records of the

database, and divide the final count by the size of the database which is m.) Note that

association rule mining works on binary data, representing presence or absence of items in

transactions. However, the proposed approach is not limited to the assumption about the

binary character of the data in the content of association rule mining since non-binary data

can be transformed to binary data via discreterization.

5.2 Association Rule Mining Procedure

The following is a fast algorithm for mining association rules on [D1 ∪ D2 · · · ∪ Dn],

introduced in [3]:

1. L1 = large 1-itemsets

2. for (k = 2;Lk−1 6= ∅; k + +) do begin

3. Ck = apriori-gen(Lk−1)

4. for all candidates c ∈ Ck do begin

5. Compute c.count

6. end

7. Lk = {c ∈ Ck|c.count ≥ min-sup}

72

8. end

9. Return L = ∪kLk

At line 5 in the above procedure, c.count divided by the total number of records is the

support of a given item set. We will show how to compute it in Section 5.3.

The procedure apriori-gen is described in the following (please also see [2, 3] for de-

tails).

apriori-gen(Lk−1: large (k − 1)-itemsets)

insert into Ck

select p.item1, p.item2, . . ., p.itemk−1,q.itemk−1

from Lk−1 p, Lk−1 q

where p.item1 = q.item1, . . ., p.itemk−2 = q.itemk−2

p.itemk−1 < q.itemk−1;

Next, in the prune step, we delete all itemsets c ∈ Ck such that some (k − 1)-subset of

c is not in Lk−1:

∀ itemsets c ∈ Ck do

∀ (k − 1)-subsets s of c do

if(s /∈ Lk−1) then

delete c from Ck;

5.3 Computing c.count

In the procedure of association rule mining for horizontal partition, each party computes

the partial c.count based on their own data. Without loss of generality, let’s assume that

73

user i maintains c.counti, i = 1, . . . , n. The goal is to compute the c.count which equals to

∑n
i=1 c.counti without disclosing c.counti to party j where i 6= j. In the next section, we will

provide a privacy-preserving protocol to compute this summation under P4P framework.

5.4 Association Rule Mining in P4P

Algorithm apriori-gen is to generate a superset of possible candidate itemsets and

then prune it to get Ck. We use the P4P vector aggregation and verification protocols to

compute c.count for all c ∈ Ck as one P4P aggregation step.

Recall that Di is the data set of party i. In the case of horizontal partition, Di is

essentially a number of rows of items. At step k of the above algorithm, let mk = |Ck| and

Ck = {c1, . . . , cmk
}. The protocol is as follows:

1. User i constructs an mk-dimensional vector d
(k)
i ∈ Z

mk
φ such that

d
(k)
i [j] =

∑

r∈Di

(
∏

l∈cj

xrl)

2. User i then inputs d
(k)
i into the P4P protocol. She also provides a zero-knowledge

proof that her data is valid using the technique that will be elaborated later. If the

user fails the proof, the server and the privacy peers exclude her data from subsequent

computation.

3. Let s(k) =
∑

d
(k)
i be the output of the P4P aggregation. The desired counts are

simply cj .count = s(k)[j], j = 1, . . . , mk.

At the first step, for all the rows in her data set, for each itemset cj ∈ Ck, the user

computes the product of all the attributes in cj . She then add these products across all the

rows in her block. This is the j-th elements in di. Clearly, this is the number of rows in

her data set containing the itemset cj . By aggregating these vectors across all users, P4P

74

outputs the total number of rows containing all itemsets cj ∈ Ck in the entire database

[D1 ∪ D2 ∪ · · · ∪ Dn].

At step 2, the user is required to prove, in zero-knowledge, that her data is valid. There

are two ways to accomplish this that can be used in different situations. When k is small,

there hasn’t much pruning yet so the candidate set Ck tends to be quite large. For typical

data such as web pages or vendor inventory, mk can be in the range of billions or millions.

In this case the L2-norm verification protocol introduced in chapter 2 should be used with

a bound

L = α
√

mk|Di|

where 0 < α ≤ 1.

At the later steps of the algorithm when k is large, Ck can become small since it has

gone through many iterations of pruning. In this case one can apply the ZK boundedness

proof directly on each of di’s elements to verify that all of them are bounded by |Di|. Please

see chapter 2 and [15] for details.

5.5 Discussion

5.5.1 Privacy Analysis

The privacy of our solution is straightforward to analysis. As is proven in chapter 2,

the P4P aggregation and validation do not leak any more information about individual user

data other than what can be inferred from the final results. And the results are just the

supports of the itemsets that we are computing. These have been treated as public data by

many private association rule mining schemes (e.g. [122, 135]).

5.5.2 Near Optimal Efficiency

In a realistic association rule mining application, the scale of the problem is typically

quite large. For example, WalMart sells over 100,000 items. And the web has billions of web

75

pages. When mining association rules using the a priori algorithm over such datasets, Ck

may contain millions of itemsets. For any solutions to be practical, they must be efficient

enough to handle dataset of such scale.

The P4P solution is near optimal in that its cost is comparable to that of a distributed,

non-private implementation of the a priori algorithm. For each iteration, computing c.count

for all c ∈ Ck is simply one single P4P vector aggregation. And since the P4P’s main

computation (which has complexity O(mk|Di|) for party i) is done over small field (32- or

64-bit) and has the same cost as regular, non-private arithmetic, compared to a server-based,

non-private implementation of the algorithm, the computation overhead for each user in P4P

is only doubled while that for the server remains the same. Verification is done in large field

but the number of such operations is only O(log mk). This is one of the important features

provided by the P4P framework and it guarantees that the privacy mechanism causes little

overhead for the server or the privacy peers, which are the bottlenecks of the system. Using

the benchmark obtained by the P4P implementation in [23], verification of a million element

vector takes only a few seconds of user and server time. The same task takes hours using

other solutions. In a sense P4P provides privacy to association rule mining applications

almost for free.

5.5.3 Dealing with Malicious Users

A lot of private data mining schemes such as [132] cannot deal with active cheating from

users (in cryptographic terms, their schemes are only secure passive adversary). However,

in any realistic applications, users often pose active threats. A user may submit invalid

data, or refuse to participate in the computation at all. A competitor of the data mining

service provide can easily disguise as a user and disrupt the computation.

In our scheme we use P4P’s efficient built-in zero-knowledge user data validation pro-

tocol to verify that a user cannot exert too much influence on the computation. The bound

used in the protocol should be at most
√

mk|Di| (corresponding to the case of setting α = 1),

but usually substantially smaller, determined by the application based on the estimate on

76

the distribution of the raw data. The check is not tight in that a cheating user can still

falsify her data without being detected. However, the effectiveness of her cheating is lim-

ited (by the bound) and assuming a reasonably large fraction of users are honest (otherwise

there is no point running the data mining algorithm anyway), cheating users cannot cause

too much change to the result.

In addition, our solution features a simple cheating user handling mechanism. When a

user is detected cheating by P4P’s validation protocol, we simply disqualify her from the

computation for future steps. This is equivalent to setting all her entries to 0s for the rest of

the computation. The results from previous steps may not be very accurate but generally

there is no need to redo them. This is because the validation ensures that if a user tries to

manipulate the support of an itemset by increasing her data in the corresponding entry by

a large amount, she will be detected. So the only undetectable cheating is to increase the

value by a small amount or decrease it. If the user only holds a few rows of the database,

which typically should be the case for typical user-based mining, neither should have big

influence on the computation since we are aggregating across a large number of users and

most of them are honest. If, on the other hand, she holds a large trunk of the database, the

server and the privacy peers can simply exchange the shares of her data and reconstruct

her original vector d
(1)
i . They then correct the results by subtracting all cheating users data

from the aggregation. The correction is done in public, in regular-sized field and should be

very efficient.

77

Chapter 6

An IND-CCA2 Multicast

Cryptosystem

The P4P framework and many network applications are based on a group communi-

cations model where one party sends messages to a large number of authorized recipients

and/or receives messages from multiple senders. In this chapter and next, we present some

scalable and secure communication primitives that are suitable for P4P’s communication

patterns. This chapter introduces a general framework for constructing efficient multicast

cryptosystems with provable security. We show that a line of previous work on multicast

encryption are all special cases of this general approach. We provide new methods for build-

ing such cryptosystems with various levels of security (e.g., IND-CPA, IND-CCA2). The

results enable the construction of a whole class of new multicast schemes with guaranteed

security using a broader range of common primitives such as OAEP. Moreover, we show that

multicast cryptosystems with high level of security (e.g. IND-CCA2) can be based upon

public key cryptosystems with weaker (e.g. CPA) security as long as the decryption can be

securely and efficiently “shared”. The constructions feature truly constant-size decryption

keys whereas the lengths of both the encryption key and ciphertext are independent of

group size.

78

6.1 Secure Multicast

Multicast offers an efficient way to deliver the same message to a group of receivers and

has become the basis of many applications. The Internet today supports a basic form of

multicast service. On the Internet, a multicast group is identified by a Class D IP address

and any receivers can join or leave a multicast group by sending IGMP (Internet Group

Management Protocol) [51] messages to their local router. Any sender can send message to

a multicast group by addressing the message to the group address.

The current IP Multicast service does not provide mechanisms to restrict message de-

livery to a specified set of receivers therefore other means have to be used to secure the

communication. A multicast encryption system provides confidentiality for multicast data

– ensuring that any parties other than the intended recipients should not be able to access

the message. To this end, most of the existing work use one of two approaches. The first

is represented by the work in network research that is concerned with multicast security.

In this approach symmetric key encryption is used and the data is encrypted with a traffic

encryption key (TEK) that is known only to the multicast group members. The difficulty

here is key management: The TEK may have to be changed when members join or leave the

group. This is known as re-keying. Early schemes (e.g., Group Key Management Protocol

(GKMP) [66]) let the group controller or the sender share a pairwise key with each group

member and distribute keys to them on a one-to-one basis. For obvious reasons this cannot

scale to large groups.

Some work has been done to improve the scalability of such schemes. Among the efficient

solutions, the Logical Key Hierarchy (LKH) (or Key Graph) was independently discovered

in [125] and [128] and has been an inspiration for many subsequent works [19, 26, 129, 81,

111, 131]. In these schemes, individual and auxiliary keys are organized into a hierarchy and

each group member is assigned to a leaf and holds all the keys from its leaf to the root. The

root key is shared by all group members and used as the TEK. New TEK is distributed by

encrypting it with keys that deleted members do not have. So far O(log n) seems to be the

79

best storage (for both center and members) and communication complexity the LKH-based

schemes achieved, where n is the size of the multicast group.

The problem with this approach is that revoking a single user involves changing the

keys for all others and the receivers must be stateful and always online in order to receive

the latest TEK.

The second approach uses asymmetric key cryptosystem and allows the receivers to

be stateless. This includes the work in cryptography such as traitor tracing, a concept

introduced by Chor, Fiat and Naor [27], and broadcast encryption, initiated by Fiat and

Naor [52]. Both are based on encryption schemes where a ciphertext can be decrypted by

multiple parties with different keys. The scheme in [52] requires O(t log t log n) keys per user

and the transmission of O(t2 log2 t log n) messages where t is the number of revoked users.

Subsequent work proposed a number of other schemes including [13, 5, 85, 56, 93], and

[65, 91] which achieved O(t) message complexity and O(log1+ǫ n) keys per user. Boneh and

Franklin’s scheme proposed in [13] is based on Reed-Solomon codes and the representation

problem for discrete logs. They also presented a modification, using techniques by Cramer

and Shoup [35], that was provably secure against adaptive chosen ciphertext attack.

Recently Boneh et al. presented a broadcast encryption scheme based on bilinear map

with constant-size ciphertexts and private keys (and O(n)-size public key) [14]. However, in

this system, the decryption requires the public key and the knowledge of the set of legitimate

recipients. Therefore the “effective” decryption key and/or ciphertext in a real application

actually become linear in the total number of receivers.

There is a line of work in the second approach that we classify as Asymmetric Threshold

Decryption-based (ATD-based) multicast encryption. This includes [5, 93, 121, 44, 76],

although none of them explicitly formalized their schemes this way. In these schemes a

private key is shared using a (t + 1, n + t)-threshold scheme and the shares are distributed

asymmetrically. Namely the center is given t shares and each user is given 1 share. The

center broadcasts a ciphertext together with t partial decryptions. Any member with a

valid share of the private key can produce another decryption share and recover the message.

80

With such schemes, user only needs to store a key of constant length. And both the message

complexity and sender storage are O(t), independent of the group size.

6.1.1 Our Results

We focus on the ATD-based multicast encryption cryptosystems and introduce a general

framework for constructing such systems with guaranteed security. As we will show later,

all existing ones are special cases of our constructions. In particular, they are all based on

specific ElGamal encryption that relies on specific assumptions (e.g. DDH). The results we

obtained in this chapter, on the other hand, are more general. The main contributions are:

(1) We show that any threshold encryption scheme can be used to construct a multicast

cryptosystem that retains the same level of security (e.g. IND-CPA, IND-CCA2) as the

underlying threshold encryption. (2) We obtain new results that improve over existing

ATD-based schemes in both security and efficiency. Specifically, the resulting scheme from

our construction can be made CCA-secure even if the underlying threshold scheme is not.

(3) Furthermore, we show that an IND-CCA2 secure multicast scheme can be constructed

from a public key cryptosystem that does not have a secure threshold implementation (such

as OAEP) or has only weaker security (e.g. only IND-CPA), provided the decryption can

be securely and efficiently shared (to be elaborated in Sect. 6.4.4). All of our security proofs

are in the same (standard or random oracle) model as the underlying threshold scheme or

public key cryptosystem.

These general security results can be used to analyze existing systems in a more unified

framework and provide guidelines for constructing future schemes with guaranteed security.

This frees the system designer from the burden of security consideration and allows them

to focus on other aspects of their schemes.

6.2 Preliminaries

We consider the scenario where a single party, called the center, sends messages, over

insecure channels, to a group U of n parties who are denoted members of the group. In

81

such a setting, the center often has a special role. Since it is often distributing information

of its own choice, it is assumed to have control over the group membership, i.e., the center

is allowed to make decisions about who can join the group and whose membership should

be revoked. This is in line with almost all multicast schemes such as [84, 128, 117, 126, 121,

44, 76].

We assume a computationally bounded adversary who is allowed to attack the system

from both outside and inside the group. The insider’s attack is modelled by allowing the

adversary to corrupt and gain total control of up to t group members where t is a predefined

threshold. We only consider non-adaptive adversary who chooses what members to corrupt

before the key generation.

The multicast communication we are considering in this chapter is assumed to be

“closed”, i.e., we only provide the center with the ability to encrypt messages (and of

course only the intended recipients can decrypt them). This is different from the public

key systems such as [93, 121, 44, 76] where the information to encrypt a message is pub-

lic. The openness is unnecessary for some applications and unacceptable for some others

(e.g. military communication). By “closing” the communication, we can provide more flex-

ible constructions that can make use of a broader range of primitives. The price for this

flexibility is the loss of the public key feature, which should not be a problem for many

applications. However we observe that in many instantiations of our constructions, it is

easy to “publicize” the encryption key, without affecting the security of the scheme, as

demonstrated by works such as [121, 44, 76]. This effectively turns the scheme into a public

key system and all the openness features are reinstalled.

6.3 Multicast Cryptosystem

Definition 1. An n-way multicast encryption scheme ME = (KeyGen, Reg, E, D) consists

of the following set of algorithms:

1. Key Generation KeyGen: a probabilistic polynomial-time (in k) algorithm which takes

82

as inputs a security parameter 1k, a threshold t, the number of (initial) group members

n, and generates global information I, the encryption key Σ and the master secret key

Γ.

2. Registration algorithm Reg: a probabilistic algorithm to compute the secret initializa-

tion data for a new user subscribing to the system. Reg receives as input the master

key Γ and a new index i associated with the user; it returns the user’s secret key Γi.

3. Encryption E: a probabilistic polynomial-time algorithm that, on inputs Σ, the en-

cryption key, and a string m ∈ {0, 1}k, and a set R of revoked users (with |R| ≤ t)

and their keys, produces as output ψ ∈ {0, 1}∗ called the ciphertext 1.

4. Decryption D: a deterministic polynomial-time algorithm such that ∀m ∈ {0, 1}k,

∀ i ∈ U \ R, D(Γi, E(Σ, {(j,Γj)|j ∈ R}, m)) = m. On all other inputs it outputs a

special symbol ⊥.

KeyGen and Reg should be run by the center and the two can also be executed together

with an initial set of n members as input. Admitting new members is relatively trivial, at

least for all the construction we will be presenting, so in the following we simply omit Reg

and use (I,Σ, Γ, ~Γ) ← KeyGen(1k, t, n) to denote this process, where ~Γ = (Γ1, . . . ,Γn) is a

vector of secret keys for the n members.

6.3.1 Notion of Security

The communication paradigm we are considering shares similarities with both symmet-

ric key and public key cryptosystems. On one hand the communication is “closed” in that

we only allow the center to send messages to the group. On the other hand the keys are

“asymmetric” since now there are multiple recipients and our definition includes member

revocation which means the encryption key and the decryption keys must be different.

Dodis and Fazio [44] first precisely formalized the notion of adaptive security for public

key multicast encryption schemes, which allow anyone having access to the public key to

1Note that member revocation is implicitly embedded in the encryption algorithm.

83

send messages to the group, at both CPA and CCA2 levels. Since our setting is different from

the “public key” paradigm, we adopt a slightly modified definition. The major difference

is that, we do not explicitly allow the adversary to see the sender’s keys since ours is not a

public key cryptosystem. Instead the adversary can obtain encryptions of arbitrary messages

by querying an encryption oracle who also encrypts the target message later. This is similar

to the security definition based on indistinguishability for symmetric key cryptosystems.

The ability to handle member revocation is modelled by allowing the adversary to corrupt

members and obtain their secret keys. This formalization is general and captures the

security notions of many multicast schemes such as those LKH schemes [125, 128] which

are based on symmetric key cryptography. However we note that in all the construction

we introduce later, the secret keys of the revoked members constitute the actual encryption

key. In essence in our constructions the exposure of encryption key can be modelled as

corrupting members. This effectively turns our scheme into a “public key” paradigm from

the adversary’s point of view and the security definitions from [44] are appropriate.

Formal Model

Given a multicast encryption scheme ME = (KeyGen, E, D), a polynomial time adver-

sary A’s attack is modelled by the following game:

Game ME:

M1 The adversary A chooses to corrupt a fixed set R of t members.

M2 (I,Σ, Γ, ~Γ) ← KeyGen(1k, t, n) is run and A is given the public information I and the

secret keys of corrupted members. User i receives Γi. The center is given R and their

keys.

M3 The adversary interacts with the center, who acts as the encryption oracle, in an

arbitrary fashion. On any query m from A, the center returns its encryption.

M4 A chooses two plaintexts m0 and m1 of the same length and gives them to the

84

center who chooses b ∈ {0, 1} at random, and gives the “target” ciphertext ψ′ =

E(Σ, {(j,Γj)|j ∈ R}, mb) to A.

M5 A continues to interact with the center.

M6 At the end of the game, A outputs b′ ∈ {0, 1}.

The advantage of A is defined as

AdvCPA
ME,A(k) = |Pr(b′ = b) − 1/2|

In addition, in the case of a adaptive chosen ciphertext attack (CCA2) 2, in both stages

M3 and M5, A is also allowed to interact in an arbitrary manner with the group members

who act as the decryption oracles. On a query ψ from A, member i returns D(Γi, ψ). The

only restriction on the interaction is that the target ciphertext ψ′ cannot be one of the

queries made to any of the decryption oracles. As before, A’s advantage in the CCA2 case

is defined as

AdvCCA2
ME,A(k) = |Pr(b′ = b) − 1/2|

Definition 2 (t-Resilient Multicast Encryption Scheme). Let µ ∈ {CPA,

CCA2}. A multicast encryption scheme ME is t-resilient against a µ-type attack if the

advantage, Adv
µ
ME,A(k), of any probabilistic polynomial time adversary A is a negligible

function of k.

6.4 ATD-Based Multicast Encryption

In this section we define two constructions and show that a line of previous work on

multicast or broadcast encryption can actually be characterized as special cases of these

constructions.
2We do not explicitly consider non-adaptive chosen ciphertext attack (CCA1). It should be easy to see

that all the discussions and proofs still hold in the case of CCA1, by simply restricting the adversary from
interacting with the decryption oracles after the target ciphertext is generated in both Game ME and TD
(Sect. 6.4.1).

85

6.4.1 Threshold Decryption Scheme

A (t + 1, n)-threshold cryptosystem T D = (KeyGenTD, DTD, VTD, η,ETD) consists of the

following algorithms:

• Key generation algorithm (PK, V K, ~SK) ← KeyGenT(1k, t, n): a probabilistic al-

gorithm that, given a security parameter 1k, a threshold t, and the number of

players n, generates a public key, PK, a verification key V K, and n private keys

~SK = (SK1, . . . , SKn). PK and V K are made public while SKi is known only to

player i, i = 1, 2, . . . , n.

• Share computation DTD: a probabilistic algorithm that, given a private key SKi and

the ciphertext c, DTD computes ρ = DTD(SKi, c), called a decryption share.

• Share verification V: a deterministic algorithm that takes as input the public verifi-

cation key V K, the ciphertext c, and a share ρ, and outputs V(V K, c, ρ) ∈ {0, 1}.

• Share combination algorithm η: given the verification key V K, the ciphertext c, and

a set Λ of t + 1 shares, η either outputs the corresponding result r = η(V K, c, Λ) or

a special symbol ⊥ that is different from all possible correct results.

• Encryption algorithm ETD: the “opposite” of DTD. This function is carried out in

the normal manner by a single party and should follow the same definition as the

encryption algorithm in a standard public key cryptosystem.

The operation of a threshold decryption scheme can be modelled as follows. There is

a trusted dealer (e.g. the center) and a set of n decryption servers indexed 1, . . . , n. In an

initialization phase, the dealer runs the key generation algorithm and creates PK, V K and

~SK. SKi is given to server i. To decrypt a ciphertext ψ, a client gives ψ to the servers,

requesting a decryption share from each of them. It can verify the validity of the shares

using the given verification key. Once the client collects valid shares from at least t + 1

servers, she can apply η to obtain the decryption.

86

Threshold cryptosystems are part of a general approach known as threshold cryptog-

raphy, introduced by Boyd [16], Desmedt [41], and Desmedt and Frankel [42]. There are

schemes based on both Diffie-Hellman problem [42] and RSA [38]. All these schemes can

be shown to be secure against chosen plaintext attack, but they are not known to with-

stand chosen ciphertext attack. After Cramer and Shoup discovered the first truly practical

public key cryptosystem that is provably secure against chosen ciphertext attack without

using random oracles [35], several of its threshold implementations have been proposed and

proved CCA2 secure (also without using the random oracle model) [20, 1, 70]. Shoup and

Gennaro presented a more efficient threshold scheme in [116] that is proven CCA2 secure

in the random oracle model.

We adopt Shoup and Gennaro’s definition of security for threshold decryption schemes

from [116], which is a natural extension of security for a public key cryptosystem, and define

the security of a (t+1, n)-threshold decryption scheme T D = (KeyGenTD, DTD, VTD, η,ETD)

with respect to the following game:

Game TD:

TD1 The adversary A chooses to corrupt a fixed set of t servers.

TD2 The key generation algorithm is run. The public key, verification key and the private

keys of the corrupted servers are given to A. Other private keys are given to the

uncorrupted servers.

TD3 A chooses two plaintexts m0 and m1 of the same length and gives them to an “en-

cryption oracle” that chooses b ∈ {0, 1} at random, and gives the “target” ciphertext

ψ′ = ETD(PK, mb) to A.

TD4 At the end of the game, the adversary outputs b′ ∈ {0, 1}.

This game defines the attack scenario for CPA security. The adversary’s advantage is

defined to be the absolute difference between 1/2 and the probability that b′ = b:

AdvCPA
T D,A(k) = |Pr(b′ = b) − 1/2|

87

For CCA2 attacks, A is allowed to interact with uncorrupted decryption servers, who

act as the decryption oracles, in an arbitrary fashion, feeding them ciphertexts ψ 6= ψ′,

and obtaining decryption shares. The calls to the decryption oracles can happen at any

point during the execution of the game, both before and after stage TD3, and be arbitrarily

interleaved with other oracle calls. A’s advantage is defined as

AdvCCA2
T D,A (k) = |Pr(b′ = b) − 1/2|

Definition 3 (t-Resilient Threshold Decryption Scheme). Let µ ∈ {CPA,

CCA2}. A threshold decryption scheme T D is t-resilient against µ-type attacks if the

advantage, Adv
µ
T D,A(k), of any probabilistic polynomial time adversary A is a negligible

function of k.

6.4.2 Basic Construction

Construction 1 (ME1). Given a threshold decryption T D = (KeyGenTD, DTD,

VTD, η,ETD), a security parameter 1k, a threshold t and the number of (initial) members n,

a multicast encryption scheme MET D
C1 = (KeyGen, E, D) can be constructed as follows:

1. Key Generation KeyGen: Run (PK, V K, ~SK) ← KeyGenTD(1k, t, n + t). Set I =

(PK, V K) and the encryption key Σ = {(j, SKj) : j = n + 1, . . . , n + t}. Σ is given

to the center. Member i receives secret key Γi = (i, SKi). The master secret key is

~Γ = (Γ1, . . . ,Γn+t).

2. Encryption E: Given a set R of revoked members, and their secret keys, with |R| ≤

t, a message m, the encryption proceeds as follows. Let T = {n + 1, . . . , n + t}.

The encryptor randomly selects a subset of T with t − |R| elements, denoted T ′, and

computes the ciphertext ψ = (c, {(j, cj) : j ∈ T ′ ∪ R}) where c = ETD(PK, m) and

cj = DTD(SKj , c).

3. Decryption D: Given a secret key Γi and a ciphertext ψ, the ciphertext is first parsed

into ψ = (c,Λ′) where Λ′ = {(j, cj) : j ∈ T ′ ∪ R} with cj = DTD(SKj , c). For all

88

j ∈ T ′ ∪ R, the decryption first test vj = VTD(V K, c, cj). If any vj = 0, D returns ⊥.

Otherwise it returns

m = η(V K, c, Λ′ ∪ {(i,DTD(SKi, c))}) (6.1)

With this construction, the multicast ciphertext essentially consists of the ciphertext

of the underlying threshold scheme, together with t partial decryptions produced using the

keys of revoked members. To decrypt, a legitimate member combines the partial decryptions

embedded in the ciphertext with another one computed using her own share of the private

key. As we will show, this construction preserves the security of the underlying threshold

scheme.

Theorem 6 (Security Inheritance). Let µ ∈ {CPA, CCA2}. Given a threshold decryp-

tion scheme T D = (KeyGenTD, DTD, VTD, η,ETD) that is t-resilient against µ-type attacks,

the multicast encryption scheme MET D
C1 constructed using Construction 1 with threshold t

and (initial) group size n is t-resilient against µ-type attacks.

The proof of this theorem is similar to that of Theorem 7, which is more interesting and

is presented later, and is omitted.

Many existing multicast schemes can be shown to be special cases of our Construction

1 and their security can be readily predicted by Theorem 6. The Revocation method 1

in [93] and the group key distribution scheme in [5] are just Construction 1 instantiated

with a special use of threshold ElGamal 3. The basic scheme in [121], the “public key

(multicast) encryption” from [93] and the CPA secure scheme from [44] can all be shown

to be Construction 1 with a standard threshold ElGamal cryptosystem. These schemes are

shown to be secure against chosen plaintext attacks in their individual papers. The same

conclusion can be reached immediately through Theorem 6.

Theorem 6 also provides guidelines for constructing new multicast encryption schemes

3Their scheme uses this construction not to encrypt any useful messages. Instead, it is basically a
distributed Diffie-Hellman key exchange which is equivalent to producing an ElGamal encryption of an
arbitrary message (which is ignored) and allowing any member with proper keys to derive from the ciphertext,
and partial decryptions, a secret key that can be used to encrypt actual data.

89

with guaranteed security. For example, some threshold schemes are known to be CCA2

secure (e.g. [116, 20, 1, 70] and the IND-CCA2 threshold ElGamal in [54]) and a multicast

encryption constructed via Construction 1 using one of these schemes is therefore guaranteed

to be CCA2 secure too. In addition, all existing ATD-based multicast encryption schemes

[93, 5, 121, 44, 76] are based on discrete logarithm. Theorem 6 provides security guarantee

for constructing multicast encryption using any other assumptions. For example, [38] pro-

vides a threshold RSA scheme with CPA security. Such scheme can be used to construct

a RSA-based CPA secure multicast cryptosystem. Another example of factorization-based

scheme is the threshold version of Paillier cryptosystem [98] presented in [54]. [54] provides

techniques to make this scheme IND-CCA2. A multicast cryptosystem with the same level

of security based on Paillier cryptosystem can thus be constructed using Construction 1.

All the above examples have never been proposed before. They are the natural products of

Construction 1 and their security is guaranteed by Theorem 6.

6.4.3 Extension to Construction 1

Construction 1 provides a simple way to utilize a threshold scheme to construct multicast

encryption and we have shown that the resulting scheme is as secure as the underlying

threshold scheme. It is basically an “encrypt-then-decrypt-t-times” scheme. It can be

improved both in efficiency and security with simple extension.

In Construction 1, the encryptor has access to what are equivalent to t decryption shares

in T D which are not available to an encryptor in the underlying threshold scheme. This gives

her a chance to “protect” these shares and, as a result, the resulting multicast encryption

can be made more secure than T D. This can be seen as an extension of Construction 1:

Construction 1e (ME1e) Same as Construction 1 except for the following:

• The encryption E produces ciphertext as ψ = (c, {(j,DTD(SKj , c)) : j ∈ T ′ ∪ R}, υ)

where c = ETD(PK, m) and υ = Tag(c,Σ, I) is a “tag” for the ciphertext.

• The decryption D first computes Valid(Γi, ψ, I) where Valid is a checking function

90

outputting 0, or 1. If Valid outputs 0, D returns ⊥. Otherwise it proceeds the same as

Construction 1.

This construction can be used to build a multicast scheme with higher security than

the underlying threshold scheme. This is essentially what was done in [44] and [76]. The

protection mechanism (i.e. Tag and Valid) depends on the threshold scheme and the security

goal. In [44], the standard techniques of [35] (which attaches tags to the ciphertext so that

the recipients with proper keys can verify its validity) was applied to protect the decryption

shares and the security achieved is what [44] called gCCA2 (Generalized CCA) which is

a variant, and weaker version, of CCA2. To achieve real CCA2 security, [44] used secure

message authentication code (MAC) to make the verification tags non-malleable. And [76]

essentially used a threshold version of M-CS [20].

6.4.4 Sharable Trapdoor Permutation-Based Construction

A whole class of public key cryptosystems are based on trapdoor permutations. Let

fPK : {0, 1}k → {0, 1}k be a k-bit to k-bit trapdoor (one-way) permutation with inverse

f−1
SK , defined by the public-private key pair (PK, SK). A public key cryptosystem Ef,g,h

encrypts a message m as E(m) = h(fPK(g(m))) where g and h are probabilistic, invertible

functions that specify pre- and post-encoding operations, respectively. Given a ciphertext

c, the decryption algorithm D computes u = h−1(c), v = f−1
SK(u) and m = g−1(c, u, v) 4.

Depending on the security, the decryption may involve computing Valid(c, u, v) ∈ {0, 1}

which is the verification of the encoding. The decryption returns ⊥ if Valid(c, u, v) = 0.

We denote such cryptosystem as Ef,g,h = (KeyGen, E, D, Valid) where KeyGen generates

(PK, SK) on given security parameter 1k. In the following, the keys will be dropped from

the notations when there is no need to make them explicit.

Such cryptosystems are prevalent in practice. One example is the RSA Public Key

Cryptography Standard # 1 [107], where g(m) is essentially m padded with a string of

4Note that g and h are easily invertible and do not require trapdoors. Also note that both g and h
are probabilistic and g(m) maybe independent of m. In this case simply inverting v does not reveal m.
However, these decryptions all have the following property: once the pre-image of the trapdoor permutation
is recovered, it is easy to compute m. We simply use g−1(·) to denote this process.

91

random non-zero bytes in the high-order bit positions and post-encoding is simply omitted.

Other schemes make use of hash functions. Let G : {0, 1}∗ → {0, 1}∞ be a random number

generator and H : {0, 1}∗ → {0, 1}k0 be a hash function where l = k − k0 is the length

of the message. In [8] Bellare and Rogaway proposed the scheme EG
BR where E(m) =

f(r) ‖ G(r) ⊕ m with r ←R {0, 1}k. [8] showed that it is semantically secure in the

random oracle model. [8] also presented another scheme, denoted EG,H
BR , that is shown to

be CCA2 secure, also in the random oracle model. In EG,H
BR , message m is encrypted as

E(m) = (f(r), m ⊕ G(r), H(r, m)) where r ←R {0, 1}k. Given a ciphertext (s, c, v), the

decryption algorithm computes r = f−1(s), m = G(r) ⊕ c, and v′ = H(r, m). If v′ = v, it

outputs m, and ⊥ otherwise.

Another popular scheme is the OAEP scheme introduced in [9]. In this scheme, to

encrypt a message m of length l bits, one selects a random value r ←R {0, 1}k0 and computes

s = (m ‖ 0k1)⊕G(r) and t = r ⊕H(s) where k1 = k − l − k0. The ciphertext is c = f(s, t).

To decrypt a ciphertext c, the decryptor extracts (s, t) using the private key (s, t) = f−1(c)

and computes r = t⊕H(s) and M = s⊕G(r). If [M]k1 = 0k1 , it returns [M]l. Otherwise it

returns ⊥. In the above, [M]l (resp. [M]l) denotes the l least (resp. most) significant bits

of M .

In [9], Bellare and Rogaway proved that OAEP construction together with any trapdoor

one-way permutation is IND-CCA1. OAEP was widely believed to achieve stronger security

(i.e. IND-CCA2). But Shoup showed in [115] that it is unlikely such security proof exists, for

any trapdoor permutation. However, he proved that, when instantiated with low-exponent

RSA, OAEP was IND-CCA2. This result was extended to arbitrary exponent RSA in [55].

All these schemes provide practical public key cryptosystems with various security and

efficiency. (The OAEP scheme provides optimal bit complexity in that the ciphertext size

is only slightly greater than that of plaintext.) However, they do not have threshold imple-

mentations that retain the same security, especially at CCA2 level. As Shoup and Gennaro

noted in [116], the difficulty in transforming a non-threshold CCA secure public key en-

cryption scheme, E , into a CCA secure threshold scheme is that E ’s security proof can rely

in a critical way on the fact that the decryption algorithm makes the “validity test” before

92

generating an output. In a distributed setting, this means the test can only be performed

after the individual decryption shares are combined. A single decryption server is unable

to carry out such test. Both EG,H
BR [8] and OAEP can be easily shown to have this difficulty.

One way to address this difficulty is to introduce a validity test that is publicly checkable

so that a decryptor can perform the check before carrying out the decryption. This was

suggested in [82] and followed by systems such as [116] which used non-interactive zero-

knowledge proofs of membership to construct such check which is costly.

An ATD-based multicast encryption scheme, on the other hand, does not suffer from

this difficulty at all. This is because in such a scheme, the decryptor is presented with what

are equivalent to t decryption shares in the underlying sharing scheme. She can proceed

to combine these shares with the one produced using her private key and perform the

simple validity test as in the original public key cryptosystem (not the expensive publicly

checkable threshold version) before emitting any output. As we show in Theorem 7, this

construction preserves the CCA security of the public key cryptosystem even though its

threshold implementation does not.

Our new construction is based on sharable trapdoor functions.

Definition 4 ((t + 1, n)-Secure Sharing Scheme). Let f be a trapdoor function with

inverse f−1 defined by the public-private key pair (PK, SK). A sharing scheme SSf = (S, η)

for f consists of two polynomial time algorithms:

• S: Given (PK, SK), a threshold t and an integer n > t, S generates SK1, . . . ,

SKn (in the same space as SK), called shares of SK.

• η: Given the public key PK, a set Λ of t + 1 evaluations f−1
SKi

(u), for any u in the

domain of fPK , η computes f−1
SK(u).

And SSf is (t + 1, n)-secure if for all {i1, . . . , ij} ⊂ U where 0 ≤ j ≤ t < n, for all

probabilistic polynomial time algorithm A, for all polynomial poly(·), for all k large enough

93

Pr[fPK(u) = w : (SK1, . . . , SKn) ← S(PK, SK, t, n);

w ∈R {0, 1}k; u ← A(1k, w, H, SKi1 , . . . SKij)] < 1/poly(k)

where H is the history tape of length polynomial in k containing all the partial evalua-

tions the players generated so far.

And f is (t + 1, n)-sharable if it has one (t + 1, n)-secure sharing scheme.

This is essentially the same definition as (t + 1, n)-secure function sharing primitive in

[38]. [38] also showed how to implement such sharing with trapdoor permutations such

as RSA. We show that using this primitive we can construct efficient multicast encryption

schemes with high security.

Construction 2 (ME2). Let Ef,g,h = (KeyGenE, EE, DE, Valid) be a public key cryptosystem

based on (t+1, n)-sharable trapdoor permutation f with sharing scheme SSf = (S, η). Given

a security parameter 1k, a threshold t and the number of (initial) members n, a multicast

encryption scheme MEEf

C2 = (KeyGen, E, D) can be constructed as follows:

1. Key Generation KeyGen: The center runs KeyGenE with parameter 1k, and obtains

(PK, SK) ← KeyGenE(1k). It sets I = PK and shares SK using the sharing al-

gorithm S with parameter (t + 1, n + t) to obtain ~SK = S(PK, SK, t, n + t). The

encryption key is Σ = {(j, SKj) : j ∈ T} where T = {n + 1, . . . , n + t}. Σ is given

to the center. Member i receives secret key Γi = (i, SKi). The master secret key is

~Γ = (Γ1, . . . ,Γn+t).

2. Encryption E: Given a set R of revoked members, and their secret keys, with |R| ≤ t,

a message m, the encryptor randomly selects a subset of T with t − |R| elements,

denoted T ′, and computes the ciphertext

ψ = (c, {(j, f−1
SKj

(u)) : j ∈ T ′ ∪ R}) (6.2)

where c = EE(PK, m) and u = h−1(c).

94

3. Decryption D: Given a secret key Γi and a ciphertext ψ, the ciphertext is first parsed

into ψ = (c,Λ′) where Λ′ = {(j, f−1
SKj

(u)) : j ∈ T ′ ∪ R}. The decryptor computes u =

h−1(c) and v = η(u, Λ′ ∪ {(i, f−1
SKi

(u))}). If all these steps are successful, it computes

w = Valid(c, u, v). If w = 0, it returns ⊥. Otherwise it returns m = g−1(c, u, v).

Theorem 7. Let µ ∈ {CPA, CCA2}. If a public key cryptosystem Ef,g,h =

(KeyGenE, EE, DE, Valid) based on (t + 1, n)-sharable trapdoor permutation f with shar-

ing scheme SSf = (S, η) is secure against µ type attacks, then a multicast encryption

scheme MEE
C2 = (KeyGen, E, D) constructed using Construction 2 with threshold t and

(initial) group size n is t-resilient against µ-type attacks.

Proof. First note that it is trivial to verify that the scheme is correct – i.e., the decryption

produces the correct plaintext given a valid ciphertext. We prove its security by showing

that if MEE
C2 is not t-resilient against µ-type attacks, neither is Ef,g,h. Let AME be a

polynomial time adversary that wins the game ME with non-negligible advantage. We can

construct another polynomial time adversary AE that breaks Ef,g,h with at least the same

advantage. AE achieves this by simulating a game ME and running AME to win.

(PK, SK) ← KeyGenE(1k) is run and PK is given to AE while SK is kept secret from it.

AE selects randomly t numbers SK1, . . . , SKt from the space of SK. AE starts Game ME

and lets AME select t members to corrupt. Without loss of generality, let T = {1, 2, . . . , t}

be the indexes of the members AME chooses to corrupt. AE simulates the key generation

process in game ME and gives Σ = ((1, SK1), . . . , (t, SKt)) as the corrupted keys and

I = PK as the public information to AME .

AE lets AME run and simulates the rest of game ME as follows:

• Whenever AME queries the encryption oracle with message m, AE returns ψ computed

using Equation 6.2 with T ′ ∪ R replaced by T .

• AE chooses whatever AME choose as the two test plaintexts m0 and m1. Whenever

AME makes a query to the encryption oracle with m0 and m1, AT D passes them to

95

its own encryption oracle in its game attacking Ef,g,h (denoted game E). Let c′ be

the result returned by the encryption oracle in game E. AE computes and returns the

following to AME :

ψ′ = (c′, {(j, f−1
SKj

(u)) : j ∈ T}) (6.3)

where c = EE(PK, m) and u = h−1(c′). This corresponds to the target ciphertext in

game ME.

• In the case of µ = CCA2, whenever AME makes a query to one of the decryption

oracles with ciphertext ψ, AE first parses ψ into a form as specified by Equation 6.2.

Let {(j, uj) : j ∈ T} be the shares embedded in ψ. AE then verifies these shares by

checking whether uj = f−1
SKj

(u), where u = h−1(c), holds. If any of the tests fails it

returns ⊥ to AME . Otherwise it forwards c to its own decryption oracle and passes

whatever the decryption oracle returns to AME .

AE stops when AME stops and outputs whatever the latter does.

We need to show that AME simulated by AE has all the information it would have

in a real game ME and that its interaction with the simulated oracles is indistinguishable

from that in a real game. First note that here, although the encryption key for AME ,

SK1, . . . , SKt, are not actually generated by running S (AE does not have access to SK),

they are just as good: the encryption key given to AME is not distinguishable from that

in a real game ME and does not affect its ability to win the game. This follows Lemma 1

from [38].

Second, AME will receive ⊥ on ciphertext ψ in the simulated game ME in one of the

following two cases: (1) AE ’s decryption oracle returns ⊥ on c; and (2) one of the tests on

uj = f−1
SKj

(u) fails. In the first case, AME will receive ⊥ in a real game ME, as specified

by the decryption in Construction 2. In the second case f−1
SKj

(u), together with any partial

evaluation of one of the decryption oracles in a real game ME, will combine to a u′ that

is not consistent with c and will fail Valid (otherwise it can be shown that either f is not

96

(t + 1, n)-sharable or Ef,g,h is not IND-CCA2). Again AME will receive ⊥ in a real game

ME.

And in all other cases AME will receive the correct decryption in both real and the

simulated game ME. So if AME can win a real game, it can win the simulated one.

It is easy to verify that if AME wins the simulated game ME, AE distinguishes the

two target ciphertexts with at least the same advantage. This is because, by definition

of Construction 2, if ψ′ in Equation 6.3 is the encryption of mb′ in ME , c′ must be the

encryption of mb′ in E .

Finally AE ’s running time is polynomial in that of AME which itself is a polynomial in

k. So AE ’s running time is also polynomial in k.

This is very powerful result because securing threshold scheme is hard so it is not

always possible to use Construction 1 to construct multicast cryptosystems with high secu-

rity. Construction 2 and Theorem 7 offer a simple method to construct multicast schemes

with guaranteed security using a whole class of existing primitives. For instance, both

RSA-OAEP [55] and EG,H
BR [8], which have been shown to be difficult to obtain threshold

implementations with the same level of security, can be used to build multicast scheme with

CCA2 security. This has never been achieved before.

Besides security, Construction 2 also enjoys higher efficiency than Construction 1, which

directly uses a threshold scheme. Note that in a sharing scheme used by Construction 2,

there is neither decryption share verification nor publicly checkable validity test on cipher-

text, both of which are essential for a threshold scheme or a real function sharing application

to achieve robustness (as in e.g. [57]) and CCA security. With Construction 2, both can be

omitted and the encoding verification that is part of the public key cryptosystem used can

achieve both goals.

97

6.4.5 From IND-CPA to IND-CCA: Generic Conversion

In Construction 2, the security of MEE
C2 relies on that of Ef,g,h. Combined with results

from previous work, we show that MEE
C2 can be IND-CCA even if Ef,g,h is only IND-CPA.

In [92] Naor and Yung presented a generic conversion from an IND-CPA public key

cryptosystem to one secure against “lunch-time” attack (a.k.a. non-adaptive chosen cipher-

text attack, CCA1). The conversion used a twin-encryption paradigm and non-interactive

zero-knowledge proof (NIZKP) of language membership in the common random string set-

ting to show the consistency of the ciphertext. Rackoff and Simon later [105] improved this

construction to be secure against adaptive chosen ciphertext attack (CCA2). Their solution

involves replacing one of the twin encryption keys with the sender ’s public key and pro-

viding a NIZKP of knowledge of the plaintext. [54] also provided similar conversion, in the

random oracle model, that also works directly with threshold cryptosystems. The NIZKPs

used in [92, 105, 54] are all publicly verifiable thus can be readily used in a threshold setting.

Putting all these together, we have the following whose proof immediately follows the

results of [54, 105, 92] and ours.

Corollary 1. If a public key cryptosystem Ef,g,h based on (t + 1, n)-sharable trapdoor per-

mutation f with sharing scheme SSf is secure against chosen plaintext attacks, then there

exists a multicast encryption scheme ME by Construction 2 with threshold t and (initial)

group size n that is t-resilient against chosen ciphertext attacks.

SUMMARY. Figure 6.1 summarizes the possible conversions covered in this chapter be-

tween various primitives, including public key cryptosystem (PKC), threshold decryption

scheme (TD) and multicast encryption (ME), at different security levels such as IND-CPA,

IND-CCA (1 and 2). A solid arrow from A to B indicates “generic conversion”, meaning

that, under some reasonable assumptions, any A can be transformed into B. A dashed

arrow, on the other hand, denotes “existential conversion”, meaning that some A can be

transformed into B. The conditions under which such conversions can succeed were stated in

the literature. Some of the relevant ones covered in this chapter are labelled on the arrows.

98

PKC

IND−CPA IND−CPAConstruction 1

TD MEPKC

ME

IND−CCAIND−CCAIND−CCA

PKC TD

Construction 1

Construction 2

Construction 2

Construction 1e

IND−CPA

[36, 45, 46] [36]

Figure 6.1. Conversions between various primitives. A solid arrow from A to B indicates
“generic conversion”, meaning that, under some reasonable assumptions, any A can be
transformed into B. A dashed arrow, on the other hand, denotes “existential conversion”,
meaning that some A can be transformed into B.

6.5 Conclusion

In this chapter we have presented a general framework for constructing efficient multicast

cryptosystems with provable security. Our constructions are based on asymmetric use of

threshold schemes and we showed that a line of previous work on multicast encryption

are all special cases of this general approach. We provided new methods for constructing

multicast cryptosystems that achieve various levels of security (e.g., IND-CPA, IND-CCA2)

from primitives with even weaker security. Using our scheme, each member only needs to

store a key of constant length while both the encryption key size and the ciphertext length

are O(t) which is independent of the group size.

99

Chapter 7

Scalable Secure Bidirectional

Group Communication

In this chapter we present a secure group communication scheme based on the IND-

CCA2 multicast cryptosystem introduced earlier. Our scheme is bi-directional, supporting

both one-to-many and many-to-one communications. Compared with existing solutions,

the scheme achieves the following improvements: (1) It guarantees data confidentiality and

authenticity in both directions; (2) It is the most scalable solution so far among all existing

schemes achieving (1). The group member storage overhead is constant while both the

center storage and rekeying communication complexity are independent of group size. (3)

It can be made to achieve higher level of security and hide even the information about the

group dynamics. We show that this protection is more effective and more efficient than

existing solutions.

7.1 Motivation

A large number of existing and emerging network applications are based on group com-

munications where one party, denoted the center, sends messages to a large number of

authorized recipients and/or receives data from multiple sources. The one-to-many com-

100

munication model is typically denoted multicast and we call the many-to-one pattern ag-

gregation. Examples of group-oriented commercial applications include pay-per-view distri-

bution of digital media, multi-player games, teleconferencing etc. Group communications

can also be seen in many noncommercial and non-IP-based applications such as miliary

communication, sensor network, etc.

Multicast offers a scalable solution to delivering the same messages to a group of re-

ceivers. On the Internet, multicast can be performed at both IP and application levels. For

instance, at IP level, a multicast group is identified by a Class D IP address and any re-

ceivers can join or leave a multicast group by sending IGMP (Internet Group Management

Protocol) [51] messages to their local router. Any sender can send message to a multicast

group by addressing the message to the group address. The current IP Multicast is an

“open” service in that it does not restrict delivery of data to a specified set of receivers.

Access control in multicast must be achieved via other means. A typical solution is to en-

crypt data using symmetric-key encryption with a global traffic encryption key (TEK) that

is known only to the multicast group members. The difficulty here is key management: the

TEK may have to be changed whenever members join or leave the group. This is known as

rekeying.

Compared to multicast, aggregation as a communication paradigm received less atten-

tion, especially in the context of IP networks, and was largely studied in the settings of

other network communication such as sensor networks. However, we observe that, in a re-

alistic application scenario, there are compelling needs for aggregation, even in “multicast”

applications. For instance, in a pay-per-view broadcast system, a user needs to transmit

messages to the center to request the service or confirm her agreement to pay for it.

Another area where many-to-one communication is becoming more and more impor-

tant is network Intrusion Detection Systems (IDS). Most IDSes share a similar underlying

structure: agents (or sensors, probes) reporting detections to a management system. This

already falls into the aggregation communication paradigm. Furthermore, many present

intrusion detection systems are known to have problems such as alert flooding, scalability,

etc., and data aggregation is proposed to address these issues [40]. Data aggregation en-

101

ables the system to group alerts together, analyze data in a broader context and distribute

the load of handling alerts. A basic prerequisite for data aggregation is the support for

many-to-one communication.

In this chapter we consider the security in bidirectional group communication (i.e.,

both multicast and aggregation) and present a scalable solution. Similar to unicast com-

munication, there are two fundamental security properties in group communication: data

confidentiality and authenticity. Confidentiality ensures that no parties other than the in-

tended recipients should be able to access the message. Authenticity, on the other hand, is

concerned with protecting the message against tamper and guaranteeing that it is indeed

originated from the alleged sender. With existing technology, these two properties pose

different challenges in the two communication modes we are considering. In multicast, au-

thenticity is easy to achieve since there is only one sender and it is not much of a burden

for each receiver to store the center’s public key that can be used to verify its signature.

In aggregation, on the other hand, it is confidentiality that can be obtained trivially, by

using the center’s public key to establish secure channels. However, authenticity is crucial

in aggregation-based applications. For example, in an IDS, the system must ensure the au-

thenticity of the data sent by each probe otherwise an attacker can inject false monitoring

data and thwart the intrusion detection effort. Thus in this chapter we focus on achieving

confidentiality in multicast and authenticity in aggregation.

Authenticating aggregation messages poses unique challenges and it is not easy to sim-

ply “patch” existing multicast schemes with aggregation security while still maintaining

the same scalability. Let us denote the information that a user uses to authenticate her

aggregation messages the user’s authentication key. For the authentication to work, the

authentication keys must not be global or public. The “obvious” solution of running a PRF

on a user’s ID and using the resulting random bits as authentication key simply does not

work: since the IDs are public, anyone can produce the authentication key of any other

users. Using the global multicast secret key has the same problem. Indeed, it appears that,

without resorting to expensive digital signature, the center must share some pairwise secret

with each members of the group for this purpose.

102

Efficiency wise, since in aggregation, the center is handling many data sources, the

authentication method must be efficient otherwise the center will become a bottleneck.

In addition, one must consider possible “hidden cost” when evaluating the feasibility of a

scheme. Some schemes may feature smaller keys but they require the center to store a list

of all active member IDs. The effective storage overhead is still linear in the size of the

group. In a large scale system storing and accessing such a list can be too expensive.

In this chapter we present a scheme for bidirectional group communication that pro-

vides both confidentiality and authenticity in both directions. Our scheme is based on a new

multicast framework recently proposed by Duan and Canny [47] that can be used to con-

struct multicast cryptosystems provably secure against adaptive chosen ciphertext attacks

(IND-CCA2) which is a very strong notion of security. We show that the key structure

of the Duan-Canny (DC) multicast system provides a natural and efficient framework for

sharing a pair-wise secret between the center and each member (to be elaborated in section

7.4). And this feature can be exploited to construct efficient group communication schemes

that are secure in both directions. The contributions of our work include

• We define the communication paradigm of aggregation and formalize its security prop-

erties that are appropriate for most group communication applications.

• We introduce Alternating Bit DC (ABDC) to overcome the limitation of DC cryp-

tosystem and allow the revocation of an arbitrary number of members.

• We present “in-place” update that provides backward confidentiality which is lacking

in the original DC system.

• We extend DC construction’s key arrangement to provide an efficient and scalable

solution for authenticating aggregation messages. This is achieved while maintaining

DC system’s scalability. Our scheme uses symmetric key crypto for authenticating

aggregation messages thus is much more efficient than digital signature-based solu-

tions. In our scheme, the data authentication tag also serves as a group membership

authentication which allows the center to verify the data authenticity and the sender’s

membership without having to keep the list of active member IDs online.

103

• We show that a scheme based on DC construction is affable to protecting group

dynamics information (GDI) due to its property that the size of the ciphertext is

independent of the group size. We present techniques that protect such information

even against members of the group. To the best of our knowledge, this is the only

effective GDI protection technique (to be elaborated in Section 7.6).

7.2 Preliminaries

We consider the situation where a single party, called the center, communicates, over

insecure channels, with a group of n parties who are called the members of the group. The

communication is assumed to be two way (i.e. both multicast and aggregation) and we

require that security properties defined in Section 7.2.1 be guaranteed.

We assume the center is also trusted with managing the group membership. This is

realistic in many applications (since oftentimes the center is the data distributor) and is in

line with almost all existing multicast schemes such as [84, 128, 117, 126, 121, 44, 76]. We

assume a computationally bounded adversary who is allowed to attack the system from both

outside and inside the group. The insider’s attack is modelled by allowing the adversary to

corrupt and gain total control of up to t group members where t is a predefined threshold.

The system deals with corrupted members by evicting them from the group.

We adopt the following notation in subsequent discussion. For both symmetric and

asymmetric cryptosystems, let EK(X) denote the encryption of X with key K and DK(Y)

be the decryption of Y with key K. We use x ← y to denote that x is assigned the value of

y. We write x ←R D to denote the process of selecting uniformly randomly from domain

D an element and assigning it to x. We assume the process can be completed in constant

time. We use || to denote concatenation. For a bit b, we write b̄ to denote its complement.

104

7.2.1 Security in Bidirectional Group Communication

The security notions in group communication are complicated by the fact that the

group can be dynamic with members joining and leaving. Research in secure multicast has

identified a number of security properties in dynamic group communication:

M.1 Non-group Confidentiality: users that were never part of the group should not have

access to any multicast data sent to the group;

M.2 Forward Confidentiality: users deleted from the group at some time τ do not have

access to any data after τ , unless they are authorized to join the group again;

M.3 Collusion Freedom: no subset of deleted users should be able to decrypt future group

communication, even by sharing the keys they had before deletion;

M.4 Backward Confidentiality: a user added at time τ should not have access to any data

before τ while the user was not part of the group.

Aggregation security can be defined as as the dual of multicast security. We introduce

the following:

A.1 Non-group Authenticity: users that were never part of the group should not have

the ability to forge messages that the center will accept as coming from one of its

members;

A.2 Forward Authenticity: users deleted from the group at some time τ cannot create

messages that the center accepts as originated from one of its members after τ , unless

they are authorized to join the group again;

A.3 Collusion Freedom: no subset of t or less active members, nor any subset of deleted

members, should be able to forge messages that the center accepts as originated from

another member not in the colluding subset, even by sharing the their keys;

A.4 Backward Authenticity: a user added at time τ should not have the ability to forge

messages that the center accepts as coming from a member who was in the group

before τ .

105

Note that in A.3 we allow the collusion of (up to t) active members, not only deleted

ones. This is different from the collusion freedom for multicast (M.3). In multicast, the

primary concern is data confidentiality. Any active member by definition should have access

to the multicast message so it does not make sense to protect against their collusion. M.3 is

therefore actually expressed as a stronger version of forward confidentiality (M.2). We keep

the definitions separate because they emphasize different aspects of the system’s security

(temporal and collusion-resilience, respectively) for which most previous multicast security

works kept separate definitions.

The primary security goal for aggregation, on the other hand, is data authenticity which

should be resilient against forgery and tamper even by active members. A.3 defines such

attack by, in addition to deleted members, allowing a subset of t or less active members to

collude. Note that A.4 is actually implied by A.3. We keep a separate definition to stress

the temporal aspect of the security goal.

Also note that the definitions state that a scheme should be resilient against collusion

of any number of deleted members. The threshold t only restricts the number of colliding

active members. These properties provide basic security goals for many bidirectional group

communication applications and will be used as guidelines for designing and evaluating our

scheme.

In addition, some applications may demand even higher level of security and require

that the information about the group dynamics such as group size and user join/departure

rate be kept secret from an adversary. We discuss this issue in Section 7.6 and show that

our scheme can be made to effectively protect such information.

7.3 Overview of DC Multicast Cryptosystem Construction

In this section we give an overview of Duan-Canny multicast cryptosystem construction.

We focus on how DC multicast cryptosystem works and omit some non-relevant elements

from the notation. For detailed definition and proof of security please see [47].

106

Fundamental to [47]’s constructions is a public-key cryptosystem with a sharable de-

cryption. Let E = (KeyGen, E, D) be such a cryptosystem. It consists of the following

algorithms:

1. Key Generation KeyGen: a probabilistic polynomial-time algorithm that, on a given

security parameter 1k (expressed in unary), generates a private-public key pair (x, y).

2. Encryption E: a probabilistic polynomial-time algorithm that, on inputs y, the en-

cryption key, and a string m ∈ {0, 1}k, produces as output ψ ∈ {0, 1}∗ called the

ciphertext.

3. Decryption D: a deterministic polynomial-time algorithm such that ∀m ∈ {0, 1}k,

Dx(Ey(m)) = m. On all other inputs it outputs a special symbol ⊥.

There also exists a share generation algorithm that, given (x, y), a threshold t and an

integer n > t, generates x1, . . . , xn (in the same space as x), called shares of x such that

any subset of at least t + 1 shares uniquely determines the secret key x while any subset

with less than t+1 shares has no information about x. In addition, D should be “sharable”:

given a ciphertext ψ and a share xi of the secret key, D produces a share of the decryption

ψi = (i,Dxi(ψ)) such that given a set Λ of the decryption shares with |Λ| > t, a “share

combination” algorithm can produce the correct decryption η(Λ, y) = Dx(ψ).

DC encryption works as follows. The center generates a public/private key pair (e.g.,

ElGamal key pair), publishes the public key y and secret-shares the private key x using

(t+1, n+t)-threshold scheme among all group members and the center. Let x1, x2, . . . , xn+t

be the shares of x. Each member i gets xi and the center is given {(j, xj)|j ∈ T} where

T = {n + 1, n + 2, . . . , n + t}. To multicast the message m ∈ M, the center encrypts it

using y. Let c = Ey(m). It then decrypts c t times using its shares of x and produces

m̄ = {(j, mj = Dxj (c))|j ∈ T}. The ciphertext is ψ = (c, m̄, T). The center multicasts ψ

to the group. To decrypt the message, member i first decrypts c using xi, her share of the

private key, and then combines all the partial decryptions she has to obtain

m = η(m̄ ∪ {(i,Dxi(c))}, y)

107

DC encryption can revoke up to t members. Let R be the indices of the members whose

capability to decrypt the message should be revoked. The center construct a “blacklist” T̄

as T̄ = R∪T ′ where T ′ is a random subset of T with t− |R| elements. The center then use

T̄ in place of T in the encryption. The members whose indices are in R will not be able to

decrypt the message.

[47] proved that their scheme is secure against adaptive chosen ciphertext attack (IND-

CCA2) when E is IND-CCA2. This security is defined against up to t colluding members.

In the following, to take advantage of this guaranteed high security, we will assume an

IND-CCA2 DC cryptosystem.

7.4 Scalable Bidirectional Group Communication

To make it concrete, we describe our group communication scheme using a DC multicast

cryptosystem instantiated with Shoup and Gennaro’s TDH2 threshold scheme in [116]. This

instantiation was based on the decisional Diffie-Hellman (DDH) problem and proven secure

against adaptive chosen ciphertext attack. For detailed proof and description of the scheme

please see [116] and [47]. For the purpose of this chapter, it suffices to know that the

encryption is essentially ElGamal augmented with non-interactive zero-knowledge proof

of discrete logarithm (to thwart chosen ciphertext attack, which we omit). We defer the

description of the scheme until after we introduce some improvements over the original DC

cryptosystem.

7.4.1 Extension for Aggregation

Although DC cryptosystem is for multicast encryption, its key structure has a very nice

property that can be used to efficiently authenticate aggregate messages. Recall that the

center is trusted with both distributing messages and managing the group. In this case the

center can be given t+1 shares of x. Let T+ = T ∪{n+ t+1} and Γ = {(i, xi)|i ∈ T+} are

given to the center. Each member i attaches to an aggregation message a secure message

authentication code (MAC) computed with a key derived from xi. The center first recover

108

xi using Γ and then tests the validity of the MAC. This uses symmetric crypto and is

much more efficient than digital signature. This is essentially sharing a distinct secret key

between the center and each member, without having to require the center to store all of

them. The center stores only t + 1 keys instead of n and recovers the member keys as

needed. Theoretically, using only these t + 1 keys, the center is able to authenticate an

arbitrary number of members, limited only by the system’s assumption on the proportion

of members that can be simultaneously corrupted. This provides a scalable solution for

large groups.

7.4.2 Alternating Bit DC

DC cryptosystem allows for the revocation of up to t members. This count is accumu-

lated from the start of the system. If the total number of members that need to be revoked

during the life time of this group communication should exceed t, their scheme must be

“refreshed” with new public key and private key shares. This process cannot be carried

out using multicast and must resort to the inefficient pairwise unicast communication. Yet

the need to evict more than t members is quite compelling in many applications and this

limitation may force the communication to pause for the refreshing.

To overcome this limitation, we devised an improved scheme, denoted Alternating Bit

DC (ABDC), that moves the refreshing process off-line and allows for uninterrupted com-

munication. ABDC enables the revocation of up to t members for each rekeying operation

and allows arbitrary number of members, limited by the size of the group, to be revoked

during the lifetime of the communication.

ABDC alternates between two Duan-Canny schemes, denoted DC0 and DC1. The

system maintains a bit b that specifies which is currently being used and toggles the bit

when one scheme is approaching its limit of t revocations. This information is included in

the rekeying message and members will respond by switching to the other DC scheme. The

previous DC scheme is then refreshed off-line. The transition is illustrated in Figure 7.1

and the process and messages will be clear in Section 7.4.6.

109

|R| approaching t

|R| approaching t

DC1DC0

Figure 7.1. Alternating Bit DC

7.4.3 Initialization

This stage is carried out when the communication group is first being formed. Let n be

the current size of the group. Let p and q be two large primes selected by the key generation

algorithm as defined by the DC cryptosystem on a security parameter 1k such that q|p− 1.

We use Gq to denote the unique subgroup of Z
∗
p of order q and let g, ḡ be a generators of

Gq. DDH is assumed to hold in Gq

For b = 0, 1, the center performs the following:

1. It generates t + 1 uniformly random numbers fb0, fb1, . . . , fbt ∈ Zq and constructs a

degree t polynomial fb(x) =
∑t

j=0 fbjx
j .

2. It computes xbi = fb(i) mod q and hbi = gxbi mod p for i = 1, 2, . . . , n + t + 1. Let

xb = fb0 = fb(0) and hb = hb0 = gxb mod p.

3. It sends xbi to member i via secure channel and stores Γb = {(j, xbj)|j ∈ T+}. hb is

made public.

4. It sets R ← ∅ where R is the set of indexes of the members whose memberships have

been revoked.

The public key yb for DCb consists of a description of G and (g, ḡ, hb). The private key

for each member i is (yb, i, xbi). The private key for the center is (yb, Γb)
1.

1We omit the details about the public verification key which consists of the tuple (y, h1, h2, . . . , hn) and is
for the purpose of verifying the validity of partial decryptions. They are not necessary here since the partial
decryptions are produced by the center who is the data source.

110

When the center is sending the keys to the members, it includes TEK0 and b as well,

also via the secure unicast channels. TEK0 is the current traffic encryption key (TEK) and

b ∈ {0, 1} specifies the DC scheme currently being used.

7.4.4 Multicast

The center encrypts data using TEK0, the current traffic encryption key. To guarantee

data authenticity, it attaches its signature on the data. Each member stores the center’s

public key that can be used to verify the signature. TEK0 and public key signature are

enough to guarantee confidentiality and authenticity of the multicast data. The only over-

head on a member is the the center’s public key 2.

7.4.5 Aggregation

As mentioned in Section 7.4.1, we can use existing key structure in the DC cryptosystem

to authenticate aggregate messages. The authentication is via a Message Authentication

Code (MAC) with a key derived from her share of the secret key xbi. The derivation can

be done via a cryptographically secure pseudorandom number generator (PRNG) with xbi

(and maybe some other randomness) as seed. In practice, it can be as simple as using a

cryptographically secure hash function. Let H be such a hash function. Member i first

generates a random initialization variable IV of sufficient length (e.g. IV ←R Zq) and the

authentication key aki is computed as aki = H(xbi||IV). The randomness-like property of

the hash makes the output look independent of the input, avoiding the possible vulnerability

of using the same key in multiple cryptographic operations. This is a common practice found

in many key manage schemes such as [102, 114, 101] etc., and the SSL protocol. The center,

who is in possess of the polynomial that generates xbi, can recover xbi and generate aki to

verify the MAC. The detailed protocol is described in figure 7.2.

2There are schemes for authenticating multicast data that require minimal buffering on the sender side and
resist packet loss (e.g., [100, 106, 127, 59]). Some achieved great efficiency by making additional assumptions
such as weak time synchronization between sender and receivers [100, 101]. However, as [12] showed, the
general multicast message authentication problem is equivalent to digital signatures. We take the general
approach here and leave the rest as options for applications.

111

Procedure Member i Aggregation

Input: Aggregation message m, member key xbi.

1. Generate IV ←R Zq and aki = H(xbi||IV).

2. Send to the center Mi = (i||m||IV ||MACaki
(i||m||IV)).

Procedure Center Verify

Input: Revoked set R, center key Γ, message Mi

1. Parse Mi into Mi = (i||m||IV ||tag).

2. If i ∈ R, reject the message.

3. Recover xbi via Lagrange interpolation:

xbi =
∑

j∈T+ Lj(i)xbj where Lj(x) =
∏

k∈T+,k 6=j
(x−k)

∏

k∈T+,k 6=j
(j−k)

.

4. Compute the authentication key by aki = H(xbi||IV).

5. If tag = MACaki
(i||m||IV), accept the message. Otherwise reject it.

Figure 7.2. Procedures for (a) member aggregation, and (2) center verification.

7.4.6 Rekeying

The rekeying protocol is summarized in figure 7.3. Essentially it uses DC system to

multicast a new TEK such that the revoked members cannot access. This is achieved via

DC system’s built-in revocation capability. We added the “increment by δ” step which

essentially achieves “in-place update” of DCb. It shifts the DC scheme by a random (but

secret) amount and a newly admitted member has no information about past DC scheme

even if it has not been completely refreshed. As will be shown in Section 7.5 this feature

guarantees backward security which is lacking in the original DC cryptosystem. And this

is carried out via multicast and is very efficient.

7.4.7 Refresh

This procedure is used to refresh DCb̄ when it has approached its limit on the number

of revocations. The center generates a fresh DC cryptosystem as it does in the Initial-

112

Procedure Center Rekey

Input: Revoked set R, center key Γ.

1. Select randomly T ′ ⊆ T such that |T ′| = t − |R| and set T̄ ← T ′ ∪ R.

2. Generate a new TEK, denoted TEK1, and compute

c = Eyb
(TEK1||δ||s) where δ ←R Zq and s = 1 if |R| is close

to t and 0 otherwise.

3. Multicast the following rekey message:

M = (c, {(j, Dxj
(c))|j ∈ T̄}, ETEK0

(T̄))

4. If s = 1, set b ← b̄ and carry out Refresh as a

separate procedure asynchronously. Also reset R to ∅.

5. Update the public keys by hb ← hbg
δ mod p, and it shares of the

private key by xbj ← xbj + δ mod q,∀j ∈ R ∪ T+.

Procedure Member i Rekey

Input: Rekey message M , member key xbi.

1. Decrypt M using xbi and obtain TEK1.

2. Set TEK0 ← TEK1 to be the current group key.

3. If s = 1, set b ← b̄.

4. Increment xbi by δ, i.e., set xbi ← xbi + δ mod q, and update

the public key by hb ← hbg
δ mod p.

Figure 7.3. Procedures for (a) center rekeying, and (b) member rekeying.

ization stage and sends the new keys to each member via secure unicast channel 3. This

process is “off-line” compared to multicast and aggregation and can be performed anytime

before it needs to run again. All operations in the group communication, including data

communication and rekeying etc., can proceed uninterrupted using DCb.

3These secure unicast channels can be constructed, for example, by letting the members initiate a key
agreement protocol using the aggregation mode as described in Section 7.4.5. The center does not need to
store all public keys of the members.

113

7.4.8 User Join

When a user is allowed to join the communication, the center selects an unused index i

and sends her all information corresponding to her index as specified by the key generation

procedure. At this point we distinguish two types applications. The first allows the newly

admitted members to access previous multicast data during the same session (i.e., the

data encrypted with the TEK0). In this case the center simply sends TEK0 along with

the key information to the new member via secure unicast channel. No rekeying message

is necessary. The second type requires a strict backward security and prohibits the new

member from accessing any data prior to her admission. For this type of applications the

rekey procedure is invoked before the center sends the key information to the new member.

We will show later that this scheme guarantees the strict backward security.

7.4.9 User Departure

To remove a member i from the group, the center recovers her share of the private key

xbi and adds i to R. It then invoke the Rekey procedure.

7.5 Analysis and Evaluation

In this section we evaluate our protocol in terms of security and efficiency. Since our

protocol incurs constant cost in terms of all resources (storage, communication and compu-

tation) for each rekey operation, the evaluation here will be mostly analytical. The actual

cost of any application is dependent solely on the group dynamics.

7.5.1 Security

The security of our protocol is summarized in the following theorem.

Theorem 8. Assuming the security of the DC cryptosystem, the MAC algorithm and the

114

symmetric key encryption scheme used for data encryption, the protocol described above

satisfies the 8 properties specified in Section 7.2.1.

Proof. Assuming the security of the DC cryptosystem (which has been proven in [47]), the

MAC algorithm and the symmetric key encryption used to encrypt the data, for an adversary

to successfully “attack” our scheme, she must obtain enough information to recover the

appropriate key(s), where “attack” means gaining access to data in multicast and forging

messages in aggregation. We show that for any attempted attack on any of the properties,

this is impossible. Let ATKi denote the attack on property Mi and Ai where i = 1, 2, 3, 4.

ATK1 We show that an outsider cannot obtain any member’s key by observing network

traffic. There are three types of traffic in our protocol: key distribution traffic, data traffic,

and rekey traffic. The first is via secure unicast channels and the second is encrypted with

the current TEK. Both, by definition, provides confidentiality to those without proper keys.

The rekey traffic is characterized by messages as specified in figure 7.3. This is essentially the

ciphertext as defined in DC cryptosystem [47], with the blacklist encrypted with the current

TEK and is shown to be secure against adaptive chosen ciphertext attacks. Therefore the

attacker cannot get the keys to mount attack on M.1 or A.1.

ATK2 When a member i is removed from the group, according to our protocol, two events

will happen: (1) the rekey procedure will be invoked and (2) her index i will appear, and

remain, in the center’s revocation list R until next time the system switches to the other DC

scheme when R will be reset to ∅. The rekey procedure essentially utilizes the revocation

capability of DC cryptosystem and guarantees that i will not be able to obtain new traffic

encryption keys as long as i remains in R or a fresh DC scheme is used (to which i does not

have access). Note that in our protocol, the rekey message that causes the transition to a

new DC scheme will also cause all remaining members to update the DC scheme that will

be used for next rekey operation (i.e., the increment of private keys by δ in the last step on

both the center and members. See Section 7.4.6). Since the revoked member does not have

access to this rekey message, she cannot obtain δ thus her information about the new DC

115

scheme is obsolete and cannot enable her to decrypt future rekey messages even though R

is reset to ∅. This guarantees forward confidentiality (M.2).

As for forward authenticity (A.2), note that when verifying the MAC, the center checks

the sender’s index against R. When i is in R, her MAC will always be rejected. After R

is reset to ∅, both her private keys x0i and x1i are no longer valid any more because xbj

has been updated by δ and xb̄j has been completely refreshed in an off-line process for all

other legitimate members. Therefore the center will reject all her MACs keyed using her

old keys. This guarantees forward authenticity (A.2).

ATK3 Attack on collusion freedom is modelled by allowing the adversary to control up to

t members. Confidentiality in multicast (i.e., M.3) comes directly from the security of DC

cryptosystem [47]. Aggregation authenticity (A.3) in face of up to t colluding members is

guaranteed due to similar property of the secret sharing scheme [112].

ATK4 When a user is added to the group and assigned the index i, the center first invokes

the rekey procedure. The user is then given her keys in both DC0 and DC1 and the current

TEK via secure unicast channel. This allows her to access current multicast data and future

rekey information. Note that the latest rekey procedure prior to her admission updates the

current DC cryptosystem for existing members. This means the keys she received via the

unicast channel will not enable her to decrypt previous rekey messages which is the only

means to distribute TEKs. Therefore she cannot have access to data multicasted before she

is admitted (M.4).

A.4 is implied by A.3.

7.5.2 Efficiency

The biggest advantage of our scheme is the feature that each member only needs to store

1 constant-sized key which is truly independent of the group size. This can be significant

for systems where the members are limited in storage. The center is required to keep a

key of length O(t) to be able to authenticate all n members which is much less than the

116

O(n) storage overhead required for maintaining data authenticity in aggregation using other

schemes. Note that the aggregation MAC can also service as a membership authentication.

This is because, due to the security of the secret sharing scheme, the MAC algorithm and

the cryptographic hash, only legitimate member with xbi can produce such tag. And in

our scheme, verifying the MAC only requires the use of center’s own key (in contrast, in

a digital signature-based scheme such as identity-based signature schemes, the center must

retrieve the sender’s public key to authenticate the message and verifying membership

requires consulting an active member list). This means that, unlike other schemes, there

is no “hidden cost” in our scheme: the information to authenticate aggregation messages

(and memberships) is all contained in the center’s key and the center does not even have

to store a list of user IDs online.

The communication complexity for each rekey message is O(t), also independent of the

the group size. This is a useful feature not only from a scalability point of view, but also

for the purposes of hiding group dynamics information, as will be explained in Section 7.6.

Rekeying involves public key encryption/decryption which are relatively inefficient to

compute compared to symmetric key schemes. When instantiated with Shoup and Gen-

naro’s TDH2 threshold scheme [116], both encryption and decryption involve O(t + 1) ex-

ponentiations. For encryption, since the bases g, ḡ are fixed (per public key), one can

pre-compute a table to speedup the operations significantly. For decryption, what is re-

ally needed is the product of the exponentials. The cost can be reduced considerably by

using techniques such as simultaneous multiple exponentiations (Chapter 14.6.1 in [88]).

Moreover, the computation is highly parallelizable. Each exponentiation is independent

of another and can be carried out concurrently. This is true for both the center and the

members.

Another advantage of our scheme is that authenticating aggregation messages uses sym-

metric key crypto. The efficiency obtained is critical for large-scaled systems supporting a

large number of members who generate data at a high rate (e.g. a large IDS). Using the lat-

est Crypto++ benchmark (http://www.eskimo.com/∼weidai/benchmarks.html), HMAC, a

117

popular MAC algorithm with proven security [7], features a throughput of 216.674 MB/s.

This is superior to any public key crypto-based schemes.

7.6 Hiding Group Dynamics Information

In an INFOCOM ’04 paper [120], Sun and Liu first raised the issue of protecting group

dynamics information (GDI) in multicast. They showed in [120] that in many schemes, the

key management messages can disclose information about the dynamics of group member-

ship such as group size and the user join/departure rate. This information can be used

by an adversary or competitor in a way that is detrimental to the multicast group. [120]

outlined two techniques an attacker can use to obtain GDI. The first technique applies to

schemes where the attacker can distinguish rekey messages caused by user join from those

resulted from user departure: he can conclude, with high certainty, that a user joins the

group when he sees a join rekey message and a user leaves the group when a departure

rekey message is observed. The second technique estimates the group size from the rekey

message size when the two are related. The first attack is typically mounted by a group

member who can decrypt the rekey messages and the second one can be launched by an

outsider observing the traffic. [120] showed that most tree-based centralized key manage-

ment schemes (e.g. [90, 125, 19, 128, 124]) are vulnerable to both attacks. Variants of these

attacks are also effective on some other schemes. Please see [120] for details.

As observed in [120], the fundamental cause of their vulnerability is that most key

management schemes allow an inside attacker to separate the rekey messages for user join

and those for user departure and/or produce rekey message whose size is dependent on the

group size. [120] proposed using batch rekeying and phantom users, who join and leave the

group artificially, to augment existing schemes to conceal GDI. However, batch rekeying

is only possible when it is acceptable to delay updating the session key in face of group

membership change. Phantom users causes much overhead in terms of communication

and computation. Neither technique is free and completely satisfactory. In particular,

the effectiveness of phantom users is totally dependent on the artificial group size (which

118

is the total number of real and phantom users), denoted N0 as in [120]. The approach

proposed in [120] is “all-or-nothing” in that if the actual group size, N , never exceeds N0,

it is perfectly hidden. Should N becomes greater than N0 for some time, the adversary can

obtain accurate estimate on N for the entire duration when N > N0. To actually conceal

group size, a large number of phantom users must be used to ensure N0 is greater than the

maximum number of users the group can ever accommodate. This is a serious problem for

highly dynamic groups and the approach does not provide a really scalable solution. Yet

there seems no better way out for schemes where the rekey message size is dependent on

group size. This is one of their inherent limitations.

If we only consider the leakage by multicast and key management messages, as is done in

[120] 4, we can show that our scheme has some nice properties that make it more affable to

hiding GDI. First of all, it is completely immune to attacks on GDI mounted by outsiders.

This is due to the following two features: (1) the only information in the rekey message

that reveals GDI is the blacklist T̄ and it is encrypted with current session key; and (2) the

size of rekeying messages is independent of group size. Even if an outsider can observe the

rekey messages, he won’t be able to differentiate user join events from user departure, nor

can he obtain any information about the size of the group.

As for the insider’s attack, we first observe that, while revealing GDI to outsider is hardly

ever acceptable, in some applications, it is actually beneficial to disclose group dynamics

information to legitimate nodes of the system. For example, in some network, knowing

the compromised nodes allows the good ones to avoid routing messages towards them. In

this case, our scheme does not need to change at all. The blacklist T̄ that is part of the

rekey message provides a natural vessel for conveying the information about who have been

evicted to legitimate members.

If GDI has to be hidden even from legitimate members, we introduce the following

modifications. Note that our scheme as described so far already guarantees that the message

4Other leakages are possible, e.g. via the initialization. They are common to all schemes and fixing them
is orthogonal to securing the multicast messages. Besides monitoring all other traffic is substantially harder
than listening to the multicast channel, which can easily be done by joining the group. And even if such
monitoring is possible, it is often possible to “bury” group dynamics-related non-multicast messages in other
traffic. Therefore we take a similar approach as [120] and focus on multicast management messages.

119

size is independent of the group size even to an insider. All we need to fix is to “mix” the

events of user join with departure.

1. We use batch rekeying and invoke the Rekey procedure only when the system has

accumulated some number of join/departure users. 5

2. In initialization, the center selects a large number N0 greater than the upper bound

of the group size. ZN0 will be the space where user indices are drawn. For s = 0, 1,

each of the initial set of users will be assigned a unique but random index from ZN0 .

Note that each member gets independent indices for DC0 and DC1.

3. ZN0 for each DC scheme is divided into 3 disjoint sets. For DCs, where s = 0, 1, As

is the set of indices currently assigned to active members. Rs is the set of indices

belonging to the users whose membership have been revoked using the current DC

scheme. MPs is the “mixing pool” whose purpose will be clear later. During Initial-

ization A0 and A1 are initialized according to the index generation process, R0 and

R1 are all set to ∅.

4. The blacklist T̄ for each rekey message is constructed as usual by including Rb and

subset of MPb
6. Each rekey message will set s = 1 which causes the system to switch

to the other DC scheme.

5. When switching to a new DC scheme, the center sets b ← b̄ and Rb ← ∅.

6. When a user joins the group, for s = 0, 1, the center randomly selects a number is

from MPs as her index for DCs and generates the key information accordingly. It

then sets MPs ← MPs \ {is}, As ← As ∪ {is}.

7. When a member, with indices ib and ib̄ for DCb and DCb̄ respectively, leaves the group,

the center sets Ab = Ab \ {ib}, Ab̄ = Ab̄ \ {ib̄}, Rb = Rb ∪ {ib}, MPb̄ = MPb̄ ∪ {ib̄}.

Theorem 9. The modified protocol hides GDI from an insider.

5The consequence of this modification is that the forward and backward security properties are only
guaranteed at a coarser granularity, determined by the intervals between the Rekey operations.

6Note that the center does not maintain set T anymore.

120

Proof. (Sketch) First because of the batch rekeying, user join and departure are not dis-

tinguishable from rekey messages. Second, the system switches to a fresh DC scheme after

each rekey message and the set R, whose elements will appear in T̄ , will be completely

independent for the next rekey operation. An adversary cannot build her knowledge of

revoked members, or the new members by observing multiple rekey messages.

With these modifications, the costs for member storage, member computation, rekey

communication all remain the same. The only added overhead is for the center to maintain

these sets. We can use the following to mitigate the cost.

First, if the center has enough storage capacity, these sets can be maintained as linked

lists to minimize computation cost. Although the storage is now O(n), the computation

remains O(t).

If, on the other hand, the center is limited on storage, these sets can be maintained as

follows. For each DC scheme, the center maintains 2 N0-bit numbers, NA and NR. The

membership of an index i with respect to the 3 sets is encoded by the two bits NA[i] and

NR[i] where X[i] means the ith bit of X in a binary representation. We define the following

encoding: i ∈ A if NA[i] = 1, i ∈ R if NR[i] = 1 and i ∈ MP if NA[i] = NR[i] = 0. Note

when a user leaves the group, her indices are all known and updating the sets amounts to

simply flipping bits at known locations. The most expensive computation is when a user

joins the group and the center needs to find an unused index in MP for her. For this purpose

the center generates a random number i in the range of 1 to N0. If NA[i] = NR[i] = 0, then

i is assigned to the user and the sets are updated accordingly. Otherwise the center tries

another random number. The probability that the center cannot find an unused index in

MP after k tries is (n
N0

)k. Assuming N0 is at least twice of n, with high probability, the

center can find an unused index in MP with just a few tries. The computation can still be

bounded by O(t).

In any case the center storage complexity becomes O(n). However, we point out that

this is the same for all other secure group communication schemes if they are used for

bidirectional communications even without any consideration for protecting GDI. And in

121

our 2nd scheme, the constant behind the O is much smaller: the center in our scheme as just

described only needs to store 4 N0-bit numbers while in all other schemes must maintain

at least n l-bit numbers where l is the length of the key used.

7.7 Related Work

In early secure multicast schemes (e.g., Group Key Management Protocol (GKMP) [66]),

the center shares a pairwise key with each group member and distributes group keys to group

members on a one-to-one basis. For obvious reasons this cannot scale to large groups. Some

work has been done to improve the scalability of such schemes. Among the efficient solutions,

the Logical Key Hierarchy (LKH) (or Key Graph) was independently discovered in [125]

and [128] and has been an inspiration for many subsequent works [19, 26, 129, 81, 111, 131].

In these schemes, individual and auxiliary keys are organized into a hierarchy and each

group member is assigned to a leaf and holds all the keys from its leaf to the root. The

root key is shared by all group members and used as the TEK. New TEK is distributed by

encrypting it with keys that deleted members do not have. So far O(log n) seems to be the

best storage (for both center and members) and communication complexity the LKH-based

schemes achieved.

Asymmetric key cryptosystems are also used for multicast key management. This in-

cludes the work in cryptography such as traitor tracing, a concept introduced by Chor,

Fiat and Naor [27], and broadcast encryption, initiated by Fiat and Naor [52], and a recent

multicast encryption framework formalized by Duan and Canny [47]. These schemes can

be used to distribute the new TEK in the rekeying operation.

All these schemes focus on achieving private communication in the multicast direction.

Little attention was paid to aggregation. As we mentioned before, the global TEK is

not enough for data authentication in aggregation and these schemes do not have other

provisions for such purpose.

There are some techniques that can be used for authenticating aggregation messages

and they appear to enjoy reasonable scalability. For example, identity-based signature (IBS)

122

[113, 25] allows one to verify another party’s signature using the signer’s identity information

(e.g. email address) as the public key. It appears that, when used to for authenticating

aggregation message, IBS allows the center to store 0 key since the verification keys are

members’ IDs. However, in a realistic group communication application, the center not

only needs to verify that a message comes from an alleged sender, it also needs to ensure

that the alleged sender is indeed a valid member of the group. In order to do so, the center

needs to keep a list of valid member IDs online and compares each signature against it. This

makes the effective center storage O(n). In contrast, our scheme eliminates such overhead:

group membership is self-authenticating through the aggregation data authentication tag.

Besides IBS systems rely on a trusted key generation center (KGC) for extracting each

user’s private key, adding another layer of complexity.

123

Chapter 8

Conclusion

8.1 Summary of Contributions

The main contributions presented in this thesis are:

• We identified that a major performance bottleneck of existing private computation

protocols is their heavy use of expensive public-key operations which impose a pro-

hibitive constant factor in their complexity, although asymptotically they have the

same complexity as their regular, non-private implementations. We show that a large

number of useful algorithms can be implemented using addition-only steps which have

simpler private implementations.

• We introduced the Peers for Privacy (P4P) framework for privacy-preserving dis-

tributed computation. P4P features a hybrid architecture between peer-to-peer (P2P)

and the client-server model. This architecture exploits the heterogeneity of the players

and greatly simplifies secure distributed computation.

• Within the P4P framework, the main computation is done using addition-only steps

with secret sharing over small field. With this approach, private arithmetic operations

on each player have the same cost as regular arithmetic and the algorithms can be

implemented with the same real cost as their regular, non-private implementations.

124

• The P4P framework also features practical cheating users handling. We present very

efficient probabilistic zero-knowledge protocols that can be used to verify the prop-

erties of user data such as equality and boundedness. Such protocols uses a linear

number of inexpensive small field operations, and only a logarithmic number of large-

field (1024 bits or more) cryptographic operations, achieving orders of magnitude

reduction in running time over standard cryptographic techniques. These tools pro-

vide practical mechanisms to deal with cheating users and restrict their influences on

the computation.

• We demonstrated the utility of the P4P framework using concrete examples from

real-world applications. The examples include SVD, link analysis and association

rule mining. We show that P4P implementation provides comparable or identical

performance in terms of complexity and accuracy compared with their standard im-

plementations.

• We also introduced scalable solutions for multicast encryption and bidirectional group

communication. Our schemes feature strong security (IND-CCA2) and truly constant-

size decryption keys whereas the lengths of both the encryption key and ciphertext

are independent of group size. They provide secure data transmission support for

the type of communication pattern required by the P4P framework and many other

group-oriented applications.

8.2 Related Work

Theoretically, the data mining tasks performed by P4P can be done with secure mul-

tiparty computation (MPC) protocols, which provide general solutions for computing any

probabilistic n-ary function among n players while protecting each player’s private data

[133, 61, 10, 60, 64]. The problem with the MPC protocols is their prohibitive cost. These

protocols make heavy use of public-key cryptosystems or one-way functions, applying verifi-

cations or ZKPs at most steps, and some even operate at bit-level (rather than on arithmetic

125

values). Even those arithmetic protocols typically have at least O(sn3) computation and

communication complexity, with large hidden constant, where s is a security parameter. 1

Existing privacy-preserving data mining solutions use either randomization (e.g.

[50, 46]) or cryptographic techniques (e.g. [83, 45, 123, 132, 130]) to protect privacy.

The first approach, besides sacrificing accuracy, has been shown to provide very little pri-

vacy protection in many cases [72]. Most of the cryptographic schemes use some form of

MPC (e.g. [83, 45, 123] or homomorphic encryption [132, 130]. They attempted to obtain

reasonable efficiency by targeting at specific problems or restricting the number of players.

P4P is also in the cryptographic category but it provides a more general primitive and

much better efficiency. Its private vector addition protocol works in “normal” size (32 or 64

bits) fields so local computation is as efficient as regular arithmetics. All its zero-knowledge

verifications involves only small (constant or log(m)) number of big field operations thus

adding very little cost.

A private SVD scheme was presented in [21], based on threshold homomorphic en-

cryption and the conjugate gradient method of Polak-Ribiere [104]. Although reasonably

efficient, their scheme works in big integer fields (1024 bits or more) and is not as practical

as P4P.

8.3 Ongoing and Future Work

Our private summation protocol guarantees that no more information beyond the sums

is revealed and we treat the sums as public. We have provided privacy analysis for the

example algorithms in the early chapters of this thesis and showed that they do not cause

privacy breach. There is ongoing work to provide a more general analysis and we have

already obtained some initial results. 2 Basically, using the results in statistical database

privacy [11, 43, 49], we are able prove that, under some conditions, the sums are in fact safe.

1For addition only functions some protocols only require O(n) broadcasts (e.g. [34, 36]). However,
broadcast has to be emulated with Byzantine agreement protocols in a realistic network such as the Internet.
The most efficient broadcast protocols require Ω(n2l) bits to be sent for broadcasting an l-bit message [30].

2Since they are still preliminary we did not include them in this work.

126

Roughly speaking, these works showed that a noisy version of the sums could guarantee

strong privacy provided that Tm is sub-linear in n, where T is the total number of iterations.

In our settings, we are able to prove that, in some situations, external noise is not necessary

for maintaining privacy. Instead, the randomness associated with an adversary’s inherent

uncertainty about unknown data is enough to prevent it from gaining significant information

by seeing the aggregates. We can show that this protection is at least equivalent to that

provided by the perturbation-based approach in [11, 43, 49].

Throughout this thesis, we have treated both the privacy peers and the server as passive

adversaries. This is reasonable in many situations where the privacy peers enjoy a higher

level of trust already endorsed in real-life (e.g. a union leader), or restricted by legislation

or other factors (hospitals, research institutes, etc.), so that it is unlikely that they deviate

from the protocol or try to bias the computation. This does not hold, however, when the

privacy peers are from general user population. In this case we can use a random sampling

method to verify the computation of privacy peers. Again the P4P architecture still uses the

server to defend against external attacks but relies on redundancy to handle active cheating

of privacy peers. We leave careful design and analysis of such mechanism as another future

work.

We have implemented the basic components of the P4P framework, including the main

computation, the L2-norm boundedness ZKP, and the private SVD scheme. The code is

written in Java using a NativeBigInteger implementation from the I2P anonymous network

(http://www.i2p.net/). The source code is released as a toolkit to the public and is available

for download at http://www.cs.berkeley.edu/∼duan/research/p4p.html. We will continue

to maintain the code and improve it as we obtain experience and feedback from users. In

the near future, we plan to build more “middle tier” components to support more concrete

applications. Our goal is to make P4P a useful tool for developers in areas such as data

mining and others to build privacy preserving real-world applications.

127

Bibliography

[1] M. Abe, “Robust distributed multiplication without interaction,” in CRYPTO 1999,
ser. Lecture Notes in Computer Science, vol. 1666. Springer-Verlag, 1999, pp. 130–
147.

[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules between sets of
items in large databases,” in Proceedings of ACM SIGMOD Conference on Manage-
ment of Data, P. Buneman and S. Jajodia, Eds., Washington D.C., May 1993, pp.
207–216.

[3] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in VLDB
’94: Proceedings of the 20th International Conference on Very Large Data Bases. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1994, pp. 487–499.

[4] ——, “Privacy-preserving data mining,” in SIGMOD ’00: Proceedings of the 2000
ACM SIGMOD international conference on Management of data. New York, NY,
USA: ACM Press, 2000, pp. 439–450.

[5] J. Anzai, N. Matsuzaki, and T. Matsumoto, “A quick group key distribution scheme
with “entity revocation”,” in ASIACRYPT 1999, ser. Lecture Notes in Computer
Science, vol. 1716. Singapore: Springer, November 1999, pp. 333–347.

[6] D. Beaver and S. Goldwasser, “Multiparty computation with faulty majority,” in Pro-
ceedings of Advances in Cryptology – CRYPTO ’89, ser. Lecture Notes in Computer
Science, vol. 435. Springer-Verlag, 1989, p. 589.

[7] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for message authen-
tication,” in CRYPTO ’96: Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology. London, UK: Springer-Verlag, 1996, pp.
1–15.

[8] M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm for design-
ing efficient protocols,” in Proceedings of the 1st ACM conference on Computer and
communications security. ACM Press, 1993, pp. 62–73.

[9] ——, “Optimal asymmetric encryption – how to encrypt with RSA,” in EUROCRYPT
1994, ser. Lecture Notes in Computer Science, vol. 950. Springer-Verlag, 1994, pp.
92–111.

[10] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-
cryptographic fault-tolerant distributed computation,” in Proceedings of the 20th An-
nual ACM Symposium on Theory of Computing, STOC’88. ACM, May 2–4 1988,
pp. 1–10.

128

[11] A. Blum, C. Dwork, F. McSherry, and K. Nissim, “Practical privacy: the sulq frame-
work,” in PODS ’05: Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. New York, NY, USA: ACM
Press, 2005, pp. 128–138.

[12] D. Boneh, G. Durfee, and M. Franklin, “Lower bounds for multicast message authen-
tication,” in Proceedings of Eurocrypt ’2001, ser. Lecture Notes in Computer Science,
vol. 2045. Springer-Verlag, 2001, pp. 437–452.

[13] D. Boneh and M. Franklin, “An efficient public key traitor tracing scheme,” in
CRYPTO 1999, ser. Lecture Notes in Computer Science, vol. 1666. Springer-Verlag,
1999, pp. 338–353.

[14] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast encryption with
short ciphertexts and private keys,” in CRYPTO 2005, ser. Lecture Notes in Computer
Science, vol. 3621. Springer-Verlag, 2005, pp. 258–275.

[15] F. Boudot, “Efficient proofs that a committed number lies in an interval,” in Advances
in Cryptology – EUROCRYPT 2000, ser. Lecture Notes in Computer Science, vol.
1807. Springer-Verlag, 2000, pp. 431–444.

[16] C. Boyd, “Digital multisignatures,” Cryptography and Coding, pp. 241–246, 1986.

[17] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive algorithms
for collaborative filtering,” Microsoft Research,, Tech. Rep. MSR-TR-98-12, October
1998.

[18] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”
in 7th World-Wide Web Conference, Brisbane, Australia, 1998.

[19] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas, “Multicast
security: A taxonomy and some efficient constructions,” in INFOCOMM’99, 1999.
[Online]. Available: citeseer.ist.psu.edu/article/canetti99multicast

[20] R. Canetti and S. Goldwasser, “An efficient threshold public key cryptosystem secure
against adaptive chosen ciphertext attack,” in EUROCRYPT 1999, ser. Lecture Notes
in Computer Science, vol. 1592. Springer-Verlag, 1999, pp. 90–106.

[21] J. Canny, “Collaborative filtering with privacy,” in IEEE Symposium on
Security and Privacy, Oakland, CA, May 2002, pp. 45–57. [Online]. Available:
http://citeseer.nj.nec.com/canny02collaborative.html

[22] ——, “Collaborative filtering with privacy via factor analysis,” in Proceedings of the
25th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. Tampere, Finland: ACM Press, 2002, pp. 238–245.

[23] J. F. Canny and Y. Duan, “Practical private computation of vector addition-based
functions or: Can privacy be for free?” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2006-12, February 8 2006. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-12.html

[24] J. Carriere and R. Kazman, “Webquery: Searching and visualizing the web through
connectivity,” in Proceedings of the International WWW Conference, 1997.

129

[25] J. C. Cha and J. H. Cheon, “An identity-based signature from gap diffie-hellman
groups,” in PKC ’03: Proceedings of the 6th International Workshop on Theory and
Practice in Public Key Cryptography. Springer-Verlag, 2003, pp. 18–30.

[26] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha, “Key management
for secure internet multicast using boolean function minimization techniques,” in
Proceedings IEEE Infocomm’99, vol. 2, 1999, pp. 689–698. [Online]. Available:
citeseer.ist.psu.edu/chang99key.html

[27] B. Chor, A. Fiat, and M. Naor, “Tracing traitors,” in CRYPTO 1994, ser. Lecture
Notes in Computer Science, vol. 839. Springer-Verlag, 1994, pp. 257–270.

[28] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret sharing and
achieving simultaneity in the presence of faults,” in Proceedings of IEEE Foundations
of Computer Science, 1985, pp. 383–395.

[29] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun,
“Map-reduce for machine learning on multicore,” in NIPS 2006, 2006.

[30] B. A. Coan and J. L. Welch, “Modular construction of a byzantine agreement protocol
with optimal message bit complexity,” Information and Computation, vol. 97, no. 1,
pp. 61–85, 1992.

[31] W. W. Cohen, “Enron email dataset,” http://www-2.cs.cmu.edu/~enron/.

[32] A. Corrada-Emmanuel, “Enron email dataset research,”
http://ciir.cs.umass.edu/~corrada/enron/.

[33] R. Cramer and I. Damg̊ard, “Zero-knowledge proof for finite field arithmetic, or:
Can zero-knowledge be for free?” in CRYPTO ’98, ser. Lecture Notes in Computer
Science, vol. 1642. Springer-Verlag, 1998.

[34] R. Cramer, I. Damg̊ard, and J. B. Nielsen, “Multiparty computation from threshold
homomorphic encryption,” in EUROCRYPT ’01: Proceedings of the International
Conference on the Theory and Application of Cryptographic Techniques. Springer-
Verlag, 2001, pp. 280–299.

[35] R. Cramer and V. Shoup, “A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack,” in CRYPTO 1998, ser. Lecture Notes
in Computer Science, vol. 1462. Springer-Verlag, 1998, pp. 13–25.

[36] I. Damg̊ard and J. B. Nielsen, “Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption,” in CRYPTO 2003, ser. Lecture Notes
in Computer Science. Springer-Verlag, 2003, pp. 247–264.

[37] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google news personalization: scalable
online collaborative filtering,” in WWW ’07: Proceedings of the 16th international
conference on World Wide Web. New York, NY, USA: ACM Press, 2007, pp. 271–
280.

[38] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung, “How to share a function
securely,” in Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing. ACM Press, 1994, pp. 522–533.

130

[39] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
in OSDI’04: Sixth Symposium on Operating System Design and Implementation, 2004.

[40] H. Debar and A. Wespi, “Aggregation and correlation of intrusion-detection alerts,”
in Proceedings of the 4th International Symposium on Recent Advances in Intrusion
Detection. Springer-Verlag, 2001, pp. 85–103.

[41] Y. Desmedt, “Society and group oriented cryptography: A new concept,” in CRYPTO
1987, ser. Lecture Notes in Computer Science, vol. 293. Springer-Verlag, 1987, pp.
120–127.

[42] Y. G. Desmedt and Y. Frankel, “Threshold cryptosystems,” in CRYPTO 1989, ser.
Lecture Notes in Computer Science, vol. 435. Springer-Verlag, 1989, pp. 307–315.

[43] I. Dinur and K. Nissim, “Revealing information while preserving privacy,” in PODS
’03: Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems. New York, NY, USA: ACM Press, 2003, pp.
202–210.

[44] Y. Dodis and N. Fazio, “Public key trace and revoke scheme secure against adaptive
chosen ciphertext attack,” in Workshop on Public Key Cryptography – PKC ’03, ser.
Lecture Notes in Computer Science, vol. 2567, 2003, pp. 100–115.

[45] W. Du, Y. Han, and S. Chen, “Privacy-preserving multivariate statistical analysis:
Linear regression and classification,” in SIAM International Conference on Data Min-
ing, 2004, pp. 222–233.

[46] W. Du and Z. Zhan, “Using randomized response techniques for privacy-preserving
data mining,” in KDD ’03. New York, NY, USA: ACM Press, 2003, pp. 505–510.

[47] Y. Duan and J. Canny, “How to construct multicast cryptosystems provably secure
against adaptive chosen ciphertext attack,” in RSA Conference 2006, Cryptographers’
Track. San Jose, USA, ser. Lecture Notes in Computer Science, vol. 3860. Springer-
Verlag, 2006, pp. 244–261.

[48] Y. Duan, J. Wang, M. Kam, and J. Canny, “A secure online algorithm for link analysis
on weighted graph,” in Proceedings of the Workshop on Link Analysis, Counterter-
rorism and Security at the SIAM Data Mining Conference, 2005, April 2005, pp.
71–81.

[49] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity
in private data analysis,” in TCC 2006, ser. Lecture Notes in Computer Science, vol.
3876. Springer, 2006, pp. 265–284.

[50] A. Evfimievski, J. Gehrke, and R. Srikant, “Limiting privacy breaches in privacy pre-
serving data mining,” in PODS ’03: Proceedings of the twenty-second ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems. New York, NY,
USA: ACM Press, 2003, pp. 211–222.

[51] W. Fenner, “Internet group management protocol, version 2,” RFC-2236, November
1997.

131

[52] A. Fiat and M. Naor, “Broadcast encryption,” in CRYPTO 1993, ser. Lecture Notes
in Computer Science, vol. 773. Springer-Verlag, 1994, pp. 480–491.

[53] M. Fitzi, M. Hirt, and U. Maurer, “General adversaries in unconditional multi-party
computation,” in Advances in Cryptology - ASIACRYPT 99, ser. Lecture Notes in
Computer Science, vol. 1716. Springer-Verlag, 1999, pp. 232–246.

[54] P.-A. Fouque and D. Pointcheval, “Threshold cryptosystems secure against chosen-
ciphertext attacks,” in ASIACRYPT 2001, ser. Lecture Notes in Computer Science,
vol. 2248. Springer-Verlag, 2001, pp. 351–368.

[55] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern, “RSA-OAEP is secure under
the rsa assumption,” in CRYPTO 2001, ser. Lecture Notes in Computer Science, vol.
2139. Springer-Verlag, 2001, pp. 260–274.

[56] J. A. Garay, J. Staddon, and A. Wool, “Long-lived broadcast encryption,” in
CRYPTO 2000, ser. Lecture Notes in Computer Science, vol. 1880. Springer-Verlag,
2000, pp. 333–352.

[57] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust and efficient sharing
of RSA functions,” in CRYPTO 1996, ser. Lecture Notes in Computer Science, vol.
1109. Springer-Verlag, 1996, pp. 157–172.

[58] R. Gennaro, M. O. Rabin, and T. Rabin, “Simplified vss and fast-track multiparty
computations with applications to threshold cryptography,” in PODC ’98: Proceed-
ings of the seventeenth annual ACM symposium on Principles of distributed comput-
ing. ACM Press, 1998, pp. 101–111.

[59] R. Gennaro and P. Rohatgi, “How to sign digital streams,” in CRYPTO’97, ser.
Lecture Notes in Computer Science. Springer-Verlag, 1997.

[60] O. Goldreich, Foundations of Cryptography: Volume 2 Basic Applications. Cam-
bridge University Press, 2004.

[61] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game — a
completeness theorem for protocols with honest majority,” in Proceedings of the 19th
ACM Symposium on the Theory of Computing (STOC), 1987, pp. 218–229.

[62] O. Goldreich and Y. Oren, “Definitions and properties of zero-knowledge proof sys-
tems.” Journal of Cryptology, vol. 7, no. 1, pp. 1–32, 1994.

[63] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interactive
proof systems,” SIAM Journal on Computing, vol. 18, no. 1, pp. 186–208, 1989.

[64] S. Goldwasser and L. Levin, “Fair computation of general functions in presence of
immoral majority,” in Advances in Cryptology – CRYPTO ’90, ser. Lecture Notes in
Computer Science, vol. 537. Springer-Verlag, 1991, pp. 77–93.

[65] D. Halevy and A. Shamir, “The LSD broadcast encryption scheme,” in CRYPTO
2002, ser. Lecture Notes in Computer Science, vol. 2442. Springer-Verlag, 2002, pp.
47–60.

132

[66] H. Harney and C. Muckenhirn, “Group key management protocol (gkmp) architec-
ture,” IETF Request for Comments, RFC 2094, July 1997.

[67] M. Hirt and U. Maurer, “Complete characterization of adversaries tolerable in secure
multi-party computation (extended abstract),” in PODC ’97: Proceedings of the six-
teenth annual ACM symposium on Principles of distributed computing. New York,
NY, USA: ACM Press, 1997, pp. 25–34.

[68] ——, “Player simulation and general adversary structures in perfect multiparty com-
putation,” Journal of Cryptology, vol. 13, no. 1, pp. 31–60, 2000.

[69] T. Hofmann, “Latent semantic models for collaborative filtering,” ACM Transactions
on Information Systems, vol. 22, no. 1, pp. 89–115, 2004.

[70] S. Jarecki and A. Lysyanskaya, “Adaptively secure threshold cryptography: Introduc-
ing concurrency, removing erasures (extended abstract),” in Proceedings of Eurocrypt
2000, ser. Lecture Notes in Computer Science, vol. 1807. Springer-Verlag, 2000, pp.
221–242.

[71] M. Kantarcioglu and C. Clifton, “Privacy-preserving distributed mining of association
rules on horizontally partitioned data,” IEEE Transactions on Knowledge and Data
Engineering, vol. 16, no. 9, pp. 1026–1037, 2004.

[72] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar, “On the privacy preserving
properties of random data perturbation techniques,” in ICDM ’03. Washington,
DC, USA: IEEE Computer Society, 2003, p. 99.

[73] H. Kautz, B. Selman, and A. Milewski, “Agent amplified communication,” in AAAI-
96. Cambridge, Mass.: MIT Press, 1996, pp. 3–9, portland, Oreg.

[74] H. Kautz, B. Selman, and M. Shah, “Combining social networks and collaborative
filtering,” Comm. ACM, vol. 40, no. 3, pp. 63–65, 1997.

[75] M. Kearns, “Efficient noise-tolerant learning from statistical queries,” in STOC ’93:
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing. New
York, NY, USA: ACM Press, 1993, pp. 392–401.

[76] C. H. Kim, Y. H. Hwang, and P. J. Lee, “An efficient public key trace and revoke
scheme secure against adaptive chosen ciphertext attack,” in ASIACRYPT 2003, ser.
Lecture Notes in Computer Science, vol. 2894. Springer-Verlag, 2003, pp. 359–373.

[77] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,” Journal of
the ACM, vol. 46, no. 5, pp. 604–632, 1999. [Online]. Available: citeseer.nj.nec.com/
kleinberg99authoritative.html

[78] T. K. Landauer and S. T. Dumais, “A solution to plato’s problem: The latent se-
mantic analysis theory of the acquisition induction and representation of knowledge,”
Psychological Review, vol. 104, no. 2, pp. 211–240, 1997.

[79] R. B. Lehoucq and J. A. Scott, “An evaluation of software for computing eigenval-
ues of sparse nonsymmetric matrices,” Preprint MCS-P547-1195, Argonne National
Laboratory, Argonne, Ill, 1996.

133

[80] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of
Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM,
1998.

[81] X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam, “Batch rekeying for secure
group communications,” in Proceedings of the tenth international World Wide Web
conference on World Wide Web, Orlando, FL USA, 2001, pp. 525–534. [Online].
Available: citeseer.ist.psu.edu/li01batch.html

[82] C. H. Lim and P. J. Lee, “Another method for attaining security against adaptively
chosen ciphertext attacks,” in CRYPTO 1993, ser. Lecture Notes in Computer Sci-
ence, vol. 773. Springer-Verlag, 1993, pp. 420–434.

[83] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” Journal of cryptology,
vol. 15, no. 3, pp. 177–206, 2002.

[84] D. Liu, P. Ning, and K. Sun, “Efficient self-healing group key distribution with re-
vocation capability,” in Proceedings of the 10th ACM conference on Computer and
communication security. ACM Press, 2003, pp. 231–240.

[85] M. Luby and J. Staddon, “Combinatorial bounds for broadcast encryption,” in EU-
ROCRYPT 1998, ser. Lecture Notes in Computer Science, vol. 1403. Springer-Verlag,
1998, pp. 512–526.

[86] D. W. MacDonald and M. S. Ackerman, “Just talk to me: A field study of expertise
location,” in ACM CSCW-98, 1998, pp. 315–324.

[87] J. Markus and J. Ari, “Millimix: Mixing in small batches,” Tech. Rep., 1999.

[88] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone, Handbook of Applied Cryptog-
raphy, ser. CRC Press Series on Discrete Mathematics and Its Applications. CRC
Press, 1996.

[89] R. Motwani and P. Raghavan., Randomized Algorithms. Cambridge University Press,
1995.

[90] M. J. Moyer, J. R. Rao, and P. Rohatgi, “A survey of security issues in multi-
cast communications,” IEEE Network Magazine, vol. 13, no. 6, pp. 12–23, Novem-
ber/December 1999.

[91] D. Naor, M. Naor, and J. B. Lotspiech, “Revocation and tracing schemes for stateless
receivers,” in CRYPTO 2001, ser. Lecture Notes in Computer Science, vol. 2139.
Springer-Verlag, 2001, pp. 41–62.

[92] M. Naor and M. Yung, “Public-key cryptosystems provably secure against chosen
ciphertext attacks,” in Proceedings of the twenty-second annual ACM symposium on
Theory of computing. ACM Press, 1990, pp. 427–437.

[93] M. Naor and B. Pinkas, “Efficient trace and revoke schemes,” in Proceedings of Fi-
nancial Crypto 2000, 2000.

[94] A. Newell and P. S. Rosenbloom, “Mechanisms of skill acquisition and the law of
practice,” in J.R. Anderson (Ed.), Cognitive Skills and their Acquisition (pp. 1-55).
Hillsdale, NJ: Earlbaum, 1981.

134

[95] A. Newell and P. Rosenbloom, Matrix Computations. Johns Hopkins University
Press, 1989.

[96] A. Y. Ng, A. X. Zheng, and M. Jordan, “Stable algorithms for link analysis,” in
Proceedings of the 24th annual international ACM SIGIR conference on Research
and development in information retrieval. ACM Press, 2001, pp. 258–266.

[97] A. Y. Ng, A. X. Zheng, and M. I. Jordan, “Link analysis, eigenvectors and stability,”
in Proceedings of the 17th International Joint Conference on Artificial Intelligence,
August 2001, pp. 903–910.

[98] P. Paillier, “Public-key cryptosystems based on discrete logarithms residues,” in EU-
ROCRYPT 1999, ser. Lecture Notes in Computer Science, vol. 1592. Springer-Verlag,
1999, pp. 223–238.

[99] T. Pedersen, “Non-interactive and information-theoretic secure verifiable secret shar-
ing,” in Advances in Cryptology – CRYPTO ’91, ser. Lecture Notes in Computer
Science, vol. 576. Springer-Verlag, 1991, pp. 129–140.

[100] A. Perrig, R. Canetti, D. Tygar, and D. Song, “Efficient authentication and signa-
ture of multicast streams over lossy channels,” in IEEE Symposium on Security and
Privacy, May 2000, pp. 56–73.

[101] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient and secure source authenti-
cation for multicast,” in NDSS01, 2001.

[102] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “Spins: security
protocols for sensor networks,” Wirel. Netw., vol. 8, no. 5, pp. 521–534, 2002.

[103] P. Pirolli, J. Pitkow, and R. Rao, “Silk from a sow’s ear: Extracting usable structures
from the web,” in Proc. ACM Conf. Human Factors in Computing Systems, CHI.
ACM Press, 1996. [Online]. Available: citeseer.nj.nec.com/pirolli96silk.html

[104] E. Polak, Computational Methods in Optimization. Academic Press, 1971.

[105] C. Rackoff and D. R. Simon, “Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack,” in CRYPTO 1991, ser. Lecture Notes in Computer Science,
vol. 576. Springer-Verlag, 1992, pp. 433–444.

[106] P. Rohatgi, “A compact and fast hybrid signature scheme for multicast packet authen-
tication,” in Proceedings of the 6th ACM conference on Computer and communications
security. ACM Press, 1999, pp. 93–100.

[107] RSA Labs, “PKCS#1 v2.1: RSA cryptography standard,” 2002.

[108] G. Salton, Automatic Text Processing: The Transformation, Analysis, and Retrieval
of Information by Computer. Addison-Wesley, 1989.

[109] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl, “Application of dimensionality
reduction in recommender system – a case study,” in ACM WebKDD 2000 Web
Mining for E-Commerce Workshop, 2000, full length paper.

[110] M. F. Schwartz and D. C. M. Wood, “Discovering shared interests using graph anal-
ysis,” Comm. ACM, vol. 36, no. 8, pp. 78–89, 1993.

135

[111] S. Setia, S. Koussih, S. Jajodia, and E. Harder, “Kronos: A scalable group re-keying
approach for secure multicast,” in IEEE Symposium on Security and Privacy, 2000,
pp. 215–228. [Online]. Available: citeseer.ist.psu.edu/setia00krono.html

[112] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, pp. 612–
613, November 1979.

[113] ——, “Identity-based cryptosystems and signature schemes,” in Proceedings of
CRYPTO 84 on Advances in cryptology. Springer-Verlag New York, Inc., 1985,
pp. 47–53.

[114] M. Shehab, E. Bertino, and A. Ghafoor, “Efficient hierarchical key generation and
key diffusion for distributed sensor networks,” in IEEE SECON 2005, 2005.

[115] V. Shoup, “OAEP reconsidered,” in CRYPTO 2001, ser. Lecture Notes in Computer
Science, vol. 2139. Springer-Verlag, 2001, pp. 239–259.

[116] V. Shoup and R. Gennaro, “Securing threshold cryptosystems against chosen cipher-
text attack,” J. Cryptology, vol. 15, no. 2, pp. 75–96, 2002.

[117] J. Staddon, S. Miner, M. Franklin, D. Balfanz, M. Malkin, and D. Dean, “Self-healing
key distribution with revocation,” in Proceedings of the 2002 IEEE Symposium on
Security and Privacy. IEEE Computer Society, 2002, p. 241.

[118] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory. Academic Press, 1990.

[119] G. Strang, Linear Algebra and Its Applications, 2nd Edition. Academic Press, 1980.

[120] Y. Sun and K. R. Liu, “Securing dynamic membership information in multicast com-
munications,” in Proceedings IEEE INFOCOMM ’04, 2004.

[121] W.-G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation
using dynamic shares,” in Proceedings of the 4th International Workshop on Practice
and Theory in Public Key Cryptography. Springer-Verlag, 2001, pp. 207–224.

[122] J. Vaidya and C. Clifton, “Privacy preserving association rule mining in vertically
partitioned data,” in KDD ’02: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining. New York, NY, USA: ACM
Press, 2002, pp. 639–644.

[123] ——, “Privacy-preserving k-means clustering over vertically partitioned data,” in
KDD ’03. New York, NY, USA: ACM Press, 2003, pp. 206–215.

[124] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, “The VersaKey frame-
work: Versatile group key management,” IEEE Journal on Selected Areas in Com-
munications, vol. 17, no. 9, pp. 1614–1631, September 1999.

[125] D. Wallner, E. Harder, and R. Agee, “Key management for multicast: Issues and
architectures,” IETF Request For Comments, RFC 2627, June 1999.

[126] H. Wang, “Resilient lkh: Secure multicast key distribution schemes,” in Proceedings of
the 2003 International Workshop on Advanced Developments in Software and Systems
Security (WADIS), 2003.

136

[127] C. K. Wong and S. S. Lam, “Digital signatures for flows and multicasts,” Tech. Rep.,
1998.

[128] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications using key
graphs,” IEEE/ACM Trans. Netw., vol. 8, no. 1, pp. 16–30, 2000.

[129] C. K. Wong and S. S. Lam, “Keystone: A group key management service,”
in International Conference on Telecommunications, ICT 2000, 2000. [Online].
Available: citeseer.ist.psu.edu/wong00keystone.html

[130] R. Wright and Z. Yang, “Privacy-preserving bayesian network structure computation
on distributed heterogeneous data,” in KDD ’04. New York, NY, USA: ACM Press,
2004, pp. 713–718.

[131] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam, “Reliable group rekeying: a perfor-
mance analysis,” in Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications. ACM Press, 2001, pp.
27–38.

[132] Z. Yang, S. Zhong, and R. N. Wright, “Privacy-preserving classification of customer
data without loss of accuracy,” in SDM 2005, 2005.

[133] A. C.-C. Yao, “Protocols for secure computations,” in FOCS ’82. IEEE, 1982, pp.
160–164.

[134] J. Zhan, “Privacy preserving collaborative data mining,” Ph.D. dissertation, Univer-
sity of Ottawa, 2006.

[135] J. Zhan, S. Matwin, and L. Chang, “Privacy-preserving collaborative association rule
mining,” in Proceedings of the 19th Annual IFIP WG 11.3 Working Conference on
Data and Applications Security.

137

