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p53 is an important tumor suppressor gene, which is stimulated by cellular stress like

ionizing radiation, hypoxia, carcinogens, and oxidative stress. Upon activation, p53 leads

to cell-cycle arrest and promotes DNA repair or induces apoptosis via several pathways.

p63 and p73 are structural homologs of p53 that can act similarly to the protein and

also hold functions distinct from p53. Today more than 40 different isoforms of the p53

family members are known. They result from transcription via different promoters and

alternative splicing. Some isoforms have carcinogenic properties and mediate resistance

to chemotherapy. Therefore, expression patterns of the p53 family genes can offer prog-

nostic information in several malignant tumors. Furthermore, the p53 family constitutes

a potential target for cancer therapy. Small molecules (e.g., Nutlins, RITA, PRIMA-1, and

MIRA-1 among others) have been objects of intense research interest in recent years.

They restore pro-apoptotic wild-type p53 function and were shown to break chemothera-

peutic resistance. Due to p53 family interactions small molecules also influence p63 and

p73 activity. Thus, the members of the p53 family are key players in the cellular stress

response in cancer and are expected to grow in importance as therapeutic targets.
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INTRODUCTION
Human cells are constantly exposed to external and internal stres-

sors, which cause damage to the integrity of the cell and to its

genome. In order to guarantee the survival of the organism, cells

have developed numerous strategies to adapt to stressors. In this

review, we would like to discuss the influence of cellular stress on

tumor development as well as strategies in cancer therapy target-

ing pathways involved in cell-cycle control and apoptosis. Special

emphasis is put on the members of the p53 family.

CELLULAR STRESS RESPONSE IN CANCER DEVELOPMENT
The development of cancer is a multistep process that involves a

series of mutations in the progenitor cell (1). It enables clonal pro-

liferation, uncontrolled growth, and finally invasion (2, 3). Cellular

stress can be caused by a multitude of external or internal influ-

ences such as ultraviolet radiation (4–6), ionizing radiation (7),

hypoxia (8), carcinogens (e.g., aflatoxin) (9, 10), cigarette smoke

(11), oxidative stress (12–14), and oncogene activation (15). This

can lead to DNA damage and, in consequence, to malignant trans-

formation of the cell. In order to restore its integrity, the cell

disposes of a number of damage control mechanisms. These mech-

anisms are older than the human species and can already be found

1 billion years ago in descendants of choanoflagellates and the

early metazoan sea anemone (16). Human tumor protein p53,

often described as the “guardian of the genome,” and its target

genes play key roles in cell-cycle control and induction of apopto-

sis. In its capacity as tumor suppressor protein, p53 is not only able

to act as transcription factor for genes of pro-apoptotic effector

proteins but it is also involved in transcription-independent cellu-

lar signaling leading directly to cell death via pathways originating

from the mitochondria or the cytosol (17–19). Furthermore, p53

induces transcription of DNA repair enzymes, thereby promoting

cell survival (20–22). This shows the functional dichotomy of p53.

To date, the exact mechanisms deciding about death or survival of

the damaged cell still remain to be elucidated. Under physiological

conditions, cellular p53 levels are low and the protein has a rela-

tively short-half-life of 20 min. Upon DNA damage, p53 levels rise

primarily through stabilization of the protein (23).

While p53 has been known for more than three decades, two

further members of the p53 family, p63 and p73, have been dis-

covered more recently. The three genes exhibit a high degree of

homology and there is increasing evidence that they have risen

from the triplication of a common ancestral gene (24, 25). All three

genes consist of important structural elements including a DNA-

binding domain (DBD), an oligomerization domain (OD), and a

transactivation domain (TAD) (26). p63 (27, 28) and p73 (29) have

been shown to induce apoptosis similarly to p53 via activation of

several of its downstream target genes (30–32). Yet, both family

members also exhibit functions distinct from p53 (Figure 1).

While p63 is crucially involved in craniofacial, limb, and skin

development (33), p73 plays an important role during neuro-

genesis (34). Multiple isoforms of the p53 family members are

generated using different promoters and alternative splicing. They

can carry out contrary functions. Whereas some isoforms have

oncogenic potential, others can act as tumor suppressors (35).

However, many isoforms seem to have both capacities depending

on the entity of the cell they are expressed in and the tissue context.

To date, regulation and interactions of the three members of the

p53 family are still under investigation.

APOPTOSIS
Malignant tumors often exhibit defects in apoptosis signal-

ing pathways, resulting in tumor cell survival. Therefore,

understanding the exact mechanisms of apoptosis can provide
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Pflaum et al. p53 family and cellular stress

FIGURE 1 | Functions of p53 and its homologs p63 and p73 and their target genes.

new strategies for the development of anti-cancer treatments. The

extrinsic apoptosis signaling pathway is initiated by ligands such

as TNFα, CD95L, and TRAIL binding to death receptors (36–38).

The best characterized members of the death receptor family are

TNFR1, CD95, DR3, TRAIL-R1 (CD4), TRAIL-R2 (CD5), and

DR6 (39, 40).

Death receptor signaling leads to activation of caspases. Cas-

pases are cysteinyl aspartate proteinases, which are synthesized

as inactive zymogens and, upon stimulation, are initialized by

autolytic cleavage (41). Initiator caspases, such as caspase 8 und

9, form signaling complexes, which activate downstream effector

caspases, including caspase 3 and 7, through proteolytic cleav-

age (41, 42). Effector caspases cannot self-activate but process a

multitude of cellular substrates during cell death (43). The intrin-

sic apoptosis signaling pathway originates in the mitochondria and

is part of the cellular stress response. It is regulated by proteins of

the Bcl-2 family. Pro-apoptotic members of the protein family

include Bax, Bak, and their subclass of BH-3 only proteins such as

BAD, BID, BIM, Hrk, PUMA, BMF, and Noxa, whereas A1, Bcl-2,

Bcl-w, Bcl-XL, and Mcl-1 are among the anti-apoptotic members

(44). The anti-apoptotic Bcl-2 proteins exert their function by sta-

bilizing the outer mitochondrial membrane (45). Upon cellular

stress, Bid and Bim mediate homo-oligomerization of Bax and

Bak, which leads to the release of cytochrome c from the mito-

chondrial intermembrane space (46). By binding Bcl-2 proteins

Bad, Noxa, and PUMA lead to inhibition of the proteins (44).
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Pflaum et al. p53 family and cellular stress

Being released into the cytosol, cytochrome c forms a complex

with APAF-1 and pro-caspase 9. After cleavage, caspase 9 activates

effector caspase 3 (44).

p53 AND ITS ISOFORMS
p53 is encoded by the TP53 gene on the short arm of chromosome

17 and has a molecular mass of 43.7 kDa (25). It spans 19,200 bp

including 11 exons (Figure 2). There are three known promoters

within the p53 gene: two sites upstream of exon 1 producing full-

length p53 and one internal site within intron 4 leading to tran-

scription of amino-terminally truncated ∆133p53 (47). ∆40p53

isoforms, which have lost a part of the N-terminal TAD, can be

obtained by alternative splicing of exon 2 and alternative initia-

tion of translation at ATG40 (24), while ∆160p53 isoforms, which

lack the first 159 residues, arise from translational initiation at

ATG160 (48). Alternative splicing of intron 9 generates additional

three isoforms, full-length p53, p53β, and p53γ (24). Both 53β and

p53γ lack the OD (24). To date, a total of 12 p53 isoforms have

been described: p53, p53β, p53γ, ∆40p53α, ∆40p53β, ∆40p53γ,

∆133p53α, ∆133p53β, ∆133p53γ, ∆160p53α, ∆160p53β, and

∆160p53γ (49, 50). While some p53 isoforms exert functions

similar to full-length p53, others have antagonizing proper-

ties. ∆133p53, for example, inhibits p53-mediated apoptosis and

causes cell-cycle arrest at the G2/M checkpoint (47, 50). ∆40p53

isoforms control the development of pluripotent embryonic stem

cells into differentiated somatic cells by modulating IGF-1-R levels

(51). Very little is known about the clinical role of p53 isoforms

and further investigation is needed to determine if they could

prove valuable as targets for anti-cancer therapy.

Human p53 protein consists of several domains. The central

DNA-binding domain (DBD) (core domain) is shared by most

p53 isoforms and binds to response elements of target genes. A

large number of p53 mutations occur within this region of the

gene (52). The N-terminal transcription–activation domain (TA)

is the binding-site for positive (e.g., p300/CBP, TAFII40/60) or

negative regulators (e.g., MDM2 and MDMX) of p53 gene tran-

scription (53). The C-terminal oligomerization (CTD) domain

is subject to alternative splicing and post-translational modifica-

tion. The CTD has been shown to influence DNA binding and

transcriptional activity of the p53 family members (54).

p53 REGULATES CELL-CYCLE, INDUCES APOPTOSIS, AND PROMOTES

CELL DIFFERENTIATION

p53 controls a large number of genes mediating G2/M and G1

cell-cycle arrest, DNA damage recognition, DNA repair, apoptosis,

and senescence (25) (Figure 1). Absence of one parental copy

of p53 through germline mutation of TP53, a condition called

Li–Fraumeni syndrome, leads to development of several tumors,

particularly sarcomas and cancers of the breast, brain, and adrenal

glands (55, 56). Even in young individuals suffering from this con-

dition multiple malignant tumors may develop. p53 knock-out

mice have been shown to be prone to development of various

types of malignancies demonstrating the important role of p53

in cancer biology (57). When initiated during the cellular stress

response, p53 activates transcription of p21, a cyclin-dependent

kinase inhibitor. p21 blocks CDK-1 and -2 leading to cell-cycle

arrest at G1 and S phase (58). Since p53 counteracts cell growth

and development, it is crucial that p53 function is strictly regu-

lated. The E3 ubiquitin ligase MDM2 blocks p53’s transcriptional

activity by binding to the N-terminal TA domain of the protein (59,

60). MDM2 is also capable of inducing the ubiquitin-mediated

proteasomal degradation of the tumor suppressor protein (61, 62).

In return, p53 positively regulates expression of MDM2. Thereby,

it creates an auto-regulatory loop that controls the level of active

p53 in the cell (63–65). During the cellular stress response, MDM2

is inhibited by different regulator proteins leading to accumulation

of p53 in the cell (66).

Another important upstream regulator of p53 activity is

p14ARF, a protein transcribed from an alternate reading frame

of the CDKN2A gene locus that also encodes for the tumor

suppressor p16INK4a (67, 68). p14ARF is part of the cell’s

response to oncogenic activation (69–73). It acts as an inhibitor

of MDM2-medited degradation of p53 (74). Therefore, ARF-

deficient mice are prone to developing tumors of various entities

(75). In a negative feedback loop, ARF promotes degradation of

its activator E2F-1 and is suppressed by its downstream target

p53 (76, 77).

Primarily, p53 is a transcription factor. It is involved in the

intrinsic and extrinsic apoptosis signaling pathways by initiat-

ing transcription of functional proteins such as PUMA, Bax, Bid,

CD95, and TRAIL-R2 (78). Yet, transcription-independent func-

tions have been described. In the cytosol, p53 induces cell death

by forming inhibitory complexes with Bcl-XL and Bcl-2, which

leads to the permeabilization of the mitochondrial membrane and

cytochrome c release (79, 80). Furthermore, cytosolic p53 can acti-

vate pro-apoptotic proteins such as Bax and Bak through direct

protein–protein interaction (18, 81, 82).

Recently, it was observed that p53 also plays an important

role in stem cell biology. In embryonic stem cells, p53 guaran-

tees genetic stability via induction of differentiation (83) while

FIGURE 2 | Architecture of the human p53 gene structure: alternative

splicing (α, β, γ), alternative promoters (P1, P1′, P2), transactivation

domain (TAD), DNA-binding domain (DBD), and oligomerization domain

(OD) are indicated. The P1 promoter generates full-length-proteins with a

transactivation domain (TAD), whereas the P1′- and P2 promoters generate

proteins lacking the TAD.

www.frontiersin.org October 2014 | Volume 4 | Article 285 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pflaum et al. p53 family and cellular stress

limiting generation of induced pluripotent stem cells and tightly

controls reprogramming (84). The cancer stem cell (CSC) hypoth-

esis suggests that every tumor holds a pool of CSCs capable of

renewal. They are essential for sustenance and growth of the tumor

and respond poorly to conventional chemotherapy (85). CSCs

result from either dedifferentiation of somatic cells or mutations

in existing stem or progenitor cells (84). Targeting CSCs via acti-

vation of p53-linked pathways could trigger cell differentiation.

In consequence, malignant cells would be more susceptible to

DNA damaging agents and their capacity of self-renewal would

be reduced.

In 1997, the cloning of p73 as a new p53 family member was

reported, this was followed by the discovery of p63 – the third

member of the p53 family (54, 86–89). The protein architec-

ture is highly conserved among the three members of the p53

family (30). The highest degree of sequence homology has been

described for the DNA-binding core domain (30). In contrast, the

C-terminal domains are diverse and subject to alternative splic-

ing and post-translational modification. Sauer et al. demonstrated

that the C-terminal domains influence DNA binding and tran-

scriptional activity (54) and suggested that the diversity of the

C-terminal domains of the p53 family influences cell fate deci-

sions and cellular responses that are regulated by the p53 family

members (90).

p63 AND ITS ISOFORMS
The p53 homolog p63 contains three promoters that are known

to encode three types of isoforms (91). The first promoter has

only recently been discovered by Beyer et al. In response to DNA

damage, it leads to activation of human male germ-cell-encoded

TAp63 protein, which is specifically expressed in testes and pro-

tects the genomic integrity of the male germline (91, 92). The

second promoter mediates transcription of TA isoforms, which

contain a N-terminal TAD (22% identical with the TAD of p53)

followed by a DBD (60% identical with the DBD of p53), an OD

(38% identical with the OD of p53), and the sterile alpha motif

(SAM) (30). In contrast, there is no SAM in the p53 gene. The third

promoter is located between exon 3 and 4. Loss of exons 2 and 3

and incorporation of exon 3′ through the third promoter results

in different ∆N isoforms (93). Additionally, alternative splicing at

the 3′-terminus leads to the generation of five isoforms (α, β, γ, δ,

and ε) and contributes to the variety of proteins (93) Premature

transcriptional termination in exon 10 generates isoform ε (94)

(Figure 3).

TAp63 is predominantly expressed in oocytes, although it has

also been identified in other tissues like epidermis. In TAp63

knock-out mice, a phenotype with ulcers, hair defects, and reduced

wound healing can be observed (95).

When first discovered,∆N isoforms were thought to exclusively

repress transcription. But, ∆N isoforms gain their transcriptional

activity from two additional TADs within the residue, one located

between the OD and the SAM domain and another located in

proximity to the proline-rich domain (96, 97). Therefore, they

do not only repress functions of the TA isoforms by inhibiting

transcription of TA dependent genes but also transactivate their

own target genes (98). ∆N63 is found in epidermal cells, in par-

ticular (99). Knock-out mice with down-regulated ∆Np63 show

severe skin wounds as well as delayed wound healing (100). ∆Np63

expression can be found in multiple tumors, particularly in those

with unfavorable prognosis (101). Of importance for clinical use

is the fact that ∆Np63α expression is a prognostic marker for

poor response to cisplatin chemotherapy in HNSCC (102). How-

ever, categorizing ∆Np63 isoforms as proto-oncogenes and TAp63

isoforms as tumor suppressors would be far too simple (103).

For instance, diffuse large human B-cell lymphomas do not show

enhanced expression of ∆Np63 protein, but overexpression of

TAp63 (104, 105).

p63 function is regulated by post-translational modifications

that influence p63 protein stability. For example, E3 ligases like

Pirh2 and ITCH lead to polyubiquitination and subsequent pro-

teasomal degradation of the protein (106). RNA-binding proteins

such as RNPC1, HuR, or PCB1 control stability of p63 by bind-

ing AU-, CU-, or U-rich elements in 5′ or 3′ UTRs of p63 mRNA

(107–109).

p63 and p53 have common and distinct downstream tar-

get genes (110), thereby sharing functions in cell-cycle control

and apoptosis (Figure 1). TAp63 causes G1 cell-cycle arrest

through transcriptional up-regulation of p21 and p57/Kip2 (111).

Furthermore, p63 induces apoptosis via the extrinsic and the

intrinsic apoptosis signaling pathway by enhanced expression of

Bax, RAD9, DAP3, APAF-1, CD95, TNF-R, or TRAIL-R death

receptors (27).

In addition, p63 assumes defined functions within the cell dis-

tinct from those of p53. In oocytes, DNA damage directly induces

phosphorylation of p63, which leads to oocyte death (112, 113).

p63 knock-out mice show a phenotype that is lethal soon after

birth. They suffer from significant epithelial abnormalities, con-

cerning skin, glands, teeth, and hair follicles (114). Their limbs are

FIGURE 3 | Architecture of the human p63 gene structure: alternative splicing (α, β, γ, δ, ε), alternative promoters (P1, P2, P3), transactivation domain

(TAD), DNA-binding domain (DBD), oligomerization domain (OD), and sterile alpha motif domain (SAM) are indicated.
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truncated and craniofacial anomalies are characteristic (93, 115).

Human heterozygous mutations of p63 result in dysplasia of hair,

teeth, digits, sweat glands, and nails (93). Therefore, p63 is essen-

tial for epithelial development. Furthermore, in a recent study,

D’Aguanno et al. suggested that p63 might be involved in cancer

cell metabolism. Colon CSCs showed a higher glycolytic activ-

ity when expressing TAp63 instead of ∆Np63 (116). Consistent

with these observations, Giacobbe et al. reported that TAp63 iso-

forms can enhance expression of the mitochondrial glutaminase 2

(GLS2) gene, both in primary cells and in tumor cell lines (117).

Loss of function mutations of p63 are extremely rare in malig-

nancies in contrast to p53 mutations (30) and controversial pheno-

types have been described. Development of spontaneous tumors

could be found as well as no increase in tumor disposition (111,

118–120). However, alterations in p63 expression patterns play

an important role in tumorigenesis (121). In addition, mice het-

erozygous for mutations in both p53 and p63 (p53+/−; p63+/−)

show higher tumor burden in comparison to mice heterozygous

for p53 only (118). Knock-down of p63 (p63−/−) can lead to

loss of p53 and thereby to cancer development (118). In fact,

mice lacking p53 and p63 show increased Ras-mediated sarcoma

development (111) and are prone to malignant transformations of

embryonic fibroblasts (122). Furthermore, TAp63 has been shown

to play an important role in tumor dissemination. Interactions of

TGFβ, Ras, and mutant p53 induce formation of a ternary com-

plex of mutant p53, Smads, and the p63 protein, which opposes

the anti-metastatic function of p53 (123, 124). TAp63 leads to

overexpression of metastasis suppressor genes or microRNAs like

DICER1, mir-130b, and integrin recycling genes (116). Mutant p53

can reduce Dicer expression via inhibition of TAp63, thus enabling

tumor metastasis (125). The p63 gene controls transcription of the

miR-200 family, which regulate CSCs and epithelial–mesenchymal

transition (126). ∆Np63α induces miR-205 transcription and reg-

ulates epithelial–mesenchymal transition in human bladder can-

cer cells (127). Therefore, controlling p63 could be a promising

approach to control or prevent metastasis in cancer.

p73 AND ITS ISOFORMS
The p73 gene consists of 15 exons and is located on chromosome

1p36. Like p63, p73 has several TA isoforms containing a specific

TAD and ∆N isoforms lacking it (Figure 4). The first promoter,

located on exon 1, can induce transcription of several truncated

∆Np73 isoforms. They are either lacking exon 2 or exon 2 and

exon 3 (∆Ex2p73 and ∆Ex2/3p73). In variant ∆N’p73, exon 3 is

substituted by exon 3′. The TAD of p73 is 30% identical to p53.

The consecutive p73 DBD shares 63% and the OD 38% identity

with p53 (30). The OD is followed by the SAM domain, which

is crucial for activating the molecule via tetramerization. At least

seven different 3′ terminal splicing variants are known (α, β, γ, δ,

ε, ζ, η) (128). Different cell types just express a selection of p73

isoforms (129). Splice variants α and β are rarely expressed in

malignant cells (130). Expression of γ, δ, ∈, and θ isoforms has

been described in acute myeloid leukemia (AML) and in chronic

myeloid leukemia (CML) (131).

There are several molecular mechanisms that regulate p73

function on transcriptional, post-translational, and protein level

(32). Enhancers of p73 transcription are p300 (132), E2F-1 (133),

CREB-binding protein (CBP) (134), YAP (135), and MM1 (my

modulator 1) (136), while MDM2 (137) and c-myc (136) inhibit

p73 transcriptional activity. On the post-translational level, p73

activity is reduced by sumoylation by PIAS-1 (138), deacetyla-

tion by SIRT (139), threonine phosphorylation by CDK2/CDK-1

(140), neddylation by NEDD8 (141), and conjugation and ubiqui-

tination by Itch (142). In contrast, acetylation by p300 and pCAF

(143) or phosphorylation by c-Abl (144), p38MAPk or PKCδ (145)

stimulate p73 activity. The RING finger E3 ubiquitin ligase PIR2

selectively ubiquitinates ∆Np73 variants (146). ASPP proteins

are also able to regulate p73 function via their poly-C-binding

domain (147).

Functions of p73 are diverse. Similarly to its family mem-

bers p73 plays an important role at different regulatory check-

points of the cell-cycle. TAp73 induces G1 cell-cycle arrest via

enhanced expression of p21 and p57/Kip2 (148). Furthermore,

TAp73 represses genes relevant in G2/M-phase like CDC25B and

CDC25C (149), Cyclin B1 (150), and Cyclin B2 (149). p73 binds

to FLASH and leads to cell-cycle arrest in S-phase (151). As

known from p53, DNA damage stimulates p73 to induce apoptosis

involving endoplasmic reticulum (ER) stress (152).

Neuronal differentiation is regarded as innate p73 function that

is not shared with p53. Phenotype studies of genetically modified

FIGURE 4 | Architecture of the human p73 gene structure: alternative

splicing (α, β, γ, δ, ε, ζ, η), alternative promoters (P1, P2),

transactivation domain (TAD), DNA-binding domain (DBD),

oligomerization domain (OD), and sterile alpha motif domain (SAM)

are indicated. The P1 promoter generates full-length-proteins with a

transactivation domain (TAD), whereas the P2 promoter generates proteins

lacking the TAD. Alternative splicing of exon 2 produces Ex2p73 proteins

that contain part of the TAD, alternative splicing of exon 2 and 3 produces

Ex2/3p73 proteins that have completely lost the TAD. Alternative splicing of

exon 3′ generates ∆N′p73.
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mice support this thesis. Most p73 knock-out mice die within

the first 4 weeks after birth. They show hippocampal dysgenesis,

hydrocephalus ex vacuo, atypical social and reproductive behav-

ior, and often suffer from chronic infections (34). Heterozygous

mice develop an Alzheimer’s disease-like phenotype with impaired

motor and cognitive functions (153, 154). Autopsy revealed accu-

mulation of phosphor-tau positive filaments in the brain and in

atrophic neurons (153). TAp73 knock-out mice develop a less

severe phenotype characterized by malformations of the hip-

pocampal dentate gyrus (155), whereas ∆Np73 knock-out mice

present with reduced neuronal density in the motor cortex, loss of

vomeronasal neurons, and Cajal–Retzius cells, as well as choroid

plexus atrophy (156, 157). Latest research revealed that TAp73

is a transcriptional activator of the p75 neurotrophin receptor

(p75NTR), which plays an important role during neurogenesis.

TAp73 knock-out mice show reduced levels of p75NTR and suf-

fer from peripheral nerve defect, including myelin thickness and

thermal sensitivity (158).

Similarly to p63, p73 executes a set of important functions

in tumor metabolism. TAp73 induces the expression of glucose-

6-phosphate dehydrogenase (G6PD), which is essential for the

oxidative pentose phosphate pathway (159). Cox4il is another p73

target gene relevant in metabolism. Deletion of TAp73 leads to

impairment of oxidative phosphorylation via Cox4il. As a result,

levels of reactive oxygen species in cells accumulate (160).

p73 is rarely mutated in human cancer (<1%), but overex-

pression of p73 can be found in several malignancies, for exam-

ple, in hepatocellular carcinoma (29, 161, 162), neuroblastoma

(163), lung cancer (164), prostate cancer (165, 166), urothe-

lial cancer (167), colorectal carcinoma (168), and breast cancer

(>40%) (169). Seventy percent of TAp73 knock-out mice or mice

heterozygous for p73 suffer from malignant tumors. Colorectal

and breast cancer predominantly show an increase in ∆Np73

(170). Overexpression of both, TA and ∆N isoforms, has been

detected in thyroid cancer and in chronic B-cell leukemia (171),

whereas diminished p73 expression has been reported for pancre-

atic malignancies (172). p73 heterozygous mice (p73+/−) have

an increased probability for the development of spontaneous

tumors such as lung adenocarcinoma, lymphomas of the thyme,

and hemangiosarcoma (118). Mice heterozygous for mutations in

both p53 and p73 (p53+/−; p73+/−) develop a severe disease

pattern due to a severe tumor burden and more aggressive tumor

dissemination (118).

p53 FAMILY AS A TARGET OF SMALL MOLECULES
Large-scale genome sequencing has shown that over half of human

malignancies exhibit point mutations in the p53 gene impairing

p53 function. Most p53 mutations are missense point mutations

located within the DBD. Many of them lead to destabilization of

folding of the domain at physiological temperatures and inter-

fere with its DNA-binding ability (173). Certain mutations lead

to a gain-of-function of p53 and result in oncogenicity (52, 174,

175). In many other tumors p53, though intact, is inactive fol-

lowing enhanced degradation or reduced activation (176). Loss

of wild-type p53 function or gain-of-function is often associ-

ated with aggressive tumor growth, poor prognosis, and resistance

to chemotherapy. Restoration of p53 function in mice suffering

from lymphomas or sarcomas has been shown to induce tumor

regression (177, 178). Therefore, restoring wild-type function of

p53 holds great promise as a future strategy for cancer treatment.

SMALL MOLECULES TARGETING WILD-TYPE p53

To date, a number of small molecules have been identified, which

are able to restore wild-type p53 function to cancer cells (Figure 5).

The first small molecule inhibitors, which target p53/MDM2-

interaction, are Nutlins. Nutlins are a family of three (Nutlin-

1, Nutlin-2, Nutlin-3) cis-imidazoline analogs. They occupy the

deep hydrophobic pocket of MDM2 that mediates p53 interaction

(179). Hence, Nutlins prevent p53 degradation and lead to p53

accumulation and stabilization. There is evidence that Nutlins do

not only enhance p53 function but also upregulate p73 in different

in vitro and in vivo settings (180). Nutlin-3a has even proven effec-

tive at inducing apoptosis in p53-deficient colorectal carcinoma

cells and hepatocellular carcinoma cell lines via activation of p73

(181, 182). A number of preclinical studies, mostly using Nutlin-3

as a therapeutic agent, have been carried out focusing especially on

hematological malignancies like AML (183, 184), ALL (185), and

B-CLL (186, 187). However, Nutlins are also able to induce apop-

tosis in other cell lines including ovarian cancer (188), sarcoma

(189, 190), as well as glioblastoma (191). Yet, effectiveness of Nut-

lin therapy ultimately presumes the presence of wild-type p53 and

latest findings suggest that it strongly depends on the epigenetic

profile of p53 target genes (190, 192). Moreover, Michaelis et al.

and Aziz et al. reported on several different cancer cell lines that

developed de novo p53 mutations and became resistant toward

Nutlin-3 mediated apoptosis (193, 194).

Another small molecule that inhibits p53/MDM2 interaction

is RITA (reactivation of p53 and induction of tumor cell apopto-

sis). RITA binds p53 and thereby induces conformational changes

within the molecule that prevent MDM2 association (195, 196).

In a human head and neck cancer cell line (HNC), RITA was able

to restore p53 function contributing to cytotoxicity of cisplatin

therapy and leading to apoptosis in vitro and in vivo (197). The

anti-tumoral effect of RITA was also observed in neuroblastoma

cell lines (198).

Rational design led to construction of the spiro-oxindole

MI-219, which is a highly specific small molecule inhibitor of

p53/HDM2-interaction (199). Later, it was discovered that MI-219

does not only induce dissociation of the two molecules but also

leads to auto-ubiquitination and degradation of HDM2 (200). MI-

219 has been shown to activate p53-dependent pathways, which

initiated cell-cycle arrest and apoptosis in a number of cancer cell

lines, whereas primary cells remained unaffected by these p53-

mediated effects (199). In a preclinical trial, the pharmacological

properties of MI-219 were tested and dosages were predicted for

use in phase I clinical studies (201).

As an alternative to interfering with p53/MDM2-interaction,

degradation of p53 can be prevented by inhibiting the E3 ligase

activity of MDM2, and therefore, preventing ubiquitination of

p53 (202). A series of 5-deazaflavin derivatives, named HDM2

ligase inhibitor 98 class (HLI98), which bind the C-terminal

RING-domain of MDM2, were identified (203–205). Later, it was

shown that the nitro group of the molecules is not needed to

convey inhibitory function, which led to the synthesis of novel
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Pflaum et al. p53 family and cellular stress

FIGURE 5 | Wild-type p53 as a target of small molecules: Nutlins,

HLI98, and RITA compensate MDM2 inhibition of p53 via inhibition

of MDM2. Tenovins have been identified as SIRT 1 and SIRT 2

inhibitors that indirectly activate p53. Activated p53 induces

transcription of genes regulating cell-cycle arrest and apoptosis,

resulting in tumor suppression.

5-deazaflavin derivatives named MDP compounds (206). While

HLI98 and MDP compounds demonstrate an interesting proof of

concept, there are still obstacles to overcome in terms of chemi-

cal properties such as solubility as well as selectivity for MDM2

(206). Another important question, which needs further atten-

tion, is whether inhibition of MDM2 function leads to induction

of MDM2 formation via the p53 feedback loop.

The tryptamine JNJ-26854165 (Serdemetan) effectively pre-

vents p53/HDM2 from binding to the proteasome, thereby

inhibiting degradation of p53 (207). In acute myeloid and lym-

phoid leukemia cells, JNJ-26854165 induces apoptosis via p53

by transcription-dependent and -independent pathways (207).

A phase I clinical trial assessing safety and dosage of Serdemetan in

advance stage and refractory solid tumors showed good bioavail-

ability of the substance and p53 levels in skin biopsies increased.

Forty percent of patients showed stable disease, yet in some

patients QTc prolongation was observed as an adverse effect

(208). However, increased MDM2 levels could render substances

like Nutlins, RITA, MDP compounds, and JNJ-26854165 less

efficient (209).

SIRT1, a nicotinamide adenine dinucleotide-dependent class

III histone deacetylase, deacetylates p53 at Lys382, thereby
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reducing its activity (210). Hence, blocking SIRT function is a

new strategy of restoring p53 function independent of MDM2

(211). Two small molecules, tenovin 1 and the more water-soluble

tenovin 6, which block SIRT1 and SIRT2 function efficiently, were

discovered by Lain et al. (212). Tenovin 1 was shown to induce

apoptosis in cutaneous T-cell lymphoma cells (213). Interestingly,

following tenovin 6 treatments cell death was observed in five

different colon cancer cell lines independent of their p53 sta-

tus (214). Also, tenovin 6 activated autophagy-lysosomal pathway

genes in chronic lymphocytic leukemia cells without affecting p53

pathways (215). Both findings point toward additional cellular

mechanisms mediating the anti-tumor effect of tenovins.

SMALL MOLECULES TARGETING MUTANT p53

In tumors that harbor p53 mutations, which often lead to loss

of its DNA-binding function, targets for small molecules other

than MDM2 are needed. An increasing number of p53 muta-

tions have been described so far. Nevertheless, most mutations

cause unfolding of the DBD rendering it unable to bind to tar-

get genes for transactivation (216, 217). Therefore, a number

of small molecules aiming at restoring and stabilizing the orig-

inal DBD conformation have been developed (Figure 6). Bykov

et al. identified two small molecules by screening a library of low-

molecular-weight compounds for substances, which are able to

restore wild-type function of mutant p53: PRIMA-1 and MIRA-1

(218, 219). PRIMA-1 (p53 reactivation and induction of massive

apoptosis) is a pro-drug (220). The molecule effectively induces

apoptosis in bladder cancer cell lines (221). Later, PRIMA-1MET

(APR-246), a compound that bears great structural similarities to

PRIMA-1, but has higher activity than its predecessor, was discov-

ered (222). Interestingly, PRIMA-1MET can not only restore the

pro-apoptotic function of p53 but also of mutant TAp63γ and of

TAp73β, while exerting little effect on TAp73α (223). Furthermore,

PRIMA-1MET is involved in activating downstream target genes of

the p53 family (223–225).

PRIMA-1MET alone and PRIMA-1MET in combination with

chemotherapeutic drugs are effective at inducing tumor cell apop-

tosis in vivo (221, 222, 225). Also, a phase one clinical trial using

PRIMA-1MET (APR-246) in advanced prostate cancer and hema-

tological malignancies, as well as a phase Ib/II clinical trial using

this compound in addition to carboplatin in recurrent high-grade

serous ovarian cancer are under way and will offer more insight

into the effectiveness and practicability of mutant p53 reacti-

vation (National Cancer Institute: Safety Study of APR-246 in

patients with refractory hematologic cancer or prostate cancer;

p53 suppressor activation in recurrent high-grade serous ovarian

cancer, a Phase Ib/II study of systemic carboplatin combination

chemotherapy with or without APR-246).

MIRA-1 (mutant p53 reactivation and induction of rapid apop-

tosis) is a maleimide-derived molecule and has no structural

similarity with PRIMA-1, but it is equally able to restore p53 func-

tion leading to cell death via apoptosis with even higher potency

than PRIMA-1 (219). By reestablishing its DNA-binding capacity

and transcriptional transactivation through p53, MIRA-1 leads to

programed cell death in multiple myeloma in vitro and in a mouse

model (226). To date, little is known about the molecular mech-

anisms and safety of MIRA-1 treatment and further research is

needed before clinical evaluation.

Although PRIMA-1 and MIRA-1 seem to have stabilizing effect

on a great variety of p53 mutants, they are not able to restore

normal protein configuration to the Phe176 mutant (218). This

shows the necessity to test p53 status and to identify the underly-

ing p53 mutations before small molecule treatment (220). In fact,

approaches have been made to target distinct mutations. Rational

drug design led to the identification of the compound PhiKan083,

which stabilizes the Cys 220 p53 mutant and prolongs its half-life,

but does not rescue any other p53 mutant (227). PhiKan083 fits

into a groove in the defective molecule and induces refolding of

the protein (227). In consequence, the melting point of the mutant

increases and denaturation is slowed down (227).

FIGURE 6 | Mutant p53 as a target of small molecules: PRIMA-1, MIRA-1, and RETRA bind to mutant p53 and restore wild-type p53 function. Moreover,

they block mutant p53-induced inhibition of TAp73. These activities result in tumor suppression.
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CP-31398 was discovered by screening a library of more than

100,000 synthetic compounds for substances that effectively sta-

bilize p53 conformation (228). Initially, CP-31398 was thought

to prevent unfolding of wild-type and mutant p53 and increase

levels of wild-type p53 by blocking ubiquitination and degradation

(229). Yet, further research revealed that it yields a number of p53-

independent functions, which mediate its cytotoxic effects (230).

In a mouse model of urothelial cancer of the bladder CP-31398

effectively reduced tumor growth and invasion (231).

However, increased p53 activity bares risks for non-cancerous

cells that might also be subject to apoptosis and further research

is needed to find the adequate dose-response relationship, specific

to the compound used (209). In an attempt to identify mole-

cules, which restore p53’s transcriptional activity exclusively in

cancer cells holding p53 mutations, reactivation of transcriptional

reporter activity (RETRA) was identified by screening compounds

from a chemical library (232). Further analysis revealed that

RETRA, rather than restoring a functional p53 molecule, leads to

an increase in TAp73 levels and to its release from a blocking com-

plex with mutant p53 (232). As mentioned above, p73 can activate

various target genes of p53 involved in cell-cycle arrest and apopto-

sis, thereby mediating tumor cell death (232). In vivo, in a xenograft

mouse model, tumor growth could be decelerated by intraperi-

toneal injection of RETRA (232). Although still in the very early

stages of development, RETRA opens up new perspectives for p63-

and 73-based cancer treatment options.

Moreover, restoring p53 apoptotic function and modulation

of p63 and p73 expression is often essential for sensitivity toward

chemotherapeutic drugs or radiation, as lack of p53 and unfa-

vorable expression patterns of p63 and p73 can lead to resis-

tance toward treatment in different malignant tumors (233–235).

Reconstitution of p53 function or activation of certain p63 and

p73 isoforms might allow reducing the dose of cytotoxic drugs

while still maintaining their anti-tumor effects. Simultaneously,

this would permit to protect normal tissues from side effects of

chemotherapy.

However, restoration of wild-type p53 might not be beneficial

in all types of tumors. Jackson et al. showed that doxorubicin lead

to cell-cycle arrest and senescence instead of cell death in breast

cancer expressing wild-type p53, thereby promoting tumor cell

survival and resistance to chemotherapy (236). This shows the

necessity to elucidate which p53-dependent pathways are favored

in certain malignancies before considering small molecule treat-

ment. Novel treatment approaches could lead to the development

of substances that selectively activate p53-mediated apoptosis

signaling pathways.

CONCLUSION
The p53 family plays a central role in cancer development and

treatment response. Whereas p53 is often mutated in tumors, p63

and p73 function is preserved, yet altered by different expres-

sion patterns of their TA and ∆N isoforms. Increasingly, these

expression patterns are evaluated to estimate prognosis and adapt

anti-cancer therapy. Nevertheless, the molecular mechanisms reg-

ulating the interplay between the different isoforms of the p53

family are only partly understood and are focus of current research.

Identifying compounds that interfere with oncogenic signaling

induced by certain p63 and p73 isoforms could be a novel approach

in anti-cancer therapy.

An increasing number of compounds that re-establish pro-

apoptotic p53 function in cancer cells have emerged over the

past decade. A variety of small molecules, which aim at increasing

p53 function in cancers expressing wild-type p53, have been dis-

covered. Among them are Nutlins, which are already undergoing

clinical evaluation, RITA, tenovins, and many others.

In tumors with underlying p53 mutation restoring wild-type

activity of p53 has proven more difficult, but nevertheless feasible.

PRIMA-1 and MIRA-1 are effective at inducing apoptosis via p53

in tumors that exhibit a great variety of p53 mutations. Yet, there

are other small molecules, like PhiKan083, which are more specific

and restore wild-type configuration of specific mutants only.

A number of in vivo studies and clinical trials have shown syn-

ergistic effects of small molecule treatment and chemotherapeutic

drugs in a variety of malignancies. Especially cancer cells,which are

resistant to chemotherapy due to impaired p53 function, become

more susceptible to treatment.

Taking the approaches of p53 reactivation further, there might

be new possibilities of targeting CSCs, which are often insuscepti-

ble to chemotherapy. Induction of p53 in these cells could lead to

activation of pro-apoptotic pathways via differentiation.
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