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p53-family proteins and their regulators: hubs and
spokes in tumor suppression

L Collavin1,2, A Lunardi1,2,3 and G Del Sal*,1,2

The tumor suppressor p53 is a central hub in a molecular network controlling cell proliferation and death in response to
potentially oncogenic conditions, and a wide array of covalent modifications and protein interactions modulate the nuclear and
cytoplasmic activities of p53. The p53 relatives, p73 and p63, are entangled in the same regulatory network, being subject at least
in part to the same modifications and interactions that convey signals on p53, and actively contributing to the resulting cellular
output. The emerging picture is that of an interconnected pathway, in which all p53-family proteins are involved in the response
to oncogenic stress and physiological inputs. Therefore, common and specific interactors of p53-family proteins can have a wide
effect on function and dysfunction of this pathway. Many years of research have uncovered an impressive number of
p53-interacting proteins, but much less is known about protein interactions of p63 and p73. Yet, many interactors may be shared
by multiple p53-family proteins, with similar or different effects. In this study we review shared interactors of p53-family proteins
with the aim to encourage research into this field; this knowledge promises to unveil regulatory elements that could be targeted
by a new generation of molecules, and allow more efficient use of currently available drugs for cancer treatment.
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After its first description as a nuclear protein engaged
by the oncogenic SV40 large T antigen, and the realization,
years later, that p53 is a powerful tumor suppressor, the
scientific community has invested a formidable effort
on understanding its function and regulation.1 p53 is a trans-
cription factor whose activity is promoted by a wide range
of stress signals potentially affecting genome integrity
and proper cell proliferation; once activated, p53 is capable
of coordinating a complex cellular response that leads to
cell-cycle arrest, DNA repair, senescence, or programmed
cell death. For this crucial function, p53 was suitably
dubbed the ‘guardian of the genome’.1 More than 15 years
after discovery of p53, two p53-related genes were iden-
tified: p63 and p73.2–4 Interestingly, p63 and p73 are struc-
turally similar and functionally related to p53, and hence
the entire p53 family may be regarded as a unique signaling
network controlling cell proliferation, differentiation, and
death.
In this study we present an overview of protein interactors

of all p53 family members, with emphasis on their possible
role in mediating integrated functions of the p53 pathway.
For an update on the complexity of p53 activities and
regulation, the reader is referred to specific recent reviews
(e.g., Kruse and Gu5, Vousden and Prives6, Green and
Kroemer,7 and Menendez et al.8).

All p53-family Proteins are Involved in Tumor
Suppression

All three p53-family proteins have a very similar domain
organization, are expressed in a similar set of alternative
isoforms, and are subject to similar post-translational modi-
fications (PTMs; summarized in Figure 1); however, mouse
models revealed important differences in their biological role,
showing that p53-family paralogs have acquired a high degree
of functional specificity since their duplication and divergence
during evolution.9,10 p53-null mice are viable and largely
normal in embryonic development, but die of cancer at young
age, highlighting the crucial role of p53 in preventing formation
of spontaneous tumors.11 Mild developmental and fertility
defects can be detected with careful analysis.12,13 On the
contrary, p73-null mice are born viable but have nervous
system abnormalities, hydrocephalus, and immunological
problems with chronic inflammation. p73-null mice also show
reproductive and behavioral defects, and generally die within
the first 2 months.4 p63-null mice are born alive, but die
immediately after birth. They show a severe phenotype,
lacking limbs and a wide range of epithelial structures
including skin, prostate, breast, and urothelia,2,3 indicating
that p63 is required to maintain the pool of proliferating stem
cells during development of epithelia.14,15
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p53 is a powerful tumor suppressor, as proven by a wealth
of in vivo models and dramatically confirmed by frequent
mutation in human cancers (see Hainaut et al.16Donehower
and Lozano17 and references therein). The role of the
other two p53-related proteins in tumor suppression is less
obvious, because they are rarely deleted or mutated in
cancer, and the respective knockout mice die tumor-free from
developmental defects.2–4 Moreover, human syndromes
with p63 mutations are not associated with higher tumor
incidence.18 Nonetheless, a wealth of data show that both p63
and p73 have a role in tumor suppression. First of all, a careful
analysis of the tumor predisposition of p63 and p73 hetero-
zygous mice revealed a consistent connection with cancer. In
fact, p63þ /– and p73þ /–mice develop spontaneous tumors,
and show a median survival time that is only a few months

longer than that of p53þ /– mice.19 Second, a number of
studies showed that TAp73 and TAp63 can induce cell-cycle
arrest, senescence, DNA repair, and apoptosis in response
to chemotherapic drugs, independently of p53.20–22 Third,
silencing of p73 and p63 increases the transforming potential
of p53–/– mouse embryonic fibroblasts.23 Fourth, even if
not mutated, p63 and p73 are aberrantly expressed in cancer.
In particular, DN isoforms of p63 and p73 are frequently
overexpressed in a wide range of tumors, in which they
associate with poor prognosis (reviewed in Deyoung and
Ellisen24). Moreover, forced expression of DNp73 promotes
transformation in experimental models.25,26 Thus, upregula-
tion of DNp63 or DNp73 isoforms may be a common
mechanism to inactivate the respective TA isoforms during
tumorigenesis.
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Figure 1 Structure of p53-family proteins and their principal isoforms, together with some regulatory post-translational modifications. p53 family proteins have a similar
structure, comprising an N-terminal transactivation domain (TA), followed by a proline-rich region (PR), a central DNA-binding domain (DBD), and a C-terminal oligomerization
domain (OD). In p63 and p73 there is an additional C-terminal sterile-a motif (SAM). Family members have limited overall homology, but strong similarity in the DBD
(approximately 60% between p53 and p63/p73 and approximately 85% between p63 and p73).10,138 All p53-family proteins produce two groups of mRNAs controlled
by separate promoters (P1 and P2), encoding proteins with alternative N-terminal regions. Those generated from P1 promoters contain the complete TA domain and are
transcriptionally proficient; those generated from P2 promoters lack the TA and are transcriptionally inactive (DN isoforms). For both p53 and p73, additional N-terminal
variants are generated by alternative splicing or internal initiation of translation.138 DN isoforms can still bind to DNA, and can exert an effect as dominant-negative versions.138

However, this general assumption requires some caution since for instance, DNp63 isoforms are transcriptionally proficient.139,140 All p53-family transcripts are also subject to
alternative splicing at the C-terminus, independent of the promoter used, thus generating a combinatorial variety of isoforms (obtainable adjoining each N-terminal variant with
any of the C-terminal variants). The longest C-terminal variant is dubbed a in p63 and p73, and comprises the SAM domain. In p53, the longest C-terminal isoform corresponds
to the ‘classic’ p53 transcript, and is simply indicated as ‘p53’. Alternative splicing of C-terminal exons generates shorter isoforms, named b and g . Additional
C-terminal splice variants in p73138 are not reported in this study. The p53-family proteins also share some common post-translational modifications, reported schematically in
the drawings in their respective positions; a question mark indicates that, although the modification has been shown, the target residue is unknown. It is evident that many
modifications are specific for selected isoforms
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Recently, generation of a mouse model with selective
knockout of the TAp73 isoforms, with retention of DNp73
expression, conclusively established a role of p73 in tumor
suppression.27 Developmental abnormalities are less severe
in thesemice, allowing detection of two important phenotypes:
increased tumor susceptibility and infertility. Both are ascrib-
able to increased genomic instability and aneuploidy linked
with mitotic spindle defects. Thus, maintaining genome
integrity seems to be a key function of TAp73.27,28 Similarly,
generation of a mouse model selectively lacking TAp63
isoforms uncovered a function for TAp63 in DNA damage-
induced apoptosis of germ cells.29 In response to genotoxic
stress, TAp63 is phosphorylated by cAbl and induces
apoptosis of oocytes, having a crucial role in genome
protection of the female germ-line.29,30 A more recent study
established a function of TAp63 in mediating Ras-induced
senescence and preventing tumorigenesis in vivo, in a model
of p53-nullizygous mice.20 In addition, TAp63 has a crucial
role in preventing invasiveness and metastasis of epithelial
tumors by controlling expression of a crucial set of metastasis-
inhibitor genes.31 Finally, it should be considered that
oncogenic p53 mutants can directly or indirectly interact with
p73 and p63, interfering with their functions, to promote
transformation, chemoresistance, and metastasis.31,32

Taken together, these evidences implicate all p53 family
members in tumor suppression, yet highlighting their specifi-
cities. In addition to intrinsic structural and biochemical
differences, functional specificity of p53-related proteins may
derive from selective interactionwith specific regulators, or from
interaction with common regulators that have different effects
on each familymember (or isoform). In any case, the settings in
which p53-family proteins are activated can profoundly affect
the response of diverse cell types to oncogenic stress.

Protein Interactions Modulate the Response of the p53
Pathway

The tumor suppressive function of the p53 pathway resides
largely in its capacity to sense potentially oncogenic stress
conditions, and coordinate a complex set of molecular events
leading to growth restraining responses. All steps of this
pathway are controlled by regulatory interactions with positive
or negative modulators, promoting p53 covalent modifica-
tions, controlling its stability and subcellular localization,
determining its specificity for selected promoters, or modulat-
ing its transactivation potential. Other p53 interactors exert an
effect further downstream to directly mediate p53 biological
effects, for example, at themitochondria. Accordingly, p53 is a
highly connected protein and can form physical complexes
with many cellular proteins. A search of public protein–protein
interaction databases using the APID web interface (http://
bioinfow.dep.usal.es/apid/index.htm) currently retrieves more
than 300 reported interactions involving human p53, whereas
dramatically fewer interactions are reported for the other
family members (Figure 2b). Such unbalance reflects a
tremendous disproportion in the number of screenings
conducted so far, and must not to be interpreted as a reduced
propensity of p73 or p63 to form complexes with other
proteins. We believe that the list of p73/p63 interactors will
steadily grow as additional screens are performed.

Interactors Regulating PTM of p53-family Proteins

One important category of interactors is represented by
enzymes that apply covalent PTMs on p53- and p53-related
proteins, either activating or inhibiting their activity. The
complex array of modifications of p53, and how these
modulate its activation and functions, have been extensively
reviewed recently and will not be discussed in this study (e.g.,
Kruse and Gu5 and Vousden and Prives6). Rather, we wish to
point out that several PTMs are common tomultiple p53 family
members (see Figure 1 and Table 1), thus implying that
p53, p63, and p73 are potentially responsive to a similar set
of signals. Nonetheless, the same PTM may have different
effects on the biochemical functions of each p53 family
member, and a given upstream signal may result in a different
biological output, depending on relative expression levels of
the three p53-family proteins and their isoforms. A compre-
hensive knowledge of regulatory modifications of all three
p53-related proteins will improve our understanding of the
behavior of the p53 pathway in different cell types, and
perhaps allow development of better prognostic and thera-
peutic strategies.

Not too much, not too little: Interactors Regulating
p53-family Protein Levels

The principal way in which p53 levels are controlled is by
regulated degradation of the protein. Accordingly, ubiquitina-
tion of p53 represents a ‘core control’ on which many input
signals converge. Perhaps less prominent is the role of protein
turnover in the regulation of p73 and p63, but a number of
ubiquitin ligases are shared among p53 family members.

MDM2. The most important p53 regulator is the Ring domain
E3 ubiquitin ligase MDM2 (mouse double minute-2). MDM2
recognizes a short region in the TA domain of p53 and
interferes with its transcriptional activity; at the same time,
MDM2 interacts with the DBD region and ubiquitinates p53,
promoting its proteasomal degradation.33,34 As MDM2 is a
transcriptional target of p53, inhibition by MDM2 is part of a
negative feedback loop on p53 activation.34 In addition to
MDM2, p53 is also bound and regulated by the MDM2-
related protein MDMX (also named MDM4). MDMX does
not induce p53 degradation directly, but can antagonize
p53-dependent transcription.35 However, MDMX and MDM2
heterodimerize to augment p53 degradation, and hence both
proteins can potentially influence p53 stability.36,37

Both MDM2- and MDMX-deficient mice die in utero as a
consequence of p53 hyperactivity, showing the crucial role of
these proteins in restraining p53 function during develop-
ment.38,39 Not surprisingly, high levels of MDM2 or MDMX are
found in many human cancers.40,41

MDM2 and MDMX also bind p73, but MDM2 does not
promote p73 ubiquitination.42,43 Rather, MDM2 relocalizes
p73 to subnuclear speckles and represses p73 transcriptional
activity by preventing its interaction with the acetyltransferase
p300/CBP and RNA polymerase-associated factors.44,45

Interestingly, MDM2 can also catalyze addition of the small
ubiquitin-like protein NEDD8 to both p53 and p73, and also
this modification inhibits their transcriptional activity.46,47
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Less is known about the physical association of MDM2 and
MDMX with p63. Some researchers found lack of interaction
for both MDM2 and MDMX,48,49 whereas others were able
to detect MDM2–p63 complexes, although reporting contra-
dictory effects on p63 function.42,50 The crucial amino acids
required for MDM2 binding are conserved in p63, but
molecular modeling suggests that other residues in the
N-terminal domain of p63 may render this interaction
significantly weaker.51

In line with its role as primary regulator of p53, MDM2
stability, localization, and function are tightly controlled,
and hence the p53–MDM2 core circuit responds to a multi-
tude of signaling pathways, including DNA damage, onco-
gene activation, and nucleolar/ribosome stress (see Kruse
and Gu5, Vousden and Prives6 and references therein).
Similarly, stress-activated kinases can regulate MDMX
activity.52

In addition to stress, the p53–MDM2 core circuit can also be
regulated by physiological cues. An example is the Notch
pathway, crucial for determination of cell fate, maintenance of
stem-cell populations, and often deregulated in cancer. p53
can inhibit Notch signaling by both repressing transcription
of Presenilin 1 and competing with Notch for interaction with
the transcriptional co-activator MAML1.53 At the same time,
Notch can negatively regulate p53 by modulating the p53–
MDM2 core circuit; in fact, Notch1 signaling increases MDM2
activity through downregulation of p14ARF and activation of
the PI3K/Akt pathway.54 In line with this antagonism, the
endocytic protein Numb, which is asymmetrically partitioned
at mitosis to control cell fate by antagonizing the activity of
Notch, binds to both MDM2 and p53, counteracting MDM2-
dependent p53 ubiquitination and promoting p53 stabilization
and activity.55 The p53–MDM2 core circuit also mediates a
functional link between p53 and the Hedgehog signaling
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Figure 2 Protein–protein interactions of the p53 family. (a) The figure summarizes some interactors of the p53-family proteins, arranged according to their region of
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pathway. In fact, constitutive activation of the Hedgehog
pathway downregulates p53 by promoting MDM2 phosphory-
lation and association with p53.56

As MDM2 binds multiple p53 family proteins, the many
signaling pathways that impinge on the MDM2–p53 core

circuit could in principle engage the entire p53 family in a
coordinated cellular response.

Other E3 ubiquitin ligases. In addition to MDM2, several
other ubiquitin ligases promote p53 degradation (see
Table 1). Two such ligases, PIRH2 and COP1, are direct
transcriptional targets of p53; together with MDM2, they are
involved in a negative feedback loop to restore normal p53
levels after the stress response. On the contrary, several
other E3 ubiquitin ligases can regulate p53 turnover in the
absence of stress (see Lee and Gu57 and references
therein). Notably, MDM2 and MDMX are found only in
vertebrates, whereas most of the other p53-specific ubiquitin
ligases are conserved in simpler organisms such as
Caernorhabditis elegans and Drosophila melanogaster.
Currently, little is known on the potential activity of these
ubiquitin ligases on Cep-1 or Dmp53 (p53-like proteins of
C. elegans and D. melanogaster, respectively). For example,
the cytoplasmic ubiquitin ligase Synoviolin degrades both
mammalian and Drosophila p53.58 Similarly, TRIM24, a
RING-domain ubiquitin ligase that degrades mammalian
p53, may be controlling p53 levels in Drosophila, as the
TRIM24 knockout phenotype is rescued by knockdown of
Dmp53.59,60 Considering that invertebrates have a single
p53-like gene, it is possible that evolutionarily conserved
ubiquitin ligases that degrade invertebrate p53 can bind and
modulate p63 and/or p73 in mammals. A proof of principle
is set by FBXO45, the mammalian ortholog of C. elegans
FSN1, an F-box protein that is involved in germ-line apop-
tosis by regulating the p53-like protein Cep-1.61 In mam-
malian cells, FBXO45 binds specifically to p73 and promotes
its degradation by an SCF-dependent mechanism.62

WWP1. p53-family proteins are also regulated by NEDD4-
like ubiquitin ligases, characterized by one or more WW
domains that recognize proline-rich sequences on target
proteins. The ubiquitin ligase WWP1 binds a PY motif (the
PPxY sequence) in the C-terminal region of p63, and induces
its ubiquitin-dependent proteasomal degradation.63 The
presence of a conserved PY motif in p73 may be sufficient
to predict a similar activity of WWP1 on this protein.
Currently, binding and ubiquitination of p73 by WWP1 have
been only reported as unpublished data.63 Very intriguingly,
despite the lack of a canonical PY motif, WWP1 can also
bind p53; this interaction produces a mono-ubiquitinated
form of p53 that is retained in the cytoplasm, inhibiting
its transcriptional activity.64 WWP1 is overexpressed in a
significant fraction of breast and prostate tumors, and its
activity on multiple p53-family proteins suggests a potential
role in oncogenesis.

ITCH. The NEDD4-like ubiquitin ligase, ITCH, binds p73
and p63 through interaction with the C-terminal PY motif,
and promotes their proteasomal degradation. In contrast
to WWP1, it does not interact with p53.65,66 Both TAp73
and TAp63 accumulate after DNA damage,30,67–69 and
stabilization of TAp73 and TAp63 in response to stress
may involve inhibition of ITCH-mediated ubiquitination.65,66

In contrast to the MDM2–p53 core circuit, stress signals
apparently do not dissociate the complex between ITCH and

Table 1 A selection of enzymes that apply post-translational modifications on
p53-family proteins, or were reported to physically interact with them,
independently of modification

p53 p73 p63 Referencesa

Kinases
ABL1 + + + 30, 67–69

ATM + + 122

CDK2 + + + 122, 123

CHK1 + + 124

CK1 +
GSK3-beta + + 125

HIPK2 + + + 96

JNK1 + + 126

p38 + + + 100, 127

PLK1 + + 128

Phosphatases
PP2A + + 125

Wip1 +

Acetyltransferases
P300/CBP + + + 77, 78, 100

PCAF + + 77

TIP60 + + 129

De-acetylases
HDAC1/2 + + 130

Sirt1 + + 83

Ubiquitin ligases
MDM2 + + + /– 44, 49, 50

MDMX + + – 42, 43, 49

COP1 +
PIRH2 +
Synoviolin +
ARF-BP1 +
CHIP +
WWP1 + + + 63, 64

ITCH – + + 65, 66

E4F1 +
TRIM24 +
FBXO45 – + 62

Deubiquitinases
HAUSP +
USP10 + 131

Methyltransferases
Smyd2 +
SET7/8 +
PRMT5 +

Demethylases
LSD1 +

SUMO ligases
Ubc9 + + + 132, 133

PIAS1 + + 134

TOPORS +

Others
O-GlcN-Ac transferase +
PARP-1 +
PIN1 + + 73

+, Reported modification and/or interaction; –, reported experimental evidence
of lack of interaction. aOnly evidences regarding p73 and p63 are referenced.
Most regulatory modifications of p53 have been reviewed elsewhere5,135–137
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p73 directly. Rather, ITCH is downregulated upon stress,
through a mechanism still poorly understood.66 A recent
paper uncovered the involvement of miRNA-106b in
translational repression of ITCH, showing re-activation of
p73-dependent apoptosis in primary chronic lymphocytic
leukemia cells after miR-106b induction.70 Taken together,
these evidences point to ITCH as a major regulator of p73
cellular levels.
The p73–ITCH regulatory circuit is modulated by the

adaptor protein YAP-1 (Yes-associated protein 1) that binds
p73 through the same PY motif as Itch and prevents Itch-
mediated p73 degradation.71 Accordingly, association with
YAP has a crucial role in controlling p73 levels after DNA
damage.71 Interestingly, YAP also promotes interaction
between p73 and the p300 acetyltransferase, with implica-
tions on p73 transcriptional activity.72 As p300-dependent
acetylation is also linked with p73 stability,73 YAP-dependent
p73–p300 association could be functional first for p73 stability,
and then for p73 transcriptional activity. The adaptor YAP is
also a direct target of the PI3K/Akt signaling pathway,74 which
has a central role in growth and proliferation in normal cells
and in tumors, contributing to cell survival by blocking
apoptosis. Notably, this pathway intercepts both p53 and
p73, as Akt-dependent phosphorylation of MDM2 enhances
its nuclear accumulation and thus promotes p53 degrada-
tion,75 whereas phosphorylation of YAP interferes with its
nuclear import and thus prevents p73 stabilization.74 YAP also
binds p63,76 but it is still unknown whether YAP can interfere
with ITCH-mediated p63 turnover similarly to what is
described for p73. If this was the case, YAP would qualify
as a central modulator of p63/p73 biological activities
uncoupled from the p53 response.

Interactors Regulating Transcriptional Functions of the
p53 Family

All p53-family proteins are transcription factors, and the main
output of the p53 pathway is the coordinated transcriptional
regulation of a wide array of cellular genes. Therefore, a great
deal of interest is focused on understanding how different
sets of genes are regulated by p53-family proteins in a
signal- and context-dependent manner. Promoter selection
has an integral part in determining the response to p53 family
members, and differences in the sequence and spacing of
p53-binding sites, specific PTMs, together with the presence
or absence of specific cofactors, all contribute to promoter
selection and, in turn, cellular response (see Vousden and
Prives6 and Menendez et al.8 and references therein).

Modulating transactivation. A well-defined mechanism
contributing to p53-dependent transactivation is the ability
to recruit chromatin remodeling complexes and histone
modifiers on target promoters. p300/CBP (CREB-binding
protein) as well as pCAF acetyltransferases bind to p53
and promote transcriptional activity catalyzing acetylation of
lysines within the p53 C-terminal region.5 Although p53
modification may be necessary for the recruitment of TAFs
(transcription-associated factors), the concomitant induction
of histone acetylation contributes to the open status of the
chromatin.

Both p73 and p63 are also bound by p300/CBP, promoting
their transcriptional activity, and hence this regulation is highly
conserved.77,78 In line with this evidence, phosphorylation-
dependent Pin1-mediated prolyl-isomerization stimulates p73
acetylation by p300/CBP, and is required for p73-dependent
apoptosis in response to DNA damage.73

The importance of acetylation for p53 function is questioned
by the observation that knock-in mice with all C-terminal
lysines mutated to arginine have mild phenotypes, suggesting
that PTMs of the C-terminal lysines, including acetylation, are
not crucial for p53 function in vivo.40 However, this contra-
diction might be solved by the recent identification of two
additional acetylation sites in the core domain of p53 that
affect its transcriptional activity: K164 (modified by p300/CBP
and pCAF) and K120 (modified by Tip60).79,80 Moreover, the
evidence that deacetylases such as HDAC1/2 and SIRT1 can
inhibit p53 and p73 transcriptional activity81–83 keeps alive
the debate on the importance of acetylation for p53-family
proteins.

JMY. Specific cofactors can modulate the interaction
between p53 and acetyltransferases. One interesting
example is JMY (junction-mediating and regulatory protein),
a cytoplasmic actin-binding protein that can promote micro-
filament polymerization and directly interacts with p53 and
p300/CBP.84–87 After DNA damage, JMY accumulates in the
nucleus, in which it associates with p53 and the tetratrico-
peptide repeat-containing protein STRAP to form a complex
that includes p300/CBP, and promotes p53-dependent
transcription and apoptosis.84,87 Interestingly, STRAP can
also recruit within this complex the arginine methylase
PRMT5 that modifies three residues in the C-terminal region
of p53.88 Modification of p53 by the JMY-STRAP-PRMT5-
p300/CBP complex stimulates transactivation of the p21Waf1
promoter, shifting the p53 response toward cell-cycle arrest
rather than apoptosis.88 As all p53-family proteins are
regulated by acetyltransferases, it is legitimate to predict the
existence of analogous regulatory complexes to control
association of p63 and p73 with p300/CBP or other post-
translational modulators. Research in this field should be
encouraged.

PML. Association with regulatory cofactors is also controlled
by interaction with scaffolding proteins and accumulation in
specific compartments. Perhaps the best example of such
regulation is the interaction of p53, p63, and p73 with the
promyelocytic leukemia protein (PML). In fact, all three
p53-family proteins can be recruited to subnuclear struc-
tures called PML nuclear bodies (PML-NB), and association
with PML promotes their modification, stabilization, and acti-
vation.72,89,90 A number of common interactors of p53-family
proteins are also found in PML-NBs, including the acetylase
p300, the protein kinase Hipk2, and the transcriptional
repressor Daxx, and hence PML-dependent recruitment to
NBs might regulate formation of specific protein complexes.
Notably, PML facilitates the interaction of YAP with p73 (see
above), stimulates the recruitment of p300 on p73, and
promotes p73-dependent transactivation of pro-apoptotic
target genes after DNA damage.72 Therefore, PML may add
a further level of modulation to the p73–ITCH–YAP regulatory
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loop. Intriguingly, both p73 and p53 directly regulate trans-
cription of PML, which in turn facilitates their modification and
promotes their functions, generating a positive autoregu-
latory feedback loop.72,91

Axin. Another example of a scaffolding protein involved in
p53 regulation is Axin, a component of the canonical WNT
pathway that also binds Daxx and protein kinase Hipk2.92 A
recent study uncovered that protein–protein interactions
assisted by the Axin scaffold actively contribute to deter-
mine the extent of p53 phosphorylation on Ser46, thus
controlling cell fate in response to different levels of DNA
damage.93 It should be noted that p73 and p63 also interact
with Daxx94,95 as well as with Hipk2,96 and therefore the role
of Axin in controlling p53 modification by Hipk2 may extend to
the other family members.

Determining target gene selection. The mechanism
regulating the selective binding of p53-family proteins to
different promoters under different conditions is one of the
most intriguing open questions in the field. In some cases,
the binding of specific interactors with p53, p63, or p73 has
been shown to influence the choice of target promoters,
resulting in the induction of cell-cycle arrest or apoptosis.

ASPP proteins. The evolutionarily conserved ASPP family
(Ankirin repeats, SH3 domain, proline-rich protein) regulate
the pro-apoptotic, but not cell-cycle functions of all p53 family
members. The ASPP1/2 proteins bind p53 and increase
transcription of pro-apoptotic genes such as Bax and PIG3.97

Chromatin IP experiments revealed that interaction with
ASPP1/2 promotes the selective recruitment of p53 on the
promoters of BAX and PIG3, but not p21WAF or MDM2.98

Similarly, the ASPP1/2 proteins interact with the other p53
family members, p73 and p63, and also stimulate transacti-
vation of pro-apoptotic gene promoters.97

On the other hand, the inhibitory protein iASPP binds p53
and inhibits its ability to upregulate pro-apoptotic genes,
without affecting transcription of genes mediating cell-cycle
arrest.99 Accordingly, dissociation of p53 from iASPP is
facilitated by Pin1-catalyzed prolyl-isomerization after phos-
phorylation of Ser46, and contributes to p53 activation in
response to lethal DNA damage.100 Notably, iASPP also
binds and inhibits p73; expression of a peptide displacing the
iASPP-p73 interaction was shown to promote p73-dependent
apoptosis in transformed cells lacking p53.101

Therefore, cellular levels of ASPP proteins, differentially
affecting all p53-family proteins, may be a crucial parameter in
determining the apoptotic readout of the p53 pathway. Not
surprisingly, altered expression of ASPP genes is a frequent
event in tumors.102 As ASPP proteins have different binding
affinities for distinct p53 family members,103 the development
of competitor peptides potentially displacing iASPP from p53
and/or p73 may become a promising strategy to modulate
ASPP functions in tumors.

Cabin1. Another interesting example is Cabin1, a protein
that modulates p53 transcriptional activity on selected target
gene promoters. Under normal conditions (i.e., in the
absence of stress) p53 occupies a subset of its target

promoters such as Gadd45, p21Waf1, Puma, Noxa, and
MDM2. With the exception of the MDM2 promoter, Cabin1
colocalizes with p53 on these sites, recruiting histone
deacetylases and methyltransferases to make chromatin
unsuitable for transcription. After DNA damage, Cabin1 is
rapidly degraded, allowing promoter-bound p53 to induce an
immediate transcriptional response.104 Therefore, Cabin1
functions as a rather fast transcriptional switch on selected
p53 promoters. As Cabin1 binds the core DBD region of p53,
which is the most conserved among p53-family proteins,
it will be interesting to test whether a similar mechanism
may also apply to promoters bound and regulated by p73
and p63.

Smads. The choice of what genes are induced or repressed
by p53 is also determined by cooperation with other
transcription factors that bind discrete responsive elements
in target promoters. One example of such regulation is the
interaction of p53-family proteins with receptor Smads
(R-Smads), intracellular transducers of TGF-b signaling.105

p53 binds Smad2 and Smad3, and cooperates synergis-
tically with Smads to regulate transcription of a subset
of TGF-b target genes. More specifically, Smad2/3 and
p53 bind on two separate adjacent responsive elements in
the promoter of the activin-responsive gene Mix.2.105

An alternative architecture has been described in human
a-fetoprotein (AFP), in which a single Smad/p53-responsive
element is occupied simultaneously by both proteins; in this
case, p53 interaction with Smad2 and SnoN represses AFP
transcription.106 Importantly, all three p53-family proteins
interact physically and functionally with R-Smads, and can
cooperate with Smad2/3 to regulate transcription of a Mix.2
reporter construct in response to TGF-b.31,105 Therefore,
joint control of target genes by TGF-b and p53-family
proteins may be a widespread mechanism.

The Nucleus is not Enough: Interactors Mediating
Cytoplasmic Functions of the p53 Family

In addition to the well-established transcriptional functions,
there are several evidences for transcription-independent
tumor suppressive roles of p53 in the cytosol. The key to these
functions is regulation of p53 subcellular localization. One of
the major mechanisms for p53 cytosolic relocalization is
MDM2-mediated monoubiquitination, which does not induce
p53 proteasomal degradation but nuclear export.107 The E3
ligases WWP1 and MSL2 are also involved in p53 nuclear
export, indicating that ubiquitination is a pivotal mechanism
for p53 cytosolic localization.108 Notably, in some instances
ubiquitination can have the opposite effect. In fact, the zinc-
finger protein E4F1 binds p53 and promotes its ubiquitination
on an atypical lysine residue; this modification does not induce
nuclear export but stimulates p53 recruitment on chromatin
and expression of a subset of target genes.109

Another mechanism affecting nucleo-cytoplasmic locali-
zation of p53 is interaction with and modification by
PARP-1, a poly-ADP-ribose polymerase activated by DNA
damage; ADP-ribosylation blocks nuclear export of p53 and
increases its transcriptional activities.110 These evidences
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emphasize that p53 cytosolic localization is a finely regulated
phenomenon.
Dramatically less is known about cytoplasmic localization of

the other p53 family members, although evidences for non-
nuclear roles of these proteins are beginning to accumulate
(see below); in this regard, it would be interesting to explore
whether monoubiqitination or alternative types of modification
are actually conserved in p63 and p73.
The best-characterized non-transcriptional function of

p53 is the induction of apoptosis through the mitochondrial
pathway. After DNA damage or oncogene activation, mono-
ubiquitinated p53 localizes to the mitochondria; there, it
interacts with a mitochondrial pool of the deubiquitinase
HAUSP that removes ubiquitin and allows p53 to form
complexes with BCL2, BCL-xL, BAX, and BAK, thereby
promoting apoptosis.7,111 An unexpected role of MDMX/
MDM4 in p53-mediated mitochondrial apoptosis has also
been recently described.112 MDMX can localize to the
mitochondria and associate with BCL2 in normal growing
cells; under cytotoxic stress conditions, MDMX exerts an
effect as mitochondrial anchor for p53 phosphorylated on
Ser46, and favors p53–BCL2 interaction to trigger the intrinsic
apoptotic pathway.112

Of note, Hipk2 (one of the kinases responsible for p53
phopshorylation on Ser46) and MDMX are shared interactors
of all p53-family proteins. Moreover, p53 binds BAK, BCL-2,
BAX, and BCL-xL through the DNA-binding domain, which

is the region of higher similarity among family members.
Therefore, it would not be surprising if p73 and p63 will also
prove to be involved in the intrinsic apoptotic pathway. Indeed,
it has been recently reported that p73 is cleaved by caspase-3
and caspase-8 in cells undergoing apoptosis after death-
receptor activation by TRAIL (TNF-related apoptosis-inducing
ligand). Under these conditions, caspase-generated p73
fragments localize to mitochondria and contribute to TRAIL-
induced apoptosis.113 Full-length p73 was also detected in
mitochondria by biochemical fractionation and electron micro-
scopy. Most importantly, addition of recombinant TAp73 to
purified mitochondria induced mitochondrial outer membrane
permeabilization, suggesting that p73 has non-transcriptional
pro-apoptotic functions analogous to those of p53.113

Another emerging non-nuclear function of p53 is in regu-
lation of autophagy,114 a process that allows removal of
damaged cytoplasmic organelles and adaptation of cells to
metabolic stress. Although p53 can transactivate genes that
induce autophagy under stress conditions (e.g, DRAM, TSC2,
Sestrin1 and 2, PTEN, and IGFBP3), depletion or mutation
of p53 actually increases autophagy, suggesting that
p53 constitutively limits this process in normal growing
cells.7,115,116 Even if the mechanism remains unknown, the
autophagy-inhibitory activity is ascribable to the cytoplasmic
pool of p53, as degradation of cytosolic p53 by MDM2
promotes autophagy after nutrient depletion, endoplasmic
reticulum stress, or treatment with rapamycin.114 Besides

DNA damage

Apoptosis Autophagy Cell-cycle arrest DNA repair Senescence Metabolism Differentiation

NTP depletion Hypoxia Nucleolar stressOncogenes Differentiation cues

p53

p63 p73

Figure 3 The p53 family as a network. The p53-family pathway is activated by a wide array of signals, including potentially oncogenic stresses, as well as physiological
cues. Once activated, the pathway induces diverse cellular outcomes, ranging from cell-cycle arrest, to senescence, to programmed cell death (apoptosis). A web of upstream
regulators control covalent modifications, protein levels, and cellular localization of p53-family proteins, and can either activate or inhibit the pathway in response to specific
signals. Downstream, protein cofactors modulate promoter selection and transcriptional functions of p53-family proteins, fine-tuning the cellular response to any given signal.
In addition, protein interactors can behave as direct effectors of non-transcriptional functions of p53-family proteins, for instance, in mitochondrial apoptosis. Some protein
modulators are specific for each p53-related protein, whereas others are shared among the p53 family. Moreover, common interactors may have similar or different effects on
each p53-family protein. As a result, the cellular outcomes to any given conditions are influenced by the expression levels of each p53 family member, as well as by the pattern
of modulators that are expressed in a given cell or tissue, and their respective expression levels
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MDM2, additional ubiquitin ligases can mediate cytosolic
p53 degradation; for example, the already mentioned
Synoviolin.58 Interestingly, a recent study revealed that
p300/CBP can also function as ubiquitin ligases for cytoplas-
mic p53.117 As p300 and CBP can also interact with p73 and
p63, it will be interesting to explore whether their ubiquitin
ligase activity may extend to all p53 family members. In any
case, the potential role of these cytoplasmic ubiquitin ligases
in autophagy remains to be investigated.
The evidence of important non-nuclear roles of p53 (and

perhaps p73) imposes a careful analysis of the cytosolic life
of this family of proteins. In fact, a better knowledge of the
mechanisms controlling their subcellular localization and their
connections with other signaling pathways may offer new
opportunities to better define the ‘p53 system’ and improve its
pharmacological modulation.

The p53 Pathway as a Network

This overview of some regulatory interactions of the p53
family highlights the concept that multifaceted aspects of this
pathway are dependent on a wide repertoire of protein–
protein interactions that, although often shared among the
family members, can have similar or different effects on each
p53-family protein.
Considering the complex network of protein interactions

modulating all p53-family proteins, the whole family should be
considered when analyzing the genetics of cancer cells
(Figure 3). Fluctuations in the levels of selected p53 family
members (or their isoforms) might change the relative
availability of shared protein partners, as multiple p53-family
proteins compete for interaction. Also, differential expression
of selected interactors – linked with genetic variation, for
example –may distinguish the response of the p53 pathway to
the same potentially oncogenic stimuli in diverse individuals.
In tumor cells, loss of p53 abrogates one very crucial node of

this network, but p73 and p63may compensate to some extent.
In contrast, mutation of p53 (mut-p53) generates a dominant
protein, often very stable, that can still form complexes with a
subset of p53 partners, andmay also acquire novel interactors.
High levels of mut-p53 may be sufficient to bind and inhibit
p73 and p63, as well as to titrate common interacting proteins,
thus making the network extremely weak. For this reason,
displacing mut-p53 interactions may become a promising
approach to combat the more aggressive features of tumors
bearing p53 mutations.118,119 Finally, functional loss or
deregulated expression of some crucial p53 interactors are
frequent in primary cancers and transformed cell lines bearing
wild-type p53 (e.g., p14ARF, MDM2, Chk2, iASPP etc.); these
alterations may have a greater impact if they affect regulators
that are common to all p53-family proteins (e.g., MDM2 or
ASPP proteins), with relevant implications for cancer prognosis
and, eventually, therapy. In our opinion, these premises are
sufficient to promote the systematic study of the protein
interaction profile of the entire p53 family.
p53 has recently turned ‘thirty’. During these years, a p53-

centric approach to the pathway has yielded some very
promising therapeutic tools, including small molecules that
target the MDM2–p53 interaction (e.g., Nutlin120 and
RITA121). However, our awareness of the complexity of the

p53 pathway has grown significantly, and we should no longer
think of p53 as a ‘lone warrior’ in tumor suppression. For this
reason, it will be important to develop more reagents and
experimental tools to study all p53-family proteins, and their
isoforms, at a greater level of resolution. Such knowledge
will allow a more efficient use of currently available drugs, and
will increase the number of regulatory interactions that may
become potential targets for new therapeutic molecules.
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