
Abstract

The floating point unit of the next generation PowerPC
is detailed.  It has been tested at over 5 GHz.  The design
supports an extremely aggressive cycle time of 13 FO4
using a technology independent measure.  For most
dependent instructions, its fused multiply-add dataflow
has only 6 effective pipeline stages.  This is nearly equiv-
alent to its predecessor, the Power 5, even though its
technology independent frequency has increased over
70%. Overall the frequency has improved over 100%.  It
achieves this high performance through aggressive feed-
back paths,  circuit design and layout. The pipeline has 7
stages but data may be fed back to dependent operations
prior to rounding and complete normalization.  Division
and square root algorithms are also described which take
advantage of high-precision linear approximation hard-
ware for obtaining a reciprocal or reciprocal square root
approximation.

Keywords: Floating-point unit, denormal result han-
dling, aggressive data forwarding, high-frequency design,
data processing without stalls.

1. Architecture and Design goals
The P6 is the next generation PowerPC processor, and

is a completely new design from its predecessor, the
Power5.  Its design is motivated by a need to provide a
quantum improvement in performance and reliability for
transaction processing type applications.  It has been
tested at over 5 GHz, which is a much higher frequency
than technology scaling alone would provide.  Main-
frame class robustness is achieved with enhanced recov-
ery capability, parity checking for arrays and data
movement, and residue checking for arithmetic opera-
tions.  A vector execution unit (VMX) based on the Alti
Vec architecture [1], and a decimal floating point unit
(DFU) based on the new proposed IEEE standard [2] pro-

vide new functional capability.  The VMX unit has its
own architected register file, but the DFU shares the
Floating Point Registers (FPRs) with the Binary Floating
Point Unit (BFU).  However, the Floating-Point Status
and Control Register (FPSCR) has been enlarged to allow
a separate rounding mode for DFU instructions, and to
make room for possible future expansion of other status
and control functions.  The P6 retains all of the architec-
ture enhancements introduced in the Power5 [3], which
had been built upon the design of the Power4.  Its most
important innovation was to add dual-threading to each
core, thus improving the utilization of the various execu-
tion units.  To reduce power, it also aggressively gated off
clocks to various facilities when they were not in use.
For the BFU, Power5 added new pipelineable instruc-
tions for rounding to a Floating Point integer, correspond-
ing to the Floor, Ceiling, Truncate and Round to nearest
functions.  It also introduced a new version of non-IEEE
mode for divide and square root instructions which
reduces their latencies by 6 cycles for applications that do
not require IEEE rounding.  

To obtain a high frequency on Power6, the cycle time
was reduced from 23 FO4 to 13 FO4.  This required
longer pipelines and simpler instruction scheduling and
issueing.  Renaming of registers was eliminated for all
execution units.  Therefore, the FPRs consist only of the
64 registers needed for the two threads, and out-of-order
execution within each thread is limited.  The BFU execu-
tion pipeline is also increased by one cycle to seven, and
the complexity of some stages is further increased to pre-
vent needing even more stages.  In most cases, however,
the effective pipeline length for dependent instructions is
still 6 stages, the same as for Power4 and Power5.  

The previous designs also allowed the BFU pipeline to
stall when any operand was denormal, thus allowing
them to first be prenormalized [4].  However, with the
shorter cycle time and with wire delays between subunits
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approaching a full cycle, this becomes impractical.  Sev-
eral subsequent instructions would be issued before the
operands could be inspected and the scheduler signaled
and halted.  Thus, P6 includes new techniques [5] that
allow all multiply-add instructions to be pipelined with-
out stalls.  The previous designs also stalled in a late
pipeline stage for underflow, overflow, and for some
infrequent cases of massive cancellation, but these stalls
also are eliminated. 

It was also decided that integer multiply and divide
instructions, normally executed in the fixed point unit
(FXU), should be executed in the BFU to take advantage
of its large pipelineable multiplier.  The BFU multiplier is
modified to accomodate 64-bit integers.  The area
increase in the BFU is offset by savings in the FXU.  For
clusters of integer multiplications, it allows these instruc-
tions, which are multiple cycle non-pipelined instructions
in Power4 and Power5, to be processed every 2-cycles.  

There are also some small changes that were made to
the custom designed dataflow that allow reuse of large
parts of it in a future zSeries processor that includes
hexadecimal as well as IEEE binary instructions.  

Like the Power4 and Power5, there are two BFUs and
each can process two threads simultaneously. Each BFU
has its own copy of the FPRs to allow faster operand
read. Operands can also be read from the two load store
units or forwarded from their load target buffers, thus
bypassing the FPR update/read cycles. Within each BFU,
results can be bypassed to the operand registers from the
normalizer in stage 6 and from the rounder in stage 7.

The FPRs are each 73 bits wide with 64-bit data, 8-bit
parity and one for the implied bit. When the implied bit is
zero, the exponent Least Significant Bit (LSB) is changed
to 1 to provide a consistent bias for calculating the align-
ment shift. The implied bit is determined for all instruc-
tion results and for operands loaded from the data cache.

The ultimate challenge was to achieve a 13 FO4 design
while maintaining an effective 6 stage pipeline for most
dependent instructions which is similar to Power5 which
has a 23 FO4 cycle time. This was accomplished despite
additional requirements to provide a much larger multi-
plier to support the 64-bit integer multiply instructions.
Techniques in circuit design, logic design and integration
help reduce the cycle time, a few of which are detailed in
this paper. Included is a new method for forwarding an
unfinished result to dependent instructions from the nor-
malizer. This intermediate result is obtained prior to
rounding and also prior to the last normalization step.

In the following the dataflow is first described. Then
the interesting specific areas of the design are handled
more in details: These are shift amount calculation, mul-
tiplier, normalizer and rounder. Section 7 is dedicated to
the feedback of unfinished results due to its multiple spe-
cial cases. Divide and square root implementation is
described in section 8. Section 9 gives insight into issue
stalling and clock gating and some technology/chip data.

2. Dataflow Overview
The BFU of the Power6 processor has a 7 cycle fused

multiply-add pipeline. Dependent instructions can be
started after 6 cycles except for a few special forwarding
cases where issueing of the dependent instruction is
stalled. Figure 1 shows the dataflow with the seven regis-
ter stages.

Figure 1: P6 Significand Dataflow

The radix-4 multiplier is designed for 64x64 bit multi-
plication to support a full fixed-point multiplication as
well as IEEE double precision floating-point multiply-
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add. Altogether there are 33 partial product terms and one
additional rounding correction term that need to be
summed up. This rounding term is needed to account for
a late increment of the multiplier operands since the
result of the foregoing instruction is fed back to the mul-
tiplier before rounding. The partial product term reduc-
tion is spread out over three cycles, where at the end of
the third cycle the aligned addend is merged in the last
3:2 counter row. Alignment shift amount calculation is
started in the first cycle without decoding the implied
bits, a fine grain shift is done in the second cycle, and the
final shift is completed in the third cycle. At the end of
the third cycle an out-of-range detection may force the
aligner output to all zeros or all ones. In this case the
unchanged addend is multiplexed into Breg3. For NaN
inputs a special NaN path is pipelined down to be multi-
plexed into Breg4 when needed. A 120-bit end-around-
carry adder [6,7] is used to sum up the partial sums from
the multiplier array and the aligned addend. In parallel
with the adder is a Leading Zero Anticipator (LZA).
Both are spread over latch boundaries, starting from the
end of third cycle and finishing in the beginning of the
fifth cycle. The output carry from the adder selects either
the incremented or non-incremented upper bits of the
addend into Breg5. In cycle 5 conditional complementa-
tion of the sum is applied to the full width significand and
then normalization is started. Normalization is spread
over cycles 5 and 6, and rounding is spread across cycles
6 and 7.  Excessive wire delays on the feedback paths to
the input operand registers make it necessary to forward
unfinished results, e.g. unrounded and partially normal-
ized. Data can be forwarded to any of the three inputs.
Correction for the multiplier and multiplicand is done
with the help of an additional correction term in the mul-
tiplier array. For the addend, the exponent is fed back
prior to rounding in cycle 6 to the input operand Breg1
and the unrounded significand is discarded, and instead
the correctly rounded significand in cycle 7 is multi-
plexed into Breg2. The exponent doesn’t need to be cor-
rected since the dataflow has two vacant bits on the left
and a carry out of the rounder is contained in the dataflow
of the significand.

In the following section some interesting implementa-
tion details are described.

3. Alignment shift amount calculation
Alignment of the basic multiply-add function (f=A*C

+ B) is calculated by comparing the exponent of the
addend B and the exponent of the product A*C to yield a
difference which is used as the shift amount of addend B.
Only right shift is done during alignment, therefore align-
ment of addend B is started from left of the product to

simulate a left shift of B. Thus shift amount calculation
has an offset value to reflect this. When B is much greater
than the product AC, it can be placed unchanged logi-
cally left of AC with a small gap, usually two bits,
between them. In this implementation the gap is five bits
for commonality with hexadecimal format. Figure 2
shows the unshifted addend in relation to the product.
Note that the product range is 128 bits which is needed
for fixed-point multiply which is also executed in the
BFU.

Equation (1) shows the shift-amount calculation for
binary double-precision (DP):

SA0= ExpA + ExpC - ExpB - x’0FFF’ + offset    (1)
    SA0: alignment shift amount
    ExpA: exponent of A operand
    ExpC: exponent of C operand
    ExpB: exponent of B operand
    x’0FFF’: exponent bias in 13 bit
             internal representation
    offset= 59 

With the shift amount (SA0) defined as above, the
addend B is much greater than the product (BmgtP=1)
whenever SA0 is negative (see equation (2)). B can then
be placed unchanged and unshifted to the left of the prod-
uct as shown in Figure 2.

    BmgtP = 1 if (SA0 < 0)                     (2)

Figure 2: Significand Alignment

Special case requiring additional alignment 
circuits. 

For multiply-add instructions, a difficult case is when
the addend is denormal and the underflow trap is enabled.
The delivered result must be fully normalized.  In past
designs, the addend is usually normalized before execut-
ing this operation, but that requires stalling the issue of
subsequent instructions. There are three variations of this
case, differing in how the addend aligns with respect to
the product. All can be handled without normalizing any
operands and without stalling execution, as recently
described [5,6], but they require having a leading zero
count for the denormal addend fraction.
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One of the cases also requires that the adder output be
forced to either zeroes for addition or to ones for subtrac-
tion.  Another variation also requires the aligner to shift
the addend to the left with respect to the placement
shown in Figure 2. For this case, the dataflow does not
need to be extended on the left as only leading zeroes
would be lost. To simplify the decoding of the shift
amount for the aligner's multiplexor select signals, the
reference point for the shift is moved to the left so that all
alignment shifts appear as right shifts, corresponding to
positive shift amounts.  This change of reference corre-
sponds to adding another offset to the calculation.  The
equation for the shift amount (SA) then becomes:
 
SA= ExpA + ExpC - ExpB - x’0FFF’ + 59 + osl   (3)
  SA: alignment shift amount
  osl: offset for shift left > 52

Note that an effective shift of zero corresponds to
SA=osl, and a positive value SA<osl corresponds to a left
shift of the addend. An effective left shift is restricted to
cases where no significant bits of the addend are shifted
past the left edge of the dataflow. The condition is deter-
mined from the following:

BmgtP = 1 if ((SA + lzdb) < osl )              (4)
where lzdb=leading zero count of B

When BmgtP=1, the unchanged and unshifted addend
is bypassed by the aligner directly to Breg3 and then to
Breg4.

Timing consideration: 
Given the arbitrary value for osl in equation (3) (it

should be greater than 52), it is chosen to be 68 such that
the lower 7 bits of the constant value are all zeros.   The
timing critical lower 7 bits of the shift amount calculation
can now be done with a three-port adder. The resulting
constant value of -x’0F80' is replaced by its twos comple-
ment + x'1080' for addition. Equations (3) and (4) are
then:

SA= ExpA + ExpC - ExpB + x’1080’              (5)
BmgtP = 1 if ((SA + lzdb) < 68 )              (6)

In the first cycle the three-port addition for the least
significant two bits is done in random logic. To avoid
buffer delays, multiple copies of this logic are used to
control the various multiplexors.  In the second cycle,
three stages of multiplexors allow all shifts up to 63 bit
positions to the right, and the total shift amount calcula-
tion is completed and decoded. In the third cycle, shifts in
multiples of 64 bit positions are done, and all out of range
shifts are also handled. The shift amount calculation and

the aligner stages are tuned so that alignment of up to 176
bit positions can be achieved in slightly more than two
cycles.

4. Multiplier
Traditional Booth encoding is used to determine the

partial product terms. For a 64x64 bit multiplication 33
product terms are needed. Because the operands have
their implied bit already decoded before getting into the
multiplier there is no leading one/zero correction term
needed as in other implementations [8, 9]. Instead the
FPRs have one extra bit to save the implied bit, and for
operands coming from memory the implied bit is
decoded in the load/store datapath in time to get latched
into the operand register.

One extra term called rounding correction term is
added to allow late rounding correction and late shift left
one correction (see chapter 8 for more details). At the
final stage in the third cycle the aligned addend is
reduced with the remaining two partial products to form
the two final sum terms input to the carry propagate
adder (see Figure 1).

Integration of the multiplier. 
Here 4:2 and 3:2 carry-save adders are mixed for a

well-balanced pipeline through 3 cycles. Early in high
level design the multiplier array was partitioned into
macros according to cycle boundaries. The first macro
includes the Booth encoding and a first 4:2 reduction
stage. However it turned out that the number of wires
needed to get out of the first macro is too high and the
first macro area is too big. Therefore a new partition was
defined. The reduction of the upper 17 and the lower 16
partial products and the rounding correction term are
done in two separate macros across the first two cycles.
Then a third macro is used for the final summation in the
third cycle. Physically, the three macros are placed one
below the other, with the third macro below the other
two.

5. Normalizer
One of the design goals was to avoid all pipeline stalls,

even for infrequent cases of massive cancellation. There-
fore, the current design must be able to normalize the full
176-bit intermediate result.   The first coarse normaliza-
tion of 60 bits can be determined before performing the
multiply-add. The aligner shift amount and the addend
leading zero count (lzdb) are used to determine when the
intermediate result is completely contained in the product
range or if there are significant bits on the upper addend
part, corresponding to B>AC.  For this latter case, the



aligner shift amount is added to the lzdb.  This is decre-
mented by one for addition but not for subtraction, to
allow for loss of a leading zero when the upper bits are
incremented.  This value is referred to as the high-LZA,
and is used for normalizing the intermediate result when
the addend is greater than the product.

When the intermediate result is contained in the prod-
uct range (plus an additional carry out bit), an LZA
(Leading Zero Anticipator [10,11] ) is used (referred to as
the low-LZA). The design selected for P6 is described in
[11] and produces a single string for both leading zeroes
or leading ones, corresponding to a positive or negative
result respectively.  A precise LZA as used in [8] or LZA
correction as used in [12] or elswhere was rejected due to
area and complexity, and for timing reasons for cases
where signals from the adder outputs or carries are used.
Furthermore, extra circuitry would also be needed for the
upper addend part since incrementing may change the
number of leading zeroes. Figure 3 shows the structure of
the normalizer spread over cycles 5 and 6.

Figure 3: Normalizer structure

Recomplement is done before normalization to give
time for the multiplexor select signals to be buffered up.
Then coarse normalization of 32 bits is done with inte-
grating selection of either high- or low-LZA. This selec-
tion is decoded using the alignment shift amount
calculation: when all bits of the addend are shifted into
the product range, the high-sum is all zeros and the low-
LZA value is used. Since this selection can be determined
before performing the multiply-add no timing issue
exists. Note that the third normalization shift starts at
position 56 (vs. 59) which is 4 bits (vs. 1 bit) to the left of
the product. This is for commonality with hexadecimal
format instructions where all shifts must be multiples of
4-bit digits.

The normalizer is a very timing critical path.  Careful
partitioning between cycles, buffering of long wires,
routing and placement is needed.  To help reduce delay in
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cycle 6, the one bit left shift  needed to correct for the
possible error in both LZAs is deferred to the rounder in
cycle 7.  The result that is bypassed from stage 6 to a
dependent instruction is thus unrounded and possibly
unnormalized by one bit.  However, the corresponding
exponent would also be larger by one to compensate, so
that the value would be correct.

Generating denormal result. 
To generate a denormal result, normalization should be

limited to not decrementing the result exponent to a nega-
tive value. For the case where B>AC, the exponent value
of the intermediate result less one can be directly used for
normalization. Compare logic is needed to select between
the calculated normalization shift amount normSA
(=SA+lzdb for add, SA+lzdb-1 for sub) and the shift
amount which would make the resulting exponent equal
to one.

For the case where the adder LZA is used, the expo-
nent value of the intermediate result is used to form a bit
string with a one in the bit position corresponding to the
minimum allowed exponent. This bit string is ORed with
the string created from the adder inputs. The resulting bit
string is used in the LZA circuit and automatically blocks
a shift beyond the limits of normalization for a correct
denormal result.  No further action is required.

6. Rounder
Figure 4 shows the structure of the rounder. The incre-

menting of the fraction is started in cycle 6  and com-
pleted in cycle 7.  The possible left one shift to complete
normalization is done simultaneously in the same multi-
plexor, along with selection of special values (Max num-
ber, Infinity) before being sent to the FPR for update.

Figure 4: Rounder macro.
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The intermediate fraction is first incremented in
groups of 8 bits and at the same time a carry-look ahead
generates the group carry signals. These signals are first
latched. In the next cycle there is a 3-to-1 multiplexor to
select data for shift left by one, no shift and the max num-
ber. This is done prior to the selection of the incremented
result to give logic enough time to decode the rounding
condition. There are multiple logic decodes to detect the
different possible guard and round bit positions depend-
ing on the shift-left by one correction. Similarly, different
sticky calculations are done. For the incrementer there
are four different positions where an increment may be
applied, depending on whether the result is single or dou-
ble precision and whether a shift-left by one is needed.
Especially for the exponent, there are many calculations
needed to deliver overflow/underflow rebiased values,
the incremented or truncated value, etc...  Also exception
detection is done for all the possibilities. This is also one
of the timing critical corners of the design.

7. Feedback of unfinished result
To achieve the aggressive timing goal and 6 cycles for

dependent issueing, an unfinished result (not rounded and
not completely normalized) is fed back to the input oper-
and registers for a dependent instruction. Hereto the frac-
tion data bus is extended by one bit to the right. This
additional bit is masked if there is no shift left by one cor-
rection needed.  The result can be fed back to any of the
three operand registers.  Basically the difference between
the unfinished result and final result is the addition of 1
or 0 to the significand, its alignment of shifting right or
left by one bit position, and the corresponding exponent.
The significand dataflow must also be wider to take care
of the eventual carry out of the rounder increment.

Shift amount calculation is done normally as for oper-
ands that are sourced from the FPR. No special actions
are needed.

Feedback to addend. 
Only the exponent of the unfinished result is used for

shift amount calculation. The correct fraction (after
rounding and complete normalization) from the rounder
is then fed back in the next cycle to the second stage of
B-register after shift amount calculation is done for the
lower alignment bits. With the two extra bits on the left
and five bits on the right, the fraction can always  be
aligned correctly to correspond  to the intermediate expo-
nent of the previous cycle.  When there is a carry out of
the rounder, then the implied bit is placed one bit to the
left.  When the exponent used had not been adjusted for

the final left shift of one, then the fraction from the
rounder is placed one bit further to the right in opB reg2. 

Feedback to the product. 
Feedback of an unrounded result to the multiplier was

previously done in the RS/6000 Power 1 and 2 imple-
mentations [13], and in the PowerPC Power3.  The early
bypass was only allowed to one operand, and the function
A times (C+1) was performed in the multiplier with
another product term to add another copy of A to the
product of A and C (this additional term is called the
rounding correction term since it corrects the multiplica-
tion result to account for the round increment of C which
was not applied to the multiplier operand C). This idea is
extended in P6 by allowing the early result to be fed back
to both A and C thus allowing the square of an unrounded
result.  Since A equals C in this case, the multiplication
performs the function (A+1)*(A+1)=A2 + 2A + 1. Here
the correction term is 2A +1 which is A shifted left by
one bit with the vacant bit on the right set to 1.  This cor-
rection term must be set differently for the case where the
result fed back is unnormalized by one bit. Different set-
tings are also needed for the cases where either one or
both operands are single or double precision.  Therefore,
there are many ports needed on the multiplexor to create
the round correction term, corresponding to the many
combinations.

 Table 1 shows the different cases of feedback and the
corresponding bit setting of the rounding correction term
for double precision (DP).

 One special case needs to be handled (see table 2).
When the result is all ones and is fed back to both multi-

Table 1: Setting of rounding term for DP

Case rounding term

result is fed back to bit 1111....111
    1111....666
    2345....456

A=res + 1     0ccccccccc0

C=res + 1     0aaaaaaaaa0

A=(res+1)/2     00ccccccccc

C=(res+1)/2     00aaaaaaaaa

A=C=res + 1     aaaaaaaaa10

A=C=(res + 1)/2     0aaaaaaaaa1



plicand and multiplier and a rounding correction has to
be made, the final result  exceeds the product range. This
single case is easily detected and an extra bit is forced
correctly into bit position 59. Also the LZA bit string has
to indicate a one in a location in the highest bit position to
take care of this occurrence. The multiplier array delivers
an all zeros result which is correct.

Table 2: Special case of forwarding and squaring.

8. Divide  and Square root implementa-
tion

Reciprocal Estimate Tables. 

The PPC architecture provides Reciprocal Estimate
and Reciprocal Square Root Estimate instructions.  These
were originally intended for graphics applications, and
only provide approximations having 8 and 5 bits of preci-
sion, respectively.  For applications having many divide
and square root operations, it may be better for perfor-
mance to replace the hardware instructions with in-line
software routines, especially when correct IEEE round-
ing is not required.  With such support now being pro-
vided by our compilers, it was decided to further improve
these routines for P6 with estimate instructions that pro-
vide slightly more than 14 bits of precision.  Applications
that are compiled specifically for P6 can then take advan-
tage of the higher precision.  It was also decided that
these 14-bit approximations would also be used for
implementing the hardware divide and square root
instructions.  A precision of 14 bits was chosen because
any of several algorithms such as Goldschmidt which
double the precision each iteration would obtain a good
approximation of IEEE double precision after only two
such iterations.  Also, by using linear approximations, the
estimates can be obtained in only three cycles with very
small tables and small area.  The tables are similar to
those in Alti Vec [1], but provide two additional bits of
precision.  For the reciprocal, the first 6 bits of the oper-
and, after the implied bit, are used to access a 64 word
table, each word containing an offset value for the left
edge of the linear segment, and a slope.  For the recipro-
cal square root, two similar tables are used, one for even

normal multiplication:
   A=  1.xxxx
   C=  1.xxxx
   P= xx.xxxxxxxx
special case:
   A=  1.1111 +1   = 10.0000
   C=  1.1111 +1   = 10.0000

   P=100.00000000 the ‘1’ is out of the 

     multiplier range, needs to be forced.

exponents and one for odd exponents.  Outputs from one
of the three tables are selected and provided to a small
multiply-subtract circuit.  For each of the 64 segments of
each of the three curves, the slope is that of the line which
connects the endpoint of that segment, but the offset is
chosen to slide that line halfway down to where it would
touch the midpoint of the segment, thus reducing the
worst-case error by half and effectively obtaining an
additional bit of precision.

 
Several unique features in the design of this approxi-

mation unit keep it small and fast.  Since the slope is to be
multiplied with the next 11 bits of the operand, the table
values do not explicitly provide the slope of the segment,
but instead they contains the radix-8 Booth decode of the
slope.  During the first cycle, while the table is accessed,
a small adder obtains the 3-times value of those 11 oper-
and bits.  By using radix-8 and avoiding the delay of
Booth decoding, the multiplier is kept small and its delay
is contained in the second cycle.  The third cycle is used
to add the sums and carries from the multiplier to the off-
set value.  

If the operand is denormal, it must first be normalized
in order to access the tables and obtain the correct linear
approximation.  When used for the hardware divide and
square root instructions, extra cycles can be taken for
normalization, since those instructions have data-depen-
dent variable latencies.  The estimate instructions how-
ever must have fixed latency, and therefore two extra
pipelineable cycles are needed to allow for denormal
operands.  The significant bits of the fraction are obtained
using the aligner and the lzdb (leading zero count of B).
The complement of the lzdb is used as the shift amount in
the aligner, rather than an exponent difference.  This
results in the MSB of the operand always being in the
same bit position of opB reg3 after align2 (see Figure 1),
regardless of the number of leading zeros.  For the esti-
mate instructions, the appropriate bits are sent from that
register to the table.  For the floating point divide and
square root instructions, that path is only used when the
operand is denormal.  Otherwise, the data for the table is
taken earlier directly from the operand B register.  

Floating Point Divide and Square Root. 

The algorithms use functional iteration and are equiva-
lent to the Goldschmidt algorithms, but take advantage of
the multiply-add operations in the dataflow to avoid extra
complementing circuits in the feedback path to the multi-
plier.  Also, the data paths are designed to support the 64-
bit integer multiply and the 56-bit hex multiply-add
instructions.  This allows additional bits to be fed back



during intermediate operations, so that accumulated
rounding error from these steps would be much less than
a quarter ulp.  That eliminates need for the Newton-
Raphson step that was used in previous PPC models to
compensate for rounding errors prior to the rounding test
[14].  As with Power5, a non-IEEE mode bit can be set in
the FPSCR to eliminate the rounding test and further
reduce latencies by 7 cycles.

Despite the use of higher precision estimates, the laten-
cies are very similar to those of Power 5.  Although one
iteration is eliminated, additional cycles are needed to
obtain the higher precision estimates, and floorplanning
placement of the estimate unit requires an additional
cycle in each direction between that unit and the pipeline
operand registers.

Fixed Point Divide. 

The algorithms for the Fixed Point Divide instructions
also use functional iteration.  There are four such instruc-
tions which correspond to either 32-bit or 64-bit operands
and either signed or unsigned for each.  During the inter-
mediate steps, the full 64-bit unsigned multiplier is used.
However, the alignment shifter and normalizer also had
to be made wider to accommodate the larger operands.
The algorithms are adapted from a software algorithm
published by P. Markstein [15].  When implemented in
hardware, it allows use of some special operations to
reduce latency and special cases can be detected and han-
dled more efficiently.  For example, if either operand is
zero, that case is detected immediately, and the execution
ends early.  Overflow cases are also detected and end
early.  Aside from division by zero, they only occur for
signed divides where the numerator is the most negative
integer and the divisor is -1. 

The operands are first converted to floating point for-
mat, and then use the table to obtain an estimate of the
reciprocal of the divisor.  The conversion makes use of
the aligner and lzdb for positive and unsigned operands,
which is similar to the handling of denormal operands
described above for accessing the tables.  A leading ones
counter was added so that negative integers could be han-
dled essentially the same way.  The intermediate quotient
is then obtained in a way that is similar to the floating
point divide.  For 64-bit precision, a Newton-Raphson
step is then used, since the dataflow saves no additional
bits of precision.  However, for 32-bit divides and also
for all cases where the numerator has fewer than 50 sig-
nificant bits, 55 bit accuracy in the intermediate quotient
can be obtained without that step, saving 12 cycles of
latency.  In either case, once a floating point quotient of

sufficient accuracy is obtained, we can add a 1 to an
appropriate bit position corresponding to a few bits
below the LSB of the integer result, and then truncate to
the nearest integer value which corresponds to the correct
quotient.  

For doubleword divides with larger numerators as
described above, the latency is 45 cycles, which does not
include the time to move the operands and the result
between the BFU and the General Purpose Registers
(GPRs) of the fixed point unit.  For smaller numerators,
which is probably the typical case and for all single word
divides, the latency is 33 cycles.  

Using vacant cycles during divide or square 
root. 

During execution of a divide or square root instruction,
most of the slots in the pipeline are unused as each opera-
tion waits for the results from previous operations.  In P6,
to improve performance, other floating point instructions
not dependent on the divide or square root result can be
issued during those vacant slots.  They must be 1-cycle
pipelineable instructions such as multiply-add.  The
instruction scheduler is notified several cycles before
each vacant cycle is available.  This is similar to the use
of unused cycles for independent multiplication instruc-
tions in the AMD-K7 [16].  Although this is a conceptu-
ally simple idea, it was not implemented in any of the
previous processors.  In P6, a second temporary register
was needed to hold the divide operands so that the pipe-
line operand registers wou;ld be available for other
instructions.  This would have provided greater improve-
ment in a processor such as Power5 which used register
renaming and out-of-order execution within the floating
point unit.  In P6, with only limited out-of-order execu-
tion allowed, and with two execution units, it provides
only a small benefit when just one thread is active.  How-
ever, when two threads are active, there is no limit to the
use of unused cycles for pipelineable instructions from
the other thread. 

9. Miscellaneous
Special cases where forwarding is stalled. 
There are several cases where bypassing results from

stages 6 or 7 to dependent instructions must be prevented.
It has been shown that a normal result can be forwarded
from stage 6 to the multiplier, and if that result is subse-
quently rounded up, then the rounding correction multi-
plexor in the multiplier can be used to compensate for the
unrounded operand passed to the multiplier.  However,
the rounder in stage 7 also produces the special results for



underflow and overflow.  For these cases, we must avoid
forwarding from stage 6.  There are also cases where an
invalid operation may occur.  For the pipelineable arith-
metic instructions, these cases only occur when an oper-
and is infinity or a SNaN.  If the Invalid Operation trap is
enabled, then writeback to the FPR must be prevented,
and forwarding must be prevented from both stage 6 and
stage 7.  In PowerPC architecture, traps are not required
to take place at the instruction that causes the trap  when
in imprecise exception mode.  Subsequent dependent
instructions may be executed, but they must use the FPR
data as it was before the invalid operation occurred.
Thus, we have cases where forwarding must be stalled
from stage 6, and other cases where it must be prevented
from both stages.

The issue unit which schedules instructions, must be
signaled very early when forwarding must be stalled or
prevented.  To prevent bypassing from stage 6, the signal
must go out from stage 2, and the condition must be
detected in stage 1.  At this time, the result exponent has
not been determined.  There is only time for the most sig-
nificant bits exponents to be examined, and if there is any
possibility at all that either an underflow, an overflow, or
an invalid operation may occur, then a signal goes out to
block bypass from stage 6.  For the multiplier operands,
only the three most significant bits of the A and C expo-
nent are used.  If the operation has a B operand (the
addend), then the signal also goes out if the implied bit is
zero or if the biased exponent has all ones or is close to
zero.

Forwarding from stage 6 is also blocked for any single
precision instruction.  Determining possible underflow or
overflow for single precision would require examining
more exponent bits and would delay the signal further.

The signal for preventing bypass from stage 7 must go
out a cycle later.  This allows more time for determina-
tion , and also fewer cases must be detected.  These are
mostly cases where an operand has an exponent of all
ones.

Checking - Clock gating. 
All FPR registers have parity bits, one for each byte.

When read from the FPR into the operand registers, the
parity bits of the operand registers are computed and
compared to the parity bits read from the FPR. Data com-
ing from the load store units also have parity bits and are
checked similarly. All data busses in and out of the BFU
are parity checked. Internally the full significand data-
flow is checked with residue checking logic for all multi-

ply-add operations. Residue three is used for timing
reasons. 

Power saving is done in fine grain manner, whereby
each stage of  the pipeline is powered up and shut down
in a pipeline with clock gating. The complete BFU is in
sleep mode when not in use.  Once a BFU instruction is
dispatched, the first input stage of the pipeline is powered
up then the next pipeline stage and so on. There is one
interface macro which is always clocked to listen to the
interface signals. This macro also controls the clock gat-
ing.

Technology. 
Typically the floating point unit is located toward the

outside edge of the central processing core.  Due to its
physical nature of having a large number of functions
which are traversed in series, the BFU always has a
lengthy rectangular shape. Data processing however
starts from the register file (FPR) and ends up back in the
FPR. Some earlier implementations used a wrapped data-
flow [17].  However, due to the wide dataflow, there
would be too many wires that must go down the pipeline
and then go back up to the FPR. To reduce wire lengths
and reduce the number of wiring tracks through some
macros, an "O" shape floorplan was created. The compu-
tation flows down the right stack to the adder and then
flows up the left stack back to the FPR. The adder is the
optimal cross-over point since only the group generates
are timing critical and require fast low-resistance hori-
zontal wires.  Latch delay overhead is minimized by the
extensive use of scannable pulsed latches [17].  The func-
tional data path of each latch is only through a dynamic
L2 latch which is transparent while the clock is active.
The L2 clock is only active for a few FO4s to avoid race
conditions between latches of different pipeline stages,
but it allows some balancing of delays across the cycle
boundary during that window.  Moreover, the total delay
through the latch is half of what the setup time and delay
would be for a traditional master-slave latch.  For testing,
these latches also have a mode which uses a parallel mas-
ter-slave path that is scannable.

The Power6 chip is fabricated in a 65nm SOI process
technology. Tests in the lab show the chip running at
close to 6 GHz. Power simulation at 1.1V, 4GHz and
100% utilization shows BFU dataflow consumes 310
mW. When not utilized the whole unit is clock gated to
achieve zero active power. Unit area is about 2.5 mm2.

10. Summary
The Power6 Binary Floating-Point unit has been

described which surpasses the design of prior fused mul-



tiply-add dataflows.  Predecessor designs required 132
FO4 delays for dependent operations and started indepen-
dent operations every 23 FO4 cycle.  This design has a 7
stage pipeline that is effectively only 6 stages for depen-
dent instructions achieving a delay of only 78 FO4s
between dependent instructions and can start independent
operations every 13 FO4 cycle.  The design, using a tech-
nology independent measure, is over 40% faster.   And
with the latest 65nm SOI technology has been tested at
over twice the frequency of Power 5 with the same clocks
per dependent BFU pipelined instruction. To achieve this
major accomplishment required many logic, circuit,
latch, and integration techniques.  The key microarchitec-
ture change was to forwarded intermediate results prior to
rounding and prior to full normalization.  Additionally
many cases requiring stalls in prior designs were elimi-
nated.  These changes added complexity to many parts of
the design as shown in this paper.

The POWER6 BFU incorporates many microarchitec-
ture, logic, circuit, latch, and integration techniques to
achieve outstanding performance with an effective 6-
cycle 13 FO4 pipeline.
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