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Abstract

Recent studies have witnessed the successes of using 3D

CNNs for video action recognition. However, most 3D mod-

els are built upon RGB and optical flow streams, which may

not fully exploit pose dynamics, i.e., an important cue of

modeling human actions. To fill this gap, we propose a

concise Pose-Action 3D Machine (PA3D), which can effec-

tively encode multiple pose modalities within a unified 3D

framework, and consequently learn spatio-temporal pose

representations for action recognition. More specifically,

we introduce a novel temporal pose convolution to aggre-

gate spatial poses over frames. Unlike the classical tem-

poral convolution, our operation can explicitly learn the

pose motions that are discriminative to recognize human ac-

tions. Extensive experiments on three popular benchmarks

(i.e., JHMDB, HMDB, and Charades) show that, PA3D out-

performs the recent pose-based approaches. Furthermore,

PA3D is highly complementary to the recent 3D CNNs, e.g.,

I3D. Multi-stream fusion achieves the state-of-the-art per-

formance on all evaluated data sets.

1. Introduction

Video action recognition has been recently investigated,

due to its wide applications in video surveillance, human-

computer interaction, etc. The advances in this area are

mainly driven by deep learning [2, 24, 35]. In particular, 3D

CNNs have proven effective to learn spatio-temporal repre-

sentations of videos [2, 29, 36]. However, most of existing

approaches are mainly built upon two input types, namely

RGB and optical flows. This ignores another discriminative

action cue, i.e, human pose dynamics.

Alternatively, several pose-based approaches have been

developed for action recognition [3, 4, 5, 18], based on

the remarkable successes in human pose estimation [1, 38].

One attractive direction is pose dynamics encoding [3, 4],
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which aggregates human poses of different frames as spatio-

temporal representations for action recognition. However,

these approaches mainly depend on two-stream features of

the predefined human-pose patches [3] and/or learn pose

dynamics with the predefined encoding scheme. In this

case, pose representation and action recognition are isolated

without adaptive interactions, which may limit the power to

understand complex actions in the wild videos. More im-

portantly, the current research of pose-based action recog-

nition lacks a unified framework, i.e., a general semantic

stream which is complementary to two-stream 3D CNNs.

To address these difficulties, we propose a novel Pose-

Action 3D (PA3D) machine, which provides a seamless

workflow to encode spatio-temporal pose representations

for video action recognition. Specifically, PA3D consists

of three semantic modules, i.e., spatial pose CNN, temporal

pose convolution, and action CNN. First, spatial pose CNN

can robustly extract different modalities of pose heatmaps

(i.e., joints, part affinity fields, and convolutional features)

from wild videos. Second, temporal pose convolution can

adaptively aggregate spatial pose heatmaps over frames,

which generates a spatio-temporal pose representation for

each pose modality. Finally, action CNN takes the learned

pose representation as input to recognize human actions.

Overall, we make three contributions in this paper.

First, PA3D is a concise 3D CNN framework, which

can achieve the learning efficiency by factorizing semantic

task (pose/action), convolution operation (spatial/temporal),

pose modality (joints/part affinity fields/convolutional fea-

tures) within a multi-level fashion. In this case, PA3D can

flexibly encode various pose dynamics as a discriminative

cue to classify complex actions. Second, we propose a

novel temporal pose convolution operation, which mainly

consists of temporal association and semantic convolution

to encode pose motions. Different from the traditional tem-

poral convolution in 3D CNNs, our temporal pose convolu-

tion can learn a spatio-temporal semantic representation to

explicitly describe pose motions. Moreover, our temporal

dilation design allows this convolution to capture complex

actions with multi-scale pose dynamics. Hence, it is more

7922



Figure 1. A Generic Framework of Pose-Action 3D Machine (PA3D). Specifically, it consists of three semantic modules, i.e., spatial pose

CNN, temporal pose convolution, and action CNN. First, spatial pose CNN can robustly extract different modalities of pose heatmaps (i.e.,

joints, part affinity fields, and convolutional features) for each sampled video frame. Second, temporal pose convolution can adaptively

aggregate spatial pose heatmaps over frames, which generates a spatio-temporal pose representation for each pose modality. Finally, action

CNN takes the learned pose representation as input to recognize human actions. Since PA3D is built upon a concise spatio-temporal 3D

framework, it can be used as another semantic stream for action recognition in videos.

suitable for action recognition in the wild videos. Finally,

we conduct extensive experiments on the popular bench-

marks, i.e., JHMDB, HMDB and Charades. The results

show that our PA3D outperforms the recent pose encoding

approaches on action recognition. Furthermore, it is highly

complementary to two-stream 3D CNNs (e.g., I3D), where

score fusion leads to the state-of-the-art performance on all

evaluated data sets. Hence, our PA3D can be used as an-

other semantic stream for human action recognition.

2. Related Work

Action Recognition. Over the past years, deep learning

approaches have significantly boosted the performance of

video action recognition [2, 7, 24, 32, 33, 35, 36]. One well-

known framework is two-stream CNNs [24], which process

RGB and optical flows as two separate streams. Built upon

this, a number of variations have been introduced by deep

local descriptors [31, 33], two-stream fusion [7, 8], key vol-

ume attention and mining [34, 42], temporal segment net-

works [35], etc. However, 2D CNNs are limited to learn

spatio-temporal representations of complex actions. To ad-

dress this difficulty, 3D CNNs have been highlighted by

model inflation [2], spatio-temporal relations [32, 36, 37],

factorization [21, 29, 39], etc. However, 3D CNNs often re-

quire the large-scale benchmarks (e.g., Sports1M [12] and

Kinetics [2, 13]) with costly computation burden. More im-

portantly, these models use RGB and/or optical flows as in-

put, and thus they ignore the pose dynamics which can be

discriminative to recognize human actions. To bridge this

gap, we propose Pose-Action 3D Machine (PA3D), i.e., a

novel 3D CNN for pose-based action recognition.

Pose-based Action Recognition. Human pose provides

an important cue to classify complex actions [10, 43]. With

the remarkable successes of deep learning in pose estima-

tion [1, 17, 20, 26, 27, 38], there is a growing interest in

pose-based action recognition. However, it is often chal-

lenging to achieve an effective design, since those pose

estimators are not explicitly developed for action recogni-

tion in videos. Several attempts have been recently pro-

posed by skeleton representation [6, 40], multi-task learn-

ing [18], recurrent pose attention [5], pose dynamics en-

coding [3, 4, 16], etc. In particular, pose dynamics en-

coding is an attractive direction by learning spatio-temporal

pose representations for action recognition. But these ap-

proaches mainly depend on two-steam features of the pre-

defined human-pose patches [3] and/or use the predefined

pose encoding scheme [4], which may reduce their capac-

ity of recognizing complex actions in the wild. Further-

more, the current research lacks a unified framework for

pose-based action recognition. Motivated by these, we pro-

pose a novel factorized 3D CNN (i.e., PA3D), which can

effectively learn pose dynamics to classify human actions.

3. Pose-Action 3D Machines (PA3D)

To obtain an effective spatio-temporal pose representa-

tion for video action recognition, we introduce Pose-Action

3D Machine (PA3D) in the section. It mainly consists of

three semantic modules, i.e., spatial pose CNN, temporal

pose convolution, and action CNN. First, we use spatial

pose CNN to generate human pose features for each video

frame. By taking advantage of the state-of-the-art pose es-

timator (e.g., [1]), our spatial pose heatmaps are robust to

occlusion and multi-person cases in the wild. Second, we

propose a novel temporal pose convolution, which can ag-

gregate spatial poses of different frames semantically into

a spatio-temporal pose representation. Finally, we feed the

resulting pose representations into action CNN, and fuse the

prediction scores of different pose modalities to boost ac-

tion recognition. The generic framework is shown in Fig. 1.

3.1. Spatial Pose CNN

To leverage human pose as an explicit cue of actions

in videos, we first use spatial pose CNN to generate pose

heatmaps of actors in each frame. Specifically, we choose

the widely-used multi-person pose machines [1] as our spa-

tial pose CNN, since it is robust to the cases of multiple

people and complex occlusions in the wild. Furthermore,

we feed each video frame into this spatial pose CNN, and
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Figure 2. Temporal Pose Convolution. Without loss of generality, we use the joint heatmaps as an illustration. The part affinity fields and

convolutional features can be processed in the same manner. Specifically, temporal pose convolution consists of two atomic operations.

(1) Temporal association is used to generate a temporally-ordered cube J̃c for each joint. We achieve it by stacking the heatmaps of all the

frames (per joint). (2) Semantic convolution is used to generate a spatio-temporal pose representation J̆c for each joint. We achieve it by

performing 1× 1 convolution on J̃c (per joint). To alleviate overfitting, we share the convolutional filter Θ among all the joints.

extract three pose modalities, i.e., joints, part affinity fields,

and convolutional features. The modality of joints refers

to the prediction confidence maps of human joints. The

modality of part affinity fields refers to the prediction con-

fidence maps which preserve both location and orientation

information across the support region of body limb [1]. The

modality of convolutional features refers to the feature

maps from a convolution layer of CNN backbone in [1],

e.g., the 10-th layer of VGG19.

Without loss of generality, we use the joint heatmaps as

an illustration. The part affinity fields and convolutional

features can be processed in the same manner. Specifically,

we denote the joint heatmaps of the t-th video frame as Jt ∈

R
C×H×W (t = 1, ..., T ). It consists of C heatmaps with

size of H ×W , where C is the number of human joints.

3.2. Temporal Pose Convolution

After obtaining spatial pose heatmaps for each frame

(e.g., Jt), we propose a novel temporal pose convolution

to encode pose dynamics over frames. As shown in Fig. 2,

it mainly consists of two atomic operations, i.e., temporal

association and semantic convolution.

Temporal Association. For each joint, we first stack the

heatmaps of all the frames along their temporal order. This

operation can generate a temporally-associated cube for the

c-th joint, i.e., J̃c ∈ R
T×H×W , where the t-th channel of

J̃c refers to the heatmap of the c-th joint at the t-th temporal

frame, t = 1, ..., T and c = 1, ..., C.

Semantic Convolution. After obtaining the temporally-

associated cube J̃c of the c-th joint, we encode it into

a spatio-temporal pose representation over frames. As

mentioned before, the channels of J̃c correspond to the

temporally-ordered heatmaps of the c-th joint. In this case,

we directly perform 1× 1 convolution on J̃c to generate the

spatio-temporal pose representation J̆c ∈ R
N×H×W ,

J̆c = J̃c ∗Θ. (1)

Note that, each of N output channels in J̆c is not just an ab-

stract feature map. It semantically encodes the movement

of the c-th joint over frames, as shown in Fig. 2. For this

reason, we denote the 1 × 1 convolution as semantic con-

volution. Moreover, Θ ∈ R
N×T×1×1 is the convolutional

filter. We share it among joints to alleviate overfitting.

Multi-Scale Design via Temporal Dilation. For each

joint, semantic convolution is performed over all the frames.

As a result, the spatio-temporal representation J̆c may lack

the ability to describe various scales of pose motions. To

address this problem, we introduce temporal dilation con-

volution,

Ĵc = J̃c ∗ Φ, (2)

where Φ ∈ R
M×(T/d)×1×1 is the dilated convolutional fil-

ter, d is the dilated factor, and M is the number of output

heatmaps. As shown in Fig. 3, temporal dilation allows us

to perform semantic convolution on those channels of J̃c
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Figure 3. Multi-Scale Temporal Pose Convolution Module. Temporal dilation allows us to perform semantic convolution on those channels

with the interval of d time steps (e.g., d = 2). Hence, it can learn pose dynamics in a different temporal scale.

with the interval of d time steps (e.g., d = 2). Hence, it

can learn pose dynamics at different temporal scales. Ad-

ditionally, temporal dilation is preferable than local convo-

lution, e.g., performing semantic convolution on adjacent

3 frames with stride 1. The main reason is that, temporal

dilation can extend temporal receptive fields with different

scales, which avoids modeling the noisy pose dynamics in

the locally-adjacent frames. Finally, we concatenate J̆c and

Ĵc as a multi-scale spatio-temporal pose representation, and

feed it into action CNN for recognition.

Why to Use Temporal Pose Convolution? We mainly

explain why our temporal pose convolution is more suit-

able to learn spatio-temporal pose representation, compared

to other temporal approaches [4, 29, 39]. (1) Temporal

Pose Convolution vs. Traditional Temporal Convolu-

tion. First, the traditional temporal convolution [29, 39]

can be directly implemented on the joint heatmaps over T
frames. For example, in order to produce N output feature

maps, temporal convolution has to be formulated as Ψ ∈

R
N×C×T×1×1, i.e., T ×1×1 with C input channels and N

output channels. Apparently, it requires much more param-

eters than our temporal pose convolution Θ ∈ R
N×T×1×1.

Hence, the traditional temporal convolution often increases

the overfitting risk. Second, in the traditional temporal con-

volution, the output feature map is often a highly-abstract

spatio-temporal feature, which may lack the semantic rep-

resentation of discriminative pose motions. Alternatively,

each output of our temporal pose convolution delivers rich

semantic descriptions, e.g. the dynamics of a joint over

frames. Hence, our convolution is more effective to encode

spatio-temporal pose representation. (2) Temporal Pose

Convolution vs. Pose Colorization of PoTion. First, pose

colorization [4] encodes the joint heatmaps of each video

frame, according to the relative time of this frame in the

clip. Due to the fact that such encoding scheme is prede-

fined as a linear function of time steps, it is often limited to

learn the complex pose motions. Alternatively, our tempo-

ral pose convolution is trained jointly with action CNN, al-

lowing to capture nonlinear pose dynamics adaptively. Sec-

Layer Output Size Action CNN

input R×H ×W -

conv1 1 128×H/2×W/2 3× 3, stride 2

conv1 2 128×H/2×W/2 3× 3, stride 1

conv2 1 256×H/4×W/4 3× 3, stride 2

conv2 2 256×H/4×W/4 3× 3, stride 1

conv3 1 512×H/8×W/8 3× 3, stride 2

conv3 2 512×H/8×W/8 3× 3, stride 1

FC-512 512× 1× 1 average pool, dropout

FC-K K × 1× 1 softmax
Table 1. Action CNN. R is the number of feature channels in the

spatio-temporal pose representation. Note that, these features are

the middle-level semantic representations, which are more sparse

than the original images. Hence, we follow the suggestion in [4],

and use a light-weight model to recognize K action classes.

ond, PoTion lacks the multi-scale description of pose mo-

tions, while our dilated operation can encode various pose

dynamics in a unified framework. Third, PoTion only uses

joints for pose encoding, while our temporal pose convo-

lution also works for other important pose modalities (e.g.,

part affinity fields and convolution features). It can further

boost our approach. (3) Temporal Pose Convolution vs.

Temporal Segment Network. Temporal segment networks

[35] provide a temporal encoding manner for action recog-

nition, i.e., it averages the scores of sampled frames as video

prediction for training. Apparently, one can use it to en-

code pose heatmaps of different frames, e.g., we feed pose

heatmaps of each sampled frame independently into action

CNN, and average the scores of sampled frames as video

prediction for training. However, this average style may ig-

nore the important pose movement, which can be seen as a

discriminative cue for action recognition. Alternatively, our

temporal pose convolution can effectively encode semantic

pose motions to train action CNN.

3.3. Action CNN

After obtaining spatio-temporal pose representation, we

feed it into an action CNN for action recognition in videos.
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Temporal Pose Modeling JHMDB HMDB

TSN Style

Joints 54.5 42.3

Parts 58.5 44.0

Features 38.0 35.5

3DConv

Joints 55.6 45.1

Parts 54.5 44.8

Features 40.5 40.0

TempConv

Joints 58.5 45.8

Parts 51.4 44.7

Features 38.4 39.3

PoTion

Joints 51.2 43.4

Parts 50.3 42.6

Features 38.0 37.8

Our TempPoseConv

Joints 59.3 46.7

Parts 58.6 47.1

Features 40.5 40.3

Table 2. Classification accuracy by temporal modeling approaches

(JHMDB and HMDB, split one). Specifically, we first use spa-

tial pose CNN to generate the pose features, and then use different

temporal modeling approaches to learn spatio-temporal pose rep-

resentation for action recognition.

It is worth mentioning that, these pose representations are

the middle-level features, which are more sparse than the

original images. Hence, we follow the suggestion in [4],

and use a light-weight action CNN, i.e., six convolutional

layers and one fully-connected layer in Table. 1. Fur-

thermore, we train temporal pose convolution and action

CNN jointly. It can enhance our PA3D by adaptive in-

teractions between learning pose dynamics and classifying

actions. Finally, we fuse the prediction scores of different

pose modalities to boost action recognition in the test.

3.4. Further Discussions about PA3D

As shown in Fig. 1, our PA3D can be treated as a novel

spatio-temporal 3D CNN for pose-based action recog-

nition. To effectively exploit human pose information in

the wild videos, we factorize 3D CNN into different se-

mantic levels. First, we decouple the target task as spatio-

temporal pose encoding and action recognition. In this case,

we can explicitly leverage pose dynamics as a discrimina-

tive cue to classify human actions. Second, we decompose

spatio-temporal pose learning via separate spatial and tem-

poral pose convolutions. As illustrated in Fig. 2, this can

effectively encode pose motions for each joint. Finally,

we represent human pose via three modalities, i.e., joints,

part affinity fields, and convolutional features. Score fusion

can boost pose-based action recognition. Furthermore, our

PA3D is built upon pose dynamics. Hence, it can be used

as another semantic stream, which is complementary to the

popular two streams (i.e., RGB and optical flows).

Types of TempPoseConv JHMDB HMDB

Global 59.3 46.7

Local 57.5 44.9

Dilated 58.4 44.8

Global+Local 59.7 44.8

Global+Dilated 60.1 47.8

Global+Dilated+Local 58.5 47.1

Table 3. Types of TempPoseConv (Joints). Specifically, we per-

form semantic conv on all 8 frames (Global Type) or frames with

interval of d=2 steps (Dilation Type), as shown in Fig. 3. For

comparison, we also design a Local Type of TempPoseConv, e.g.,

we perform semantic conv on adjacent 3 frames with stride 1 (i.e.,

t1-t3, t2-t4, t3-t5, t4-t6, t5-t7, t6-t8). + denotes that, we integrate

various types of TempPoseConv as a multi-scale module such as

Fig. 3. Compared to the Local type, dilation is preferable to model

multi-scale pose dynamics with larger temporal receptive fields.

Frames T =2 T =4 T =6 T =8 T =12

JHMDB 57.8 56.3 55.3 55.6 50.4

HMDB 44.6 46.1 45.5 46.8 43.2

Outputs N =2 N =4 N =6 N =8 N =12

JHMDB 58.2 59.6 56.3 60.1 52.6

HMDB 43.7 46.3 46.1 46.0 45.7

Table 4. Parameters in TempPoseConv (Joints). For Θ ∈

R
N×T×1×1 in Eq. (1), we evaluate the number of video frames

T , and the number of output channels N for each joint. When

we change T (or N ), we fix N = 6 (or T = 4). The results are

comparable, showing that TempPoseConv is robust to different pa-

rameter choices. More details can be found in Section 4.1.

4. Experiments

Data Sets. Since our goal is pose-based action recog-

nition in videos, we evaluate our PA3D on three popular

benchmarks which focus on complex human activities in the

wild. Specifically, JHMDB [11]/HMDB [15] consists of

21/51 action categories with 928/6766 video clips, respec-

tively. They are collected from movies to youtube, which

involves daily activities. Charades [23] is a recent large-

scale video dataset, consisting of 9,848 annotated videos

with an average length of 30 seconds. Note that, we choose

Charades instead of Kinetics [13] with the following rea-

sons. On one hand, as discussed in [4], it is not suitable

to evaluate pose-based action recognition on Kinetics, since

humans are poorly visible in many videos of this data. On

the other hand, Charades contains activities of 267 differ-

ent people, and over 15% of this dataset belongs to multi-

person scenes. Furthermore, it contains 66,500 activity an-

notations for 157 action classes. Each video is severely

untrimmed and has multiple action labels in the overlapped

temporal durations. All these facts make Charades reason-

able and challenging for pose-based action recognition.

Implementation Details. Unless stated otherwise, we
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Pose Modalities JHMDB HMDB

Joint (J) 60.1 47.8

Joint-difference (Jdiff) 52.6 46.4

Part (P) 61.9 48.0

Part-difference (Pdiff) 50.0 42.2

Feature (F) 41.0 40.9

Feature-difference (Fdiff) 35.0 36.2

Fusion Strategies JHMDB HMDB

J ⊕ P 58.7 47.5

J ∪ P 65.6 50.7

J ⊕ Jdiff 56.2 45.8

J ∪ Jdiff 61.2 50.3

P ∪ Pdiff 64.9 49.1

F ∪ Fdiff 47.7 45.1

J ∪ P ∪ F 67.5 54.1

J ∪ P ∪ F ∪ Jdiff ∪ Pdiff ∪ Fdiff 69.5 54.7

Table 5. Pose modality fusion. ⊕: We concatenate spatio-temporal

representations of different pose modalities, and feed it into an ac-

tion CNN for action recognition. ∪: We feed spatio-temporal rep-

resentation of each pose modality into an individual action CNN,

and fuse the prediction scores at the test phrase.

perform our PA3D as follows. First, we use the offi-

cial 6-stage multi-person pose CNN [1] to extract spa-

tial pose heatmaps for each sampled frame, i.e., 19 joint

heatmaps: joint branch in the last stage, 38 part heatmaps:

part affinity field branch in the last stage, 128 feature

maps: the 10-th layer of VGG19 which is the backbone

of this pose CNN. More specifically, we resize each video

frame with a scale of 0.5, 1.0, 1.5 and 2.0, and average

their outputs to produce the final pose heatmaps for each

frame. Second, we set the training batch size as 32/64/256

for JHMDB/HMDB/Charades, under the implementation

on PyTorch. We use the standard SGD for training JH-

MDB/HMDB and the adam optimizer [14] for training Cha-

rades. The initial learning rate is set to 0.01, and the train-

ing procedure is finished with 150/400/60 epoches for JH-

MDB/HMDB/Charades. Third, each video has a single la-

bel in JHMDB and HMDB. Hence, we use cross entropy

for training and report the test classification accuracy. Al-

ternatively, each video contains multiple labels in Charades.

Hence, we use multi-label loss [23] for training and report

the test mean average precision (mAP).

4.1. Ablation Studies

To investigate the properties of our PA3D, we mainly

evaluate its key model components on JHMDB and HMDB.

For fairness, when we explore different strategies of one

component, all other components are set as the basic strat-

egy in the implementation details above.

Does temporal pose convolution help? First, we

compare temporal pose convolution (TempPoseConv) with

a number of recent temporal modeling approaches, e.g.,

temporal segment network (TSN) [35], 3D convolution

(3DConv) [28], temporal convolution (TempConv) in fac-

torized 3D CNN [29], pose colorization in PoTion [4]. The

testing accuracy results of JHMDB and HMDB (split1) are

shown in Table 2, where our TempPoseConv outperforms

other temporal modeling approaches, w.r.t., all pose modal-

ities. It demonstrates that our TempPoseConv can encode

the discriminative pose dynamics for action recognition.

Second, we evaluate whether temporal dilation is effective

to model multi-scale pose dynamics. Hence, we perform

the Global/Local/Dilation types of TempPoseConv. Specif-

ically, we perform semantic conv on all 8 frames (Global

Type) or frames with interval of d=2 steps (Dilation Type),

as shown in Fig. 3. For comparison, we also design a

Local Type of TempPoseConv, e.g., we perform semantic

conv on adjacent 3 frames with stride 1 (i.e., t1-t3, t2-t4,

t3-t5, t4-t6, t5-t7, t6-t8). Furthermore, we concatenate dif-

ferent TempPoseConv types as multi-scale module. The re-

sults of the joint modality are shown in Table 3, where we

keep the same number of output channels to be fair, e.g.,

N = 6 for each joint. One can see that, the Local type does

not work well by itself or concatenation, since the locally-

adjacent pose dynamics may be noisy. Alternatively, tem-

poral dilation is preferable because it can extend temporal

receptive fields with different scales. Finally, we evaluate

Θ ∈ R
N×T×1×1 in TempPoseConv. The results for the

joint modality are shown in Table 4. When testing, we make

prediction over 10 sampled clips of each video, where each

clip has T sampled frames. Since videos in JHMDB are

truncated into a very short duration, a small T in each clip

can be sufficient to capture important pose cues. When T
increases in each clip, 10 sampled clips are gradually over-

lapped for a video in JHMDB. In this case, the complemen-

tary properties between different clips are reduced when fu-

sion. Hence, the performance slightly decreases. Addition-

ally, N is the number of output channels in TempPoseConv.

When N is small, it may be insufficient to model the dis-

criminative pose dynamics to recognize complex actions.

When N is large, the spatio-temporal pose representations

may be redundant, which increases the training difficulty of

action CNN. Hence, a moderate N is preferable. We choose

T = 4/8 and N = 8/6 for JHMDB/HMDB.

How to fuse different pose modalities? To investigate

the best results with various pose modalities, we perform

multi-scale TempPoseConv for all the cases in the follow-

ing. First, for each pose modality, we compute the differ-

ence between two consecutive frames. For example, Jd-

iff is Jt − Jt−1, where Jt is the joint heatmap at t and

t = 2, ..., T . As before, we encode this feature as a spatio-

temporal representation over all the frames. In Table 5, the

pose difference is also effective for action recognition. Sec-

ond, we investigate different fusion strategies, i.e., ⊕ de-
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Approaches JHMDB

P-CNN [3] 61.1

Action Tubes [9] 62.5

MR Two-Sream R-CNN [19] 71.1

Chained MultiStream [43] 76.1

PoTion [4] 57.0

I3D [4] 84.1

PoTion+I3D [4] 85.5

our PA3D 69.5

RPAN† [5] 83.9

our PA3D + RPAN† 86.1

Table 6. State-of-the-art on JHMDB (Acc). † denotes our repro-

duced results. More details can be found in Section 4.2.

notes that we concatenate spatio-temporal representations

of different pose modalities together, and feed them into an

action CNN. ∪ denotes that we feed spatio-temporal rep-

resentation of each pose modality into an individual action

CNN, and fuse their prediction scores at the test phrase. In

Table 5, J ∪ P outperforms J ⊕ P, showing that it is more

effective to use score fusion between pose modalities. Ad-

ditionally, J ∪ Jdiff outperforms J ⊕ Jdiff. It illustrates that,

score fusion is also suitable to integrate a pose modality and

its difference. Hence, we use score fusion ∪ in the rest. Fi-

nally, we fuse various pose modalities in different combi-

nations. Fusing all achieves the best result, which shows the

complementary characteristics of different pose modalities.

Is it necessary to pretrain action CNN? We evalu-

ate action CNN on HMDB, with two settings (i.e., non-

pretraining vs. pretraining on the large-scale Charades). Al-

though the pretrained action CNN tends to converge 1.5x

faster than the non-pretrained one, the test accuracy of the

pretrained one would be slightly lower (around 1-2%) than

that of the non-pretrained one (joint modality: 47.8%).

Hence, it may not be necessary to pretrain action CNN, as

suggested in [4]. The reason is that the input to action CNN

is the sparse pose motion features, which are already the

middle-level representations for action recognition. There-

fore, we train action CNN from scratch in our experiment.

4.2. Comparison with State­of­the­art

We compare our PA3D with a number of state-of-the-art

approaches in Table 6, Table 7 and 8. First, our PA3D sig-

nificantly outperforms the recent pose encoding approach,

e.g., P-CNN [3], PoTion [4]. This indicates that our PA3D

can learn the discriminative pose dynamics for action recog-

nition. Second, our PA3D is strongly complementary to

other 3D CNNs (e.g., I3D [2] or NL I3D [36]) and two-

stream CNN (e.g., RPAN [5]). This shows that our PA3D

is an effective semantic stream for human action recogni-

tion. Via score fusion, we achieve the state-of-the-art per-

formance on JHMDB, HMDB and Charades.

Local Descriptors HMDB

IDT [30] 61.7

TDD [33] 63.2

TDD +IDT [33] 65.9

2D Convolution Networks HMDB

2Stream [24] 59.4

ST-Resnet [7] 66.4

TSN [35] 69.4

Chained MultiStream [43] 69.7

SVMP [31] 72.6

OFF [25] 74.2

3D Convolution Networks HMDB

C3D [28] 51.6

ARTNet [32] 70.9

S3D [39] 75.9

R(2+1)D [29] 78.7

I3D [2] 80.7

PoTion [4] 43.7

PoTion + I3D [4] 80.9

our PA3D 55.3

our PA3D + I3D 82.1

Table 7. State-of-the-art on HMDB (Acc).

Approaches Charades

C3D [23] 10.9

2Stream [23] 14.2

Asyn-TF [22] 22.4

Multiscale TRN [41] 25.2

SVMP [31] 26.7

I3D [36] 35.5

GCN [37] 36.2

NL I3D [36] 37.5

(GCN + I3D + NL I3D)† 40.7

PoTion† [4] 10.3

PoTion† + (GCN + I3D + NL I3D)† 40.8

our PA3D 13.8

our PA3D + (GCN + I3D + NL I3D)† 41.0

Table 8. State-of-the-art on Charades (mAP). † denotes our repro-

duced results. More details can be found in Section 4.2.

4.3. Visualization

In Fig. 4, we visualize PA3D by a Sword video of

HMDB (T = 8 frames). First, we use spatial pose CNN

to generate the pose heatmaps, e.g., 38 part affinity fields

(PAF) heatmaps. For visualization, we perform maxpooling

over all the PAF heatmaps, which can describe human poses

for each frame. Second, we perform temporal pose convo-

lution over frames. For each PAF, we obtain N = 6 motion

maps, i.e., spatio-temporal pose representation. For visual-

ization, we perform maxpooling over PAFs, which can pro-

duce N = 6 motion maps of human poses over frames. As
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Figure 4. Visualization of our PA3D. One can see that, TempPoseConv can learn various temporal movements and thus represent the

diversified human pose motions. Moreover, the features in conv3 2 clearly show that, action CNN can highlight the important pose

motions of different actors, and integrate them together as a discriminative representation for action recognition.

shown in Fig. 4, TempPoseConv exhibits various temporal

movements, and thus captures the diversified human pose

motions. Finally, we concatenate all the PAF-motion maps

as input to action CNN. We visualize the conv3 2 layer by

using 32 convolution filters and the corresponding features.

Clearly, action CNN can highlight the important motions of

different PAFs, and combine them together as a discrimina-

tive representation for action recognition.

5. Conclusion

In this paper, we propose a novel Pose-Action 3D

(PA3D) Machine for action recognition. First, it is a concise

3D CNN with multi-level semantic factorization. Second,

we introduce a flexible temporal pose convolution, which

can explicitly encode spatio-temporal pose representations

for action recognition. Finally, we perform extensive ex-

periments on JHMDB, HMDB and Charades, where our

PA3D significantly outperforms the recent pose encoding

methods. Furthermore, it achieves the state-of-the-art per-

formance via fusion with two-stream 3D CNNs, showing its

effectiveness as another semantic stream in general.
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and Cordelia Schmid. Potion: Pose motion representation

for action recognition. In CVPR, 2018.

[5] Wenbin Du, Yali Wang, and Yu Qiao. Rpan: An end-to-

end recurrent pose-attention network for action recognition

in videos. In ICCV, 2017.

[6] Yong Du, Wei Wang, and Liang Wang. Hierarchical recur-

rent neural network for skeleton based action recognition. In

CVPR, 2015.

[7] Christoph Feichtenhofer, Axel Pinz, and Richard P. Wildes.

Spatiotemporal residual networks for video action recogni-

tion. In NIPS, 2016.

[8] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Convolutional two-stream network fusion for video action

recognition. In CVPR, 2016.

[9] Georgia Gkioxari and Jitendra Malik. Finding action tubes.

In CVPR, 2015.

[10] Umar Iqbal, Martin Garbade, and Juergen Gall. Pose for

action action for pose. In IEEE FG, 2017.

[11] Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia

Schmid, and Michael J Black. Towards understanding ac-

tion recognition. In ICCV, 2013.

[12] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas

Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with convolutional neural networks. In CVPR,

2014.

[13] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,

Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman,

and Andrew Zisserman. The kinetics human action video

dataset. In arXiv:1705.06950, 2017.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[15] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote,

Tomaso Poggio, and Thomas Serre. Hmdb: a large video

database for human motion recognition. In ICCV, 2011.

[16] Mengyuan Liu and Junsong Yuan. Recognizing human ac-

tions as the evolution of pose estimation maps. In CVPR,

2018.

[17] Yue Luo, Jimmy Ren, Zhouxia Wang, Wenxiu Sun, Jinshan

Pan, Jianbo Liu, Jiahao Pang, and Liang Lin. Lstm pose

machines. In CVPR, 2018.

[18] Diogo C. Luvizon, David Picard, and Hedi Tabia. 2d/3d pose

estimation and action recognition using multitask deep learn-

ing. In CVPR, 2018.

[19] Xiaojiang Peng and Cordelia Schmid. Multi-region Two-

Stream R-CNN for Action Detection. In ECCV, 2016.

[20] Tomas Pfister, James Charles, and Andrew Zisserman. Flow-

ing convnets for human pose estimation in videos. In ICCV,

2015.

[21] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-

temporal representation with pseudo-3d residual networks.

In ICCV, 2017.

[22] Gunnar A. Sigurdsson, Santosh Divvala, Ali Farhadi, and

Abhinav Gupta. Asynchronous temporal fields for action

recognition. In CVPR, 2017.

[23] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali

Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in

homes: Crowdsourcing data collection for activity under-

standing. In ECCV, 2016.

[24] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In

NIPS, 2014.

[25] Shuyang Sun, Zhanghui Kuang, Wanli Ouyang, Lu Sheng,

and Wei Zhang. Optical flow guided feature: A fast and

robust motion representation for video action recognition. In

CVPR, 2018.

[26] Jonathan J. Tompson, Arjun Jain, Yann LeCun, and

Christoph Bregler. Joint training of a convolutional network

and a graphical model for human pose estimation. In NIPS,

2014.

[27] Alexander Toshev and Christian Szegedy. Deeppose: Human

pose estimation via deep neural networks. In CVPR, 2014.

[28] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks. In ICCV, 2015.

[29] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann

LeCun, and Manohar Paluri. A closer look at spatiotemporal

convolutions for action recognition. In CVPR, 2018.

[30] Heng Wang and Cordelia Schmid. Action recognition with

improved trajectories. In ICCV, 2013.

[31] Jue Wang, Anoop Cherian, Fatih Porikli, and Stephen Gould.

Video representation learning using discriminative pooling.

In CVPR, 2018.

[32] Limin Wang, Wei Li, Wen Li, and Luc Van Gool.

Appearance-and-relation networks for video classification.

In CVPR, 2018.

[33] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recogni-

tion with trajectory-pooled deep-convolutional descriptors.

In CVPR, 2015.

[34] Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc Van

Gool. Untrimmednets for weakly supervised action recog-

nition and detection. In CVPR, 2017.

[35] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment

networks: Towards good practices for deep action recogni-

tion. In ECCV, 2016.

[36] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, 2018.

[37] Xiaolong Wang and Abhinav Gupta. Videos as space-time

region graphs. arXiv preprint arXiv:1806.01810, 2018.

[38] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser

Sheikh. Convolutional pose machines. In CVPR, 2016.

[39] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and

Kevin Murphy. Rethinking spatiotemporal feature learning

for video understanding. arXiv:1712.04851, 2017.

7930



[40] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-

ral graph convolutional networks for skeleton-based action

recognition. In AAAI, 2018.

[41] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Tor-

ralba. Temporal relational reasoning in videos. In ECCV,

2018.

[42] Wangjiang Zhu, Jie Hu, Gang Sun, Xudong Cao, and Yu

Qiao. A key volume mining deep framework for action

recognition. In CVPR, 2016.

[43] Mohammadreza Zolfaghari, Gabriel L. Oliveira, Nima

Sedaghat, and Thomas Brox. Chained multi-stream networks

exploiting pose, motion, and appearance for action classifi-

cation and detection. In ICCV, 2017.

7931


