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Abstract. PAC-Bayesian learning methods combine the informative priors of Bayesian methods with
distribution-free PAC guarantees. Stochastic model selection predicts a class label by stochastically sampling
a classifier according to a “posterior distribution” on classifiers. This paper gives a PAC-Bayesian performance
guarantee for stochastic model selection that is superior to analogous guarantees for deterministic model selection.
The guarantee is stated in terms of the training error of the stochastic classifier and the KL-divergence of the pos-
terior from the prior. It is shown that the posterior optimizing the performance guarantee is a Gibbs distribution.
Simpler posterior distributions are also derived that have nearly optimal performance guarantees.
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1. Introduction

A PAC-Bayesian approach to machine learning attempts to combine the advantages of both
PAC and Bayesian approaches (Shawe-Taylor & Williamson, 1997; McAllester, 1998). The
Bayesian approach has the advantage of using arbitrary domain knowledge in the form of
a Bayesian prior. The PAC approach has the advantage that one can prove guarantees for
generalization error without assuming the truth of the prior. A PAC-Bayesian approach
bases the bias of the learning algorithm on an arbitrary prior distribution, thus allowing the
incorporation of domain knowledge, and yet provides a guarantee on generalization error
that is independent of any truth of the prior.

PAC-Bayesian approaches are related to structural risk minimization (SRM) (Kearns
et al., 1995). Here we interpret this broadly as describing any learning algorithm optimizing
a tradeoff between the “complexity”, “structure”, or “prior probability” of the concept or
model and the “goodness of fit”, “description length”, or “likelihood” of the training data.
Under this interpretation of SRM, Bayesian algorithms that select a concept of maximum
posterior probability (MAP algorithms) are viewed as a kind of SRM algorithm. Various
approaches to SRM are compared both theoretically and experimentally by Kearns et al.
(1995). They give experimental evidence that Bayesian and MDL algorithms tend to over
fit in experimental settings where the Bayesian assumptions fail. A PAC-Bayesian approach
uses a prior distribution analogous to that used in MAP or MDL but provides a theoretical
guarantee against over fitting independent of the truth of the prior.

Perhaps the simplest example of a PAC-Bayesian theorem is noted in McAllester (1998).
Consider a countable class of concepts f1, f2, f3, . . . , where each concept fi is a mapping
from a set X to the two-valued set {0, 1}. Let P be an arbitrary “prior” probability distribution
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on these functions. Let D be any probability distribution on pairs 〈x, y〉 with x ∈ X and
y ∈ {0, 1}. We do not assume any relation between P and D. Define ε( fi ) to be the error
rate of fi , i.e., the probability over selecting 〈x, y〉 according to D that fi (x) �= y. Let S be
a sample of m pairs drawn independently according to D and define ε̂( fi ) to be the fraction
of pairs 〈x, y〉 in S for which fi (x) �= y. Here ε̂( fi ) is a measure of how well fi fits the
training data and log 1

P( fi )
can be viewed as the “description length” of the concept fi . It is

noted in McAllester (1998) that a simple combination of Chernoff and union bounds yields
that with probability at least 1 − δ over the choice of the sample S we have the following
for all fi .

ε( fi ) ≤ ε̂( fi ) +
√

ln 1
P( fi )

+ ln 1
δ

2m
(1)

This inequality justifies a concept selection algorithm which selects f ∗ to be the fi min-
imizing the description-length vs. goodness-of-fit tradeoff in the right hand side. If there
happens to be a low-description-length concept that fits well, the algorithm will perform
well. If, however, all simple concepts fit poorly, the performance guarantee is poor. So
in practice the probabilities P( fi ) should be arranged so that concepts which are a-priori
viewed as likely to fit well are given high probability. Domain specific knowledge can be
used in selecting the distribution P . This is precisely the sense in which P is analogous to
a Bayesian prior—a concept fi that is likely to fit well should be given high “prior proba-
bility” P( fi ). Note, however, that the inequality (1) holds independent of any assumption
about the relation between the distributions P and D.

Formula (1) is for model selection—algorithms that select a single model or concept.
However, model selection is inferior to model averaging in certain applications. For example,
in statistical language modeling for speech recognition one “smoothes” a trigram model
with a bigram model and smoothes the bigram model with a unigram model. This smoothing
is essential for minimizing the cross entropy between, say, the model and a test corpus of
newspaper sentences. It turns out that smoothing in statistical language modeling is more
naturally formulated as model averaging than as model selection. A smoothed language
model is very large—it contains a full trigram model, a full bigram model and a full unigram
model as parts. If one uses MDL to select the structure of a language model, selecting model
parameters with maximum likelihood, the resulting structure is much smaller than that of a
smoothed trigram model. Furthermore, the MDL model performs quite badly. A smoothed
trigram model can be theoretically derived as a compact representation of a Bayesian mixture
of an exponential number of (smaller) suffix tree models (Pereira & Singer, 1997).

Model averaging can also be applied to decision trees that produce probabilities at their
leaves rather than hard classifications. A common method of constructing decision trees is
to first build an overly large tree which over fits the training data and then prune the tree in
some way so as to get a smaller tree that does not over fit the data (Quinlan, 1993; Kearns
& Mansour, 1998). For trees with probabilities at leaves, an alternative is to construct a
weighted mixture of the subtrees of the original over fit tree. It is possible to construct a
concise representation of a weighting over exponentially many different subtrees (Buntine,
1992; Oliver & Hand, 1995; Helmbold & Schapire, 1997).
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This paper is about stochastic model selection—algorithms that stochastically select
a model according to a “posterior distribution” on the models. Stochastic model selection
seems intermediate between model selection and model averaging—like model averaging it
is based on a posterior distribution over models but it uses that distribution differently. Model
averaging deterministically picks the value favored by a majority of models as weighted by
the posterior. Stochastic model selection stochastically picks a single model according to
the posterior distribution. The first main result of this paper is a bound on the performance
of stochastic model selection that improves on (1)—stochastic model selection can be given
better guarantees than deterministic model selection. Intuitively, model averaging should
perform even better than stochastic model selection. But proving a PAC guarantee for model
averaging superior to the PAC guarantees given here for stochastic model selection remains
an open problem.

This paper also investigates the nature of the posterior distribution providing the best
performance guarantee for stochastic model selection. It is shown that the optimal posterior
is a Gibbs distribution. However, it is also shown that simpler posterior distributions are
nearly optimal. Section 2 gives statements of the main results of this paper. Section 3 relates
these results to previous work. The remaining sections present proofs.

2. Summary of the main results

Formula (1) applies to a countable class of concepts. It turns out that the guarantees on
stochastic model selection hold for continuous classes as well, e.g., concepts with real-
valued parameters. Here we assume a prior probability measure P on a possibly uncountable
(continuous) concept class C and a sampling distribution D on a possibly uncountable set
of instances X . We also assume a measurable loss function l such that for any concept
c and instance x we have l(c, x) ∈ [0, 1]. For example, we might have that concepts are
predicates on instances and there is a target concept ct such that l(c, x) is 0 if c(x) = ct (x)
and 1 otherwise. We define l(c) to be the expectation over sampling an instance x of l(c, x),
i.e., Ex∼Dl(c, x). We let S range over samples of m instances each drawn independently
according to distribution D. We define l̂(c, S) to be 1

m

∑
x∈S l(c, x). If Q is a probability

measure on concepts then l(Q) denotes Ec∼Ql(c) and l̂(Q, S) denotes Ec∼Ql̂(ci , S). The
notation ∀δ S �(S) signifies that the probability over the generation of the sample S of �(S)
is at least 1 − δ. For countable concept classes formula (1) generalizes as follows to any
loss function l with l(c, x) ∈ [0, 1].

Lemma 1 (McAllester, 1998). For any probability distribution P on a countable rule
class C we have the following.

∀δ S ∀c ∈ C l(c) ≤ l̂(c, S) +
√

ln 1
P(c) + ln 1

δ

2m

As discussed in the introduction, this leads to a learning algorithm that selects the concept
c∗ minimizing the SRM tradeoff in the right hand side of the inequality. The first main result
of this paper is a generalization of (1) to a uniform statement over distributions on an arbitrary
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concept class. The new bound involves the Kullback-Leibler divergence, denoted D(Q‖P),
from distribution Q to distribution P . The quantity D(Q‖P) is defined to be Ec∼Q ln dQ(c)

dP(c) .
The following is the first main result of this paper and is proved in Section 4.

Theorem 1. For any probability distribution (measure) on a possibly uncountable set
C and any measurable loss function l we have the following where Q ranges over all
distributions (measures) on C.

∀δ S ∀Q l(Q) ≤ l̂(Q, S) +
√

D(Q‖P) + ln 1
δ

+ ln m + 2

2m − 1

Note that the definition of l(Q), namely Ec∼Ql(c), is the average loss of a stochastic model
selection algorithm that makes a prediction by first selecting c according to distribution Q. So
we can interpret Theorem 1 as a bound on the loss of a stochastic model selection algorithm
using posterior Q. In the case of a countable concept class where Q is concentrated on
the single concept c the quantity D(Q‖P) equals ln 1

P(c) and, for large m, Theorem 1 is
essentially the same as Lemma 1. But Theorem 1 is considerably stronger than Lemma 1
in that it handles the case of uncountable (continuous) concept classes. Even for countable
classes Theorem 1 can lead to a better guarantee than Lemma 1 if the posterior Q is spread
over exponentially many different models having similar empirical error rates. This might
occur, for example, in mixtures of decision trees as constructed in Buntine (1992), Oliver
and Hand (1995), and Helmbold and Schapire (1997).

The second main result of this paper is that the posterior distribution minimizing the error
rate bound given in Theorem 1 is a Gibbs distribution. For any value of β ≥ 0 we define
Qβ to be the posterior distribution defined as follows where Z is a normalizing constant.

dQβ(c) = 1

Z
dP(c)e−β l̂(c,S)

For any posterior distribution Q define B(Q) as follows.

B(Q) ≡ l̂(Q, S) +
√

D(Q‖P) + ln 1
δ

+ ln m + 2

2m − 1

The second main result of the paper is the following.

Theorem 2. If C is finite then there exists β ≥ 0 such that Qβ is optimal, i.e., B(Qβ) ≤
B(Q) for all Q, and where β satisfies the following.

β = 2
√

(2m − 1)(D(Qβ‖P) + ln(1/δ) + ln m + 2) (2)

Unfortunately, there can be multiple local minima in B(Qβ) as a function of β and even
multiple local minima satisfying (2). Fortunately, simpler posterior distributions achieve
nearly optimal performance. To simplify the discussion we consider parameterized concept
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classes where each concept is specified by a parameter vector 	 ∈ Rn . Let l(	, x) be the
loss of the concept named by parameter vector 	 on the data point x (as discussed above).
To further simplify the analysis we assume that for any given x we have that l(	, x) is
a continuous function of 	. For example, we might take 	 to be the coefficients of an
nth order polynomial p	 and take l(	, x) to be max(1, α|p	(x) − f (x)|) where f (x) is a
fixed target function and α is a fixed parameter of the loss function. Note that a two valued
loss function can not be a continuous function of 	 unless the prediction is independent
of 	. Now consider a sample S consisting of m data points. These data points define an
empirical loss l̂(	) for each parameter vector 	. This empirical loss is an average of a finite
number of expressions of the form l(	, x) and hence l̂(	) must be a continuous function
of 	. Assuming that the prior on 	 is given by a continuous density we then get that
there exists a continuous density p(l̂) on empirical errors satisfying the following where
P(U ) denotes the measure of a subset U of the concepts according to the prior measure on
concepts.

P({	 : l̂(	) ∈ [x, x + δ]}) =
∫ x+δ

x
p(l̂) dl̂

The second main result of the paper can be summarized as the following approximate
equation where B(Q∗) denotes infQ B(Q).

B(Q∗) ≈ min
l̂

l̂ +
√

ln 1
p(l̂)

2m
(3)

This approximate inequality is justified by the two theorems stated below. Before stating the
formal theorems, however, it is interesting to compare (3) with Lemma 1. For a countable
concept class we can define c∗ to be the concept minimizing the bound in Lemma 1. For
large m, Lemma 1 can be interpreted as follows.

l(c∗) ≤ min
c

l̂(c, S) +
√

ln 1
P(c)

2m
(4)

Clearly there is a structural similarity between (4) and (3). However, the two formulas are
fundamentally different in that (3) applies to continuous concept densities while (4) only
applies to countable concept classes.

Another contribution of this paper is theorems giving upper and lower bounds on B(Q∗)
justifying (3). First we give a simple posterior distribution which nearly achieves the per-
formance of (3). Define l̂∗ as follows.

l̂∗ = arg min
l̂∈[0,1]

l̂ +
√

ln 1
p(l̂)

+ ln 1
δ

+ ln m + 2

2m − 1
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Define the posterior distribution Q(l̂∗) as follows where Z is a normalizing constant.

dQ(l̂∗)(c) ≡ 1

Z

{
dP(c) if l̂(c) ∈ [l̂∗, l̂∗ + 1/m]

0 otherwise

We now have the following theorem.

Theorem 3. For any prior (probability measure) on a concept class where each concept
is named by a vector 	 ∈ Rn and any sample of m instances, if the loss function l(	, x)
is always in the interval [0, 1] and is continuous in 	, the prior on 	 is a continuous
probability density on Rn, l̂∗ ≤ 1 − 1/m, and the density p(l̂) is non-decreasing over the
interval [l̂∗, l̂∗ + 1/m], then we have the following.

B(Q(l̂∗)) ≤ l̂∗ + 1

m
+

√
ln 1

p(l̂∗)
+ ln 1

δ
+ 2 ln m + 2

2m − 1

All of the assumptions used in Theorem 3 are quite mild. The final assumption that the
density p(l̂) is nondecreasing over the interval defining Q(l̂∗) is justified by fact that the
definition of l̂∗ implies that for any differentiable density function p(l̂) we must have that
the density p(l̂) is increasing at the point l̂∗.

Finally we show that Q(l̂∗) is a nearly optimal posterior.

Theorem 4. For any prior (probability measure) on a concept class where each concept
is named by a vector 	 ∈ Rn and any sample of m instances, if the loss function l(	, x)
is always in the interval [0, 1] and is continuous in 	, and the prior on 	 is a continuous
probability density on Rn, then we have the following for any posterior Q.

B(Q) ≥ l̂∗ +
√

ln 1
p(l̂∗)

+ ln 1
δ

+ ln m + 2

2m − 1

3. Related work

A model selection guarantee very similar to (1) has been given by Barron (1991). Assume
concepts f1, f2, f3, . . . , and true and empirical error rates ε( fi ) and ε̂( fi ) as in (1). Let f ∗

be defined as follows.

f ∗ ≡ arg min
fi

ε̂( fi ) +
√

ln 1
P( fi )

2m

For the case of error rates (also known as 0–1 loss) Barron’s theorem reduces to the following.

ES∼Dm ε( f ∗) ≤ inf
i


ε( fi ) +

√
ln 1

P( fi )

2m


 +

√
2π

m
(5)
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There are several differences between (1) and (5). When discussing (1) I will take f ∗ to
be the concept fi minimizing the right hand side of (1) which is nearly the same as the
definition of f ∗ in (5). Formula (1) implies the following.

∀δ S ε( f ∗) ≤ inf
i

ε̂( fi ) +
√

ln 1
P( fi )

+ ln 1
δ

2m

Note that (5) bounds the expectation of ε( f ∗) while (1) is a large deviation result—it gives a
bound on ε( f ∗) as a function of the desired confidence level δ. Also note that (1) provides a
bound on ε( f ∗) in terms of information available in the sample while (5) provides a bound
on (the expectation of) ε( f ∗) in terms of the unknown quantities ε( fi ). This means that a
learning algorithm based on (1) can output a performance guarantee along with the selected
concept. This is true even if the concept is selected by incomplete search over the concept
space and hence is different from f ∗. No such guarantee can be computed from (5). If a
bound in terms of the unknown quantities ε( fi ) is desired, the proof method used to prove
(1) yields the following.

∀δ S ε( f ∗) ≤ inf
i

ε( fi ) +
√

2
(
ln 1

P( fi )
+ ln 2

δ

)
m

Also note that (5), like (1) but unlike Theorem 1, is vacuous for continuous concept classes.
Various other model selection results similar to (1) have appeared in the literature. A

guarantee involving the index of a concept in an arbitrary given sequence of concepts is
given in Linial, Mansour, and Rivest (1991). A bound based on the index of a concept
class in a sequence of classes of increasing VC dimension is given in Lugosi and Zeger
(1996). Neither of these bounds handle an arbitrary prior distribution on concepts. They do,
however, give PAC SRM performance guarantees involving some form of prior knowledge
(learning bias).

Guarantees for model selection algorithms for density estimation have been given by
Yamanishi (1992) and Barron and Cover (1991). The guarantees bound measures of distance
between a selected model distribution and the true data source distribution. In both cases
the model is assumed to have been selected so as to optimize an SRM tradeoff between
model complexity and the goodness of fit to the training data. The bounds hold without any
assumption relating the prior distribution to the data distribution, However, the performance
guarantee is better if there exist simple models that fit well. The precise statement of these
bounds are somewhat involved and perhaps less interesting than the more elegant guarantee
given in formula (6) discussed below.

Guarantees for model averaging have also been proved. First I will consider model
averaging for density estimation. Let f1, f2, f3, . . . , be an infinite sequence of models each
of which defines a probability distribution on a set X . Let P be a “prior probability” on the
densities fi . Assume an unknown distribution g on X which need not be equal to any fi .
Let S be a sample of m elements of X sampled IID according to the distribution g. Let h be
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the natural “posterior” density on X defined as follows where Z is a normalizing constant.

h(x) ≡
∑

i

P( fi | S) fi (x)

P( fi | S) ≡ 1

Z
P( fi )P(S | fi )

Note that the posterior density h is a function of the sample and hence is a random variable.
Catoni (To appear b) and Yang (2000b) prove somewhat different general theorems both
of which have as a special case the statement that, independent of how g is selected, the
expectation (over drawing a sample according to g) of the Kullback-Leibler Divergent
D(g‖h) is bounded as follows.

E D(g‖h) ≤ min
i

(
ln 1

P( fi )

m
+ D(g‖ fi )

)
(6)

Again we have that (6) holds without any assumed relation between g and the prior P .
If there happens to be a low complexity (simple) model fi such that D(g‖ fi ) is small,
then the posterior density h will have small divergence from g. If no simple model has
small divergence from g then D(g‖h) can be large. Also not that (6), unlike Theorem 1, is
vacuous for continuous model classes. These observations also apply to the more general
forms of (6) appearing in Yang (2000b) and Catoni (To appear b). Catoni (To appear a) also
gives performance guarantees for model averaging for density estimation over continuous
model spaces using a Gibbs posterior. However, the statements of these guarantees are quite
involved and the relationship to the bounds in this paper is unclear.

Yang (2000a) considers model averaging for prediction. Consider a fixed distribution
D on pairs 〈x, y〉 with x ∈ X and y ∈ {0, 1}. Consider a countable class of conditional
probability rules f1, f2, f3, . . . , where each fi is a function from X to [0, 1] where fi (x)
is interpreted as P(y | x, fi ). Consider an arbitrary prior on the models fi and construct
the posterior given a sample S as Q( fi ) ≡ 1

Z P( fi )P(S | fi ). This posterior on the models
induces a posterior h on y given x defined as follows.

P(y | x, S) ≡ h(x) ≡
∑

i

Q( fi ) fi (x)

Let g(x) be the true conditional probability P(y | x) as defined by the distribution D. For
any function g′ from X to [0, 1] define the loss L(g′) as follows where x ∼ D denotes
selecting x from the marginal of D on X .

L(g′) ≡ Ex∼D |g′(x) − g(x)|2

Finally, define δi as follows.

δi ≡ inf
x∈X

min( fi (x), 1 − fi (x))
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For m ≥ 2, the following is a corollary of Yang’s theorem.

ES∼Dm L(h) ≤ 2 inf
i

(
ln 1

P( fi )

m
+ L( fi )

δ2
i

)

This formula bounds the loss of the Bayesian model average without making any assump-
tion about the relationship between the data distributions D and the prior distribution P .
However, it seems weaker than (5) or (6) in that it does not imply even for a finite model class
that for large samples the loss of the posterior converges to the loss of the best model. As
with (6), the guarantee is vacuous for continuous model classes. These same observations
apply to the more general statement in Yang (2000a).

Weighted model mixtures are also widely used in constructing algorithms with on-line
guarantees. In particular, the weighted majority algorithm and its variants can be proved
to compete well with the best expert on an arbitrary sequence of labeled data (Littlestone
& Warmuth, 1994; Cesa-Bianchi et al., 1997; Freund et al., 1997; Freund & Schapire,
1999). The posterior weighting used in most on-line algorithms is a Gibbs posterior Qβ as
defined in the statement of Theorem 2. One difference between these on-line guarantees
and Theorem 1 is that for these algorithms one must know the appropriate value of β before
seeing the training data. Since a-prior knowledge of β is required, the on-line algorithm is not
guaranteed to perform well against the optimal SRM tradeoff—performing well against the
optimal SRM tradeoff requires tuning β in response to the training data. Another difference
between on-line guarantees and either formula (1) or Theorem 1 is that (1) (or Theorem 1)
provides a guarantee even in cases where only incomplete searches over the concept space
are feasible. On-line guarantees require that the algorithm find all concepts that perform
well on the training data—finding a single simple concept that fits well is insufficient.

The most closely related earlier result is a theorem in McAllester (1998) bounding the
error rate of stochastic model selection in the case where the model is selected stochastically
from a set U of models under a probability measure that is simply a renormalization of the
prior on U . Theorem 1 is a generalization of this result to the case of arbitrary posterior
distributions.

4. Proof of Theorem 1

The departure point for the proof of Theorem 1 is the following where S is a sample of size
m and �(c) abbreviates |l(c) − l̂(c, S)|.

Lemma 2. For any prior distribution (probability measure) P on a (possibly uncountable)
concept space C we have the following.

∀δ S Ec∼P e(2m−1)�(c)2 ≤ 4m

δ

Proof: It suffices to prove the following.

ES Ec∼P e(2m−1)�(c)2 ≤ 4m (7)
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Lemma 2 follows from (7) by an application of Markov’s inequality. To prove (7) it suffices
to prove the following for any individual given concept.

ES e(2m−1)�(c)2 ≤ 4m (8)

For a given concept c, the probability distribution on the sample induces a probability
distribution on �(c). By the Chernoff bound this distribution on � satisfies the following.

P(� ≥ x) ≤ 2e−2mx2
(9)

It now suffices to show that any distribution satisfying (9) must satisfy (8). The distribution
on � satisfying (9) and maximizing Ee(2m−1)�2

is the continuous density f (�) satisfying∫ ∞
x f (�)d� = 2e−2mx2

which implies f (�) = 8m�e−2m�2
. So we have the following

ES e(2m−1)�2 ≤
∫ ∞

0
e(2m−1)�2

f (�) d�

=
∫ ∞

0
8m�e(2m−1)�2

e−2m�2
d�

=
∫ ∞

0
8m�e−�2

d�

= 4m

To prove Theorem 1 we consider selecting a sample S. Lemma 2 implies that with
probability at least 1 − δ over the selection of a sample S we have the following.

Ec∼P e(2m−1)�(c)2 ≤ 4m

δ
(10)

To prove Theorem 1 it now suffices to show that the constraint (10) on the function �(c)
implies the body of Theorem 1. We are interested in computing an upper bound on the
quantity l(Q) − l̂(Q, S). Note that l(Q) − l̂(Q, S) ≤ Ec∼Q |l(ci ) − l̂(ci , S)| = Ec∼Q�(c).
We now prove the following lemma.

Lemma 3. For β > 0, K > 0, and Q, P, � ∈ Rn satisfying Pi ≥ 0, Qi ≥ 0, �i ≥ 0,

and
∑n

i=1 Qi = 1, we have that if

n∑
i=1

Pi e
β�2

i ≤ K

then

n∑
i=1

Qi�i ≤
√

D(Q‖P) + ln K

β
.
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Before proving Lemma 3 we note that Lemmas 3 and 2 together imply Theorem 1. To
see this consider a sample satisfying (10) and an arbitrary posterior probability measure Q
on concepts. It is possible to define three infinite sequences of vectors Q1, Q2, Q3, . . . , P1,

P2, P3 . . . , and �1, �2, �3, . . . , such that Qn, Pn , and �n satisfy the conditions of
Lemma 3 with K = 4m/δ and β = 2m − 1 and satisfying the following.

Ec∼Q�(c) = lim
n→∞

n∑
i=1

Qn
i �

n
i

D(Q‖P) = lim
n→∞

n∑
i=1

Qn
i ln

Qn
i

Pn
i

By taking the limit of the conclusion of Lemma 3 we then get Ec∼Q�(c) ≤√
(D(Q‖P) + ln(1/δ) + ln m + 2)/(2m − 1).
To prove Lemma 3 it suffices to consider only those values of i for which Qi > 0.

Dropping the indices where Qi = 0 does not change the value of
∑n

i=1 Qi�i while enlarging
the feasible set by weakening the constraint (10). Furthermore, if Pi = 0 at some point where
Qi > 0 then D(Q‖P) = ∞ and the theorem is immediate. So we can assume without loss
of generality that Qi > 0 and Pi > 0 for all i .

By Jensen’s inequality we have (
∑n

i=1 Qi�i )2 ≤ ∑n
i=1 Qi�

2
i . So it now suffices to prove

that
∑n

i=1 Qi�
2
i ≤ (D(Q‖P) + ln K )/β. This is a consequence of the following Lemma.1

Lemma 4. For β > 0, K > 0, and Q, P, y ∈ Rn satisfying Pi > 0, Qi > 0, and∑n
i=1 Qi = 1, if

n∑
i=1

Pi e
βyi ≤ K (11)

then

n∑
i=1

Qi yi ≤ D(Q‖P) + ln K

β

To prove Lemma 4 we take P and Q as given and use the Kuhn-Tucker conditions to
find a vector y maximizing

∑n
i=1 Qi yi subject to the constraint (11).

Lemma 5 (Kuhn-Tucker). If C and f1, . . . , fn are functions from Rn to R, y is a maximum
of C(y) over the set satisfying f1(y) ≤ 0, . . . , fn(y) ≤ 0, and C and each fi are continuous
and differentiable at y, then either ∇C = 0 (at y), or there exists some fi with fi (y) = 0 and
∇ fi = 0 (at y), or there exists a nonempty subset of the constraints fi1 (y) ≤ 0, . . . , fik (0) ≤
0 such that fi j (y) = 0 for 1 ≤ j ≤ k and positive coefficients λ1, . . . , λk such that
∇C = λ1∇ fi1 + · · · + λn∇ fin (at y).

Note that Lemma 4 allows yi to be negative. The first step in proving Lemma 4 is to
show that without loss of generality we can work with a closed and compact feasible set.
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For K > 0 it is not difficult to show that there exists a feasible point, i.e., a vector y
such that

∑n
i=1 Pi eβyi ≤ K . Let C0 denote an arbitrary feasible value, i.e.,

∑n
i=1 Qi yi for

some feasible point y. Without loss of generality we need only consider points y satisfying∑n
i=1 Qi yi ≥ C0 − 1. So we now have a constrained optimization problem with objective

function
∑n

i=1 Qi yi and feasible set defined by the following constraints.

n∑
i=1

Pi e
βyi ≤ K (12)

n∑
i=1

Qi yi ≥ C0 − 1 (13)

Constraint (12) implies an upper bound on each yi and constraint (13) then implies a lower
bound on each yi . Hence the feasible set is closed and compact.

We now note that any continuous objective function on a closed and compact feasible
set must be bounded and must achieve its maximum value on some point in the set. A
constraint of the form f (y) ≤ 0 will be called active at y if f (y) = 0. For an objective
function whose gradient is nonzero everywhere, at least one constraint must be active at the
maximum. Since C0 is a feasible value of the objective function, constraint (13) can not be
active at the maximum. So by the Kuhn-Tucker lemma, the point y achieving the maximum
value must satisfy the following.

Qi = λPiβeβyi

Which implies the following.

yi =
ln

( Qi

λPi β

)
β

Since constraint (12) must be active at the maximum, we have the following.

n∑
i=1

Pi e
βyi =

n∑
i=1

Qi

λβ
= 1

λβ
= K

So we get λ = 1/(βK ) and the following.

n∑
i=1

Qi yi =
n∑

i=1

Qi

ln Qi

Pi
+ ln K

β
= D(Q‖P) + ln K

β

Since this is the maximum value of
∑n

i=1 Qi yi , the lemma is proved.
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5. Proof of Theorem 2

We wish to find a distribution Q minimizing B(Q) defined as follows where the distribution
P and the empirical error l̂(c) are given and fixed.

B(Q) ≡ Ec∼Q l̂(c) +
√

D(Q‖P) + ln 1
δ

+ ln m + 2

2m − 1

Letting K be ln(1/δ) + ln m + 2 and letting γ be 2m − 1 this objective function can be
rewritten as follows where K and γ are fixed positive quantities independent of Q.

B(Q) = Ec∼Ql̂(c) +
√

D(Q‖P) + K

γ

To simplify the analysis we consider only finite concept classes. Let Pi be the prior proba-
bility of the i th concept and let l̂ i be the empirical error rate of the i th concept. The problem
now becomes finding values of Qi satisfying Qi ≥ 0 and

∑
i Qi = 1 minimizing the

following.

B(Q) =
∑

i

Qi l̂ i +
√

D(Q‖P) + K

γ

If Pi is zero then if Qi is nonzero we have that D(Q‖P) is infinite. So for minimizing B(Q)
we can assume that Qi is zero if Pi is zero and we can assume without loss of generality that
all Pi are nonzero. If all Pi are nonzero then the objective function is a continuous function
of a compact feasible set and hence realizes its minimum at some point in the feasible set.
Now consider the following partial derivative.

∂ D(Q‖P)

∂ Qi
=

∂
∑

j Q j ln Q j

Pj

∂ Qi

=
∂ Qi ln Qi

Pi

∂ Qi

= 1 + ln
Qi

Pi

Note that if Qi is zero when Pi is nonzero then ∂ D(Q‖P)/∂ Qi = −∞. This means that
any transfer of an infinitesimal quantity of probability mass to Qi reduces the bound. So the
minimum must not occur at a boundary point satisfying Qi = 0. So we can assume without
loss of generality that Qi is nonzero for each i where Pi is nonzero—the two distributions
have the same support. The Kuhn-Tucker conditions then imply that ∇ B = 0 or ∇ B is in
the direction of the gradient of one of the constraints

∑
i Qi ≤ 1 or

∑
i Qi ≥ 1. In all of

these cases there must exist a single value λ such that for all i we have ∂ B/∂ Qi = λ. This
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yields the following.

λ = ∂ B

∂ Qi

= l̂ i + 1

2

(
D(Q‖P) + K

γ

)−1/2 1

γ

∂ D(Q‖P)

∂ Qi

= l̂ i + 1

2

(
D(Q‖P) + K

γ

)−1/2 1

γ

(
ln

Qi

Pi
+ 1

)

ln
Qi

Pi
= (λ − l̂ i )2

√
γ (D(Q‖P) + K ) − 1

Qi = Pi exp
(
(λ − l̂ i )2

√
γ (D(Q‖P) + K ) − 1

)
Hence the minimal distribution has the following form.

Qi = 1

Z
Pi e

−β l̂ i

β = 2
√

γ (D(Q‖P) + k) = 2

√
(2m − 1)

(
D(Q‖P) + ln

1

δ
+ ln m + 2

)

This is the distribution Qβ of Theorem 2.

6. Proof of Theorems 3 and 4

Let Q(l̂∗) be the posterior distribution of Theorem 3. First we note the following.

D(Q(l̂∗)‖P) = Ec∼Q(l̂∗) ln
dQ(c)

dP(c)

= Ec∼Q(l̂∗) ln
1

Z

= ln
1

P({c : l̂(c) ∈ [l̂∗, l̂∗ + 1/m]})

We have assumed that p(l̂) is nondecreasing over the interval [l̂∗, l̂∗ +1/m]. This implies
the following.

P({c : l̂(c) ∈ [l̂∗, l̂∗ + 1/m]}] ≥ 1

m
p(l̂∗)

D(Q(l̂∗)‖P) ≤ ln
1

p(l̂∗)
+ ln m

We also have that l̂(Q(l̂∗)) ≤ l̂∗ + 1/m and Theorem 3 now follows from the definition of
B(Q).
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We now prove Theorem 4. First we define a concept distribution U such that U induces
a uniform distribution on those error rates l̂ with p(l̂) > 0. Let W be the subset of the
values l̂ ∈ [0, 1] such that p(l̂) > 0. Let α denote the size of W as measured by the uniform
measure on [0, 1]. Note that α ≤ 1. Define the concept distribution U as follows.

dU(c) = dP(c)




1

αp(l̂(c, S))
if p(l̂(c, S)) > 0

0 otherwise

The total measure of U can be written as follows.∫
l̂∈W

dU

dP

dP

dl̂
dl̂ =

∫
l̂∈W

1

αp(l̂)
p(l̂)dl̂ = 1

Hence U is a probability measure on concepts.
Now let Q be an arbitrary posterior distribution on concepts. We have the following.

D(Q‖P) = Ec∼Q ln
dQ

dP

= Ec∼Q

[
ln

dU

dP
+ ln

dQ

dU

]
= Ec∼Q ln(1/p(l̂(c, S))) + ln(1/α) + D(Q‖U )

≥ Ec∼Q ln(1/p(l̂(c, S)))

This implies the following where the third line follows from Jensen’s inequality.

B(Q) = l̂(Q, S) +
√

D(Q‖P) + ln 1
δ

+ ln m + 2

2m − 1

≥ [Ec∼Q l̂(c, S)] +
√

Ec∼Q ln(1/p(l̂(c, S))) + ln 1
δ

+ ln m + 2

2m − 1

≥ Ec∼Q


l̂(c, S) +

√
ln(1/p(l̂(c, S))) + ln 1

δ
+ ln m + 2

2m − 1




≥ min
l̂

l̂ +
√

ln(1/p(l̂)) + ln 1
δ

+ ln m + 2

2m − 1

7. Conclusion

PAC-Bayesian learning algorithms combine the flexibility prior distribution on models with
the performance guarantees of PAC algorithms. PAC-Bayesian Stochastic model selection
can be given performance guarantees superior to analogous guarantees for deterministic
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PAC-Bayesian model selection. The performance guarantees for stochastic model selection
naturally handle continuous concept classes and lead to a natural notion of an optimal poste-
rior distribution to use in stochastically selecting a model. Although the optimal posterior is
a Gibbs distribution, it is shown that under mild assumptions simpler posterior distributions
perform nearly as well. An open question is whether better guarantees can be given for
model averaging rather than stochastic model selection.
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Note

1. The original version of this paper (McAllester, 1999) proved a bound of approximately the form l̂(Q) +∑n
i=1 Qi

√
ln(Qi /Pi )/(2m) by maximizing

∑n
i=1 Qi �i subject to constraint 10. A version of Theorem 1,

which is of the form l̂(Q, S)+
√

(
∑n

i=1 Qi ln(Qi /Pi ))/(2m), was then proved from this bound by an application
of Jensen’s inequality. The idea of maximizing

∑n
i=1 Qi �

2
i and achieving Theorem 1 directly is due to Robert

Schapire.
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