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Abstract
We consider the PAC learnability of the functions
at the nodes of a discrete networked dynamical
system, assuming that the underlying network is
known. We provide tight bounds on the sample
complexity of learning threshold functions. We
establish a computational intractability result for
efficient PAC learning of such functions. We de-
velop efficient consistent learners when the num-
ber of negative examples is small. Using synthetic
and real-world networks, we experimentally study
how the network structure and sample complexity
influence the quality of inference.

1. Introduction
Many real world phenomena (disease, influence and social
behavior, neuronal activity, magnetic systems) can be for-
mally represented as networked discrete dynamical systems
(Valente, 1996; Schelling, 1978; Amini & Fountoulakis,
2014). Many such systems that include popular models such
as SEIR (Newman, 2002) and Linear Threshold (Kempe
et al., 2003) fall into the generic class of Synchronous dy-
namical systems (SyDSs). A SyDS consists of a graph
whose nodes represent entities and whose edges represent
interactions among the entities. Nodes have states and a
local function at each node determines the next state of the
node using the current states of the node and its neighbors.
In a SyDS, the propagation of a contagion evolves in discrete
time steps. In practice, some components of a SyDS are
unknown; learning them is an active area of research. Some
of this research is based on observing the system (Adiga
et al., 2017; González-Bailón et al., 2011; Narasimhan et al.,
2015; Kempe et al., 2003; Lokhov, 2016) while others rely
on active interactions with the system in the form of queries
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(Bei et al., 2016; Kleinberg et al., 2017; Adiga et al., 2018).

We consider the problem of learning the node functions of a
SyDS with a known graph and binary node states under the
probably approximately correct (PAC) learning model pio-
neered by Valiant (1984). The PAC model has been applied
to many different learning contexts such as learning classes
of Boolean functions, half spaces, automata, etc. (Kearns &
Vazirani, 1994). While PAC learnability has been studied for
classes of individual Boolean functions (e.g., (Hellerstein &
Servedio, 2007)), there has been limited work on dynamical
systems, which can be viewed as Boolean functions that are
connected through a network. Only recently, it has been ap-
plied in the context of learning influence functions of nodes
in stochastic networked dynamical systems (Narasimhan
et al., 2015; He et al., 2016).

Threshold functions are a commonly used class of local
functions in dynamical system models (Granovetter, 1978;
Watts, 2002). A t-threshold function is a Boolean function
whose value is 1 iff at least t of its inputs have value 1.
Variants of this model include bithreshold (Kuhlman et al.,
2011) and progressive threshold (Amini & Fountoulakis,
2014). Our focus is on learning this class of functions (i.e.,
the threshold value of each node in the network) under the
PAC model. Let n be the number of nodes in the graph.
A configuration (s1, s2, . . . , sn) specifies the state of each
node at a certain time. Given a configuration C1 at time τ ,
the configuration C2 at time τ + 1 is called the successor
of C1. Each example given to the learner is a pair of con-
figurations (C1, C2). An example is labeled ‘positive’ if
C2 is the successor of C1; otherwise, it is labeled ‘negative’.
Under the PAC model, these examples are drawn from an
unknown distribution.

Summary of results. Our focus is on SyDSs, where the
local function at each node is a threshold function; that
is, the hypothesis space consists of n-tuples of the form
(t1, t2, . . . , tn), where each ti, a non-negative integer, is the
threshold value assigned to node vi, 1 ≤ i ≤ n. Following
Mitchell (1997), we use the phrase “sample complexity”,
represented byM(ε, δ), to denote the number of examples
needed under the PAC model to learn a hypothesis space for
given pair of error and probability values (ε, δ). We assume
that ε, δ ∈ (0, 12 ). Our results are summarized below.

1. Upper bounds: For learning the hypothesis space of
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threshold functions for SyDSs, we show thatM(ε, δ) is at
most 1

ε

(
n log(davg+3)+log(1/δ)

)
where davg is the average

node degree of the underlying graph. We also extend this to
other classes of threshold functions.

2. Lower bounds: We prove that the Vapnis-Chervonenkis
(VC) dimension of the hypothesis space of threshold func-
tions is at least bn/4c for any graph. From well known
results in computational learning theory (Kearns & Vazirani,
1994), these lower bounds on the VC dimension imply that
the sample complexity for learning threshold functions is
Ω(n/ε). Since davg ≤ n − 1, for any fixed δ, the upper
bound on the sample complexity mentioned in Item 1 above
is within a factor O(log n) of the lower bound. Further, for
graphs with constant average degree, this factor is Θ(1). As
a special case, when the underlying graph is a clique on n
nodes, we show that the VC dimension of the hypothesis
space is at most n + 1. In contrast, most prior work on
PAC learnability of graph dynamical system properties has
been restricted to showing polynomial upper bounds on the
sample complexity, e.g., (Narasimhan et al., 2015).

3. Hardness of learning: Even though there is a poly-
nomial upper bound on the sample complexity, we show
that when there are positive and negative examples, the
hypothesis class of threshold functions is not efficiently
PAC learnable, unless the complexity classes NP and RP
(Randomized Polynomial time) coincide. Such complexity
results are known in the learning theory literature for sev-
eral other problems such as learning k-term DNF, neural
networks, etc. (Kearns & Vazirani, 1994).

4. Efficient learning algorithms: For the case when
there are only positive examples, we present an algorithm
which learns the thresholds in time O(|E|n), where E is
the set of examples and n is the number of nodes. Fur-
ther, when a set EN of negative examples is also given, we
present a dynamic programming algorithm that learns in
time O(2|EN |poly(n)), which is polynomial when |EN | =
O(log n). Also, using submodular function maximization
under matroid constraints, we present an efficient learner
which is consistent with all the positive examples and at
least (1 − 1/e) fraction of the negative examples. These
results show that computational intractability arises in this
case when the number of negative examples is large.

5. Experiments: We present experimental results using
both synthetic and real-world networks to demonstrate how
network structure and sample complexity influence the qual-
ity of the inferred system. We also provide experimental
results that interpolate between theoretical results of limit-
ing cases: as graph density decreases from a fully connected
graph to a sparse graph, differences between the true and
inferred systems first increase, and then decrease, thus ex-
hibiting non-linear and non-monotonic behavior. Another
interesting finding is how, in learning the same dynamical

system, differences in the distributions of configurations can
lead to widely different qualities of inferred systems.

Due to limited space, many proofs and additional experi-
mental results appear in (Adiga et al., 2019).

Related work. Inferring properties of networked dynami-
cal systems from time-series data of node activations is a
popular topic. Brugere et al. (2018) and Guille et al. (2013)
provide comprehensive surveys of the literature on inferring
networks and propagation model parameters from informa-
tion or infection cascades. González-Bailón et al. (2011)
present techniques for learning thresholds of nodes in a
Twitter network using data from retweets. In contrast, PAC
learnability of networked dynamical system is an emerging
area of research. Recently, Narasimhan et al. (2015) and
He et al. (2016) studied the PAC learnability of the influ-
ence function of popular stochastic propagation models –
independent cascade and linear threshold from complete
and partial observations. Lokhov (2016) uses a dynamic
message-passing algorithm to reconstruct parameters of a
spreading model given infection cascades.

There has been extensive research on PAC learning threshold
functions and in general, Boolean functions. Hellerstein &
Servedio (2007) provide a survey covering learnability of
halfspaces, polynomial threshold functions, decision trees
and disjunctive normal form (DNF) formulas. Learning the
local function of a single vertex of a threshold SyDS is a
special case of learning halfspaces (Blumer et al., 1989) with
all weights equal to 1. Our results on learning threshold
functions of SyDSs under the PAC model show that the
network structure plays an important role in determining the
sample complexity.

Recently, Adiga et al. (2017; 2018) considered the problem
of inferring threshold SyDS, but for different models of
observation. While Adiga et al. (2017) devise algorithms for
learning thresholds of a dynamical system using information
about the system’s trajectories, Adiga et al. (2018) study
inference under active querying, where the user may ask for
the successor of an arbitrary configuration.

2. Preliminaries
The dynamical system model. We use B to denote the
Boolean domain {0,1}. A Synchronous Dynamical System
(SyDS) S over B is a pair S = (G,F), where (i) G(V,E),
an undirected graph with |V | = n, represents the underlying
graph of the SyDS, with node set V and edge set E, and
(ii) F = {f1, f2, . . . , fn} is a collection of functions in the
system, with fi denoting the local function associated with
node vi, 1 ≤ i ≤ n. At any time, each node of G has a
state value from B. The inputs to function fi are the state
of vi and those of the neighbors of vi in G; for each input,
the function fi outputs a value in B, and this value is the
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next state of vi. In a SyDS, all nodes compute and update
their next state synchronously. Other update disciplines
(e.g., sequential updates) have also been considered in the
literature (Mortveit & Reidys, 2007). At any time τ , if sτi ∈
B is the state of node vi (1 ≤ i ≤ n), the configuration C
of the SyDS is the n-vector (sτ1 , s

τ
2 , . . . , s

τ
n). The system

evolves in discrete time steps by the repeated application of
F . If a SyDS has a one step transition from configuration
C1 to C2, then C2 is the successor of C1. In this paper, the
local functions considered are deterministic, and therefore,
the successor of each configuration is unique.

Threshold functions. The local function fv associated with
node v of a SyDS S is a tv-threshold function for some
integer tv ≥ 0 if the following condition holds: the value of
fv is 1 if the number of 1’s in the input to fv is at least tv;
otherwise, the value is 0. Using d(v) to denote the degree of
node v, the number of inputs to the function fv is d(v) + 1.
We assume that 0 ≤ tv ≤ d(v) + 2. The threshold values 0
and d(v) + 2 give rise to local functions that always output
1 and 0 respectively. Given a configuration C and a node v,
the score of configuration C with respect to v, score(C, v),
is the number of 1’s in the input provided by C to the local
function at v.

1 2

34

Figure 1. An example of a SyDS. The
thresholds are t1 = 1, t2 = 1, t3 = 2
and t4 = 3.

Example: We present the graph of a threshold SyDS in
Figure 1. The initial configuration is (0, 0, 0, 1). It can
be verified that the system goes through the following se-
quence of configurations during the next three time steps:
(0, 0, 0, 1) → (1, 1, 0, 0) → (1, 1, 1, 0) → (1, 1, 1, 1).

Positive and negative examples. The goal is to learn the
concept class of threshold functions for SyDSs whose under-
lying graphs are known. Thus, given an n-node SyDS, the
hypothesis space H for the concept class contains n-tuples
of the form (t1, t2, . . . , tn), where each ti is the threshold
value assigned to node vi. Each example η given to learner is
a pair of configurations (C1, C2) of the SyDS. We use E to
denote the set of examples given to a learner. An example is
labeled ‘positive’ if C2 is the successor of C1 and ‘negative’
otherwise. Thus, the instance space from which examples
are drawn consists of pairs of configurations, with an ap-
propriate label for each example. Positive examples can be
generated by observing or querying a system (Adiga et al.,
2017; 2018). A negative example can be constructed from
a positive example (C1, C2) by randomly complementing
one or more bits of C2. The positive and negative examples
are similar to membership queries used to learn Boolean
functions (e.g., (Angluin & Slonim, 1994)).

Some PAC model definitions. We will assume that the

reader is familiar with the basic concepts of the PAC model
such as efficient PAC learnability covered in many texts
(e.g., (Kearns & Vazirani, 1994; Mitchell, 1997)). The
true error (denoted commonly by errorD(h)) of a hy-
pothesis h is the probability that h will misclassify an ex-
ample chosen at random using a distribution D; that is,
errorD(h) = Prx∈D[c(x) 6= h(x)], where c is the target
concept. For given values of ε and δ, the sample complex-
ity of a learner is the number of examples needed by the
learner to output an appropriate hypothesis h. We denote
this quantity by M(ε, δ). Below is a well-known upper
bound onM(ε, δ) established in (Haussler, 1988) based on
the size of the hypothesis space H .

M(ε, δ) ≤ 1

ε

(
log |H|+ log(1/δ)

)
. (1)

We also use the concept of Vapnik-Chervonenkis (VC) di-
mension (Kearns & Vazirani, 1994). Given a set E of labeled
examples, we say that a hypothesis h (i.e., a threshold as-
signment to the the nodes of the SyDS) from the hypothesis
space H is consistent with E , if h correctly classifies each
example in E . Given a set E of unlabeled examples from
the instance space, a dichotomy of E partitions E into two
subsets EP and EN of positive and negative examples respec-
tively. A set of examples E is shattered by the hypothesis
space H if for every dichotomy of E , there is a hypothesis
h ∈ H that is consistent with the labeled examples gener-
ated by the dichotomy. The VC dimension ∆ of H defined
over the instance space is the largest finite subset of the
instance space that can be shattered byH . Since our hypoth-
esis space H is finite, the VC dimension of H is also finite.
Below is a result from (Hanneke, 2016) on the bounds for
sample complexity in terms of the VC dimension ∆.
Lemma 1. For any ε ∈ (1, 1/8] and δ ∈ (0, 1/100], sample

complexity M(ε, δ) = O
(

1
ε

(
∆ Log(1/ε) + Log(1/δ)

))
andM(ε, δ) = Ω

(
1
ε

(
∆ + Log(1/δ)

))
, where Log(z) =

log
(

max(z, e)
)

and e is the base of common logarithm. �

When ε and δ are fixed, the above lemma points out that
for a hypothesis space with VC dimension d, the sample
complexity is Θ(∆).

3. Bounds on the Sample Complexity
Upper bound. Here, we bound the size of the hypothesis
space; the bound on sample complexity follows by a direct
application of Inequality (1).
Theorem 1. Let G(V,E) be a graph with n nodes and
average degree davg. Let ε, δ > 0 be given. The sample
complexityM(ε, δ) of threshold SyDS satisfiesM(ε, δ) ≤
1
ε

(
n log(davg + 3) + log(1/δ)

)
.

Proof: Each node v, with degree d(v), can be assigned
a threshold in the range 0 to d(v) + 2. So, for each



PAC Learnability of Networked Dynamical Systems

node, there are d(v) + 3 possible thresholds. Therefore,

|H| =
∏
v∈V (d(v) + 3) ≤

(
1
n

∑
v∈V

(
d(v) + 3

))n
=(

davg + 3
)n
. The inequality follows from arithmetic mean–

geometric mean inequality. The upper bound onM(ε, δ)
follows by applying Equation (1). �

In (Adiga et al., 2019), we show similar results for SyDSs
with bithreshold and progressive threshold functions.

Theorem 1 corresponds to an extreme case where no ad-
ditional information on the threshold functions is known.
There are at least two factors that influence the size of
the hypothesis space. Firstly, if local functions of differ-
ent vertices are correlated and the relationship is known,
then determining one threshold value would lead to esti-
mates of others. Such models have been considered in
disease dynamics (Miller, 2009). Secondly, any additional
information about the local function restricts the number
of hypotheses possible (e.g. (Romero et al., 2011)). To
elaborate on this point, we consider the following setting.
Let {V1, V2, . . . , Vk} be a partition of the node set V . Ev-
ery node in Vi has the same threshold ti ∈ Ti, where Ti
is a subset of threshold values. Then, the number of pos-
sible threshold assignments is at most

∏k
i=1 |Ti| and there-

fore, from Equation (1), M(ε, δ) ≤ 1
ε

(∑k
i=1 log |Ti| +

log(1/δ)
)
. Theorem 1 is the limiting case with k = n

and Ti = {0, . . . , d(vi) + 2}.

Lower bound. We will establish a lower bound on the VC
dimension of the hypothesis class and then apply Lemma 1
to obtain a lower bound on the sample complexity. We note
that these results hold for the class of bithreshold SyDSs
since threshold SyDSs are contained in this class.
Theorem 2. For a threshold SyDS defined on a
graph G(V,E) with n nodes, the VC dimension of the hy-
pothesis space is ≥ bn/4c. Hence, M(ε, δ) = Ω(n) for
constant ε and δ.

We need two lemmas to prove the above theorem.
Lemma 2. Let I be an independent set in graph G(V,E).
There exists a set of configuration–successor pairs of size |I|
that can be shattered.

Proof: Let v1, v2, . . ., v|I| denote an arbitrary order-
ing of the vertices of I , The remaining vertices are or-
dered arbitrarily following v|I|. We construct a set T
with |I| configuration–successor pairs as follows. Let
Ci be the configuration in which the state of vi is 1 and
the states of all other nodes is 0, 1 ≤ i ≤ |I|. Let
T = {(Ci, Ci) : 1 ≤ i ≤ |I|}. We now show that T can be
shattered. Let A ⊆ T . Vertex thresholds are assigned as fol-
lows: If (Ci, Ci) ∈ A, then set t(vi) = 1; else set t(vi) = 2.
If (Ci, Ci) ∈ A, then the successor of Ci for the assigned
thresholds is Ci since score(vi, Ci) = t(vi) = 1 while for

every other vertex vj , score(vj , Ci) ≤ 1 < t(vj) = 2. Sup-
pose (Ci, Ci) /∈ A; then, score(vi, Ci) = 1 < t(vi) = 2.
Thus, the state of vi is 0 and therefore, the successor is
not Ci. �

Definition 1. An ordered path in G(V,E) is an ordered
subset of vertices P = (v1, v2, . . . , vk), where k ≥ 2, such
that edge {vi, vi+1} ∈ E for 1 ≤ i ≤ k − 1.

Lemma 3. Let P be a collection of node-disjoint ordered
paths in G(V,E). Let n′ be the number of participat-
ing nodes in P . Then, there exists a set of configuration–
successor pairs of size at least dn′/2e that can be shattered.

Proof sketch: We will describe the construction of the
configuration–successor pairs. The proof that the set can
be shattered is in (Adiga et al., 2019). We will arbitrarily
order the paths in P . Each node v in P is associated with
a tuple `(v) = (ov, iv) referred to as its label, where ov
(outer position) is the position of its path in the ordering of
the paths and iv (inner position) is the node’s position in the
path. For any two distinct vertices v and v′, `(v′) < `(v)
if and only if (i) ov′ < ov or (ii) ov′ = ov and iv′ < iv.
Let N(v) be the set of neighbors of v (open neighborhood).
For any i, define d(o,i)(v) = |N(v) ∩ {v′ | `(v′) ≤ (o, i)}|.
Let L be the set of labels ` = (o, i) such that the ith vertex
is not the last node in the corresponding ordered path. For
each ` ∈ L, the configuration–successor pair (C`, D`) is
as follows: In C`, all labeled nodes v with `(v) ≤ ` are
set to state 1 and the rest are set to 0. In D`, all v such
that `(v) ∈ L and `(v) ≤ ` are set to state 1 and the rest
to state 0. All nodes not in P are also set to 0. The proof
that the set T = {(C`, D`) | ` ∈ L} can be shattered is in
(Adiga et al., 2019). See Figure 2 for an example. �

1

2

3

4

5
6
7
8

9

1 2 3 4 6 5 8

(1, 1)(1, 2)(1, 3)(1, 4)(2, 1)(2, 2)(2, 3)

P:

`(v):

I = {7, 9}

1 2 3 4 5 6 7 8 9
C(1,1) 1 0 0 0 0 0 0 0 0
D(1,1) 1 0 0 0 0 0 0 0 0
C(1,2) 1 1 0 0 0 0 0 0 0
D(1,2) 1 1 0 0 0 0 0 0 0
C(1,3) 1 1 1 0 0 0 0 0 0
D(1,3) 1 1 1 0 0 0 0 0 0
C(2,1) 1 1 1 1 0 1 0 0 0
D(2,1) 1 1 1 0 0 1 0 0 0
C(2,2) 1 1 1 1 1 1 0 0 0
D(2,2) 1 1 1 0 1 1 0 0 0

For A = {(C(1,1), D(1,1), (C(2,1), D(2,1))}, threshold assignments are

t(1) = d(1,1) + 1 = 1; t(2) = d(1,2) + 2 = 3;
t(3) = d(1,3) + 2 = 4; t(6) = d(2,1) + 1 = 1; t(5) =
d(2,2) + 2 = 4; t(4) = t(8) = t(7) = t(9) = n+ 1 = 10

Figure 2. Example of configuration–successor pair construction
using ordered paths. Here, T is the set of (C(i,j), D(i,j)) pairs
defined in the table and A is a subset of T .

Proof of Theorem 2: We use a greedy strategy to obtain P .
Let V ′ = V . At the start of each iteration, remove a vertex
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from v ∈ V ′ and set P = {v}. The current path has only v,
which is an end point. The path is “grown” as follows. For
an end point of the current path in P , pick a neighbor v′

from V ′ \P if one exists. Move v′ from V ′ to P and update
the path with v′ as an end point and v as an internal point
if |P | > 2. The process terminates when no new neighbor
can be added from V ′ for the current path’s end points. The
path is ordered starting and ending with the current end
points. P is added to P≥3 (i.e., the subset of paths with ≥ 3
nodes) and the process continues until V ′ has no paths of
length ≥ 2. In that case, we set V<3 = V ′. What remains
of V ′ induces an independent set of size at least |V ′|/2.
This is set to I . If |I| ≥ n/4, then, the proof follows from
Lemma 2. Otherwise, the number of vertices in P is at
least n/2. In that case, the proof follows from Lemma 3. �

A tighter bound for complete graphs. Here, we observe
that the relationship between sample complexity and edge
density is not straightforward. When the underlying net-
work G is a complete graph, from Theorem 1, the sam-
ple complexity for the threshold SyDSs is O(n log n) for
constant ε and δ. Our next result shows that the sample
complexity in this case is actually O(n).

Theorem 3. For a threshold SyDS defined on a complete
graphG of size n, the VC-dimension of the hypothesis space
is at most n+ 1.

Proof (idea): We establish an upper bound on the VC
dimension. The proof is based on pigeon-hole principle and
appears in (Adiga et al., 2019). �

4. Efficiency of Learning Algorithms
We will show that the complexity of learning the thresholds
hinges on the number of negative examples. We will also de-
velop efficient exact and approximation algorithms. Given
a collection E of labeled examples, a learner is consistent
with respect to E if the hypothesis (a threshold assignment
for all the nodes) produced by the learner satisfies all the ex-
amples in E ; that is, (a) for each positive example (C1, C2),
C2 is the successor of C1 and (b) for each negative example
(C1, C2), C2 is not the successor of C1.

Complexity of learning from positive and negative ex-
amples. Using a known approach from the literature (see
e.g., (Kearns & Vazirani, 1994)), we show that if there is an
efficient PAC learning algorithm with positive and negative
examples, then there is a randomized polynomial time (RP-
time) algorithm for every problem in NP, thus implying
that NP = RP. To prove this result, we use an NP-complete
problem defined in (Adiga et al., 2017). Recall that a con-
figuration C of a SyDS is a fixed point if the successor of C
is C itself; otherwise, it is a non-fixed point.

Problem 1. TA-FNF (Adiga et al., 2017): Given the
graph G(V,E) of a SyDS S and two disjoint sets of con-

figurations F1 and F2, is there a threshold assignment for
the nodes of S such that each configuration in F1 is a fixed
point and each configuration in F2 is not a fixed point?

Now, we state our complexity result.
Theorem 4. Given a graph G(V,E) and a set E of posi-
tive and negative examples, the concept class of threshold
functions is not efficiently PAC learnable, unless NP = RP.

Proof sketch: Suppose the concept class of threshold
functions is efficiently PAC learnable from a set of posi-
tive and negative examples. Let A be an efficient learning
algorithm whose running time is polynomial in the size
of the problem instance and the values 1/δ and 1/ε. We
show that A can be used to devise an RP algorithm for
TA-FNF. For brevity, we denote the learning problem by
POS-NEG-LEARN. Given an instance I of the TA-FNF
problem, we construct an instance I ′ of POS-NEG-LEARN
as follows.

(a) The underlying graph G(V,E) of the SyDS S for
the POS-NEG-LEARN problem is the same as that of the
TA-FNF problem.

(b) For each configuration C ∈ F1 ∪ F2, we construct the
example (C,C). If C ∈ F1, the example is labeled positive,
else, it is labeled negative. This is the set of examples E .

(c) Let ε = 1/(2|E|) and δ = 0.1.

Using the assumed efficient learning algorithm A, we can
now construct an algorithm A1 for TA-FNF as follows.

1. Run the learning algorithm A on instance I ′. Whenever
A requests an example, it is given one chosen uniformly
randomly from E . (Thus, the chosen distribution does not
produce any examples that are not in E .)

2. If A produces a threshold assignment that is consistent
with all the examples in E , then A1 outputs the message
“Yes”; otherwise (i.e., eitherA does not produce a hypothesis
or the produced hypothesis h is not consistent with E), A1

outputs the message “No”.

Since A runs in polynomial time, A1 also runs in polyno-
mial time. We have the following lemma which shows that
A1 is indeed an RP algorithm for TA-FNF (proof in (Adiga
et al., 2019)).
Lemma 4. (i) If the TA-FNF instance has a solution, then
Algorithm A1 produces the message “Yes” with probability
at least 0.9. (ii) If TA-FNF instance does not have a
solution, Algorithm A1 produces the message “No”.

Thus, starting with the assumption of an efficient learning
algorithm A, Lemma 4 shows that the TA-FNF problem is
in RP, contradicting the assumption that NP 6= RP. This
completes our proof of Theorem 4. �

We note that Theorem 4 holds for the case of proper learning
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where the hypothesis class and the concept class coincide;
here, they are both assumed to be n-tuples of threshold
values. It is of interest to investigate whether the result
can be extended to PAC learning under the representation-
independent setting (see, e.g., (Warmuth, 1989)).

Learning from positive examples. Here, we show that
there is an efficient consistent learner when all the ex-
amples in E are positive. The consistent learner is de-
scribed in Algorithm 1. This is similar to an algorithm
in (Adiga et al., 2017) for learning thresholds from obser-
vations. The idea behind the algorithm is the following.
Suppose (C1, C2) ∈ E . Consider any node v. Recall that
score(C1, v) is the number of 1′s provided by C1 to the
local function at v. Let C2(v) denote the state of v in C2. If
C2(v) = 0, then we can conclude that t(v) > score(C1, v);
otherwise, t(v) ≤ score(C1, v). For each node v, these
inequalities can be used to find non-negative integers `(v)
and u(v) such that `(v) ≤ t(v) ≤ u(v). It is easy to see that
there is a consistent assignment of threshold values to nodes
only if for each node v, the range R(v) = [`(v) .. u(v)] is
non-empty. Since there are at most |E| inequalities for each
node v, the time needed to construct the range of threshold
values for each node and check the feasibility is O(|E||V |),
which is a polynomial function of the input size. Therefore,
we have the following result.

Algorithm 1 A consistent learner for positive examples.

Require: The underlying graph G(V,E) of a SyDS and a collec-
tion E of positive examples.

Ensure: If a solution exists, then a consistent assignment of
threshold values to the nodes in V .

1: X = ∅.
2: for all (C1, C2) ∈ E do
3: for all v ∈ V do
4: if C2(v) = 0 then
5: Add the inequality “t(v) > score(C1, v)” to X .
6: else
7: Add the inequality “t(v) < score(C1, v)” to X .
8: end if
9: end for

10: end for
11: If there is a solution to the set of inequalities in X , output a

solution. Otherwise, output “no consistent assignment”.

Theorem 5. When all the examples are positive, there is an
efficient algorithm to determine whether there is a consistent
threshold assignment; if so, the algorithm finds one such
assignment. �

Learning with a small number of negative examples.
Theorem 4 points out the difficulty of developing an efficient
consistent learner for threshold SyDSs when there are both
positive and negative examples. Since there is an efficient
learner for the situation when the input has only positive
examples (Theorem 5), it is seen that the computational
intractability result arises due to the negative examples. Our

next result shows that when the number of negative exam-
ples is small (i.e.,O(log n) where n is the number of nodes),
an efficient consistent learner can be developed.

Let EN be the set of negative examples. Given a nega-
tive example x = (C1, C2) ∈ EN , we say that a pair
(v, t) “handles” x if setting the threshold of v to t makes
the value of v in the successor of C1 to be different from
C2(v). There might be multiple pairs (v, t), (v′, t′), which
handle an example x ∈ EN . Note that v may or may not be
same as v′, and t may or may not be the same as t′. Also,
t should be within the range R(v) determined from exam-
ining the positive examples EP . Let S(v, t) = {x ∈ EN :
(v, t) handles x}. Let B = {(v, t) : S(v, t) 6= ∅}. We have
the following lemma (proof in (Adiga et al., 2019)).
Lemma 5. There exists a consistent threshold assign-
ment for E if and only if there exists a subset B′ =
{(v1, t1), . . . , (vr, tr)} ⊆ B where v1, . . . , vr are distinct
nodes, and

⋃r
i=1 S(vi, ti) = EN , such that threshold values

ti for node vi are consistent with the ranges R(v) inferred
from the positive examples EP .

We develop a dynamic programming algorithm to check
whether there is a consistent learner when there are positive
and negative examples. Let v1, . . . , vn be an ordering of the
nodes. The algorithm uses the following steps.

(1) We maintain information in a table M [j, S] where
j = 1, . . . , n and S ranges over all the subsets of EN .
We define M [j, S] = 1 if there exists an assignment
{(v1, t1), . . . , (vj′ , tj′)} for j′ ≤ j, such that all x ∈ S
are handled by this assignment; otherwise M [j, S] = 0.
The entries of M [·, ·] are computed as follows.

(2) The base case is j = 1. For each (v1, t) ∈ B, we set
M [1, S′] = 1 for all S′ ⊆ S(v1, t). We set M [1, S] = 0 for
all remaining S.

(3) We set M [j + 1, S] = 1 if M [j, S] = 1 or if M [j, S −
S(vj+1, t)] = 1 for some (vj+1, t) ∈ B; otherwise, we set
M [j + 1, S] = 0.

The lemma below (proved in (Adiga et al., 2019)) estab-
lishes the correctness and the running time of the algorithm.
Lemma 6. The above dynamic program has space and
time complexity O(2|EN |poly(n)), which is polynomial if
|EN | = O(log n). Further, M [n, EN ] = 1 if and only if
there exists a consistent threshold labeling for E .

Approximately satisfying constraints in EN . We use the
notation and a result from (Călinescu et al., 2011). A par-
tition matroid M = (X, I) is defined in the following
manner: X is partitioned into ` sets X1, . . . , X`, with as-
sociated integers k1, . . . , k`. A set A ⊆ X is independent
iff |A ∩ Xi| ≤ ki for all i. A function f : 2X → R+

is submodular if for all P ⊆ Q ⊂ X , p 6∈ Q, we have
f(P ∪ {p}) − f(P ) ≥ f(Q ∪ {p}) − f(Q). Finally, f
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is monotone if f(P ) ≤ f(Q) for all P ⊆ Q. Călinescu
et al. (2011) design an algorithm that gives a (1 − 1/e)-
approximation for a monotone submodular function with
matroid constraints.

Using our earlier notation, define B(v) = {(v, t) ∈ B :
S(v, t) 6= ∅} and X = B. Define the function g : 2X →
R+ as g(P ) = |⋃(v,t)∈P S(v, t)|. Our algorithm involves
the following steps.

(1) B(v1), . . . , B(vn) is a partition of X . We fix ki = 1 for
i = 1, . . . , n. The matroidM = (X, I) is as above.

(2) Use the algorithm of (Călinescu et al., 2011) to find a
subset P ∈ I that has the maximum value g(P ).

(3) The set P = {(vj1 , tj1), . . . , (vjr , tjr )} gives the thresh-
old assignment.

The following lemma gives the performance guarantee pro-
vided by the above algorithm.
Lemma 7. The assignment returned by the above algorithm
ensures that at least (1− 1/e) fraction of the examples in
EN are handled.

The lemma follows by noting that function g(·) is monotone
submodular and then applying Theorem 1.1 from (Călinescu
et al., 2011).

5. Experimental Results
Analysis procedures and networks. Figure 3 provides an
overview of the major steps in the experiments. Mined
graphs are obtained from the web and synthetic networks of
different classes are generated; see Table 1. There are five
graph instances for each of the random regular (RR) and
scale-free (SF) synthetic networks for a specified n (number
of nodes). For each graph instance, five sets of true threshold
assignments are made, where the threshold for each node v
is chosen uniformly at random from the range [0, dv+2] (the
two limiting cases: 0 means the node will always change
to state 1; dv + 2 means the node will not transition to
state 1 and will transition to state 0 if it is 1). For each true
assignment of thresholds to nodes, Algorithm 1 is used to
estimate ten inferred threshold assignments. This is done
because the outcome of Algorithm 1 is stochastic due to the
fact that the positive examples are chosen randomly. These
sets of threshold estimates are also generated for different
numbers m of queries (or configurations), ranging from 10
to 105. Each true threshold assignment, represented by F ,
is compared to each of the estimated threshold sets (for
each particular value of m), represented by F ′, by counting
the fraction fne of times that F(C) 6= F ′(C). Based on
preliminary analyses, we take the number nt of configu-
rations C (i.e., comparisons or trials) to be nt = 10n. In
Algorithm 1 for estimating thresholds and in the evaluation
of the dynamics between F and F ′, configurations are re-

Figure 3. Overview of pipeline work items for experiments. The
third box uses Algorithm 1.
quired. For consistency, configurations must be sampled
from the same distribution for both operations. We evaluate
two distributions. One configuration distribution Du is a
uniform distribution where each node is set to state 1 with
probability p (and to state 0 with probability (1− p)). This
distribution has been analyzed in the context of learning
halfspaces (Long, 1995). The second configuration distri-
bution DPL generates a probability in (0,1) uniformly at
random, and using a power law relationship, determines
the number n1 of nodes whose state will be 1 in the con-
figuration (He et al., 2016). Then, uniformly at random n1
nodes are selected from V to be in state 1, with the remain-
ing nodes in state 0. Since our experiments use positive
examples only and the underlying system is deterministic,
once a random configuration C is chosen, its successor C ′

is determined. Thus, in our experiments, we don’t sample
pairs of configurations. We perform the steps of Figure 3
using a full factorial design, and results are presented next.

Table 1. Mined and synthetic networks, and their attributes.

Network Properties
n |E| dave dmax

Jazz 198 2742 27.70 100
NRV 769 4551 11.84 20
euEmall 986 16064 32.58 345
Ran Rega,1 11–1000 n davg/2 10 10
Scl freea,2 20–1000 ∼ n davg/2 9.5–9.9 13–149
Cliques3 400 nqnc(nc−1)/2 nc − 1 nc − 1

a 5 replicates per n value.
1 n values are 11, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000.
2 n values are 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000.
3 number nc of nodes per clique are 10, 20, 40, 80, 100, 200, 400.

We use the above methods to investigate the behavior of
the PAC model for different (i) network classes, sizes of
networks, dave, and graph density; (ii) threshold estima-
tion parameters such as configuration distributions D, node
probability p, and numbers m of queries for Algorithm 1;
and (iii) (ε, δ) pairs of the PAC model. Selected results are
provided here; others are in (Adiga et al., 2019).

Effects of graph size and number of queries. Figure 4
shows fne vs. m for the mined networks. The first plot
shows boxplots for the Jazz network. Each box represents
50 values of fne. (This is because there are 5 threshold
assignments, and for each assignment, we generated 10 esti-
mated threshold assignments.) As expected, as the number
m of queries increases, the fraction of configurations C for
which F(C) 6= F ′(C) decreases. In the second plot, the av-
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erage values of fne are plotted againstm for the three mined
networks. The curves, highest to lowest, correspond to de-
creasing numbers of nodes in the graphs. That is, the larger
the graph in terms of numbers of nodes, all other things
being equal, the larger is the number of queries required to
get accurate thresholds from Algorithm 1 because distance-
1 neighbors in a graph typically do not make progress in
narrowing threshold estimates in one step.

Figure 4. Fraction of inequalities fne versus m for mined networks
(a) Jazz and (b) for the three mined networks. In (a), the number
of queries ranges from 10 to 100,000. As m increases from 10
to 100,000, fne → 0. In (b) the focus is smaller values of m;
errors are lesser in the Jazz network and greatest in euEmail as
these networks have the minimum and maximum numbers of nodes
of the mined graphs. There are 50 data points per m value on the
x-axis (1 graph instance × 5 true threshold assignments per graph
× 10 estimated instances per true instance). In both plots, we use
Du with p = 0.25.

Effect of graph density on fne. For cliques (densest
graphs) and independent sets of nodes (least dense graphs),
theoretical results show that fne is the same in both extreme
cases. Hence, a natural question is what happens at inter-
mediate values of graph density. To study this, we take a
series of RR graphs and SF graphs with dave = k = 10 and
increase n from 11 (a clique) to 1000 (a less dense graph)
to determine the fraction of errors in comparing F and F ′.
Figure 5 shows fne vs. n for all of the random regular (RR)
and scale-free (SF) networks. In this plot “n increasing” is
synonymous with “graph density decreasing.” Each box
represents 250 values of fne. As expected, in the first plot
(RR) median fne values are comparable at extreme ends.
However, at intermediate values of n (and density), the be-
havior is nonlinear and non-monotonic, showing increased
fne. In the second plot, the effect exists in that data are
shown for the smallest n = 20. For n = 11, the SF network
would become a clique (keeping dave the same) and the data
from the plot at n = 11 shows smaller fne values. The two
different graph structures suggests that this effect may be
robust across different network structures.

Effect of distributions for sampling configurations. We
investigate the effect of different distributions—Du and
DPL—for sampling configurations for generating estimated
thresholds and for comparing F and F ′. Results are shown
in Figure 6 for RR networks. For Du in the first plot, we
take p = 0.25, and comparatively small fne are observed.

Figure 5. Fraction of inequalities fne as a function of n (and as a
function of graph density, because graph density decreases as n
increases, for fixed value of dave) for (a) random regular (RR) and
(b) scale-free (SF) networks. In both plots, q = 0.1, so the number
of queries scales with n according to m = q n. There are 250
data points per box plot. These plots illustrate that fne increases
at intermediate values of graph density, and decreases with very
high and very low density. We use Du with p = 0.25.

In contrast, for DPL in the second plot, fne = 1 for almost
all n. A fundamental difference between the two models is
that for Du, the expected number n1 of nodes in state 1 in
each sampled configuration is the same (n1 = pn), while
for DPL, n1 can vary as 0 ≤ n1 ≤ n. As a result, there
may be less consistency in the configurations produced by
DPL, leading to greater inconsistency in configurations for
estimating thresholds and for comparing F and F ′.

Figure 6. Fraction of inequalities fne as a function of n for dif-
ferent distributions of configurations: (a) Du with p = 0.25 and
(b) DPL. These results, on RR networks, show that widely differ-
ent fne can result from different models for generating configura-
tions. Here, m = qn with q = 0.1.

6. Summary and Future Work
We examined the learnability of local functions of SyDSs
under the PAC model. Our focus was on threshold functions
with emphasis on sample complexity, efficiency of learning
and effect of network structure. There are several possible
directions for future work. For example, one may consider
learning other classes of local functions including stochastic
functions. More general observation models can be explored.
For example, observations can span multiple time steps. The
difficulty here is that a single error in one step can lead
to errors in the ensuing steps. Another and challenging
research direction is to investigate learning both the graph
topology (which we currently assume is known) and the
local functions under the PAC model.
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