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Abstract

For a Markov Decision Process with finite
state (size S) and action spaces (size A per
state), we propose a new algorithm—Delayed
Q-Learning. We prove it is PAC, achieving
near optimal performance except for O(SA)
timesteps using O(SA) space, improving on
the O(S2A) bounds of best previous algo-
rithms. This result proves efficient reinforce-
ment learning is possible without learning a
model of the MDP from experience. Learning
takes place from a single continuous thread of
experience—no resets nor parallel sampling
is used. Beyond its smaller storage and ex-
perience requirements, Delayed Q-learning’s
per-experience computation cost is much less
than that of previous PAC algorithms.

1. Introduction

In the reinforcement-learning (RL) problem (Sutton
& Barto, 1998), an agent acts in an unknown or in-
completely known environment with the goal of max-
imizing an external reward signal. One of the funda-
mental obstacles in RL is the exploration-exploitation
dilemma: whether to act to gain new information (ex-
plore) or to act consistently with past experience to
maximize reward (exploit). This paper models the RL
problem as a Markov Decision Process (MDP) envi-
ronment with finite state and action spaces.
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When evaluating RL algorithms, there are three es-
sential traits to consider: space complexity, computa-
tional complexity, and sample complexity. We define
a timestep to be a single interaction with the environ-
ment. Space complexity measures the amount of mem-
ory required to implement the algorithm while compu-
tational complexity measures the amount of operations
needed to execute the algorithm, per timestep. Sam-
ple complexity measures the amount of timesteps for
which the algorithm does not behave near optimally
or, in other words, the amount of experience it takes
to learn to behave well.

We will call algorithms whose sample complexity can
be bounded by a polynomial in the environment size
and approximation parameters, with high probabil-
ity, PAC-MDP (Probably Approzimately Correct in
Markov Decision Processes). All algorithms known
to be PAC-MDP to date involve the maintenance
and solution (often by value iteration or mathemat-
ical programming) of an internal MDP model. Such
algorithms, including Ryax (Brafman & Tennenholtz,
2002), E? (Kearns & Singh, 2002), and MBIE (Strehl
& Littman, 2005), are called model-based algorithms
and have relatively high space and computational com-
plexities. Another class of algorithms, including most
forms of Q-learning (Watkins & Dayan, 1992), make
no effort to learn a model and can be called model free.

It is difficult to articulate a hard and fast rule di-
viding model-free and model-based algorithms, but
model-based algorithms generally retain some transi-
tion information during learning whereas model-free
algorithms only keep value-function information. In-
stead of formalizing this intuition, we have decided to
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adopt a crisp, if somewhat unintuitive, definition. For
our purposes, a model-free RL algorithm is one whose
space complexity is asymptotically less than the space
required to store an MDP.

Definition 1 A learning algorithm is said to be
model free if its space complexity is always o(S%A),
where S is the number of states and A is the number
of actions of the MDP used for learning.

Although they tend to have low space and computa-
tional complexity, no model-free algorithm has been
proven to be PAC-MDP. In this paper, we present a
new model-free algorithm, Delayed Q-learning, and
prove it is the first such algorithm.

The hardness of learning an arbitrary MDP as mea-
sured by sample complexity is still relatively unex-
plored. For simplicity, we let O(-) (Q(-)) represent O(-)
(Q(-)) where logarithmic factors are ignored. When we
consider only the dependence on S and A, the lower
bound of Kakade (2003) says that with probability
greater than 1 — §, the sample complexity of any algo-
rithm will be Q(SA). However, the best upper bound
known provides an algorithm whose sample complex-
ity is O(S?A) with probability at least 1 — 4. In other
words, there are algorithms whose sample complex-
ity is known to be no greater than approximately the
number of bits required to specify an MDP to fixed
precision. However, there has been no argument prov-
ing that learning to act near-optimally takes as long
as approximating the dynamics of an MDP. We solve
this open problem, first posed by Kakade (2003), by
showing that Delayed Q-learning has sample complex-
ity O(SA), with high probability. Our result therefore
proves that efficient RL is possible without learning a
model of the environment from experience.

2. Definitions and Notation

This section introduces the Markov Decision Process
notation used throughout the paper; see Sutton and
Barto (1998) for an introduction. An MDP M is a
five tuple (S, A, T, R, ), where S is the state space, A
is the action space, T : S x A x S — R is a transi-
tion function, R : S x A — R is a reward function, and
0 < v < 1is adiscount factor on the summed sequence
of rewards. We also let S and A denote the number of
states and the number of actions, respectively. From
state s under action a, the agent receives a random
reward 7, which has expectation R(s,a), and is trans-
ported to state s’ with probability T'(s'|s,a). A policy
is a strategy for choosing actions. Only deterministic
policies are dealt with in this paper. A stationary pol-
icy is one that produces an action based on only the

current state. We assume that rewards all lie between
0 and 1. For any policy 7, let Vi (s) (Q%,(s,a)) denote
the discounted, infinite-horizon value (action-value or
Q-value) function for 7 in M (which may be omitted
from the notation) from state s. If T is a positive in-
teger, let V7 (s, T) denote the T-step value function of
policy 7. Specifically, Vi (s) = E[}.72, 47 'r;] and
Vi(s,T) = E[Z]ll y3=1r;] where [ri,ro,...] is the
reward sequence generated by following policy 7 from
state s. These expectations are taken over all possi-
ble infinite paths the agent might follow. The optimal
policy is denoted 7* and has value functions V;(s)
and Q%,(s,a). Note that a policy cannot have a value
greater than 1/(1 — «) in any state.

3. Learning Efficiently

In our discussion, we assume that the learner receives
S, A, €, 0, and v as input. The learning problem is
defined as follows. The agent always occupies a sin-
gle state s of the MDP M. The learning algorithm
is told this state and must select an action a. The
agent receives a reward r and is then transported to
another state s’ according to the rules from Section 2.
This procedure then repeats forever. The first state
occupied by the agent may be chosen arbitrarily.

There has been much discussion in the RL community
over what defines efficient learning or how to define
sample complexity. For any fixed ¢, Kakade (2003) de-
fines the sample complexity of exploration (sam-
ple complexity, for short) of an algorithm .4 to be the
number of timesteps ¢ such that the non-stationary
policy at time ¢, Ay, is not e-optimal from the current
state', s; at time ¢ (formally V4 (s;) < V*(s;) — €).
We believe this definition captures the essence of mea-
suring learning. An algorithm A is then said to
be PAC-MDP (Probably Approximately Correct in
Markov Decision Processes) if, for any e and J, the
sample complexity of A is less than some polynomial in
the relevant quantities (S, A,1/€,1/6,1/(1 — ~)), with
probability at least 1 — 4.

The above definition penalizes the learner for exe-
cuting a non-e-optimal policy rather than for a non-
optimal policy. Keep in mind that, with only a finite
amount of experience, no algorithm can identify the
optimal policy with complete confidence. In addition,
due to noise, any algorithm may be misled about the
underlying dynamics of the system. Thus, a failure
probability of at most ¢ is allowed. See Kakade (2003)
for a full motivation of this performance measure.

Note that A; is completely defined by A and the

agent’s history up to time ¢.
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4. Delayed Q-learning

In this section we describe a new reinforcement-
learning algorithm, Delayed Q-learning.

Delayed Q-learning maintains Q-value estimates,
Q(s,a) for each state-action pair (s,a). At time
t(=1,2,...), let Q:(s,a) denote the algorithm’s cur-
rent Q-value estimate for (s,a) and let V;(s) denote
maxgea @t(s,a). The learner always acts greedily
with respect to its estimates, meaning that if s is the
tth state reached, o’ := argmax, 4 Q:(s, a) is the next
action chosen.

In addition to Q-value estimates, the algorithm main-
tains a Boolean flag LEARN(s, a), for each (s,a). Let
LEARN;(s,a) denote the value of LEARN(s,a) at time
t, that is, the value immediately before the tth ac-
tion is taken. The flag indicates whether the learner
is considering a modification to its Q-value estimate
Q(s,a). The algorithm also relies on two free parame-
ters, €1 € (0,1) and a positive integer m. In the analy-
sis of Section 5, we provide precise values for these
parameters in terms of the other inputs (S, A, ¢, 0,
and «) that guarantee the resulting algorithm is PAC-
MDP. Finally, a counter I(s,a) (I;(s,a) at time t) is
also maintained for each (s,a). Its value represents
the amount of data (sample points) acquired for use
in an upcoming update of Q(s,a). Once m samples
are obtained and LEARN(s, a) is true, an update is at-
tempted.

4.1. Initialization of the Algorithm

The Q-value estimates are initialized to 1/(1 — ~),
the counters I(s,a) to zero, and the LEARN flags to
true. That is, Q1(s,a) = 1/(1 —7), li(s,a) =0, and
LEARN; (s, a) = true for all (s,a) € S x A.

4.2. The Update Rule

Suppose that at time ¢t > 1, action a is performed
from state s, resulting in an attempted update, ac-
cording to the rules to be defined in Section 4.3. Let
SkysSkys -« -, Sk,, be the m most recent next-states ob-
served from executing (s, a), at times k; < ko < -+ <
km, respectively (k,, = t). For the remainder of the
paper, we also let r; denote the ith reward received
during execution of Delayed Q-learning.

Thus, at time k;, action a was taken from state s,
resulting in a transition to state s;, and an immediate
reward 7,. After the ¢th action, the following update
occurs:

m

Quials,0) = — 3"k + Vi (sw)) + o (1)

i=1

as long as performing the update would result in a
new Q-value estimate that is at least e; smaller than
the previous estimate. In other words, the following
equation must be satisfied for an update to occur:

Qt(57a) - (nl,L Z (qu + F)/sz (Skz))> > 2€1. (2)

i=1

If any of the above conditions do not hold, then no up-
date is performed. In this case, Q. 11(s,a) = Q(s,a).

4.3. Maintenance of the LEARN Flags

We provide an intuition behind the behavior of the
LEARN flags. Please see Section 4.4 for a formal de-
scription of the update rules. The main computation
of the algorithm is that every time a state-action pair
(s,a) is experienced m times, an update of Q(s,a) is
attempted as in Section 4.2. For our analysis to hold,
however, we cannot allow an infinite number of at-
tempted updates. Therefore, attempted updates are
only allowed for (s,a) when LEARN(s,a) is true. Be-
sides being set to true initially, LEARN(s,a) is also set
to true when any state-action pair is updated (because
our estimate Q(s,a) may need to reflect this change).
LEARN(s, a) can only change from true to false when
no updates are made during a length of time for which
(s,a) is experienced m times and the next attempted
update of (s,a) fails. In this case, no more attempted
updates of (s,a) are allowed until another Q-value es-
timate is updated.

4.4. Implementation of Delayed Q-learning

We provide an efficient implementation, Algorithm 1,
of Delayed Q-learning that achieves our desired com-
putational and space complexities.

4.5. Discussion

Delayed Q-learning is similar in many aspects to tra-
ditional Q-learning. Suppose that at time ¢, action a
is taken from state s resulting in reward r; and next-
state s’. Then, the Q-learning update is

Qea(s,a) = (1 — ar)Quls, a) + au(re +7Vi(s)) (3)

where oy € [0,1] is the learning rate. Note that if
we let oy = 1/(l¢(s,a) + 1), then m repetitions of
Equation 3 is similar to the update for Delayed Q-
learning (Equation 1) minus a small bonus of €;. How-
ever, Q-learning changes its Q-value estimates on every
timestep, while Delayed Q-learning waits for m sam-
ple updates to make any changes. This variation has
an averaging effect that mitigates some of the effects
of randomness and, when combined with the bonus of



PAC Model-Free Reinforcement Learning

Algorithm 1 Delayed Q-learning
: Inputs: v, S, A, m, ¢
: for all (s,a) do
Q(s,a) — 1/(1 —=v)  // Q-value estimates
U(s,a) < 0  // used for attempted updates
l(s,a) <0  // counters
t(s,a) < 0  // time of last attempted update
LEARN (s,a) < true  // the LEARN flags
end for
: t*«— 0 // time of most recent Q-value change
: fort=1,2,3,--- do
Let s denote the state at time t.
Choose action a := argmax, 4 Q(s,a’).
Let 7 be the immediate reward and s’ the next
state after executing action a from state s.
13: if LEARN(s,a) = true then

© PP R

_ =
o2

14: U(s,a) «— U(s,a) +r+ymax, Q(s',a)
15: I(s,a) «—I(s,a) +1

16: if I(s,a) = m then

17: if Q(s,a) —U(s,a)/m > 2¢; then
18: Q(s,a) «— U(s,a)/m + €

19: " —t

20: else if ¢(s,a) > ¢* then

21: LEARN (s,a) < false

22: end if

23: t(s,a) «—t, U(s,a) < 0, 1(s,a) < 0
24: end if

25:  else if t(s,a) < t* then

26: LEARN (s,a) < true

27:  end if

28: end for

€1, achieves optimism (Q(s,a) > Q*(s,a)) with high
probability (see Lemma 2).

The property of optimism is useful for safe exploration
and appears in many existing RL algorithms. The in-
tuition is that if an action’s Q-value is overly opti-
mistic the agent will learn much by executing that ac-
tion. Since the action-selection strategy is greedy, the
Delayed Q-learning agent will tend to choose overly
optimistic actions, therefore achieving directed explo-
ration when necessary. If sufficient learning has been
completed and all Q-values are close to their true QQ*-
values, selecting the maximum will guarantee near-
optimal behavior. In the next section, we provide a
formal argument that Delayed Q-learning exhibits suf-
ficient exploration for learning, specifically that it is
PAC-MDP.

5. Analysis

We briefly address space and computational complex-
ity before focusing on analyzing the sample complexity
of Delayed Q-learning.

5.1. Space and Computational Complexity

An implementation of Delayed Q-learning, as in Sec-
tion 4.4, can be achieved with O(SA) space complex-
ity2. With use of a priority queue for choosing ac-
tions with maximum value, the algorithm can achieve
O(In A) computational complexity per timestep. As-
ymptotically, Delayed Q-learning’s computational and
space complexity are on par with those of Q-learning.
In contrast, the Ry.x algorithm, a standard model-
based method, has worst-case space complexity of
©(S?A) and computational complexity of 2(S?A) per
experience.

5.2. Sample Complexity

The main result of this section, whose proof is pro-
vided in Section 5.2.1, is that the Delayed Q-learning
algorithm is PAC-MDP:

Theorem 1 Let M be any MDP and let € and 6 be
two positive real numbers. If Delayed Q-learning is
executed on MDP M, then it will follow an e-optimal

policy on all but O (%hl%lnﬁ]n %)

timesteps, with probability at least 1 — 6.

To analyze the sample complexity of Delayed Q-
learning, we first bound the number of successful up-
dates. By Condition 2, there can be no more than

1

P e @
successful updates of a fixed state-action pair (s, a).
This bound follows from the fact that Q(s,a) is ini-
tialized to 1/(1 — ) and that every successful update
of Q(s,a) results in a decrease of at least €. Also,
by our assumption of non-negative rewards, it is im-
possible for any update to result in a negative Q-value
estimate. Thus, the total number of successful updates
is at most SAk.

Now, consider the number of attempted updates for
a single state-action pair (s,a). At the beginning of
learning, LEARN(s, a) = true, which means that once
(s,a) has been experienced m times, an attempted up-

date will occur. After that, a successful update of some

*We measure complexity assuming individual numbers
require unit storage and can be manipulated arithmetically
in unit time. Removing this assumption increases space
and computational complexities by logarithmic factors.
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Q-value estimate must take place for LEARN(s, a) to be
set to true. Therefore, there can be at most 1+ SAx
attempted updates of (s,a). Hence, there are at most

SA(1+ SAk) (5)
total attempted updates.

During timestep t of learning, we define K; to be the
set of all state-action pairs (s, a) such that:

Qi(s,a) — (R(s, a) + 'yZT(s’|s, a)V}(s')) < 3e;.
s (6)

Observe that K; is defined by the true transition and
reward functions T and R, and therefore cannot be
known to the learner.

Now, consider the following statement:

Assumption A1l Suppose an attempted update of
state-action pair (s,a) occurs at time t, and that the
m most recent experiences of (s,a) happened at times
ki < ko < oo < kpy, =t If (5,(1) ¢ Kk1 then the
attempted update will be successful.

During any given infinite-length execution of Delayed
Q-learning, the statement (A1) may be true (all at-
tempted updates with (s,a) ¢ Kj, are successful) or
it may be broken (some unsuccessful update may oc-
cur when (s,a) € Ki,). When (s,a) € Ky,, as above,
our value function estimate Q(s,a) is very inconsis-
tent with our other value function estimates. Thus,
we would expect our next attempted update to suc-
ceed. The next lemma shows this intuition is valid.
Specifically, with probability at least 1 — 6/3, Al will
be true. We are now ready to specify a value for m:

_ In(3SA(1+ SAk)/9)
T 2¢12(1 — )2 '

(7)

Lemma 1 The probability that Al is violated during
execution of Delayed Q-learning is at most 0/3.

Proof sketch: Fix any timestep k1 (and the complete
history of the agent up to k;) satisfying: (s,a) € Ky,
is to be experienced by the agent on timestep kj
and if (s,a) is experienced m — 1 more times after
timestep k1, then an attempted update will result. Let
Q = [(s[1], 1), (slm], [m])] € (S x R)™ be any
sequence of m next-state and immediate reward tuples.
Due to the Markov assumption, whenever the agent is
in state s and chooses action a, the resulting next-state
and immediate reward are chosen independently of the
history of the agent. Thus, the probability that (s, a)
is experienced m — 1 more times and that the result-
ing next-state and immediate reward sequence equals

Q is at most the probability that Q is obtained by
m independent draws from the transition and reward
distributions (for (s, a)). Therefore, it suffices to prove
this lemma by showing that the probability that a ran-
dom sequence Q could cause an unsuccessful update
of (s,a) is at most §/3. We prove this statement next.

Suppose that m rewards, r[l],...,r[m], and m
next states, s[1],...,s[m]|, are drawn indepen-
dently from the reward and transition distribu-
tions, respectively, for (s,a). By a straightfor-
ward application of the Hoeffding bound (with
random variables X; = rli] + Vi, (s[i])), it
can be shown that our choice of m guaran-
tees that (1/m)Y ", (r[i] + vVi, (s[i])) — E[X1] < &1
holds with probability at least 1 —3/(3SA(1 + SAk)).
If it does hold and an attempted update is performed
for (s,a) using these m samples, then the resulting
update will succeed. To see the claim’s validity, sup-
pose that (s, a) is experienced at times k; < kg < -+ <
k., = t and at time k; the agent is transitioned to state
s[i] and receives reward r[i] (causing an attempted up-
date at time t). Then, we have that

Quls,0) - (; > (ol + Vi (sm)))

> Qt(s,a)—E[Xl]—q > 2€1.

We have used the fact that Vi, (s") < Vi, (s") for all
s’ and i = 1,...,m. Therefore, with high probability,
Condition 2 will be satisfied and the attempted update
of Q(s,a) at time k,, will succeed.

Finally, we extend our argument, using the union
bound, to all possible timesteps k; satisfying the condi-
tion above. The number of such timesteps is bounded
by the same bound we showed for the number of at-
tempted updates (SA(1 + SAk)). O

The next lemma states that, with high probability,
Delayed Q-learning will maintain optimistic Q-values.

Lemma 2 During execution of Delayed Q-learning,
Q:(s,a) > Q*(s,a) holds for all timesteps t and state-
action pairs (s,a), with probability at least 1 — §/3.

Proof sketch: It can be shown, by a simi-
lar argument as in the proof of Lemma 1, that
(L/m) S (i, + 9V (s1,)) > Q*(s,0) — 1 holds,
for all attempted updates, with probability at least
1 — §/3. Assuming this equation does hold, the
proof is by induction on the timestep t. For the
base case, note that Qi(s,a) = 1/(1 —~) > Q*(s,a)
for all (s,a). Now, suppose the claim holds for all

timesteps less than or equal to t. Thus, we have
that Q:(s,a) > Q*(s,a), and Vi(s) > V*(s) for all
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(s,a). Suppose s is the tth state reached and a is
the action taken at time t. If it doesn’t result in
an attempted update or it results in an unsuccessful
update, then no Q-value estimates change, and we
are done. Otherwise, by Equation 1, we have that
Quia(s,0) = (Um) S, (ri, + Vi (1)) + @1 >
U/m) S (e, +9V(60) + @ > Q7(s,a), by
the induction hypothesis and an application of the
equation from above. O

Lemma 3 If Assumption Al holds, then the following
statement holds: If an unsuccessful update occurs at
timet and LEARN; 1 (s,a) = false, then (s,a) € Ky 11.

Proof: Suppose an attempted update of (s,a) oc-
curs at time t. Let sy, sk,,..., Sk, be the m most
recent next-states resulting from executing action a
from state s at times k1 < kg < -+ < k,, = t, re-
spectively. By Al, if (s,a) ¢ Kj,, then the update
will be successful. Now, suppose that (s,a) € Kj, but
that (s,a) € Ky, for some i € {2,...,m}. In this case,
the attempted update at time k,, may be unsuccess-
ful. However, some Q-value estimate was successfully
updated between time k; and time k,, (otherwise K,
would equal Ky, ). Thus, by the rules of Section 4.3,
LEARN(s, a) will be set to true after this unsuccessful
update (LEARN;;(s,a) will be true). O

The following lemma bounds the number of timesteps ¢
in which a state-action pair (s,a) € K; is experienced.

Lemma 4 The number of timesteps t such that a
state-action pair (s,a) € K is experienced is at most
2mSAk.

Proof: Suppose (s,a) ¢ K, is experienced at time
t and LEARN;(s,a) = false (implying the last at-
tempted update was unsuccessful). By Lemma 3, we
have that (s,a) € Ky 41 where ¢’ was the time of the
last attempted update of (s,a). Thus, some successful
update has occurred since time ¢’ + 1. By the rules
of Section 4.3, we have that LEARN(s,a) will be set
to true and by Al, the next attempted update will
succeed.

Now, suppose that (s,a) € K is experienced at time
t and LEARN;(s,a) = true. Within at most m more
experiences of (s, a), an attempted update of (s, a) will
occur. Suppose this attempted update takes place at
time ¢ and that the m most recent experiences of (s, a)
happened at times k1 < ko < --- < k,,, = q. By Al, if
(s,a) € Kk, , the update will be successful. Otherwise,
if (s,a) € K}, , then some successful update must have
occurred between times ki and ¢ (since Ky, # Ki).
Hence, even if the update is unsuccessful, LEARN(s, a)
will remain true, (s,a) € Kyy1 will hold, and the next

attempted update of (s,a) will be successful.

In either case, if (s,a) € K, then within at most
2m more experiences of (s,a), a successful update of
Q(s,a) will occur. Thus, reaching a state-action pair
not in K; at time ¢ will happen at most 2mS Ak times.
O

We will make use of the following lemma from Strehl
and Littman (2005).

Lemma 5 (Generalized Induced Inequality) Let
M be an MDP, K a set of state-action pairs, M' an
MDP equal to M on K (identical transition and reward
functions), m a policy, and T some positive integer.
Let Ay be the event that a state-action pair not in
K is encountered in a trial generated by starting from
state s and following w for T timesteps in M. Then,

Vir(s,T) > Vi (s, T) — Pr(Awm) /(1 = 7).

5.2.1. PROOF OF THE MAIN RESULT

Proof of Theorem 1: Suppose Delayed Q-learning
is run on MDP M. We assume that Al holds and
that Q¢(s,a) > Q*(s,a) holds for all timesteps ¢ and
state-action pairs (s,a). The probability that either
one of these assumptions is broken is at most 26/3, by
Lemmas 1 and 2.

Consider timestep ¢ during learning. Let A; be the
non-stationary policy being executed by the learning
algorithm. Let m; be the current greedy policy, that
is, for all states s, m:(s) = argmax, Q:(s,a). Let s;
be the current state, occupied by the agent at time
t. We define a new MDP, M’. This MDP is equal
to M on K, (identical transition and reward func-
tions). For (s,a) € K, we add a distinguished state
Ss.q to the state space of M’ and a transition of prob-
ability one to that state from s when taking action
a. Furthermore, S; , self-loops on all actions with re-
ward [Q(s,a) — R(s,a)](1—~)/v (so that VT, (Ss.qa) =
[Qt(sv a) 7R(57 a)]/7 and Q} /(57 CL) = Qt(57 CL), for any
policy 7). Let T = O(ﬁ In ﬁ) be large enough
so that |V (s¢,T) — Vi (s¢)| < €2 (see Lemma 2 of
Kearns and Singh (2002)). Let Pr(Ajs) denote the
probability of reaching a state-action pair (s,a) not
in K;, while executing policy A; from state s; in M
for T timesteps. Let Pr(U) denote the probability of
the algorithm performing a successful update on some
state-action pair (s, a), while executing policy A; from
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state sy in M for T timesteps. We have that

V]\?t (St> T)
V]é/ (St, T)

Y

— Pr(An)/(1 =)
> Vs, T) = Pr(An) /(1 =) = Pr(U)/(1 =)
= Vifi(se) —ea = (Pr(An) + Pr(U)) /(1 = ).

The first step above follows from Lemma 52. The sec-
ond step follows from the fact that 4; behaves identi-
cally to 7; as long as no Q-value estimate updates are
performed. The third step follows from the definition
of T above.

Now, consider two mutually exclusive cases. First,
suppose that Pr(Ap;) + Pr(U) > ex(1l —7), mean-
ing that an agent following A; will either perform
a successful update in T timesteps, or encounter
some (s,a) ¢ K; in T timesteps with probability at
least ea(1 —~)/2 (since Pr(Ap or U) > (Pr(Ay) +
Pr(U))/2). The former event cannot happen more
than SAk times. By assumption, the latter event
will happen no more than 2mSAx times (see Lemma
4). Define ¢ = (2m + 1)SAk. Using the Hoeffd-
ing bound, after O(_3—; 1 — In 1/6) timesteps where
Pr(Ay) + Pr(U) > 62(1 — ), every state-action pair
will have been updated 1/(e1(1—+)) times, with prob-
ability at least 1 — §/3, and no futher updates will
be possible. This fact implies that the number of
timesteps ¢ such that Pr(An) + Pr(U) > ea(1 —7) is

bounded by O(—f— (1 5 ln 1/8), with high probability.

Next, suppose that Pr(Ay) + Pr(U) < ea(1 — 7). We
claim that the following holds for all states s:

3
0< Vils) = Vi () < 1 flv. (8)
Recall that for all (s,a), either Qu(s,a) =
Wo(s,a) (when (s,a) € Ki), or Qus,a) —

(R(s,a) +v> ., T(s'|s,a)Vi(s")) < 3er (when (s,a) €
K;). Note that V7, is the solution to the following set
of equations:

Vg (s) = R(s,m(s))+ Z T(s'|s, m(s)) Vi (s'),
s’eS

if (s,m:(s)) € K

V]\Zt’(s) = Qu(s,m(s)), if (s,m(s)) € K

The vector V; is the solution to a similar set of equa-
tions except with some additional positive reward
terms, each bounded by 3e;. Using these facts, we

3Lemma 5 is valid for all policies,
stationary ones.

including non-

have that

Vidi(se) > Vit (se, T)

Vi (se,T) — €2 — (Pr(Ap) + Pr(U)) /(1 = 7)
V]C[t,(st) — €9 — €2

Vi(se) —3e1/(1 — ) — 2¢2

V*(st) — 3e1 /(1 — ) — 2ea.

IV IV IV IV

The third step follows from the fact that Pr(A) +
Pr(U) < e3(1 —7) and the fourth step from Equa-
tion 8. The last step made use of our assumption that
Vi(st) > V*(s¢) always holds.

Finally, by setting €; := ¢(1 — 7)/9 and €5 := €/3, we
have that

Vil(se, T) > V*(s) — €

is true for all but O(—p2—1In1/4)

e(l'y

o SA 1, 1 . SA
— n-—In n
A1—7)® 0 e(l—v) de(l-7)

timesteps, with probability at least 1—9. We guarantee
a failure probability of at most d by bounding the three
sources of failure: from Lemmas 1, 2, and from the
above application of Hoeffding’s bound. Each of these
will fail with probability at most §/3. O

Ignoring log factors, the best sample complexity bound
previously proven has been

5 ( $2A 3)
e(1—7)

for the Ryax algorithm as analyzed by Kakade (2003).
Using the notation of Kakade (2003)%, our bound of
Theorem 1 reduces to

o (SA ) .
et(1—7)

It is clear that there is no strict improvement of the
bounds, since a factor of S is being traded for one
of 1/(e(1 — v)). Nonetheless, to the extent that the
dependence on S and A is of primary importance,
this tradeoff is a net improvement. We also note that
the best lower bound known for the problem, due to
Kakade (2003), is Q (SA/(e(1 —7))).

Our analysis of Delayed Q-learning required that v be
less than 1. The analyses of Kakade (2003) and Kearns
and Singh (2002), among others, also considered the

4The use of normalized value functions reduces the de-

pendence on 1/(1 — 7).
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case of v = 1. Here, instead of evaluating a policy with
respect to the infinite horizon, only the next H action-
choices of the agent contribute to the value function.
See Kakade (2003) for a discussion of how to evaluate
hard horizon policies in an online exploration setting.
For completeness, we also analyzed a version of De-
layed Q-learning that works in this setting. We find
that the agent will follow an e-optimal policy for hori-
zon H on all but O(SAH® /e*) timesteps, with proba-
bility at least 1 —4. In terms of the dependence on the
number of states (S), this bound is an improvement
(from quadratic to linear) over previous bounds.

6. Related Work

There has been a great deal of theoretical work an-
alyzing RL algorithms. Early results include proving
that under certain conditions various algorithms can,
in the limit, compute the optimal value function from
which the optimal policy can be extracted (Watkins
& Dayan, 1992). These convergence results make no
performance guarantee after only a finite amount of ex-
perience. Even-Dar and Mansour (2003) studied the
convergence rate of Q-learning. They showed that,
under a certain assumption, Q-learning converges to a
near-optimal value function in a polynomial number of
timesteps. The result requires input of an exploration
policy that, with high probability, tries every state-
action pair every L timesteps (for some polynomial L).
Such a policy may be hard to find in some MDPs and
is impossible in others. The work by Fiechter (1994)
proves that efficient learning (PAC) is achievable, via a
model-based algorithm, when the agent has an action
that resets it to a distinguished start state.

Other recent work has shown that various model-based
algorithms, including E® (Kearns & Singh, 2002),
Riax (Brafman & Tennenholtz, 2002), and MBIE
(Strehl & Littman, 2005), are PAC-MDP. The bound
from Theorem 1 improves upon those bounds when
only the dependence of S and A is considered. Delayed
Q-learning is also significantly more computationally
efficient than these algorithms.

Delayed Q-learning can be viewed as an approxima-
tion of the real-time dynamic programming algorithm
(Barto et al., 1995), with an added exploration bonus
(of €1). The algorithm and its analysis are also sim-
ilar to phased Q-learning and its analysis (Kearns &
Singh, 1999). In both of the above works, exploration
is not completely dealt with. In the former, the tran-
sition matrix is given as input to the agent. In the
latter, an idealized exploration policy, one that sam-
ples every state-action pair simultaneously, is assumed
to be provided to the agent.

7. Conclusion

We presented Delayed Q-learning, a provably effi-
cient model-free reinforcement-learning algorithm. Its
analysis solves an important open problem in the com-
munity. Future work includes closing the gap between
the upper and lower bounds on PAC-MDP learning
(see Section 5.2.1). More important is how to extend
the results, using generalization, to richer world mod-
els with an infinite number of states and actions.
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